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Abstract.
Inverse reinforcement learning (IRL) addresses the problem of re-

covering the unknown reward function for a given Markov decision
problem (MDP) given the corresponding optimal policy or a per-
turbed version thereof. This paper studies the space of possible so-
lutions to the general IRL problem, when the agent is provided with
incomplete/imperfect information regarding the optimal policy for
the MDP whose reward must be estimated. We focus on scenarios
with finite state-action spaces and discuss the constraints imposed
on the set of possible solutions when the agent is provided with (i)
perturbed policies; (ii) optimal policies; and (iii) incomplete policies.
We discuss previous works on IRL in light of our analysis and show
that, with our characterization of the solution space, it is possible to
determine non-trivial closed-form solutions for the IRL problem. We
also discuss several other interesting aspects of the IRL problem that
stem from our analysis.

1 Introduction
Inverse reinforcement learning (IRL) addresses the problem of re-
covering the unknown reward function for a given Markov decision
problem (MDP) given the corresponding optimal policy. Originally
formulated in [8], the first formal treatment of IRL is due to Ng and
Russel [6]. In their work, the authors provide a formal characteriza-
tion of the solution space for the IRL problem and several algorithms
designed to tackle different variations thereof. However, most results
in [6] rest on the underlying assumption that the learner is provided
access to the optimal policy for the target reward.

Several posterior works proposed modifications to the original IRL
formulation. For example, in [9] the authors address IRL with eval-
uation, in which the expert is unable to describe the optimal policy
but can only evaluate two policies comparatively. In [4, 7] the au-
thors propose a different view of IRL, in which the reward function
is seen as providing a parameterization of the target policy. IRL then
reduces to a supervised learning problem, where the goal is to ap-
proximate, within a parameterized family of policies, one specific
target policy from (noisy) samples thereof. The particular approach
in [7] relies on Bayesian inference and proposes an algorithm to es-
timate the posterior distribution over the possible reward functions
given the demonstration. The same work also shows that the original
algorithms in [6] can be recovered by an adequate choice of prior
and likelihood function. In [4], on the other hand, a gradient-descent
approach is proposed to minimize a quadratic loss function.

In a somewhat different line of work, several recent works have
adopted IRL-based approaches to apprenticeship learning [2, 10,
11]. In apprenticeship learning, the learner is less concerned with
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recovering a reward function than to recover a policy that closely
matches the performance of the demonstrator in some precise sense.
IRL-based approaches to apprenticeship learning assume that the
demonstrator is following a policy (not necessarily optimal) for a
known underlying Markov decision problem. Then, by recovering
an intermediate reward function in an IRL-like fashion, the desired
policy can be computed as the optimal policy associated with this
reward function. We refer to [1] for additional details and references.

In this paper we contribute to the existing literature in two aspects.
On one hand, while currently there is a rich body of work on al-
gorithmic approaches to IRL and apprenticeship learning, the only
theoretical analysis of the IRL problem and corresponding solution
space is provided by the pioneer work of Ng and Russel [6]. Unfor-
tunately, as already mentioned, the analysis in [6] assumes that the
optimal policy is available to the learner, complete and error-free.
In this paper we complement that analysis and characterize the IRL
solution space when (a) the optimal policy may not be completely
specified; and/or (b) the learner can only access a perturbed version
of the optimal policy. Our results also differ from those in [6] in that
we consider a different reward model.

Our analysis of the solution space for the IRL problem in turn
leads to our second contribution in this paper: we show that, by con-
sidering a more restrictive notion of optimal policy, we are able to de-
rive analytically non-trivial, closed-form solutions to the IRL prob-
lem. This is in contrast with current methods in the literature that
typically resort to some optimization routine to tackle IRL.

Incidentally, our analysis also highlights several smaller re-
sults/facts that are of independent interest per se. Specifically,

• We briefly discuss relations between IRL and reward shaping [5];
• We show that it is possible to compute a non-trivial reward func-

tion for any optimal policy;
• We show that the previous fact does not hold if a parameterized

reward model is used.
• We show that the two approaches in [4, 7] share the same solution

space, and analytically describe this solution space;

Although some of the above results may seem obvious at first glance,
our analysis shows that they yield subtle consequences that have not
been properly explored in the literature and shed a new light on the
structure of the policy space in MDPs.

2 Background

The “classical” IRL problem is formulated within the framework
of Markov decision problems (MDPs). We thus start by reviewing
MDPs and some related concepts, before formalizing the IRL prob-
lem in the next section.



2.1 Markov Decision Problems
A Markov decision problem (MDP) describes a sequential decision
problem in which an agent must choose the sequence of actions that
maximizes some reward-based optimization criterion. Formally, an
MDP is a tupleM = (X ,A,P, r, γ), whereX represents the (finite)
state-space, A represents the (finite) action-space, P(x, a, y) repre-
sents the transition probability from state x to state y when action a
is taken and r(x, a) represents the expected reward for taking action
a in state x. The scalar γ is a discount factor.

We consider a policy as a mapping π : X × A −→ [0, 1] that
assigns to each x ∈ X a distribution π(x, ·) over A. The purpose of
the agent is to determine a policy π so as to maximize, for all x ∈ X ,

V π(x) = Eπ

[
∞∑
t=0

γtr
(
Xt,At

)
| X0 = x

]
,

where Xt is the random variable (r.v.) representing the state at time
t, At is the r.v. corresponding to the action taken at that time instant
and is such that P [At = a | Xt = x] = π(x, a). We define the Q-
function associated with a policy π as

Qπ(x, a) = Eπ

[
∞∑
t=0

γtr
(
Xt,At

)
| X0 = x,A0 = a

]
.

where, again, At is distributed according to π(Xt, ·) for all t > 0.
Finally, we defined the advantage function associated with π as
Aπ(x, a) = Qπ(x, a)− V π(x).
2.2 Optimal Policies
For any finite MDP, there is at least one optimal policy π∗ such that
V π
∗
(x) ≥ V π(x) for any π and x ∈ X . The corresponding value

function, V ∗, verifies the Bellman optimality equation,

V ∗(x) = max
a∈A

[
r(x, a) + γ

∑
y∈X

P(x, a, y)V ∗(y)

]
. (1)

The associated Q-function in turn verifies

Q∗(x, a) = r(x, a) + γ
∑
y∈X

P(x, a, y)V ∗(y)

= r(x, a) + γ
∑
y∈X

P(x, a, y)max
u∈A

Q∗(y, u).
(2)

For any given MDP, the Bellman equation provides a two-way re-
lation between optimal policies and optimal value functions, summa-
rized in the following expressions:

V ∗(x) = Eπ∗ [r(x,A) + γV ∗(Y )] (3a)

supp(π∗x) ⊂ argmax
a∈A

E [r(x, a) + γV ∗(y)] , (3b)

where Eπ∗ [·] denotes the expectation with respect to (w.r.t.) the joint
distribution over the action A and next state Y induced by π∗, and
supp(π∗x) denotes the support of the distribution π∗(x, ·). Given a
functionQ : X×A → R, we define the greedy action set associated
with Q at state x as

AQ(x) =
{
a∗ ∈ A | a∗ ∈ argmax

a∈A
Q(x, a)

}
. (4)

Using this definition, the relations in (3) become

V ∗(x) =
∑
a∈A

π∗(x, a)Q∗(x, a) supp(π∗x) ⊂ AQ
∗
(x).
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Figure 1. Block diagram representing an MDP and an IRL problem.

Finally, we define greedy policy associated with a function Q : X ×
A → R as the policy verifying

πQ(x, a) =

{
1/
∣∣AQ(x)∣∣ if a ∈ AQ(x)

0 otherwise,

for all x ∈ X , where
∣∣AQ(x)∣∣ denotes the cardinality of AQ(x).

3 Inverse Reinforcement Learning
In this section we formalize the inverse reinforcement learning prob-
lem and review the results in [6]. We also provide a brief overview
of the main ideas behind in [4, 7].

3.1 Inverse Bellman Equation
As seen above, an MDP represents a decision problem in which the
task to be completed is represented by the reward function r. The
optimal solution to such a task consists in a policy π∗ for which both
relations in (3) hold. Solving an MDP M = (X ,A,P, r, γ) thus
amounts to computing one such π∗ given the model ofM.

Inverse reinforcement learning (IRL) deals with the inverse prob-
lem to that of an MDP (see Fig. 1). Solving an IRL problem con-
sists in recovering the reward function r given the corresponding op-
timal policy π∗. In other words, given a policy π∗ and the model
(X ,A,P, γ), we want to compute a reward function r such that π∗

is optimal for the MDP (X ,A,P, r, γ).
From (2) and the fact that V ∗(x) =

∑
a π
∗(x, a)Q∗(x, a), we get

Q∗(x, a) = r(x, a) + γ
∑
y∈X

P(x, a, y)
∑
b∈A

π∗(y, b)Q∗(y, b).

Then, given a general function Q : X × A → R, it is possible to
invert the above relation for each pair (x, a), to yield

r(x, a) = Q∗(x, a)− γ
∑
y∈X

P(x, a, y)
∑
b∈A

π∗(y, b)Q∗(y, b). (5)

If the Bellman equation defines the optimal value-function/Q-
function from the corresponding reward function, the expression
above defines the reward function from its corresponding Q-
function. As such, we henceforth refer to (5) as the inverse Bellman
equation. Together, the Bellman equation and (5) define a one-to-one
relation between reward-functions and Q-functions. In other words,
given any Q-function Q there is a corresponding reward function r
such that Q is the optimal Q-function associated with r.

3.2 Solution Characterization of Ng and Russel
We now review the main result in [6] that describes the solution space
for the IRL problem, when the learner is provided with complete
and error-free access to the optimal policy π∗ for the MDP whose
reward must be estimated. To this purpose, it is convenient to write
the Bellman equation (1) in vector notation as

v∗ = π∗[R] + γπ∗[P]v∗,
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where v∗ is a column vector representing V ∗, R is a matrix repre-
senting the unknown reward r, π∗[·] represents the expectation w.r.t.
the optimal policy, π∗, and P is the transition matrix for the MDP.
Concretely, π[R] is a column vector with xth component given by∑
a π
∗(x, a)r(x, a) and π[P] is a matrix with (x, y) component

given by
∑
a π
∗(x, a)P(x, a, y). The Bellman equation now comes

v∗ = (I− γπ∗[P])−1π∗[R]. (6)

On the other hand, we also have v∗ ≥ Ra + γPav
∗ or, equivalently

(I− γPa)v∗ ≥ Ra, (7)

where Ra is the ath column of R and the inequalities are taken
component-wise. Replacing (6) into (7) finally yields

(I− γPa)(I− γπ∗[P])−1π∗[R] ≥ Ra. (8)

The result in [6] arises from considering in (8) a reward function that
is only state-dependent.

The above expression provides a set of linear constraints on the
set of possible reward functions that yield π∗ as an optimal policy.
Unfortunately, this set does not uniquely determine one such reward
function for a given policy – in particular, it includes trivial solu-
tions such as the all-zeros reward function, r(x, a) ≡ 0. Therefore,
to solve the IRL problem, it is necessary to consider some additional
selection criterion that disambiguates among all functions in the set
defined by (8) and, if possible, eliminates trivial solutions. Most such
criteria considered in the literature, however, are empirically moti-
vated and lack theoretical support. It is possible to consider a stricter
definition of “optimal policy” that successfully eliminates some of
the ambiguity in the solution space defined by (8).

3.3 IRL as Parameter Estimation
We conclude this section by briefly reviewing the common ideas in
[4, 7]. Unlike the approach in [6], these works assume that the learner
is provided with samples of a perturbed version of the optimal policy
associated with the desired reward (a demonstration). Some of these
samples may not correspond to optimal actions but to “perturbations”
of the optimal policy (to be detailed in the continuation), and there
is no assumption on the completeness of the demonstration, i.e., the
demonstration may not include samples in all states.

Both works assume that the demonstration is generated according
to a particular distribution that depends non-linearly on the reward
function. This reduces the IRL problem to that of finding the reward
function yielding a distribution that most closely matches the em-
pirical distribution of the demonstration. In other words, the reward
function parameterizes a family of distributions, and IRL consists in
fitting this parameter to minimize some empirical loss function.

Both aforementioned works [4, 7] assume that the states in the
demonstration are sampled uniformly in an i.i.d. fashion, and that
the corresponding actions are sampled according to the distribution:

P [Ai = a | Xi = x] =
eηQ

∗(x,a)∑
b e
ηQ∗(x,b) , (9)

where Xi is the r.v. corresponding to the ith sampled state and Ai the
corresponding sampled action. In the expression above, Q∗ repre-
sents the optimal Q-function associated with the reward function to
be estimated, and η is a confidence parameter determining the spread
of the distribution around the optimal actions.

The choice of this particular distribution is motivated by several
observations. First of all, it translates the intuition that, even if mak-
ing mistakes, the demonstrator is more prone to choose better ac-
tions than worse ones. Secondly, as long as the optimal actions are

observed more often than non-optimal actions, the above distribu-
tion will yield a reward function whose associated optimal actions
will also be optimal to those of the target reward function. In partic-
ular, if all optimal actions are sampled equally often, the recovered
optimal actions will match those of the target reward function, and
the obtained reward function will be equivalent to the desired reward
function in terms of optimal policies.4

We conclude by noting that in [7] this distribution is used as the
likelihood function in a Bayesian setting. The paper proceeds by
estimating the posterior distribution over possible reward functions
given the demonstration using a variant of the Monte-Carlo Markov
chain algorithm [3]. In [4], on the other hand, the authors adopt a
gradient approach to recover the reward function that minimizes the
loss w.r.t. some target policy in terms of empirical distributions.

4 Characterization of the IRL Solution Set
In this section we present the contributions of this paper. We pro-
vide an analysis of the solution space for the IRL problem when the
learner has only access to imperfect/incomplete information concern-
ing the optimal policy for the MDP whose reward is to be estimated,
complementing the results in [6] reviewed in Section 3.2. Our analy-
sis also leads to a refinement of the results in [6] when the agent has
perfect information concerning the optimal policy.

We start by proposing a stricter interpretation of the IRL problem
that settles some of the solution-space ambiguity issues identified in
Section 3.2. We then describe the IRL solution space for different
possible situations, and conclude with the discussion of several re-
lated results that follow from our analysis. In particular, we derive an
analytical, closed-form solution to the IRL problem.

4.1 Restricted Optimal Policies in IRL
LetM = (X ,A,P, r, γ) be an MDP whose reward function, r, we
want to estimate from the corresponding optimal policy or a perturba-
tion thereof. The relation between the reward r and the corresponding
optimal policy is, in a sense, “encoded” by the optimal Q-function
associated with r, Q∗. In fact, Q∗ is determined uniquely from r,
and a policy pi∗ is optimal if and only if, for every x ∈ X ,

π∗(x, a) > 0⇒ a ∈ AQ
∗
(x).

However, the above dependence of π∗ on Q∗ is only w.r.t. the sets
AQ
∗

. In fact, any other function Q′ for which AQ
′
(x) = AQ

∗
(x)

for every x ∈ X has exactly the same set of optimal policies, and the
corresponding reward function

r′(x, a) = Q′(x, a)− γ
∑
y∈X

P(x, a, y)max
b∈A

Q′(y, b)

is equivalent to r in terms of optimal policies – i.e., any policy that
is optimal for r is optimal for r′ and vice-versa. One example of
one such function is the advantage functionA∗, corresponding to the
reward function

r∗(x, a) = A∗(x, a)− γ
∑
y∈X

P(x, a, y)max
b∈A

A∗(y, b) = A∗(x, a).

Indeed, we note that any two reward functions r1 and r2 are equiv-
alent in terms of optimal policies if the zeros of the corresponding
advantage functions match. Equivalently, two reward functions r1
and r2 are equivalent if the corresponding greedy action sets, AQ

∗
1

4 This notion of equivalence between reward functions is further explored in
Section 4.
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and AQ
∗
2 , match. We take this opportunity to note that this notion of

equivalence between reward functions can be used to alleviate some
of the degenerate solutions discussed in Section 3.2. Given a pol-
icy π, we will restrict our attention to those reward functions whose
corresponding greedy action set exactly matches the support of π.
Within this “stricter” formulation of IRL, we note that the trivial re-
ward function r(x, a) ≡ 0 is no longer considered a solution to the
IRL problem, except in the degenerate case in which all actions are
simultaneously optimal in all states.

For our purposes, it is more convenient to reformulate the above
restriction in terms of a more strict definition of “optimal policy”.

Definition 1 (Optimal Policy) The optimal policy for an MDP
M = (X ,A,P, r, γ) is defined, for each state x ∈ X , as the uni-
form distribution over the set AQ

∗
(x).

4.2 Analysis of IRL Solutions
In seeking a general description for the IRL solution set, we start by
providing a characterization of the latter in terms of Q-functions.
In other words, given the optimal policy for an MDP or a per-
turbed/incomplete version thereof, we are interested in computing
the set ofQ-functions for which the provided policy is optimal. Once
this is achieved, we can use (5) to trivially obtain the corresponding
solution set in terms of rewards. In tackling this problem, we denote
byQ the set of all functions Q : X ×A → R and parameterize any
such function as

Q(x, a) = V (x) +A(x, a), (10)

with V (x) = maxb∈AQ(x, b) and A(x, a) = Q(x, a) − V (x).
Although the discussion in Section 4.1 regarding the equivalence of
rewards in terms of optimal policies already hints at some of the ap-
pealing properties of this particular parameterization, it will soon be-
come apparent that this representation of Q-functions is indeed most
useful in our analysis.

Also, following the discussion in Section 3.3, when dealing with
perturbed policies for an MDP (X ,A,P, r, γ), we adopt the general
form portrayed in (9), where Q∗ is taken as the optimal Q-function
for the desired reward function r. As discussed in Section 3.3, this
is not a very restrictive assumption since, as long as the optimal ac-
tions are observed more often than the non-optimal actions, the cor-
responding reward function will still yield an optimal policy for the
desired policy (although possibly not in the restricted sense of Defi-
nition 1).

Given a policy π, we want to compute the subset Qπ ⊂ Q that
is consistent with π, meaning that any Q ∈ Qπ generates the given
policy π according to (9). Noting that the distribution in (9) is speci-
fied in a state-wise manner, it is possible to also detail the relation be-
tween a policy π and aQ-functionQ in a state-wise manner. As such,
in the continuation, we consider a fixed “query” state xq ∈ X and
derive the Q-function in that state that corresponds to the provided
policy π∗. In our analysis, we consider three distinct situations:

• The learner is provided with a perturbed version of the optimal
policy at state xq – corresponding to a finite value of η in (9). In
this case, π(xq, a) is specified to the learner for all a ∈ A and
belongs to the interval (0, 1);

• The learner is provided with the optimal policy at state xq – corre-
sponding to a the situation in which η →∞. In this case, π(xq, a)

is specified and is either 0 or 1/
∣∣∣AQ∗(x)∣∣∣;

• The learner receives no information about the optimal policy at
state xq . In this case, π(xq, a) is unspecified (free) for all a ∈ A.

Resorting to the representation in (10), we now show how each of the
above situations translates in terms of constraints in terms of V (xq)
and A(xq, ·).

Perturbed Policy Observed
In this scenario, the learner is provided with a perturbed version of
the optimal policy at state xq . Then, given the probability distribution
in (9) computed from the (unknown) optimal Q-function at xq , one
possible solution is given by

Q(xq, a) =
ln(π(xq, a))

η
, (11)

which can easily be confirmed by replacing in (9). This solution,
however, is not unique, as seen from the following result.

Lemma 2 Let pxa(Q) denote the probability in (9) at (x, a), seen as
a function ofQ. Given any twoQ-functions,Q1 andQ2, pxa(Q1) =
pxa(Q2) if and only if Q1(x, a) = Q2(x, a) + φ(x) for all (x, a),
where φ is any real valued function that is constant over actions.

Proof: On one hand, if Q1(x, a) = Q2(x, a) + φ(x) for ev-
ery (x, a) ∈ X × A, direct substitution on (9) immediately yields
pxa(Q1) = pxa(Q2). On the other hand, we can write, for a general
Q,

pxa(Q) =
eηQ(x,a)

e−φ(x)
= eηQ(x,a)+φ(x),

where φ(x) = − ln(
∑
b e
ηQ(x,b)). If pxa(Q1) = pxa(Q2), then

eηQ1(x,a)+φ1(x) = eηQ2(x,a)+φ2(x),

and the result immediately follows. �
It follows from Lemma 2 that, at state xq ∈ X , the solution in (11)

is unique up to an additive term. Using our previous parameterization
we have, for every Q ∈ Qπ ,

A(xq, a) =
1

η

[
ln(π(xq, a))−max

b
ln(π(xq, b))

]
.

and V ∗ is arbitrary. In this case, Q(xq, ·) is defined up to a single
“degree of freedom” arising from the value of V (xq).

Optimal Policy Observed
In this case, the learner is provided with the optimal policy at state
xq . In the case of an optimal policy, (9) degenerates as η → ∞
and the policy π(xq, a) is non-zero only in those entries where
Q(xq, a) = maxbQ(xq, b). This implies that for a given policy π,
any function Q that contains the maximizing actions at xq in the
same positions as the non-zero entries of π(xq, ·) is consistent with
this policy. In terms of our representation, this means that, for every
Q ∈ Qπ , A(xq, a) = 0 if π(xq, a) > 0 and A(xq, a) < 0 (but oth-
erwise arbitrary) if π(xq, a) = 0, and V is arbitrary. We now have
several degrees of freedom arising from the value of V (xq) and the
negative components of A(xq, ·).

Policy Unobserved
In this case, no constraints apply and Q(xq, a) can be arbitrary. It
can be written as in (10) with several degrees of freedom arising both
from the value of V (xq) and the components of A(xq, ·), now con-
strained only to be non-positive and to have at least one zero element
(there is always at at least one optimal action per state).

4



Now given the solution set Qπ associated with the given policy
π∗, we can apply (5) to obtain the corresponding set in reward space.
In particular, for each Q ∈ Qπ , we have for all a ∈ A,

r(x, a) = V (x)− γ
∑
a∈A

P(x, a, y)V (y) +A(x, a), (12)

where V and A are as in (10). It is worth noting at this point that the
optimal policy associated with r is solely defined by the component
A, in the sense that changes to V have no effect on the corresponding
policy. In fact, this holds both for the unperturbed and the perturbed
cases, as seen in Lemma 2. Also, from the analysis above, it is always
possible to build a Q-function from a given policy (perturbed or not)
from which a reward function can, in turn, be computed. This means
that it is always possible to compute a non-trivial reward function for
any optimal policy.

4.3 Ng and Russel Revisited
We now revisit the result in [6] in light of the results in the previous
subsection. In particular, we show that our results are in accordance
with those derived in [6]. This is summarized in the following result.

Theorem 3 Given an optimal policy5 π, letRπ be the reward space
described in Section 4.2 and R̂π be the set of reward functions veri-
fying (8). Then R̂π = cl(Rπ), where cl(·) denotes set closure.

Proof: In the proof we adopt the vector notation from Section 3.2.
We start by showing that Rπ ⊂ R̂π . From Section 4.2, Ra = (I −
γPa)v + Aa, where v is a vector corresponding to the arbitrary
function V and Aa denotes column a of matrix A, corresponding to
the functionA. By definition, A ≤ 0 (component-wise) and π[A] =
0. Replacing in (8), yields

(I− γPa)v ≥ (I− γPa)v +Aa,

which trivially holds. This means thatRπ ⊂ R̂π . It remains to show
that R̂π ⊂ cl(Rπ). From the Bellman equation, given a reward func-
tion r and the corresponding optimal policy π, it holds that

π[R] = (I− γπ[P])v, (13)

for some vector v. Defining u = (I− γπ[P])−1π[R], (8) becomes,
for each a ∈ A, (

I− γPa
)
u = Ra − Za,

for some non-positive slack matrix Z. Applying π to the expression
above for all a yields

π[R] = (I− γπ[P])u+ π[Z].

From (13), π[Z] must be of the form (I − γπ[P])u′, implying that
Za = (I − γPa)u′ +Aa, for some matrix A such that π[A] = 0.
Putting everything together, we have

Ra =
(
I− γPa

)
(u+ u′) +Aa,

and the result follows. �
It is also interesting to consider the parallel between Lemma 2 and

some of the results in [5]. The analysis of reward shaping in [5] es-
sentially concludes a similar set of invariances in terms of the optimal
policy as those identified in Lemma 2. To see this, note that the func-
tions φ in Lemma 2 correspond to shaping potential in [5]. In turn,
these potentials affect only the value of V in the parameterization
(10), which do not affect the corresponding optimal policy.
5 Here, optimal policy is taken in the sense of Definition 1.

4.4 Parameter Estimation Approach Revisited
Our work shares with the approaches in [4, 7] the assumption that the
policy provided to the agent is generated from some unknown reward
function according to the distribution in (9). In the aforementioned
works, the learner is then provided with a demonstration consisting
of a set D = {(xi, ai), i = 1, . . . , N} of state-action pairs, where
the states are sampled in an i.i.d. manner and the corresponding ac-
tions sampled according to (9). Both works then propose a loss func-
tion and a method to compute the reward function that minimizes it.
In their essence both methods seek to approximate – within the same
parameterized family of distributions – the empirical distribution of
the data.

Therefore, it is no surprise that the maximum likelihood solution
in the formulation of [7] matches the distribution that minimizes the
loss in [4] and this is, in turn, the solution considered in Section 4.2.
Computing the empirical distribution of the data at each state x,
π̂(x, ·), we simply set

Q(x, a) =
ln(π̂(x, a))

η
+ V (x), (14)

for some arbitrary V . The expression (14) constitutes a closed-form
solution for the problems addressed therein. In other words, the so-
lutions described in our paper are (global) maximizers of both the
maximum likelihood criterion in the formulation of [7] and the crite-
rion considered in [4].

In a more general setting, we may have situations in which the
leaner is provided the optimal policy at some states, a perturbed pol-
icy in other states, and no policy at all in the remaining states. Using
the results in Section 4.2 we can immediately compute from this pol-
icy information one possible Q-function that is compatible with the
provided policy, from which a reward can be extracted trivially using
(5). In Section 5 we illustrate this process with a simple example and
discuss further use for our results.

5 A Simple Example
In this section we present a simple example in which we use our
results within a broader estimation setting to compute analytically in
closed-form the solution to an IRL problem.

We consider the general architecture depicted in the diagram of
Fig. 2. In this diagram, the learner is provided with a demonstration
consisting of a set D = {(xi, ai), i = 1, . . . , N} generated as dis-
cussed in Section 4.2. This demonstration is combined with some
prior information on the policy to yield a representative estimate pol-
icy π̂. From our results from Section 4.2, we can use this estimate
to compute the corresponding set of Q-functions,Qπ̂ . Using (5), we
can compute the corresponding set of reward functions, Rπ̂ , from
which an individual reward can be selected according to some crite-
rion. Note that this specific reward selection is a problem outside the
IRL problem, since the selection of one particular reward function
fromRπ̂ implies absolutely no change on the corresponding policy.

The prior information included in the first block of Fig. 2 is par-
ticularly useful when the number of samples is very small since, to
some extent, it makes up for insufficient samples. Many different
priors can be used and the best one must be judged according to the
specific problem at hand.

To illustrate our application, consider the simple 4-state scenario
in Fig. 3, where the target reward assigns the agent with a reward
of +1 whenever it reaches the shaded cell. The agent has 5 actions
available at each state, 4 of which move it in one of the four direc-
tions, and the fifth corresponding to the “NoOp” action. For the MDP
thus obtained (considering the target reward function) we computed

5



Demonstration D

Prior P[π]

Bayesian
Policy

Estimation

Q-Space
Estimation

Qπ̂π̂ Reward
Space

Estimation

Rπ̂ Reward
Selection

r

Figure 2. Overview of the general approach to the IRL problem considered in this paper.
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Figure 3. Results of the policy estimation step.

the optimal Q-function and provided the learner with a demonstra-
tion consisting of 20 random state-action pairs sampled according to
the distribution in (9), with η = 2. This corresponds to the distribu-
tion depicted in Fig. 3(a), where in each state the height of the bars
is proportional to the corresponding sampling probability. From the
demonstration, we computed the policy corresponding to the max-
imum a posteriori, given a uniform prior for the parameters of the
policy. Notice that, since we have such a small demonstration, it is
only natural that the estimates for the policy are not too precise. For
comparison, we depicted these in Fig. 3(b).

From the estimated policy, π̂, we immediately compute the set of
Q-functions associated with the estimated policy π̂ as the set of all
Q-functions verifying (14), for an arbitrary real-valued function V .
Finally, we compute the corresponding reward solution space from
the above expression using (5). In our case, we computed one rep-
resentative reward function obtained by setting V = 0 in (14) and
the corresponding optimal policy, which matched the optimal for the
original reward function, as expected. Our closed-form solution does
not require running time-consuming optimization routines to output
a solution for the IRL problem. In this aspect, our analysis is also
distinct from that in [6], in that it is amenable to such straightforward
computation.

6 Concluding Remarks
We conclude with several remarks concerning the general applica-
bility of the results in this paper. First of all, our results feature dis-
crete state and action spaces. While the ideas should carry without
change to more general settings, the associated computations are
not amenable to a straightforward generalization. Considering, for
example, an MDP with an infinite state-space implies that the cor-
responding transition probabilities cannot be explicitly represented
and, hence, expressions such as (5) cannot easily be generalized.

Another very important aspect to take into account is the fact that
we are dealing with general reward functions that depend on state
and action. In this setting, as seen by our results, it is always possi-
ble to recover a non-degenerate reward function that yields any given
policy as optimal. However, this fact is not generally true if we con-
sider more restricted classes of reward functions. For example, when
considering a reward function r that depend only on x, it may hap-
pen that no solution exists for (5). When this is the case, no exact
solution exists for the IRL problem and, therefore, some form of ap-
proximation must be adopted. In such situation, the approaches in
[4, 7] appear naturally.

We conclude with two observations. First, it follows from the re-
sults in Section 4.2 that, for a given policy π, there is one reward

function for which the policy π is optimal independently of the par-
ticular dynamics of the problem. This reward is obtained by setting
V (x) to zero in (12). In this case, the corresponding value function
is identically zero and r(x, a) = A(x, a). This corresponds to the
“ideal reward” situation discussed in [5], in which precisely the shap-
ing potential is chosen so as to ensure that r(x, a) = Q(x, a).

Secondly, our results clearly show that the degrees of freedom in
the solution setRπ arise from

1. The unspecified components of π. These are associated with the
“free” entries of A in (12).

2. The invariance of π described in Lemma 2. These are associated
with V in (12).

In choosing one particular reward function from the set Rπ (cor-
responding to the dashed block in Fig. 2), we argue that these two
“types” of degrees of freedom should be dealt with differently. Con-
cerning those in 1, a particular choice ofA determines how the agent
should act in those states not specified by the demonstration. A cri-
terion to choose among the possible A basically determines what
the policy of the agent should be “by default”. Concerning those in
2, these don’t affect the policy. Therefore, a particular choice of v
simply determines a particular form for R, without affecting the cor-
responding optimal policy. In a sense, this is precisely the problem
of reward shaping [5].
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