Real-Time Sensory Pattern Mining for Autonomous
Agents

Pedro Sequeira! and Cldudia Antunes?

1 INESC-ID / IST, Av. Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal
pedro.sequeira@gaips.inesc-id.pt
2 Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
claudia.antunes@ist.utl.pt

Abstract. Autonomous agents are systems situated in dynamic environments.
They pursue goals and satisfy their needs by responding to external events from
the environment. In these unpredictable conditions, the agents’ adaptive skills are
a key factor for their success. Based on previous interactions with its environment,
an agent must learn new knowledge about it, and use that information to guide its
behavior throughout time. In order to build more believable agents, we need to
provide them with structures that represent that knowledge, and mechanisms that
update them overtime to reflect the agents’ experience. Pattern mining, a subfield
of data mining, is a knowledge discovery technique which aims to extract previ-
ously unknown associations and causal structures from existing data sources. In
this paper we propose the use of pattern mining techniques in autonomous agents
to allow the extraction of sensory patterns from the agent’s perceptions in real-
time. We extend some structures used in pattern mining and employ a statistical
test to allow an agent of discovering useful information about the environment
while exploring it.

Keywords: Autonomous agents, adaptation, learning, pattern mining, knowledge
discovery.

1 Introduction

There are several definitions of autonomous agents, and several attempts to define the
requirements that a designer must meet when building those agents [1]]. Nevertheless,
there a few characteristics which are common to those definitions of agents, specifically
that they are systems situated in dynamic environments, which have and actively pursue
some goals and satisfy their needs by autonomously responding to external events from
that environment [[1][2]. The characteristics of the environment make restrictions on the
sensations perceived, and shape the actions performed, the knowledge constructed, and
the decisions that are taken by the agent at each moment. Because those environments
can be dynamic and unpredictable, the agent must have some mechanisms to distin-
guish the features that are perceived from it, focusing its attention in those that seem
more promising to achieve its goals, and ignoring others that do not [1]]. This ability of
adapting to and learning new knowledge from the environment while interacting with
it in real-time defines restrictions and requirements when building autonomous agents

L. Cao et al. (Eds.): ADMI 2010, LNCS 5980, pp. 71-83] 2010.
(© Springer-Verlag Berlin Heidelberg 2010

72 P. Sequeira and C. Antunes

with such capabilities [2]. Namely, we need to provide them with some structures that
represent the acquired knowledge about the environment, and mechanisms that update
these representations overtime to reflect the agent’s interaction experience.

Data mining encloses a set of techniques to extract previously unknown and possible
useful information from data [3]]. One of such techniques is transactional pattern min-
ing, which extracts frequent associations and causal structures among sets of objects or
items from several transactions.

In this paper we propose the use of pattern mining techniques within the autonomous
agents paradigm in order to provide those agents with the ability of discovering asso-
ciative patterns in their perceptions while they interact with their environment, i.e., in
real-time. These patterns constitute the agents’ knowledge about its world taken from
the regularities that are perceived from its experience. Later on they can be useful for the
agent to form concepts about the environment and by setting expectations about future
events. To achieve that we extended some structures used in pattern mining to repre-
sent the discovered knowledge. We also adopted a statistical test to detect significant
sensory information for the agent to discover useful facts about its world, and came up
with some heuristics and algorithms to update and maintain the knowledge structures
in real-time, while the agent explores it.

This paper is organized as follows: the next section gives an overview of the general
idea and motivation behind the work presented, and define the research problem we are
trying to solve. In the following section we present several extensions to related work
as possible solutions to the problem. In section 5 we present the tests used to validate
the proposed solutions and a comparative analysis relating them. Finally we draw some
conclusions and possible future extensions for the work.

2 The Problem

In this section we describe the background motivation and research problem behind
the current work, introduce the pattern mining problem and explain how the analogy
between these problems and the autonomous agents’ paradigm can be made. Next we
characterize the problem to be solved and define a set of requirements to be satisfied.

2.1 Background

In a previous work [4]], Sequeira et al. presented SOTAI (Smart ObjecT-Agent Interac-
tion) framework to help autonomous agents identify the set of possible interactions with
unknown objects of the environment, based on previous experiences with other objects.
The approach is based on the notion of Gibson’s affordances [5] which can be defined
as the interaction opportunities which are transmitted by the objects to the agents tak-
ing into account their interaction capabilities. Within the SOTAI framework, an agent is
provided with a set of sensors from which it perceives its environment. At each moment
one sensor can contain a set of sensations which are modeled as symbolic qualities or
features of the perceived objects from the environment. For example, if an agent inter-
acts with an orange then it will receive the symbol orange in the color sensor, spherical
in the shape sensor, the symbol soft to the touch-texture sensor, etc.

Real-Time Sensory Pattern Mining for Autonomous Agents 73

The framework is based in Cohen et al.’s block-building approach [6]. It allows the
construction of small pieces of information called Base Fluents, which are pairs of
Sensations that occur frequent and simultaneously in the agent’s sensors. Using a Chi-
square [7]] statistical test, one can determine whether two monitored Sensations are
correlated, and also their association strength by calculating their Phi-coefficient [[7]. If
an association is detected, Base Fluents are created and later tested in pairs to determine
new associations. The learning process occurs in real-time while the agent interacts with
its environment, building new and larger blocks of information (Fluents) from smaller
structures. More implementation details can be found in [4].

To test the knowledge generation mechanisms, a test application (Sotai-Tester) was
created where an agent explores and interacts with a simulated environment composed
of several objects in a random manner. It selects at each decision moment an object
to interact with and receives sensations from the environment. For example, when it
sees an object, the agent takes its shape and color features from the object’s internal
description, when it fouches it receives the object’s tactile information, when it eats it
takes flavor and energy properties, etc.

2.2 The Pattern Mining Analogy

Pattern mining is a technique that is used to discover frequent patterns, associations,
correlations, or causal structures among sets of items or objects [8]. In transactional
pattern mining, a transaction database (DB) is a set of transactions, each of which con-
taining a set of items describing objects or events that occur simultaneously, at a given
point in time. The goal of the pattern mining algorithms is to discover all the maximal
sets of items that occur together in a significant number of transactions in the DB. Item-
sets are considered patterns if the number of transactions in the DB where they occur is
greater than a minimal threshold value, the pre-established support.

Considering the characteristics of the agents being modeled within the SOTAI frame-
work, one can envisage a way of applying some of these pattern mining algorithms
within an autonomous agent paradigm. In the case of such agents, at each time every
sensor will have a certain stimulus represented by some symbol. In the knowledge-
discovery language these symbols constitute categorical nominal attribute data or al-
phabets as they describe discrete values with no ordering between them. Moreover, if
we consider the symbols as being items, then at each time the set of all the stimuli in
the agent’s sensors (it’s current perception state) can be considered as a transaction. In
this context, a DB can be defined as the whole record of perception states of the agent
during all of its execution time.

2.3 Problem Definition

Having described the perception mechanism of the agent that we are modeling in the
context of pattern mining (as a set of items and transactions), we can define the prob-
lem of discovering knowledge from the agent’s interactions with its environment as a
problem of mining patterns from sets of transactions from a database.

74 P. Sequeira and C. Antunes

More specifically, we can better define the problem as finding synchronous sensory
patterns: sets of stimuli that occur frequently and simultaneously within the agent’s
sensors that reveal some regularities of its environment. Because this discovering pro-
cess directly depends on the perceptions made, the number and set of patterns discov-
ered will depend on each agent’s interaction experience even if the environment and its
conditions (the objects and its features) are the same. From this definition, the mining
algorithms to apply have to follow some requirements:

Discover sensory patterns in real-time as the agent interacts with the environment;
Discover the maximum amount of sensory patterns that indicate useful information
to be used by the agent at which it should focus its attention;

Maintain within the knowledge structure the maximum number of patterns so that
they can be easily accessed and used by the agent to make decisions;

Use the minimal amount of resources (both storage and time consumption).

3 Sensory Pattern Mining for Autonomous Agents

In this section we present several approaches to the problem defined in the previous
section. We start by a quick overview of the FP-Growth algorithm and envisage possible
modifications of the algorithm and its structures so that it can be used in mining patterns
in real time. Finally we propose the use of the Jaccard index statistic as a way to retrieve
more and meaningful patterns from the sensory data.

3.1 Transactional Pattern Mining

As described above, at each instant the agent’s perception state describes a set of stimuli
that can be defined as a transaction which can be provided to pattern mining algorithms.
The best well-known algorithm within the area of transactional pattern mining is the
Apriori algorithm introduced by Agrawal ef al. [8]. It iteratively generates the set of
candidate patterns (ifemsets) of some length k from the set of frequent-patterns of length
k—1. If the candidate is frequent, i.e. its occurrence is greater than the minimum support
threshold, then it is considered a pattern, and new candidates are generated from this
set to be tested in the next step. However, and despite the simplicity of the algorithm,
its candidate generation and test philosophy impairs its efficiency, and makes difficult
its extension to deal with continuous flows of data and real-time environments.

More recently, Han et al. proposed an algorithm to surpass some of the problems
presented by the Apriori algorithm, namely the necessity of having to generate and test
a huge number of candidate sets and execute multiple scans over the entire DB in order
to discover the patterns. As such, Han et al. developed FP-Growth, an algorithm that
builds up a compact structure (FP-Tree) from the data in a way that avoids scanning
the DB multiple times [9]. The algorithm works in three steps: first, it scans the DB
once in order to identify frequent items and identifies the best ordering among them;
the frequency-descending order among items is then used to reorder each transaction,

Real-Time Sensory Pattern Mining for Autonomous Agents 75

—
ROOT

>
&

Ap
W

SRS SRS
U

-

O R 8 88

-

O
QL

OmON

RS
o

Fig. 1. The FP-Tree (left) resulting from the application of the FP-Growth algorithm (min. sup-
port=0.4) over the set of transactions (right). Lighter nodes represent smaller support values.

using the FP-Tree to compact all the transactions in the DB; finally, it goes through the
tree in order to identify all the patterns in the database. Fig. [[lillustrates the result of
applying the FP-Growth algorithm (left) to a set of transactions in a DB (right). The
algorithm discovers a, b, ¢ and ac as patterns (min. support =0.4).

In light of the problem described earlier and taking into account the requirements
defined in section[2.3] the FP-Growth algorithm presents some drawbacks:

— First by requiring a first scanning over the whole set of transactions from the DB
to order items by their occurrence frequency, which is impossible to realize in the
autonomous agent’s case because we want the mining process to be made online;

— The main objective of the algorithm is to determine all the frequent itemsets. Due
to the inherent compactness of the FP-Tree structure, it is sometimes difficult to
determine whether specific combinations of items are considered patterns, having
to scan the tree to determine their support;

— Finally, as another consequence of the compactness of the FP-Tree, it is difficult to
verify if a specific itemset is a pattern in real-time. Indeed it would be beneficial for
the agent to have an easy and rapid access to all the patterns discovered so far in
order to use them to make better evaluations of the current state and also take better
decisions upon it.

3.2 Real-Time Pattern Mining

One of the requirements stated in section 2.3 was that the algorithm to be developed
must be executed in real-time, while the agent interacts with its environment, taking into
consideration the past sensory experiences. As such, the first attempt to solve this issue
was to try to build an FP-Tree structure using the same algorithm before mentioned, but
doing it in only one scan over the set of transactions of the DB. To do that we discarded
the first scan used to determine the order of the items according to their frequency.
Because this order is only a heuristic to minimize the number of nodes generated (not

76 P. Sequeira and C. Antunes

guaranteeing that the generated tree is the smallest one possible), we established a fixed
order to be used by the algorithm, namely the alphabetic order of the symbols repre-
senting the agent’s perceptions. Naturally, other kinds of ordering heuristics could be
used, namely the ones based on domain knowledge about the environment, for exam-
ple by determining what stimulus were more likely to be present in the agent’s sensors
throughout time, estimating the ordering among items. Nevertheless, because the objec-
tive was to provide a biased-free mechanism for the agents to explore the environment
starting from (almost) zero information about it, and so we used the alphabetical order.

This change of ordering can have an impact on the time used to build the patterns
tree, but does not solve the requirement of having the maximum number of known
patterns readily accessible to the agent. To solve that problem we changed the way
the transactions are inserted in the tree in such a way that now each node represents
a specific itemset and its count value represents the frequency of that itemset so far.
The algorithm thus generates all the possible sub-combinations of itemsets whenever
a transaction is inserted. For example, if we inserted the transaction abc in a new tree
(Fig.2), the nodes a, a — b,b,a — ¢, a — b — c and b — c are created with a count
value of 1. We call this set of nodes representing all the sub-combinations of an itemset
its Dependency Tree (DT). By making use of the anti-monotone Apriori heuristic [§]]
we can state that for an itemset to be frequent then every node in its DT must also be
frequent. The idea behind this way of building the patterns tree is to have the maximum
number of frequent patterns stored in the tree’s structure without the need of having to
search the whole tree for sub-combinations of itemsets and determine whether they are
frequent.

Because the number of possible sub-combinations of an ifemset can be very large,
storing all the combinations for every possible transaction seems a very unfeasible and
resource-consuming task. To tackle with that problem we defined a heuristic to prune
those nodes that do not seem promising in becoming a pattern. This heuristic prunes
a node (deletes it from the tree) whenever it’s considered as an infrequent node, i.e.,
when its support (count value) drops below a certain threshold of the pre-established
minimum support. In the context of this work we defined this limit as 0.75 times the
minimum support. This pruning heuristic is applied when determining the frequent
patterns (nodes) to reduce the tree’s size overtime. In Fig. 8] we can see the result of
applying this new algorithm to the previous example.

3.3 The Jaccard Index

In our opinion, one of the problems that these pattern mining algorithms suffer lies
within what they consider to be a frequent pattern. This judgment is based on the statis-
tic of the frequency of an itemset in relation to the total number of transactions recorded.
In the context of the current work however, sometimes there are some sets of stimuli
which frequency is low, but that appear to occur always simultaneously. Looking at the
previous example DB, we may notice that most of the times when item b appears in a

! Through experimentation, a high percentage value should be used as threshold to determine
infrequent nodes during the pruning procedure. As such, 0.75 proved to be a value which
pruned several nodes without damaging the overall patterns discovered.

Real-Time Sensory Pattern Mining for Autonomous Agents 77

Fig. 2. The patterns tree after inserting transaction abc. It also represents the Dependency Tree
(DT) of the node a — b — c.

Fig. 3. The tree resulting from the application of the "all-combinations” algorithm (transaction
set and support is the same as the above example)

78 P. Sequeira and C. Antunes

transaction, a and d also occur in that transaction. Because the support of the itemsets
ab, bd and abd is very low, frequency-based algorithms cannot detect them as being pat-
terns. This makes that a lot of useful information about the environment’s regularities
is being discarded by the agent throughout time.

Due to that fact, we decided to look for a statistic to determine the correlation level
between nominal variables (as is the case of the ones here described). Considering the
nature and structure of the patterns trees being built, we decided to apply the Jaccard in-
dex statistic [[10] to determine the frequent patterns. This statistic allows us to determine
the level of correlation between several variables as a function of the frequency of their
intersection over their union. In the case of two variables A and B (non independent)
the index can be expressed using the following formula [7]:

_|AnB| |AN B

JacelAB) = 0B ~ AT B = 1A B

)]

The index value varies from O to 1, so values near O indicate a weak correlation be-
tween the variables while values near 1 indicate a strong correlation between them.
This statistic can be used as a useful heuristic to determine sensory patterns in agents
perceptions by allowing us to characterize the level of correlation between the stimuli
as a measure of the deviation between their co-occurrence and the sum of all of its oc-
currences, which at the same time ignores the total number of perceptions made so far.
By extending equation (d)) to n variables we can informally write the Jaccard index by

equation ().

) no. of co-occurrences of the variables
Jacc idx = - 2)
no. of co-occurrences + no. of non-simultaneous occurrences

If we take the structure of the patterns tree being developed here, we can determine
the Jaccard index value of some itemset by dividing the count value of the node which
represents the ifemset in the tree (which precisely corresponds to the number of co-
occurrences between the items) by the weighted sum of the count values of all the nodes
within its DT. The weight determines the sign of the nodes’ count value according to
the parity of their depth in the tree (—count if odd depth, +count if even).

In this new context, the pruning heuristic is applied right after the insertion of a new
transaction, to all the nodes within the DT of the node representing the transaction in
the tree, because these were the nodes which count values were updated (for example,
if transaction abc is inserted, the nodes belonging to the DT of the node a — b — ¢
are considered). Following the example DB of the previous sections, the application of
this new approach results in the tree depicted in Fig.[dl As we can see, for a minimum
Jaccard index of 0.4, the algorithm finds the same patterns discovered by the previous
algorithms plus the itemsets ab and bd. Itemset abd still does not have enough support
to be considered a pattern under the Jaccard index statistic, but it does have minimum
support for not being removed under the pruning heuristic.

Real-Time Sensory Pattern Mining for Autonomous Agents 79

Fig. 4. The tree resulting from the application of the “jaccard-index” algorithm (transaction set
and support is the same as the above example). Jaccard index values are represented in the nodes
below their support.

4 Experimental Results

In this section we describe the tests carried out over the proposed algorithms to deter-
mine their validity and the usefulness of the generated patterns, by presenting the main
results and making a comparative analysis between the algorithms performance.

4.1 Test Conditions

To test the efficiency and quantity of patterns generated by the proposed algorithms we
decided to test them against the FP-Growth [9] algorithm and the SOTAI framework
algorithm [4], both described earlier. Of course FP-Growth is an algorithm which pur-
pose is somewhat different from the type of pattern mining we are aiming at here. Nev-
ertheless, because it served as a base algorithm for the proposed extensions, it provides
reference values that we can use when comparing the quantity of patterns generated and
the efficiency of the mining processes. In relation to the SOTAI framework, we adapted
the generated Fluents as sensory patterns by considering the set of Sensations they rep-
resent as itemsets. The set of algorithms we ended up testing is the following (short
name in brackets):

— SOTAI framework knowledge-generation algorithm (Sotai);

— FP-Growth algorithm (FP-Growth);

FP-Growth with alphabetic item order, one scan over the DB (Alpha-F P-Growth);

Algorithm considering all sub-combinations in every transaction with pruning

heuristic (All-Comb);

— Same algorithm as All-Comb but using the Jaccard index statistic as a heuristic to
determine patterns (Jacc-Index).

80 P. Sequeira and C. Antunes

Because we wanted to test the algorithms within an autonomous agent architecture, in
a context where the agent continuously interacted with its environment and which per-
ceived sensations were in the form of symbols describing categorical nominal attributes
of the objects, we chose Sotai-Tester [4] application to generate the transaction data to
be input to the algorithms. Sotai-Tester agent, as explained before, has a random behav-
ior and at each decision time it chooses an object from the environment to interact with.
After that interaction is over, it chooses another object and so on. Sotai-Tester environ-
ment has a total of 8 objects that the agent can interact with, and the agent has a total
of 13 sensors to perceive the environment. There are a total of 70 possible individual
symbols to describe the perceptions of the agent. Because some of these symbols can
be present at the same time within the agent’s sensors, we considered a combination of
two or more symbols as a single sensation (for example, if the color sensor has yellow
and red symbols at the same update cycle, sensation color-yellow-red is considered as
being an item). As such, at each update cycle of the agent’s process, we recorded in a
simple text file all the sensations that were present in the agent’s sensors at that time.
Each line of the text file thus represents a transaction to be processed by the pattern
mining algorithm.

4.2 Metrics

The goal of the tests is essentially to analyze the algorithms’ performance and the num-
ber and quality of the patterns it finds, i.e., the knowledge generated by the agent from
perceiving its environment while interacting with it. As such, the following metrics
were adopted and measured for each algorithm at each test execution:

Time used to build the knowledge structure (tree), reading each transaction one-by-
one from the previously generated text files, measured in CPU time (Build-Time);
The number of nodes used to build the tree in order to evaluate the algorithms in
terms of memory requirements (Nodes-Number);

Time used to retrieve from the tree every possible pattern according to the minimal
threshold established, measure in CPU time (Pattern-Time);

Total number of patterns found. One-item-length patterns were ignored because we
are interested in finding correlations in the sensory data (Pattern-Number).

Using the Sotai-Tester application described earlier we generated a total of 10 text files
containing 10K transactions (average length = 5), each representing an update cycle of
the agent. To see the relationship between the limit values established to discover pat-
terns and the algorithms’ performance, we iterated the minimum support threshold over
10 possible values from 0.1 to 1. In the case of the Jacc-Index algorithm, this thresh-
old corresponds to a minimum value for the Jaccard’s index associated with a node.
In relation to the Sotai algorithm, the threshold is the minimum association strength
(Phi-coefficient) between the generated structures. After the execution of all the tests,
we averaged the values of each metric for each algorithm and each support value, re-
moving mild outliers through quartile estimation.

Real-Time Sensory Pattern Mining for Autonomous Agents 81

4.3 Results and Comparative Analysis

The results of the tests described earlier are depicted in Fig. [l By looking at the algo-
rithms’ behavior during the tests we are able to make the following observations about
them:

SOTAI framework’s knowledge-discovery algorithm didn’t perform well at any of
the analyzed parameters. It takes too much time to discover associations from the sen-
sory data, maintaining unnecessary information of statistical tests, and discovering few
patterns overtime due to its block-building approach explained earlier.

Although we introduced FP-Growth during the tests only to establish base values for
the measures, we found that the algorithm performed very well within its “family”. As
we expected, by having the transactions sorted by item frequency before its introduction
in the tree, less nodes are needed to build the tree and less time is required to search for
the patterns than the alphabetical-order algorithm. By relying on the itemsets frequency,
FP-Growth discovered, as expected, less patterns than the statistic-based association
mining algorithms (Sotai and Jacc-Index). We can also observe that storing all the sub-
combinations in memory isn’t that useful when mining for frequent patterns: it creates
more nodes and requires pruning over the entire tree to find patterns. As a conclusion,
none of the FP-Growth-based algorithms represents a real solution for the problem
being solved.

The first thing we can say about the proposed Jaccard-index-based algorithm is that
if we set the minimum index threshold too low, we end up having too many nodes, too
many itemsets considered as patterns, and also spend too much time scanning the tree

number of

CPU time (ms) Build-Time nodes Nodes-Number
2500 1400
'/\./k\ 1200 X
2000 ot soai
\ —o—sotai 1000 ——Sotai
1500 FP-Growth a0 \x\ FP-Growth
\ —#— Alpha-FP-Growth —#— Alpha-FP-Growth
1000 —3t—All-Comb 600 —t—All-Comb
—%-—Jacc-Index 400 - —%—Jacc-Index
500 = - %
200
0 PR e = = armn o SNV
01 02 03 04 05 06 07 08 09 1 minimum support 02 03 04 05 06 07 08 09 1 minimumsupport
) . number of
CPU time (ms) Pattern-Time patterns Pattern-Number
60 350
50 L% 300 x\
—o—Sotai 250 —e—Sotai
40 - FP-Growth \ FP-Tree-based
200
30 —#— Alpha-FP-Growth)\ —%—Jacc-Index
4
—=—All-Comb 150 \
20 —¥—Jacc-Index 100
A—A—A—A A A A A AA
10 50
o OO0 0000 0 -8 —8—8—8—8—8—8—%
01 02 03 04 05 06 07 08 09 1 minimum support 02 03 04 05 06 07 08 09 1 minimum support

Fig. 5. The graphics containing the results of the tests performed over all the proposed sensory
pattern mining algorithms

82 P. Sequeira and C. Antunes

for those patterns. A compromise must be made between performance and usefulness of
the discovered patterns as to consider how strong an association between stimuli must
be for it to be considered a regularity of the environment, a pattern. As expected, it takes
more time to build the tree and search for patterns than the FP-Growth-based algorithms
because it needs to calculate the statistic to determine patterns. However, in this case, the
structure of the patterns tree, by storing all the sub-combinations of itemsets, enhances
its mining performance by maintaining in memory the nodes that are necessary for the
index calculation (its Dependency Tree). We believe that the algorithm’s performance
shows that it can be a solution to our problem: it generates patterns of sensory data
from the agent’s perceptions throughout time, based on the statistical significance of the
correlation between the stimuli they represent; it also performs this task in a reasonable
time to be used by the agent while it interacts with its environment, i.e., in real-time
(less than 1 second to process 10K update cycles).

5 Conclusions and Future Work

Autonomous agents are systems inhabiting dynamic and unpredictable environments
which they perceive and react to events accordingly. To survive, the agent must learn
new facts from the world and perceive its regularities to make better decisions on how to
act upon it. In this paper we showed that by modifying some pattern mining algorithms
we can provide autonomous agents with mechanisms to discover useful information
about its environment while interacting with it in real-time. If we see the agents’ per-
ceptions as transactions of a DB, then we can apply those algorithms to discover sensory
patterns from the environment. We proposed a new structure to store the sensory infor-
mation perceived by the agent, which is constructed in a way that facilitates the retrieval
of the sensory patterns. We also proposed a new heuristic to discover frequent patterns
by using the Jaccard index statistic, which is sensible to some regularities of the en-
vironment that are not frequent, but denote particular cases of correlations within the
perceptions.

We believe that the use of data mining techniques will provide autonomous agents
with capabilities of discovering patterns relating their activities while interacting with
the environment. For now, the proposed algorithms discover synchronous sensory pat-
terns, i.e., sets of stimuli that co-occur frequently. In the future we want to extend them
for the discovery of asynchronous patterns, i.e., sets of stimuli that frequently occur
one after the other, revealing causal relations between them. To achieve that, we can
adapt algorithms from the sequential pattern mining area [11]. We would also like to
test the algorithms in different contexts, testing the pattern mining mechanisms in richer
scenarios, possibly involving virtual environments and synthetic characters. Finally an-
other approach would be to test this solution within a multi-agent application. Because
different agents interact with the environment in different manners at particular instants
of time, they will perceive the world in a singular manner and as such, they will create
different sensory patterns throughout time. It would be interesting to check commonali-
ties and differences between the patterns created, and provide them with communication
capabilities so that overall social knowledge could be created to reflect the experiences
of particular groups.

Real-Time Sensory Pattern Mining for Autonomous Agents 83

Acknowledgments

This paper was supported by a scholarship (SFRH / BD / 38681 / 2007) granted by
the Fundagio para a Ciéncia e Tecnologia. The authors are solely responsible for the
content of this publication. It does not represent the opinion of the Fundagdo para a
Ciéncia e Tecnologia, which is not responsible for any use that might be made of data
appearing therein.

References

10.
11.

. Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. In: Jennings, N.R., Wooldridge, M.J., Miiller, J.P. (eds.) ECAI-WS 1996 and ATAL
1996. LNCS, vol. 1193, pp. 21-36. Springer, Heidelberg (1997)

. Maes, P.: Modeling adaptive autonomous agents. Artificial life 1(1-2), 135-162 (1994)
. Frawley, W., Piatetsky-Shapiro, G., Matheus, C.: Knowledge discovery in databases: An

overview. Al Magazine 13(3), 57-70 (1992)

. Sequeira, P., Vala, M., Paiva, A.: What can i do with this?: finding possible interactions

between characters and objects. In: Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS °07, pp. 5:1-5:7. ACM, New York
(2007)

. Gibson, J.: The ecological approach to visual perception. Houghton Mifflin (1979)
. Cohen, P., Atkin, M., Oates, T., Beal, C.: Neo: Learning conceptual knowledge by sensori-

motor interaction with an environment. In: Proceedings of the First International Conference
on Autonomous Agents, pp. 170-177 (1997)

. Warrens, M.J.: Similarity coefficients for binary data: properties of coefficients, coefficient

matrices, multi-way metrics and multivariate coefficients. Doctoral thesis, Leiden University
(2008)

. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int.

Conf. Very Large Data Bases, VLDB, Citeseer, vol. 1215, pp. 487-499 (1994)

. Han, J., Pei, J, Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A

frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1), 53-87 (2004)
Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist (1912)
Antunes, C., Oliveira, A.: Sequential pattern mining algorithms: Trade-offs between speed
and memory. In: 2nd Workshop on Mining Graphs, Trees and Seq, Citeseer (2004)

	Real-Time Sensory Pattern Mining for Autonomous Agents
	Introduction
	The Problem
	Background
	The Pattern Mining Analogy
	Problem Definition

	Sensory Pattern Mining for Autonomous Agents
	Transactional Pattern Mining
	Real-Time Pattern Mining
	The Jaccard Index

	Experimental Results
	Test Conditions
	Metrics
	Results and Comparative Analysis

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

