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Abstract

The sub-symbolic representation of the world often corresponds to a pat-
tern that mirrors the world as described by the biological sense organs. Sparse
binary vectors can describe sub-symbolic representations, which can be effi-
ciently stored in associative memories. According to the production system
theory, a geometrically based problem-solving model can be defined as a pro-
duction system operating on sub-symbols. Our goal is to form a sequence of
associations, which lead to a desired state represented by sub-symbols, from
an initial state represented by sub-symbols. A simple and universal heuristic
function can be defined, which takes into account the relationship between
the vector and the corresponding similarity of the represented object or state
in the real world. The manipulation of the sub-symbols is described by a
simple proto logic, which verifies if a subset of sub-symbols is present in a set
of sub-symbols.

1 Introduction

One form of distributed representation corresponds to a pattern that mirrors the
way the biological sense organs describe the world. Sense organs sense the world
by receptors. The order of the receptors defines the reality as a simple Euclidian
geometry. It is the basis of the distributed representation. Changes in the world
correspond to the changes in the distributed representation. Prediction of these
changes by the nervous system is an example of a simple geometrical reasoning
process. Mental imagery problem solving is an example of a complex geometrical
problem solving. It is described by a sequence of associations, which progressively
change the mental imagery until a desired problem solution is formed. For example,
do the skis fit in the boot of my car? Mental representations of images retain the
depictive properties of the image itself as perceived by the eye Kosslyn [1994]. The
imagery is formed without perception through the construction of the represented
object from memory.

Symbols on the other hand are not present in the world; they are the constructs
of a human mind and simplify the process of representation used in communication
and problem solving. Symbols are used to denote or refer to other things in the
world (according to the pioneering work of Tarski Tarski [1956]). They are defined
by their occurrence in a structure and by a formal language, which manipulates
these structures Newell [1990], Simon [1991]. In this context, symbols do not by
themselves represent any utilizable knowledge. They cannot be used for a defini-
tion of similarity criteria between themselves. The use of symbols in algorithms



which imitate intelligent human behaviour led to the famous physical symbol sys-
tem hypothesis by Newell and Simon Newell and Simon [1976]: “The necessary
and sufficient condition for a physical system to exhibit intelligence is that it be a
physical symbol system.”

The author does not agree with the physical symbol system hypothesis. Instead
the author states: the actual perception of the world and manipulation in the
world by living organisms lead to the invention or recreation of an experience. The
recreation resembles at least in some respects the experience of actually perceiving
and manipulating objects, however in the absence of direct sensory stimulation.
This kind of representation is called sub-symbolic.

Sub-symbolic representation suggests a heuristic function based on similarity be-
tween sub-symbols. Symbols liberate people from the reality of the world although
they are embodied in geometrical problem solving through the usage of additional
heuristic functions. Without the use of heuristic functions, real world problems
become intractable.

In this paper the basis of the manipulation of the sub-symbols is described by
simple proto logic, which verifies if a subset of sub-symbols is present in a set of
sub-symbols in contrast to other powerful logics like predicate or temporal logics.

The paper is organized as follows: the representation principles of objects by
features as used in cognitive science is reviewed. In the next step, the paper indicates
how the perception-oriented representation is built on this approach. The optimal
sparse sub-symbolic representation is defined. Finally, the sub-symbolic problem
solving, which relies on a sensorial representation of reality, is introduced.

2 Sub-symbols

Perception-oriented representation is an example of sub-symbolic representation,
such as the representation of numbers by the Oksapmin tribe of Papua New Guinea.
The Oksapmin tribe of Papua New Guinea counts by associating a number with
the position of the body Lancy [1983]. The sub-symbolic representation often cor-
responds to a pattern that mirrors the way the biological senses organs describe
the world. Vectors represent patterns. A vector is only a sub-symbol if there is a
relationship between the vector and the represented object or state in the real world
through sensors or biological senses. Feature based representation is an example of
sub-symbolic representation.

2.1 Feature Approach

Objects can be described by a set of discrete features, such as red, round and sweet
McClelland and Rumelhart [1985], Tversky [1977]. The similarity between them
can be defined as a function of the features they have in common Gilovich [1999],
Goldstone [1999], Osherson [1995], Sun [1995]. The contrast model of Tversky
Tversky [1977] is one well-known model in cognitive psychology Opwis and Plétzner
[1996], Smith [1995], which describes the similarity between two objects, which are
described by their features. An object is judged to belong to a verbal category to
the extent that its features are predicted by the verbal category Osherson [1987].
The similarity of a category represented by a feature set C' and of a feature set F' is
given by the following formula, which is inspired by the contrast model of Tversky
Opwis and Plétzner [1996], Smith [1995], Tversky [1977],

Sim(C, F) = |C|2|F| € [0, 1] (1)




|C| is the number of the prototypical features that define the category a. For
example, the category bird is defined by the following features: flies, sings, lays eggs,
nests in trees, eats insects. The category bat is defined by the following features:
flies, gives milk, eat insects. The following features are present: flies and gives milk.

Sim(bird, present features) =

Sim(bat, present features) =

WIN oy =

The present features are counted and normalized so that the value can be compared.
The similarity value can be interpreted as a probability that the object belongs to
the category. This is a very simple and efficient form of representing sub-symbols.
A binary vector in which the positions represent different features can represent the
set of features. For each category a binary vector can be defined. Overlaps between
stored patterns correspond to overlaps between categories.

2.2 Sub-symbolic representation by associative memory

Associative memory models human memory Churchland and Sejnowski [1994], Fuster
[1995], Palm [1990], Squire and Kandel [1999]. The associative memory and sub-
symbolic distributed representation incorporate the following abilities in a natural
way Anderson [1995b], Hertz et al. [1991], Kohonen [1989], Palm [1982]:

e The ability to correct faults if false information is given.
e The ability to complete information if some parts are missing.

e The ability to interpolate information. In other words, if a sub-symbol is not
currently stored the most similar stored sub-symbol is determined.

The Lernmatrix, also simply called “associative memory”, was developed by
Steinbuch in 1958 as a biologically inspired model from the effort to explain the
psychological phenomenon of conditioning Steinbuch [1961, 1971]. Later this model
was studied under biological and mathematical aspects by Willshaw Willshaw et al.
[1969] and Palm Palm [1982, 1990].

Associative memory is composed of a cluster of units. Each unit represents a
simple model of a real biological neuron. The Lernmatrix was invented by Steinbuch,
whose goal was to produce a network that could use a binary version of Hebbian
learning to form associations between pairs of binary vectors, for example each one
representing a cognitive entity. Each unit is composed of binary weights, which
correspond to the synapses and dendrites in a real neuron. They are described by
wij € {0,1} in Figure 1. T is the threshold of the unit. The Lernmatrix is simply
called associative memory if no confusion with other models is possible Anderson
[1995a], Ballard [1997].

The patterns, which are stored in the Lernmatrix, are represented by binary
vectors. The presence of a feature is indicated by a ‘one’ component of the vector,
its absence through a ‘zero’ component of the vector. A pair of these vectors is
associated and this process of association is called learning. The first of the two
vectors is called the question vector and the second, the answer wvector. After
learning, the question vector is presented to the associative memory and the answer
vector is determined by the retrieval rule.

Learning Initially, no information is stored in the associative memory. Because
the information is represented in weights, all unit weights are initially set to zero.



S e Bl e Bl e o
Wy Yoy Wy Vg

%
Wig  (Wog Vg Yz

%
Wln W2n W3n Wnn
AR Yin

Figure 1: The Lernmatrix is composed of a set of units which represent a simple
model of a real biological neuron. The unit is composed of weights, which correspond
to the synapses and dendrites in the real neuron. In this figure they are described
by wij € {0,1} where 1 <7 <m and 1 < j <n. T is the threshold of the unit.

In the learning phase, pairs of binary vector are associated. Let & be the question
vector and g the answer vector, the learning rule is:

1 if yi-xj=1
new J
Wiy { w?j'd otherwise. (2)

This rule is called the binary Hebbian rule Palm [1982]. Every time a pair of
binary vectors is stored, this rule is used.

Retrieval In the one-step retrieval phase of the associative memory, a fault tol-
erant answering mechanism recalls the appropriate answer vector for a question
vector &. The retrieval rule for the determination of the answer vector ¥/ is:

w={y St ®)
otherwise.

where T is the threshold of the unit. The threshold T is set to the number of “one”

components in the question vector &, T := |Z|. It is quite possible that no answer

vector is determined (zero answer vector). This happens when the question vector

has a subset of components that was not correlated with the answer vector.

Storage capacity For an estimation of the asymptotic number L of vector pairs
(Z,¥) that can be stored in an associative memory before it begins to make mistakes
in the retrieval phase, it is assumed that both vectors have the same dimension n. It
is also assumed that both vectors are composed of k ones, which are equally likely
to be in any coordinate of the vector. In this case it was shown Hecht-Nielsen
[1989], Palm [1982], Sommer [1993] that the optimum value for k is approximately

k = log, (n/4). (4)

For example for a vector of the dimension n=1000000 only k£ = 18 ones should be
used to code a pattern according to the Equation 4. For an optimal value for k
according to the Equation 5 with ones equally distributed over the coordinates of
the vectors, approximately L vector pairs can be stored in the associative mem-
ory Hecht-Nielsen [1989], Palm [1982]. L is approximately

L = (In2)(n?/k?). (5)



This value is much greater than n. The estimate of L is very rough because Equation
6 is only valid for very large networks. Equation 6 does not apply for networks of
reasonable size, however the capacity increase is still considerable. For realistic
values please consult Table 2 in Knoblauch et al. [2010]. Small deviation from
the logarithmic sparseness reduces the network capacity. It is very difficult to
find coding schemas that represent the information by logarithmic sparse codes
Knoblauch et al. [2010].

It should be noted that the Lernmatrix system allows high capacity and fast
access when working in parallel, each unit represents a neuron that performs calcu-
lations. On a conventional Von Neumann architecture, compressed look-up tables
are more efficient Knoblauch et al. [2010]. However a Von Neuman architecture is
not biologically plausible.

3 Sparse Code for Sub-Symbols

Usually suboptimal sparse codes are used. An example of a suboptimal sparse code
is the representation of words by context-sensitive letter units Bentz et al. [1989],
Rumelhart and McClelland [1986], Wickelgren [1969, 1977]. The ideas for the used
robust mechanism come from psychology and biology Bentz et al. [1989], Rumelhart
and McClelland [1986], Wickelgren [1969, 1977]. Each letter in a word is represented
as a triple, which consists of the letter itself, its predecessor, and its successor. For
example, six context-sensitive letters encode the word desert, namely: _de, des, ese,
ser, ert, rt.. The character “.” marks the word beginning and ending. Because
the alphabet is composed of 2641 characters, 273 different context-sensitive letters
exist. In the 273 dimensional binary vector each position corresponds to a possible
context-sensitive letter, and a word is represented by indication of the actually
present context-sensitive letters.

A set of features can be represented by a binary vector and represent a category.
A position in the corresponding vector corresponds to a feature. To be sparse, the
set of features that describes a category compared to the dimension of the vector has
to be sufficiently small. This is because, of all possible features, only some should
define categories. This can be achieved by sparsification based on unary sub-vector
representation.

3.1 Sparsification based on unary sub-vectors

A binary representation of a number h would require a vector of length d = |log2h+
1]. However if we represent the number h in unary, we requireh positions. One
unary representation of i = 0 is a string of h — 1 zeros with a one at h-th postion.
A binary number of length d is represented by a unary number of 2¢ positions,
which is exponential in the size of input. A binary vector Z of dimension ¢ is split
into f distinct sub vectors of dimension p = dim(t/f). The binary sub vectors u;(Z)
of dimension p = dim(t/f) are represented as unary vectors of dimension 2P :

=T:=T177$27"'axpa"'axm—p-i-la"'a«%'m (6)

uy (x) uy(x)

The resulting binary vector is composed out of the unary vectors and has the
dimension f-2P. In the following example a binary vector of dimension 6 is split into
2 distinct sub vectors of dimension 3. The binary sub vectors uj(#) of dimension 3
are represented as unary vectors of dimension 23 :



u1(1,0,1) U2(0,0,1)

u1(1,0,1) = (0,0,0,0,1,0,0,0); (h=35)
u2(0,0,1) = (1,0,0,0,0,0,0,0); (h=1)

u(Z) = (0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0) (8)

Resulting in a new vector of dimension 16 = 2 * 23 with 2 ones.

3.2 Sensors at different positions

Such a binary sparse vector could correspond to set of ¢ sensors at different positions.
At a position one and only one sensor is activated. For f positions and ¢ sensors
a state would be represented by a binary vector of the dimension f x ¢ with f
ones. In the preceding example f=2 and ¢=8. An example of such unary coding is
the Map Transformation Cascade model of the visual system Cardoso and Wichert
[2010]. Several models of the visual system [Cardoso and Wichert, 2010, Fukushima,
1980, 1989, Riesenhuber and Poggio, 1999] were motivated by the work on the
visual systems of Hubel and Wiesel. The neural units have local receptive fields
and are ordered in layers. The layers form a hierarchy in the sense that features
at one stage are built from features at earlier stages. An image passes through
layers of units with progressively more complex features. The hierarchical network
gradually reduces the information from the input layer through the output layer
until classification can be performed. The proposed Map Transformation Cascade
Cardoso and Wichert [2010] is a less complex description of the pattern recognition
capabilities of the Neocognitron. Each layer represents a set of features. A binary
vector in which the positions represent different features at different positions on
the image describes it. The input image is tiled with a squared mask M of size j X j
in which a corresponding category of a feature is determined, see Figure 2. Each
feature is determined through the use of the elements in each squared mask. Each
of the corresponding f sub-patterns Zt, with ¢ € {1,2, ..., f}, is mapped into one
corresponding category represented by a number h. The categories can be learned
by a simple clustering algorithm such as K-Means Cardoso and Wichert [2010]. The
number of categories is represented by the number c. A category h is represented
by a unary vector of dimension ¢ with ¢ — 1 zeros and a one at the position h. The
whole image state is represented by a binary vector of dimension n = ¢ x f with f
ones. This vector is formed by the concatenation of the unary vectors that represent
the categories at different positions.

3.3 Logarithmic sparsification

The ideal ¢ value for a logarithmic sparse code is related to the number of ones
k =logy(n/4).
k =logy(f - ¢/4)
2K=f.c/4
4.2
=7 (9)

The ideal value for ¢ grows exponentially in relation to f with the assumption that
the number of ones is k = f. Usually the value for ¢ is much lower than the ideal

c
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Figure 2: The input image is tiled with a squared mask M of size j x j in which
a corresponding category of a feature is determined. Each feature is determined
through the use of the elements in each squared mask. In this example, a simple
image is covered with f = 36 masks, a category would correspond to a line or an
edge at a certain orientation.

value resulting in a suboptimal sparse code. The representation of images by masks
results in a suboptimal code. The optimal code is approached with the size of masks,
the larger the mask, the smaller the value of f. The number of pixels inside a mask
grows quadratically in the size of the edge. A larger masks implies the ability to
represent more distinct categories, which implies a bigger ¢. An ideal value for ¢ is
possible only if the value for f << 100.

3.4 Logarithmic sparsification based on cognitive entities

Often no category is present at a certain location. The non presence of a category
could be represented by a vector with ¢ zeros (h=0). Suppose that the actual
number of present categories is much smaller than the number of positions, in this
case k << f. A pointer representation of objects in a scene leads to an even sparser
representation. In this case the number of ones k is not related to the number
of categories at f positions, but to the number of objects at f possible positions.
Objects and their positions in the visual field can represent a visual scene. A sub-
vector of the vector representing the visual scene represents each object.

3.4.1 Cognitive entities

It was suggested Gross and Mishkin [1977] that the brain includes two mechanisms
for visual categorization Posner and Raichle [1994]: one for the representation of
the object and the other for the representation of the localization Kosslyn [1994].
According to this division, the identity of a visual object can be coded apart from
its location. A visual scene can be either represented by an image or by objects
and their position in the visual field. Objects are represented by patterns together
with their corresponding position in the image. Cognitive entities Anderson [1995a]
represent objects and their position in the image. Each cognitive entity represents
the identity of the object and its position is given by Cartesian coordinates (see
Figures 3, 4 and 5). The advantage of such cognitive entity representation is that
the manipulation of objects is simplified and it is a basis for a binary sparse code



Figure 3: Representation of an object in a 2D world (a) by a cognitive entity (b).
The identity of an object is represented in the first associative field by a binary
pattern that is normalized for size and orientation. Its location corresponding to
the abscissa is represented by a binary vector in the second associative field. The
location corresponding to the ordinate is likewise represented by a binary vector in
the third associative field of the size of the ordinate of the pictogram representing
the state. A binary bar of the size and position of the object in the pictogram of
the state represents the location.

that can be stored efficiently in an associative memory.

The identity of an object is represented by a binary pattern which is normalized
for size and orientation. Its location on the z-axis is represented by a binary vector
of the size of the abscissa of the pattern representing the object. The location on
the y-axis is likewise represented by a binary vector of the size of the coordinate of
the pattern representing the object. A binary bar of the size and position of the
object in the pictogram of the state represents the location and size (see Figure 3)
in each of those vectors. The three vectors that compose the cognitive entity are
called associative fields. Each associative field is represented by a binary vector
of a fixed dimension; each cognitive entity is formed by the concatenation of the
associative fields.

3.4.2 Representation of a cognitive entity by a unary vector

A cognitive entity can be represented alternatively by a unary vector. A simple
code for an object would indicate if it is present or not. One indicates present, zero
not present. Four categories of objects are represented in this example by the first
associative field; cube, cube clear, pyramid and pyramid clear (c = 4, see Figure 6,
Figure 4 and 5).

The presence of a category is indicated by a unary vector of dimension four.
There are x x y possible positions of the object. In our example there are 10 x 10
possible positions, see Figure 7.

A cognitive entity represents an object at a certain position. The corresponding
category is represented by a unary vector of dimension four on the corresponding
position. For each remaining position, a zero vector of dimension four is repeated,
see Figure 8. The principle of forming a unary vector representing a cognitive entity
is based on the tensor product between the vector representing the category that is
present or not and the vector representing the position.

As a result, a cognitive entity is represented by a unary vector of the dimension
cxx XxyorcX f,see Figure 8.
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Figure 4: A state in the geometric block world. Blocks can be placed in three
different positions and picked up and set down. There are two different categories
of blocks: cubes and pyramids. No other block may be placed on top of a pyramid,
while either type of block may be placed on top of a cube. The gripper is represented
in the upper right corner. Five objects are present: three cubes and two pyramids.
The “clear” positions are represented by a dot.
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Figure 5: Alternative representation of the geometric block world state (see Figure
4) represented by a set of eight cognitive entities.

Figure 6: Four categories of objects are represented in our example by the first
associative field; cube, clear, pyramid and pyramid clear.
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Figure 7: There are f = 10 x 10 possible positions of 4 categories of objects. A
cognitive entity is represented by a unary vector of the dimension 4 x 100. Seven
objects are represented, two cubes, three clears, one pyramid and one clear pyra-
mid. The visual scene is represented by seven unary vectors. Each cognitive entity

corresponds to a unary sub-vector.
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Figure 8: A cognitive entity represents an object at a certain position. The cor-
responding category is represented by a unary vector of dimension four on the
corresponding position, in our case a cube on the position 92. For each remaining
position, a zero vector of dimension four is repeated indicating that no category is

present.
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3.4.3 Sparse scene representation based unary sub-vectors

A scene is represented by a set of these unary vectors resulting in a sparse binary
vector. Each cognitive entity corresponds to a unary sub-vector, which represents
an object. A set of those sub-vectors represents a visual scene.

For an image of size z x y, an object covers the image f times. In our example
there are f = 10 x 10 possible positions of 4 categories of objects. A cognitive
entity is represented by a unary vector of the dimension 4 x 100, m objects are
represented by m cognitive entities. In a vector representing a visual scene, the
objects correspond to unary sub-vectors of fixed length. This form of representation
is called the set pointer representation and it corresponds to the cognitive entity
representation (see Figure 5). Set pointer representation allows the manipulation
of objects by means of proto logic. Proto logic allows the access of objects of a
set as shown in section 3. A binary vector representing a visual scene like the
state in the block world is formed by the concatenation of the unary vectors. This
representation is called a “set”, because the order of the unary vectors representing
the cognitive entities is not defined. This representation is logarithmic sparse, in
our example for m = 7 objects, c = 4 and f = 100 resulting in a vector of dimension
2800 with only seven ones. The k = m and the maximal number of represented
objects of four different categories (c=4) at f = 100 positions is constrained by
m < 10 for a logarithmic sparse code:

= logy(n/4)
k <logy(m -4-100/4)
k <log,(m) + log,(100)

for k=m,
m — log2(m) < 6.64

To compute a distance between two visual scenes represented by two “sets” of m
cognitive entities, resulting in two ¢ X f x m binary sparse vector with m ones, one
computes a bitwise “OR” between the n sub-vectors representing the m cognitive
entities of a set, resulting in a ¢ x f dimensional vector with m ones (compressed
ordered representation). The similarity is measured by Equation 1. The similarity
between visual scenes is defined as a function of the objects and their locations they
have in common Gilovich [1999], Goldstone [1999], Osherson [1995], Sun [1995].

4 Sub-symbolic Production System based on Proto
Logic

Human problem solving can be described by a problem-behaviour graph constructed
from a protocol of the person talking aloud, mentioning considered moves and as-
pects of the situation. According to the resulting theory, searching a state includes
the initial situation and the desired situation in a problem space that solves problems
Anderson [1995b], Newell [1990]. This process can be described by the production
system theory. The production system in the context of classical Artificial Intelli-
gence and Cognitive Psychology is one of the most successful computer models of
human problem solving. The production system theory describes how to form a
sequence of actions, which lead to a goal, and offers a computational theory of how
humans solve problems Anderson [1995b]. Production systems are composed of if-
then rules that are also called productions. A rule contains several “if” patterns and
one or more “then” patterns. A pattern in the context of rules is an individual pred-
icate, which can be negated together with arguments. A rule can establish a new

11



assertion by the “then” part (its conclusion) whenever the if part (its precondition)
is true. One of the best-known cognitive models, based on the production system,
is Soar. The Soar state, operator and result model was developed to explain human
problem-solving behaviour Newell [1990]. It is a hierarchical production system in
which the conflict-resolution strategy is treated as another problem to be solved.
According to the production system theory, a geometrically based problem-
solving model can be defined as a production system operating on vectors of fixed
dimension. Instead of rules, associations are used and vectors represent states. In-
stead of predicates and facts, sub-vectors and proto logic are used. The goal is
to form a sequence of associations, which lead to a desired state represented by
a vector, from an initial state represented by a vector. Each association changes
some parts of the vector. In each state, several possible associations can be exe-
cuted, but only one has to be chosen, otherwise, conflicts in the representation of
the state would occur. To perform these operations, a vector representing a state
is divided into sub-vectors. An association recognizes some sub-vectors of the vec-
tor and exchanges them for different sub-vectors. The association is composed of
a precondition of fixed arranged 3 sub-vectors and a conclusion of § sub-vectors.
Associations are learned by the associative memory (see Figure 9). Each cognitive
entity is represented by a unary vector. A precondition and the conclusion are
represented by a 4 x 100 x 3 = 1200 dimensional binary vector with three ones.

;)
o> =

o /m O]

Figure 9: The learning phase of an association represented by 3 sub-vectors. In our
example the precondition and the conclusion are represented by a 4 x 100 x 3 = 1200
dimensional binary vector with three ones.

4.1 Proto Logic

Suppose a vector is divided into « sub-vectors with o > (3. An association recognizes
[ different sub-vectors and exchanges them for g different sub-vectors.

Let @ = 7 objects that were recognized in the visual scene. The seven visual
objects are indicated at a certain position of the scene by symbols A, B,C, D, E, F
and G. The task of proto logic is to identify a precondition formed by visual
objects represented by the set B,C,G, 8 = 3. Proto logic operates on sets. It
verifies whether a subset is present in a certain set. The task of proto logic is trivial
when working with sets. Each of the symbols B, C, G is checked for presence in the
set that represents the scene. It is verified if a set representing a precondition is a
subset of the set representing a scene.

However if the precondition (set of objects) is stored in an associative memory
the task of proto logic is non trivial Wichert [2011]. In an associative memory direct
access to the stored information is not present. An associative memory operates on
vectors of fixed dimensions.
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A set of objects (a precondition) is represented by a vector by concatenating
the sub-vectors that represent the objects. For m sub-vectors there are m! possi-
ble orderings of the corresponding sub-vectors. Each sub-vector corresponds to a
cognitive entity.

To verify if a set of 3 sub-vectors representing a precondition is a subset of the
set of n sub-vectors representing a scene, there are % orderings. Then it is
verified if each permutation corresponds to a valid precondition of an association.
For example, if there is a total of seven elements and a sequence of three elements
from this set is selected, then the first selection is one from seven elements, the next
one from the remaining six, and finally one from the remaining five, resulting in
76 x5 =210, see Figure 10. In our example, all possible three-permutation sub-
vectors of seven sub-vectors are formed to test if the precondition of an association
is valid. An association is valid, if the answer vector representing the conclusion is
not equal to a zero vector.
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Figure 10: To recognize one learned association, permutations are formed. For
example, if there is a total of seven elements and a sequence of three elements
from this set is selected, then the first selection is one from seven elements, the
next one from the remaining six, and finally from the remaining five, resulting in
7% 65 = 210. In our example, all possible three-permutation sub-vectors of seven
sub-vectors are formed to test if the precondition of an association is valid.

4.2 Sub-symbolic Problem solving

Sub-symbolic problem solving forms a sequence of associations that change the
initial scene in the desired scene. The input to the problem is the initial and
the desired scene. The solution is the sequence of associations. The sub-symbolic
problem solving is based on the following principles:

e A scene is represented by « different sub-vectors. Each sub-vector corresponds
to a cognitive entity.

e The association is composed of a precondition of fixed arranged § sub-vectors
and a conclusion of 3 sub-vectors with a > .

e Proto logic verifies whether a subset, § sub-vectors of is present in a set of «
different sub-vectors representing a scene.
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Algorithm for sub-symbolic problem solving

1. For a scene (starting with the initial scene), represented by « different sub-
vectors;

2. Valid associations are determined, their number is indicated by w.

3. w identical copies of the set of a different sub-vectors representing a scene are
formed.

4. For each of the w valid associations and each copy of the set representing the
scene;

(a) The subset of 3 sub-vectors of the precondition is replaced by the subset
[ sub-vectors of the conclusion of the association resulting in a temporal
answer set.

5. w temporal answer sets of a sub-vector are mapped into w answer vectors
by performing a bitwise “OR” between the a sub-vectors representing the
cognitive entities of each temporal answer set.

6. The similarity between the w answer vectors and the desired state is measured
by Equation 1.

7. If the similarity corresponds to equality, the problem is solved and the com-
putation is terminated.

8. Otherwise the most similar answer vector to the desired state according to
by Equation 1 is chosen. The corresponding temporal answer set represents
the scene and a new cycle of computation is repeated. The computation is
repeated in cycles until a solution is found. This search strategy corresponds
to hill climbing Winston [1992].

Out of several possible associations, the one is chosen that modifies the state in
such a way that it becomes more similar to the desired state according to Equation 1.
The desired state corresponds to the category of Equation 1, each feature represents
a possible state. The states are represented by sparse features. With the aid of this,
heuristic hill climbing is performed.

4.3 Simple and universal heuristic function

The computation can be improved by this simple and universal heuristic function,
which takes into account the relationship between the vector and the corresponding
similarity of the represented states (see Figure 11 and Figure 12). The heuristics
function makes a simple assumption that the distance between the states in the
problem space is related to the similarity of the vectors representing the states.
The similarity between the corresponding vectors can indicate the distance between
the sub-symbols representing the state. Empirical experiments in popular problem-
solving domains of Artificial Intelligence, like a robot in a maze, block world or 8-
puzzle indicate that the distance between the states in the problem space is actually
related to the similarity between the images representing the states Wichert [2001,
2009], Wichert et al. [2008].

The hill climbing search resulted from the fact that distance between states
in the problem space is related to the similarity between the sub-symbols. This
heuristic is fairly simple and cannot be applied to problems where the similarity of
the representation is not related to the distance in the problem space, such as for
example the missionaries and cannibals problem. This also happens due to the fact
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Figure 11: The simplest method corresponds to a random choice, and does not
offer any advantage over simple symbolical representation. An example of visual
planning of the tower building task of three blocks using random choice is shown.
The upper left pattern represents the initial state; the bottom right pattern, the
desired state.

Figure 12: The computation can be improved by a simple and universal heuristic
function, which takes into account the relationship between the vector and the
corresponding similarity of the represented object or states in the real world as
expressed by Equation 1 for binary vectors. The heuristics function makes a simple
assumption that the distance between the states in the problem space is related to
the distance between the sub-symbols representing the visual states. The distance
between the states in the problem space is related to the distance between the visual
state. An example of visual planning of the tower building task of three blocks using
hill climbing using the similarity function, see Equation 1. The upper left pattern
represents the initial state; the bottom right pattern, the desired state.
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that we do not represent the problem space and our system gets caught in loops
and fails to deliver a solution. Of course humans have difficulties with problems
like the missionaries and cannibals problem, in which one cannot perform the first
necessary action without undoing them at a later stage. In case the problems
become too complex, the sub-symbolic problem is often transferred to a symbolic
representation and solved using external memory in the real world, like paper and
pencil Wichert et al. [2008].

5 Conclusion

Living organisms experience the world as a simple Euclidian geometrical world. The
actual perception of the world and manipulation in the world by living organisms
lead to the invention or recreation of an experience that, at least in some respects,
resembles the experience of actually perceiving and manipulating objects in the
absence of direct sensory stimulation. This kind of representation is called sub-
symbolic. The manipulation of the sub-symbols is described by simple proto logic,
which verifies if a subset of sub-symbols is present in a certain set of sub-symbols.
Sub-symbolic representation implies heuristic functions. The assumption that the
distance between states in the problem space is related to the similarity between the
sub-symbols representing the states is only valid in simple cases. However, simple
cases represent the majority of problems in any real world domain. Sense organs
sense the world by receptors that are part of the sensory system and the nervous
system. Optimal sparse binary vectors can describe sub-symbolic representation,
which can be efficiently stored in biologically motivated associative memories.
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