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Abstract. When members of a population engage in dyadic interactions
reflecting a prisoner’s dilemma game, the evolutionary dynamics depends
crucially on the population structure, described by means of graphs and
networks. Here, we investigate how selection pressure contributes to change the
fate of the population. We find that homogeneous networks, in which individuals
share a similar number of neighbors, are very sensitive to selection pressure,
whereas strongly heterogeneous networks are more resilient to natural selection,
dictating an overall robust evolutionary dynamics of coordination. Between these
extremes, a whole plethora of behaviors is predicted, showing how selection
pressure can change the nature of dilemmas populations effectively face. We
further show how the present results for homogeneous networks bridge the
existing gap between analytic predictions obtained in the framework of the pair-
approximation from very weak selection and simulation results obtained from
strong selection.
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1. Introduction

Complex networks are ubiquitous and known to profoundly affect the processes that take place
on them [1–5]. From a theoretical perspective, some of the most complex processes studied to
date, occurring on complex networks, are related to behavioral dynamics and decision-making,
often described by means of social dilemmas of cooperation [6]. Among these, prisoner’s
dilemma (PD) provides the most popular metaphor of such dilemmas, given that its only Nash
equilibrium is mutual defection, despite mutual cooperation providing higher returns [7]—thus
the dilemma. We may also assume a dynamical (evolutionary) approach to game theory [8, 9],
where individuals revise their behavior based on the perceived success of other individuals,
creating a gradient of selection (GoS) [10] that dictates the evolution of cooperation in time. In
this context, such GoS will always favor free-riders irrespective of the fraction of cooperators
and of the relative importance of fitness in the evolutionary process, a result that dictates the
demise of cooperation in the population [9].

This result that translates the forecast stemming from a game-theoretical analysis based on
Nash equilibrium into a population-wide, dynamical setting, assumes that populations are large
and well mixed, that is, everyone interacts with everyone else with equal probability [8]. Yet,
when members of a population interact along the links of an underlying complex network this
scenario is altered, as the assumption of a well-mixed population no longer holds [6, 11–13].
Only recently has it become possible to analyze the population-wide evolutionary dynamics of a
game played on an arbitrarily complex network, very much in the same manner that games were
analyzed in well-mixed populations [14]. The so-called average gradient of selection (AGoS,
see section 2 for details) has unraveled the fundamental changes in evolutionary game dynamics
introduced in populations structured along the links of complex networks. While further analysis
is required for other classes of dilemmas [6, 15–17], the results obtained from the PD [14] show
that, at a population-wide level (what we call macro-dynamics) the effective game at stake can
be very different from that in which pairs of individuals engage (what we call micro-dynamics),
with direct implications both in the time-evolution and invasion of cooperation, analogous to
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Figure 1. Effective games in structured populations. Depending on the
underlying network structure, the evolutionary dynamics of a population may
exhibit an AGoS that may coincide with the expectations from standard
evolutionary game theory (panel (A)) or not (panels (B) and (C)), reflecting the
fact that the network structure changes the effective game played at a population-
wide level. Similar to the replicator equation [8], the AGoS [14] provides a
characterization of the change in time of the fraction of cooperators under natural
selection, being positive (negative) when the fraction of cooperators tends to
increase (decrease).

what occurs in finite well-mixed populations [18]. In particular, homogeneous networks seem
to favor the co-existence of strategies, whereas heterogeneous networks, in turn, favor their
coordination [14], irrespective of the fact that the game individuals locally perceive and play is
a PD—see figure 1.

The scenarios illustrated in figure 1, however, do not take into account the role of selection
pressure (also known as intensity of selection) in the overall evolutionary dynamics of a
networked population [19–24]. Selection pressure provides relative significance of individual
fitness in the evolutionary process, as opposed to an arbitrary or random adoption of strategies.
This is important, as selection pressure can be very different depending on the processes at
stake. Indeed, in many social interactions, errors in decision-making, perhaps induced by stress
or exogenous confounding factors that often translate into a bounded rational behavior of the
players [25], may lead to an overall weak selection environment. This contrasts with many
situations in nature where selection may be strong [26], as well as in cases where cultural
evolution is at stake [9]. Moreover, the fate of cooperation in social networks may depend on
how the success of the others is locally perceived—which is related to the number of partners
of each player and their social context [11, 17, 22, 27]—turning selection pressure into a central
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variable in the ongoing challenge of understanding the impact of each social structure on global
outcomes [6, 11–14, 28–46].

Here, we study the role played by selection pressure in the overall evolutionary dynamics
of a population. We find that, for a given class of interaction network, there is an optimum
level of selection pressure for which cooperation is maximized. We stick here to paradigmatic
examples of homogeneous and strongly heterogeneous classes of network structures, deferring
to the appendix the study of other classes of population structure that enlarges the variety of
topological features studied here, thereby providing an overall view of the role of selection
pressure in a wider range of contexts.

2. Model

2.1. Population structure

We take a population of individuals organized by means of a complex network of social
interactions, where individuals are placed on the nodes and interactions are restricted
to individuals connected by links. We focus on two classes of population structures (or
networks): homogeneous, where every individual shares the same number of neighbors, and
heterogeneous, where individuals have a variable number of partners. For the former class,
we adopt homogeneous random networks (HR) that are built by randomizing the links
of initial homogeneous regular ring networks [47], whereas for the latter we choose the
strong heterogeneous case of scale-free network structures generated with the Barabási–Albert
algorithm (BA) of growth and preferential attachment [48]. All networks have an average degree
of four and population size is N = 1000. As already mentioned in the appendix we extend our
analysis to other classes of population structures [1, 49], in order to ensure a more complete
picture of the effect under study: exponential (EX) [50], random (RN) [51, 52] and the highly
clustered scale-free networks generated with the minimal model algorithm (MM) [53]; the
latter have a degree of heterogeneity similar to BA networks, while exhibiting a high cluster
coefficient, in stark contrast with BA networks. We confirmed that our results, obtained from
N = 1000, remain valid for larger population sizes.

2.2. Evolutionary dynamics

Individuals can assume one of two possible strategies: to cooperate or to defect. Each strategy
obtains a payoff that depends on the strategy composition of its neighborhood, given by
5i = nC [si(R − T ) + T ] + nD [si(S − P) + P], where nC (nD) is the number of cooperators
(defectors) in the vicinity of node i, whereas si is 1 if individual i is a cooperator (C) or 0
if a defector (D). Finally, T (temptation), R (reward), P (punishment) and S (Sucker’s payoff)
are the game parameters that define all possible pair outcomes in a symmetric two-person–two-
strategy interaction (from a game theory perspective). Here, we consider R = 1.0, P = 0.0,
T = λ and S = 1 − λ, where λ > 1 stands both for the temptation to defect toward a C and for
the fear of being cheated [17, 54], thus combining two social tensions in a single parameter.
Given that λ > 1.0, we have T > R > P > S, which means that the game at stake is a PD.
Further social dilemmas can be considered for different rankings of the game parameters, in
particular Stag Hunt (a coordination dilemma, for which R > T > P > S) and the Snowdrift
Game (a co-existence dilemma, for which T > R > S > P).
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Figure 2. AGoS on HR structured populations. (A) Time-dependent AGoS for
populations engaging in a PD with λ = 1.01 and β = 1.0 at four different
generations (g = 5, 10, 25 and 100) showing that the position of xR does not
change after the 25th generation. (B) Location of the internal fixed points of the
time-dependent AGoS, at the 100th generation, for a broad range of values of
β (λ = 1.01). The color gradient is used to plot the quasi-stationary distribution
(see section 2), i.e. the prevalence in time of each fraction of cooperators.

Evolutionary dynamics proceeds as long as individuals with higher fitness will tend to
reproduce more or, in the context of cultural evolution and social learning, successful individuals
will be imitated; in both cases, the fitter behavior will spread in the population. Here, we adopt
the pairwise comparison rule [55–57] that allows us to explore in terms of a single parameter
(β) the full range of possible selection pressures, from neutral evolution to pure imitation
dynamics. At each time-step we allow one randomly chosen individual, i, from the population
to imitate the strategy of a randomly chosen neighbor, j, with probability p(i, j) given by
p(i, j) = [1 + e−β( f j − fi )]−1 where fi( f j) denotes the fitness of individual i (j) (here associated
with the accumulated payoff obtained from playing with all neighbors). As stated above,
β > 0 defines the selection pressure: for β = 0 we obtain neutral evolution, in which case the
evolutionary dynamics proceeds by random drift; at the other extreme, for very large values of
β, imitation becomes deterministic, in the sense that any chosen neighbor who is more fit will
be always imitated.

2.3. Computer simulations

The final fraction of cooperators (FFC) was computed by averaging over 2.5 × 105 evolutionary
runs, after a transient of 5 × 103 generations starting with a population composed by equal
fractions of strategies randomly placed on the network. We also computed the quasi-
stationary distributions, corresponding to the fraction of time that the population spent in each
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non-absorbing state during the first 5 × 103 generations over 2.5 × 105 distinct evolutions that
started with a random initial condition.

The GoS is defined as G( j) = T +(j) − T −(j) [10], where T +( j)(T −( j)) is the probability
of increasing (decreasing) the number of cooperators by one in a population with j cooperators.
For structured populations this quantity becomes context dependent, as it may vary from node to
node, becoming cumbersome to describe it analytically. Instead, here we (numerically) compute
an average over all possible transitions that may increase or decrease the number of Cs at each
time-step t on a given state with j Cs. [14].

For each individual i with ki neighbors, of which n̄i have a different strategy, we compute
the probability of changing behavior Ti(t) (moving from C to D or from D to C) at time t. This
is given by the product of two terms: the probability of selecting a neighbor with an opposite
strategy (n̄i/ki ), and the average probability of effectively imitating one of those neighbors,
1
n̄i

∑n̄i
m=1 p(i, m), leading to Ti(t) =

1
ki

∑n̄i
m=1 p(i, m).

We can now compute, for a given simulation p, the AGoS, G p( j, t) = T +
p ( j, t) − T −

p ( j, t).
The probability to increase the number of Cs T +

p ( j, t) is given by the product of the probabilities
of randomly selecting a D for update (N − j/N) and the average probability that this individual
actually imitates a C: (N − k)−1 ∑Ds

i=1 Ti(t). A similar reasoning can be adopted for T −

p ( j, t),

such that T ±

p ( j, t) =
1
N

∑ Ds
Cs
i=1 Ti(t) [14].

The time-dependent AGoS, G A( j, g), for a particular generation g is thus computed by
averaging over N time-steps (one generation) G A( j, g) =

1
c j (g)

∑gN−1
t=(g−1)N

∑�

p=1 G p( j, t), where
c j(g) accounts for the number of times the system was observed in state j at generation g. For
a given network type, we run � = 2.5 × 107 simulations (using 103 networks of each type)
starting from random initial conditions.
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3. Results and discussion

3.1. Selection-driven macro-dynamics

As discussed in [14], the evolutionary game dynamics taking place on structured populations
leads to the emergence of an effective game, at a macro (population-wide) level, characterized
by exhibiting, typically, a pair of internal roots (of coordination and co-existence type) in
the AGoS, more akin to the dynamics of N-Person games [10, 58–63]. However, as shown,
while in homogeneous network structures the dynamics is dominated by the co-existence
root, in heterogeneous populations the coordination root characterizes the overall dynamics
(cf figure 1).

In figure 2(A), we show a typical profile of the AGoS at different moments of the
evolutionary dynamics of a PD played in a population structured according to an HR network,
for β = 1.0 and λ = 1.01. We observe a gradual stabilization of the overall shape of the AGoS
such that, by the 100th generation, the internal fixed point (and the shape) of the AGoS has
already stabilized. Hence, in figure 2(B), we show the location of the internal fixed points of the
AGoS at the 100th generation, as a function of β, on top of the corresponding quasi-stationary
distributions computed along the lines specified in section 2.

Figure 2(B) shows that, whenever β < 0.3 the AGoS indicates no trace of internal roots,
that indicates that we are in a PD (or defector dominance) regime, approaching random drift as
β → 0 (leading to a flat quasi-stationary distribution). As soon as β > 0.3 the effective dilemma
changes abruptly, associated with the appearance of two internal points. The dynamics becomes
mainly dominated by the co-existence point (xR, whereas the coordination point xL essentially
collapses to x = 0); a feature also reflected in the contour profiles displayed for the quasi-
stationary distribution. It is noteworthy that there is excellent agreement between the AGoS
results and those obtained with the quasi-stationary distribution. For β > 50, we observe the
appearance of yet another pair of fixed points between xR and x = 0.0, in an overall dynamical
scenario close to defection dominance. Hence, homogeneous networks are able to promote
cooperation within a small window of selection pressures in which cooperators may co-exist
with defectors.

In figure 3, we show the same results as in figure 2 but now for a population structured along
the links of a BA network. Again, by the 100th generation, roots of the AGoS have stabilized,
and hence in figure 3(B) the location of the internal fixed points (computed at the 100th
generation) is shown as a function of β. Whenever β < 0.28 the macro-dynamics is dominated
by a single coordination point xL that moves closer to x = 0.0 for increasing β. However, for
β > 0.28, a pair of internal points appear below x = 0.1, that occurs simultaneously with a
slight increase in the location of the coordination point (xL) above which the population reaches
full cooperation. For increasing β the co-existence point (xR) almost reaches x = 1.0. The
discussion of the detailed mechanisms giving rise to these roots near the monomorphic states
falls beyond the scope of the present work, and will be deferred to future work, being related to
a multitude of evolutionary deadlocks that may appear at the leaves of scale-free networks [31],
which become more significant for high selection pressure.

In both cases (HR and BA, see figures 2 and 3) the positions of the internal points of the
AGoS put into evidence the existence of an optimal selection pressure for which cooperation
levels are maximized.
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Figure 4. Final fraction of cooperators on networked populations. (A, B) We plot
the FFC as a function of both the intensity of selection (β) and of the temptation
(λ) for BA and HR structured populations, respectively. (C, D) Examples of the
final fraction of cooperators for fixed temptation values (λ = 1.025 and 1.35) as
a function of β (these results correspond to the dashed white lines in the upper
panels). In both cases there is a value of β for which cooperation is maximized.

3.2. Analysis of stationary states of the fraction of cooperators

Figure 4 shows the result of standard computer simulations (e.g., see [6]) in which, starting from
50% Cs (xi = 0.5) placed at random in the population, one computes the stationary FFC as a
function of β and λ. Figure 4(A) shows results for HR networks, whereas figure 4(B) shows
the corresponding results for BA networks. For a wide range of values of λ, there is a value of
β that maximizes the final fraction of Cs in both network types. We have confirmed that this
behavior is independent of both λ and the population structure.

For strong selection (β � 1.0) individuals approach a more deterministic regime in which
the update process consists of copying the strategy of their neighbors whenever these are doing
better, however slightly. In such a regime, the population outcome is strongly dependent on the
population structure. Between these two extremes one obtains a transition region, characterized
by the existence of a local maximum of the FFC in β for a given λ.

On HR populations, as long as Cs succeed in forming compact clusters, they may prevent
the invasion of Ds [6, 13, 19, 57]. Given that the underlying game is a PD, for weak selection,
clusters of Cs are easier to form, but errors in imitation also allow their destruction and/or
invasion by Ds.
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(λ =1.25). Only links between nodes of different strategies are taken in
consideration. To simplify the discussion in connection with figure 6 below, we
label each node by a number (square box in the corner of each node).

As we increase β we not only decrease the incidence of errors of imitation, hindering the
feasibility of forming clusters of Cs, but also hinder the feasibility of them getting destroyed or
invaded as a result of errors of imitation. Hence, it is not surprising that the population evolves to
a stationary regime in which Cs and Ds may coexist in the population. From a population-wide
perspective, the macro-dynamics will be characterized by an effective co-existence dilemma as
was shown in figure 2.

On BA heterogeneous networks the situation is more complex, although we can identify
the basic mechanism that leads to the results shown in figure 4. Indeed, we observe a decoupling
in the effective intensity of selection between interactions that involve at least one hub (nodes
of high degree) and those that involve none (involving mostly leaves, that is, nodes of smallest
degree). Because hubs are able to accumulate a large fitness—at least one order of magnitude
higher than that of other nodes (see below)—they are seen as preferential role models. Hence,
potential behavioral imitation between hubs and leaves occurs at an effectively higher selection
pressure than interaction among leaves. This mechanism is discussed in further detail in
section 3.3.

From an individual perspective this mechanism hints at how each individual should interact
with his peers so that cooperation levels at the population-wide level are maximized: imitate
deterministically the strategy of the most influential (high fitness) individuals and less so all
those that are at a similar level of influence to you. In sum, for a greater good, social and
context diversity must be taken seriously [27, 64].

3.3. A route for cooperation in scale-free networks

To put into evidence the mechanism responsible for the intensity of selection that maximizes
cooperation levels in scale-free networks, we divide the nodes of a BA network into three degree
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classes, similar to [64]. We classify nodes as high degree nodes (HDN) if ki > kmax/3, medium
degree nodes (MDN) if z < ki 6 kmax/3 or low degree nodes (LDN) whenever ki < z.

Taking into account that a node from a degree class can either be a C or a D we consider
six possible classes of nodes (see figure 5 for details). We can thus collapse all interactions
between nodes in the original network into interactions taking place on a meta-network of 6
(meta-) nodes, where we shall consider only links between nodes of different strategies. Figure 5
exemplifies such a meta-network. The values provided for each node correspond to the average
payoff of nodes of the respective class computed for 103 configurations obtained by randomly
distributing an equal fraction of Cs and Ds on BA networks. As an illustration, figure 5 shows
that, for the parameters chosen, indeed, HDN can accumulate payoffs one order of magnitude
higher than nodes of other classes.

We can take the average payoffs of each type of node and compute the average probabilities
of imitation in each possible C–D link of the meta-network. Whenever any of these processes
occurs under weak selection we expect to obtain a probability of imitation near 0.5, whereas
deterministic imitation occurs whenever probabilities approach 1.0.

In figure 6, we show the probability of imitation between nodes with different strategies as
a function of β. The lines in each panel correspond to the links in the meta-network identified
using the node-numbers in figure 5. Black dashed lines display the corresponding FFC.

For low β all three types of transitions occur near random imitation (p = 0.5), but as
we increase β we observe a change of behavior, as some transitions reach a deterministic
regime (p = 1.0) before others, that is, for lower values of β. On the other hand, for high

New Journal of Physics 14 (2012) 073035 (http://www.njp.org/)

http://www.njp.org/


11

β all transitions group again and become deterministic. This trend is observed in all panels.
In figure 6(A), we plot the probability of imitation for transitions between nodes of the same
degree class but different strategy, whereas in figures 6(B) and (C) we show how the probability
of imitation changes with the intensity of selection for transitions that involve at least one
HDN. Clearly, these interactions reach a deterministic regime for values of β below those in
figure 6(A). This is so because the higher fitness difference between hubs and leaves leads to
an effect similar to what one would obtain for smaller fitness differences but high intensity
of selection β. Note further that the values of β at which we observe the transition in these
interactions fit quite well the sharp increase of FFC with β. For the other type of interactions
available, involving an MDN and an LDN (see figure 6(D)), we observe that the transition to a
deterministic regime occurs for higher values of β (compared with the other panels in figure 6),
leading to a ‘decoupling’ between these transitions and those discussed before. In fact, it appears
that the transition to a deterministic regime in these interactions is positively correlated with the
decrease of the FFC.

4. Conclusions

In this paper, we have shown that the macro-dynamics of a population—whose individuals
engage in a PD of cooperation—strongly depends on two aspects: (i) the network of
interactions in which individuals are embedded and (ii) the intensity of selection—or selection
pressure—associated with strategy revision. For scale-free social networks the macro-dynamics
is akin to a coordination game, regardless of the intensity of selection, whereas for homogeneous
networked populations it depends on the intensity of selection: for strong selection we observe a
dynamics similar to a co-existence game while for weak selection regimes we recover a typical
dynamics of a PD.

The fact that the game at the macro-level remains a PD, in which Cs have no
chances, has been obtained previously for homogeneous random graphs, in the framework
of pair-approximation [36, 65, 66]. Pair-approximation, however, was leading to an apparent
contradiction with early results from computer simulations by Szabó and Fáth (see [6] for
details), that were evidencing a window of opportunity for the PD game played on homogeneous
networks under strong selection. The present results resolve the apparent contradiction, showing
how the macro-game changes with β.

This work also provides evidence for the existence of an ‘optimal’ intensity of selection
at which levels of cooperation on structured populations are maximized (see also [19–21]).
Furthermore, we characterize the population-wide dynamics responsible for such an outcome,
while discussing the fundamental topological and dynamical mechanisms that led to these
results on both homogeneous and scale-free networks. In the appendix we further discuss these
issues for other types of networks.

On scale-free networks the mechanism that induces the existence of an optimal level for
cooperation results from high levels of social diversity [27] (here, network heterogeneity) that
give rise to a decoupling in the effective intensities of selection at which the imitation between
individuals of different degree classes occurs.
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Figure A.1. Final fraction of cooperators for a scale-free (SF) population
structured according to the MM of [53] as a function of the temptation (λ) and
of the intensity of selection (β). Initially, the population was composed by equal
frequencies of each strategy placed at random. We observe that for fixed λ there
is an optimal value of β at which cooperation levels are maximized. These results
show the same type of behavior identified in the other SF populations discussed
in the main text.

Appendix. Results for additional network topologies

In figure A.1, we show the FFC for scale-free networks whose structure was generated with the
Minimal Model (MM) algorithm [53], that unlike BA exhibit high values of Cluster Coefficient
(CC) [1].

The behavior obtained is similar to that already identified and discussed in figures 3 and 4 of
the main text, allowing us to conclude that the underlying mechanism that generates this optimal
behavior for a specific intensity of selection (β) does not depend on the CC. Instead, these
results seem to be a direct consequence of the strongly heterogeneous nature of the network
of interactions that give rise to the decoupling mechanism discussed in section 3.3. Moreover,
figure A.1 corroborates the idea [17, 67] that high clustering combined with a heterogeneous
network structure offers a clear enhancement of cooperation, when compared to the results
obtained in the absence of such clustering.

Figure A.2 shows the overall dynamics of a population that is organized by means of
Erdős–Rényi random networks of interaction. We used random networks with 1000 nodes
and average degree of four [1]. These random networks possess a low level of heterogeneity,
exhibiting a single-scale degree distribution [49].

Figure A.2 (A) shows the internal points of the AGoS at the 100th generation as a function
of the intensity of selection, where one observes that macro-dynamics is mainly dominated by
a coordination point that, for strong selection regimes (β > 1.0) is located close to x = 0.0, in
agreement with the FFCs shown in figure A.2 (B).

Figure A.3 shows the overall dynamics of populations organized via networks exhibiting an
exponential degree of distribution [49]. Such exponential networks with 1000 nodes and average
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Figure A.2. Evolutionary dynamics on RN-networked populations. (A) The
internal points of the AGoS at the 100th generation as a function of the intensity
of selection with λ = 1.05. (B) FFC, starting from 50% placed at random in
the population, as a function of the temptation (λ) and of the intensity of
selection (β). Dashed line represents the results that correspond to the AGoS
shown in panel (A).
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Figure A.3. Evolutionary dynamics on EX-networked populations. (A) The
internal points of the AGoS at the 100th generation as a function of the intensity
of selection on exponentially structured populations with λ = 1.1. (B) FFC,
starting from 50% Cs placed at random in the population, as a function of the
temptation (λ) and of the intensity of selection (β). Dashed line represents the
results that correspond to the AGoS shown in panel (A).

degree of four were generated using an algorithm similar to the Barabási and Albert [48],
in which preferential attachment is replaced by random attachment [1, 50]. These networks
exhibit levels of heterogeneity that fall in between those accruing to random and to scale-free
networks [49].

Figure A.3 (A) shows the internal fixed points of the AGoS at the 100th generation as a
function of the intensity of selection. Again, we see a population-wide dynamics dominated
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mainly by the coordination point that, for strong selection regimes (β > 1.0), is located close
x = 0.0, making the game resemble a Harmony Game, a cooperation dominance dilemma.

These results are in full agreement with what we observed in figure A.3-B for the FFCs as
a function of the intensity of selection β and of the temptation parameter λ.

The results in both figures A.2 and A.3 show no evidence for the existence of a value of β at
which cooperation is maximized; instead, we obtain a threshold value, above which cooperation
is sustained. Furthermore, the analysis of these two cases puts into evidence the impact of degree
heterogeneity on the overall cooperation dynamics, as cooperation successfully dominates for
a broad range of intensities of selection and temptations to defect in populations structured by
exponential networks.
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