
Iterative random projections for high-dimensional data

clustering

Ângelo Cardoso, Andreas Wichert

INESC-ID Lisboa and Instituto Superior Técnico, Technical University of Lisbon
Av. Prof. Dr. Ańıbal Cavaco Silva, 2744-016 Porto Salvo, Portugal

Abstract

In this text we propose a method which efficiently performs clustering of
high-dimensional data. The method builds on random projection and the K-
means algorithm. The idea is to apply K-means several times, increasing the
dimensionality of the data after each convergence of K-means. We compare
the proposed algorithm on four high-dimensional datasets, image, text and
two synthetic, with K-means clustering using a single random projection and
K-means clustering of the original high-dimensional data. Regarding time
we observe that the algorithm reduces drastically the time when compared
to K-means on the original high-dimensional data. Regarding mean squared
error the proposed method reaches a better solution than clustering using
a single random projection. More notably in the experiments performed it
also reaches a better solution than clustering on the original high-dimensional
data.

Keywords: clustering, K-means, high-dimensional data, random
projections

1. Introduction

The K-means algorithm [10], given a set of n points in Rd and an integer
K, finds the K centers, such that the total squared error between each the
of the n points and its closest center is minimized. The algorithm starts by

Email addresses: angelo.cardoso@ist.utl.pt (Ângelo Cardoso),
andreas.wichert@ist.utl.pt (Andreas Wichert)

1



initializing the centers randomly. Each cluster center is defined by the em-
pirical mean of its points. At each iteration, each of the points is assigned to
its closest center and afterwards the centers are recalculated. Each K-means
iteration reduces the total squared error. When the algorithm converges it
reaches a minimum, however there is no guarantee that it is global.

Random projection [7] is used for projecting high-dimensional data into
low-dimensional subspaces while approximately preserving the Euclidean dis-
tance between the points. Its application in computer science is wide, includ-
ing nearest neighbor search, clustering and classification. In this paper we
propose a novel method for clustering using random projection which grad-
ually increases the dimensionality of the data in successive applications of
K-means. We call the method iterative random projections K-means (IRP
K-means). We compare it to related approaches which use a single random
projection and to K-means clustering in the original high-dimensional space.
Experiments on an image dataset and a text dataset indicate that the pro-
posed algorithm improves significantly the mean squared error (MSE) in the
original space when compared to a single random projection. The empiri-
cal results also show that by gradually increasing the dimensionality of the
data we can reach a solution with a lower MSE than clustering on the original
high-dimensional space. IRP K-Means is related to simulated annealing clus-
tering [12] which avoids local minimums. However such approach relatively
to K-means greatly increases the running time [2].

2. Random projection for K-means clustering

Random projection works by projecting the high dimensional data into
a lower dimensional random subspace. We randomly create h vectors which
define random projection matrix R. This idea is based on the Johnson-
Lindenstrauss lemma [7] whose intuition is: if n points in vector space of
dimension d are projected onto a randomly selected subspace of suitably
high dimensions h, then the Euclidean distance between the points are ap-
proximately preserved. In [5] more tight bounds are given, more precisely
the theorem is the following:

Theorem 2.1. For any 0 < ε < 1 and any integer n, let h be a positive
integer such that

h ≥ 4

(
ε2

2
− ε3

3

)−1

lnn.

2



Then for any set V of n points in Rd, there is a map f : Rd → Rh such
that for all u, v ∈ V ,

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2.

Furthermore, this map can be found in randomized polynomial time.

Given a random matrix Pd×h and a data matrix Xn×d, then the projection
of X into P , is given by

XRP
n×h = Xn×dPd×h. (1)

Several alternatives have been proposed for generating the random matrix
[1, 9] which reduce the computational cost of projecting the data, namely,
using integers and sparseness in matrix P . The generated random matrix P is
usually not orthogonal. Making R orthogonal is computationally expensive.
However, in a high-dimensional space, there exists a much larger number
of almost orthogonal than orthogonal directions [6], therefore vectors with
random directions are close enough to be orthogonal.

2.1. A K-means based algorithm using random projection

In this section we describe an algorithm for K-means clustering using
random projection which is related to several previous works [4, 11, 3]. By
clustering the data on lower dimensional space, the computational cost of
each K-means iteration can be greatly reduced, while still finding a solution
which is related to clustering on the original high-dimensional space.

The algorithm starts by initializing the cluster membership G randomly.
The cluster membership is set by selecting randomly K points as the clusters
centers. Then we generate a random matrix P to project the data. We
project the data Xn×d to D dimensions (D < d) using a random projection
defined by matrix Pd×D. Using the projected data XRP

n×D and G. We define
the initial cluster centers CRP as the mean of each cluster in XRP , which
at initialization is simply one point per cluster. Finally we run K-means
until convergence or some stopping criterion is met on XRP using CRP as
initialization, obtaining K clusters defined by the cluster membership G.
The detailed description is given in Algorithm 1.

3



Algorithm 1: Random Projection K-means

input : dimension D
data Xn×d
number of clusters K

output: cluster membership G
begin

Set the cluster membership G as K randomly selected points from
X.
Set a random matrix Pd×D.
Set XRP

n×D = XP .
Set CRP

k×D by calculating the mean of each cluster in XRP according
to G.
Obtain G with K-means on XRP with CRP as initialization.
return G

2.2. A K-means based algorithm using iterative dimension random projection

The intuition behind the algorithm is that by iteratively increasing the
dimension of the space, we can construct a solution with increasingly more
detail, while avoiding local minimums in the original space. The gradual con-
struction of the solution saves iterations in later dimensions, that are more
costly. This is analogous to cooling in simulated annealing clustering [12].
The lower the dimension, the greater the probability of assigning a point to
a wrong cluster, i.e. a cluster whose center is not the closest according to
the Euclidean distance in the original space. Lower dimensions are equiv-
alent to a higher temperature in simulated annealing clustering. However
unlike simulated annealing K-means, iterations in higher temperatures are
faster because they are computed in lower dimensions instead of the original
dimension.

The algorithm is related to random projection K-means (see Algorithm
1) but instead of using a projection for a single dimension, we project the
data and cluster it several epochs, increasing the dimension of the projection
in each of the epochs. The clusters obtained in a given dimension are used
to initialize the clusters in the following dimension.

The algorithm starts in dimension D1, by projecting the high-dimensional
data X into a space of dimension D1(D1 < d) using a random projection
defined by P1, obtaining XRP1 . In the first dimension D1 we initialize the
centroids randomly by selecting K points as centers. By applying K-means

4



in XRP1 we obtain the new cluster membership G, which will then be used to
initialize K-means in the next dimension (D2). Using the cluster membership
G obtained from K-means in dimension D1 and XRP2 , we recalculate the
centroids now in dimension D2(D1 ≤ D2 < d, to obtain the new initial
centroids CRP2 now in a new space of dimension D2. Now in D2, we apply K-
means again using CRP2 as initialization. Then analogously repeat the same
process until reaching the last dimension Dl(D1 ≤ D2 ≤ Dl < d) returning
the cluster membership from Dl. The relation D1 ≤ D2 ≤ ... ≤ Dl < d
is heuristic and analogous to simulated annealing cooling, D1, D2, ..., Dl can
therefore take any values. The detailed description is given in Algorithm 2.

Algorithm 2: Iterative random projections K-means

input : list of dimensions Da=1,...,l

data Xn×d
number of clusters K

output: cluster membership G
begin

Set the cluster membership G as K randomly selected points from
X.
for a = 1 to l do

Set a random matrix Pa(d×Da).
Set XRPa(n×Da) = XPa.
Set CRPa(k ×Da) by calculating the mean of each cluster in
XRPa according to G.
Obtain G with K-means on XRPa with CRPa as initialization.

return G

3. Experiments

We evaluate the performance of the proposed method 1 on four high-
dimensional datasets, an image, a text and two synthetic datasets.

We measure the clustering performance by the MSE, i.e. the K-means
objective function. Regarding time performance we report the running time
and the number of K-means iterations. Each entry in random matrix P
is sampled i.i.d from the standard Gaussian N (0, 1), which gives the same
bound for h as Theorem 2.1 as discussed in [5, 1].

1An implementation can be obtained from the authors

5



We use the same implementation of K-means for all the reported methods.
All the experiments were run in Matlab on a 64 bit machine with a 2.1 GHz
dual-core CPU and 4 GB of RAM.

3.1. Datasets

We use the AT&T Database of Faces2 (formerly ORL Database of Faces),
which contains 400 images from 40 subjects. The size of each image is 92×112
pixels with 256 gray levels, therefore 10304 dimensions. We use K = 40 in
the experiments since that is the number of subjects.

For the text experiments we use a dataset containing papers from NIPS
1-123. The text dataset contains 2484 documents with 14036 words, there-
fore 14036 dimensions. The original data contains the term count for each
document. We normalize all document vectors to unit length, by dividing the
term count by the total number of terms for a given document. The dataset
is sparse, on average for each document only 3, 93% of the terms are present.
For this dataset we do not know the correct K value, we use K = 10 in the
experiments.

We also generated two synthetic datasets both with 10000 dimensions.
For the first dataset each cluster j is sampled from a multivariate Gaussian
distribution N (µj, σ

2) being µj sampled from a multivariate Gaussian distri-
bution N (0, 1) and σ2 is a diagonal matrix (d×d) (common to all clusters)
where each entry is sampled from a multivariate Uniform distribution U(0, 2).
For the second dataset each cluster j is sampled from a multivariate Uniform
distribution U(cj − dj, cj + dj) where cj is sampled from a multivariate Uni-
form distribution U(−1, 1) and dj is sampled from a multivariate Uniform
distribution U(0, 2). Each dataset contains 1000 points randomly sampled
from each cluster with probability 1/K. We use K = 20 for both synthetic
datasets. The MSE of assigning all points to the correct cluster is 6.61× 103

for the Gaussian dataset and 4.39× 103 for the Uniform dataset.
In the experiments we will compare K-means on the original high-dimensional

data (referred by Classic), Algorithm 1 (referred by RP ) and Algorithm 2
(referred by IRP ). All experiments for all algorithms report the MSE on
the original high-dimensional space. To evaluate if the differences between
the algorithms are statistically significant we use a two sample t-test with

2AT&T Laboratories Cambridge
3assembled by Sam Roweis

6



significance α, being the null-hypothesis that the two samples are taken from
populations with equal mean.

3.2. A comparison between K-means, RP K-means and IRP K-means

We start by comparing results for Algorithm 1 using D = 10, 20, 50, 100
and for Algorithm 2 using D = [10, 20] , [10, 20, 50] , [10, 20, 50, 100].

On the AT&T Faces dataset (see Table 1), IRP10,20,50,100 achieved the best
average result (6.69×106), which compares favorably toRP100 (7.01×106) and
K-Means on the original data (6.88×106) (α = 0.001). IRP10,20,50,100 (0.5s)
was faster than K-Means on the original data (3.07s) (α = 0.001).

On the NIPS 1-12 dataset (see Table 1), IRP10,20,50,100 achieved the same
result regarding MSE (4.97×10−3) as K-Means on the original data. This
result compares favorably to RP100 (4.99×10−3) (α = 0.001). IRP10,20,50,100

(3.07 s) was faster than K-Means on the original data (59.57 s) (α = 0.001).
On the Gaussian dataset (see Table 1), IRP10,20,50,100 (6.93 ×103) per-

formed better than K-means on the original data (8.12 ×103) and RP (for
D = 10, 20, 50, 100). IRP10,20,50,100 (1.10 s) was faster than K-Means on the
original data (4.02 s) (α = 0.001).

On the Uniform dataset (see Table 1), IRP10,20,50,100 (4.46 ×103) per-
formed better than RP K-means (for D = 10, 20, 50, 100) and K-means on
the original data (4.94 ×103) (α = 0.001). IRP10,20,50,100 (1.10s) was faster
than K-means on the original data (4.01 s) (α = 0.001).

IRP10,20,50,100 performed better than RP100 on all datasets α = 0.001).
On the AT&T Faces, Gaussian and Uniform, IRP10,20 performed better than
RP20, IRP10,20,50 better than RP50 and IRP10,20,50,100 better than RP100 (α =
0.001). IRP was slower than RP (for the respective dimensions) in all datasets
(α = 0.001).

The number of iterations in each dimension is shown in Table 2. It is
worth mentioning that IRP10,20,50,100 in dimension 100 has less iterations on
average than RP100 for all datasets (α = 0.001). This difference is explained
by the fact that IRP10,20,50,100 starts in dimension 100 using the cluster mem-
bership of dimension 50 and RP100 starts with a random cluster membership,
as stated in Algorithms 1 and 2. IRP10,20,50,100 in dimension 100 also has less
iterations on average than K-means on the original data for all datasets
(α = 0.05) .

7



Table 1: MSE and running time for the several datasets. Sample average and standard
deviation over 20 runs.

C
la
ss
ic

R
P
1
0

R
P
2
0

R
P
5
0

R
P
1
0
0

I
R
P
1
0
,2
0

I
R
P
1
0
,2
0
,5
0

I
R
P
1
0
,2
0
,5
0
,1
0
0

A
T

&
T

F
. MSE

(106)
6.88±
0.101

8.64±
0.223

7.77±
0.171

7.34±
0.179

7.01±
0.168

7.53±
0.157

6.89±
0.101

6.69±
0.093

Time
(s)

3.08±
0.538

0.08±
0.009

0.10±
0.010

0.12±
0.016

0.19±
0.015

0.19±
0.030

0.34±
0.132

0.50±
0.059

N
IP

S
1-

12 MSE
(10−3)

4.97±
0.036

5.18±
0.032

5.11±
0.027

5.03±
0.017

4.99±
0.012

5.12±
0.030

5.02±
0.017

4.97±
0.008

Time
(s)

59.97±
21.319

0.37±
0.048

0.46±
0.036

0.83±
0.065

1.58±
0.254

0.93±
0.243

1.70±
0.129

3.07±
0.171

G
au

ss
ia

n MSE
(103)

8.12±
0.376

8.02±
0.479

7.62±
0.415

7.85±
0.454

8.21±
0.646

7.04±
0.345

6.97±
0.266

6.93±
0.287

Time
(s)

4.02±
0.932

0.16±
0.013

0.18±
0.021

0.30±
0.008

0.50±
0.021

0.32±
0.021

0.61±
0.033

1.09±
0.035

U
n
if

or
m

MSE
(103)

4.94±
0.146

5.61±
0.150

4.79±
0.134

4.79±
0.190

4.85±
0.140

4.65±
0.095

4.46±
0.098

4.46±
0.102

Time
(s)

4.01±
0.741

0.18±
0.025

0.19±
0.014

0.31±
0.041

0.51±
0.024

0.35±
0.024

0.63±
0.038

1.10±
0.024

3.3. Choosing D for IRP-Kmeans

In this section we explore how to choose D for IRP-Kmeans. The relation
D1 ≤ D2 ≤ ... ≤ Dl < d is heuristic and analogous to cooling in simulated
annealing, where the temperature is gradually reduced, throughout this sec-
tion we always consider D such that this relation is true.

The lower the dimension, the greater the probability of wrongly assigning
a point to a cluster who is not actually the closest according to Euclidean
distance, as in a higher temperature. This effect is explained by Theorem
2.1, which states that the distortion is within a maximum range. The actual
distortion for a particular data distribution might be smaller.

In IRP K-means the lower the dimension the higher the probability of

8



Table 2: Iterations in each dimension for the several datasets. Sample average and stan-
dard deviation over 20 runs.

Dim Classic RP IRP
A

T
&

T
F

ac
es 10 - 8.4± 1.59 9.2± 1.59

20 - 8.6± 1.56 8.5± 2.18
50 - 7.4± 1.59 6.2± 2.06
100 - 7.8± 2.28 4.6± 1.40

10304 7.1± 1.40 - -

N
IP

S
1-

12

10 - 42.3± 14.46 36.4± 13.02
20 - 34.6± 8.78 37.0± 12.27
50 - 31.3± 9.81 31.0± 10.20
100 - 28.9± 9.10 20.0± 5.48

14306 25.9± 9.35 - -

G
au

ss
ia

n

10 - 18.7± 4.45 19.1± 5.74
20 - 10.2± 3.33 7.6± 4.44
50 - 5.2± 1.18 2.1± 1.25
100 - 4.0± 0.79 1.65± 1.04

10000 3.6± 1.10 - -

U
n
if

or
m

10 - 24.0± 7.91 23.5± 6.68
20 - 15.8± 3.42 14.4± 6.68
50 - 7.45± 2.26 4.15± 2.50
100 - 5.45± 1.19 1.45± 1.14

10000 3.6± 0.88 - -

incorrectly assigning a point to a cluster center. The probability of assigning
a point to a cluster which is not actually the closest on the original space
also depends on K, as the higher the number of centers the more likely it
becomes that the points are incorrectly assigned. So both these effects should
be taken into account when trying to choose D optimally.

We empirically estimate this probability for each dataset by selecting
randomly K points and assigning the remaining to the closest of the K. The
average of each set of points defines a centroid in the original space. We
then project both the centroids and all the points for a given dimension Dh,
in dimension Dh we assign each of the points to one of the K centers and
measure the number of points which were incorrectly assigned relatively to
how they would be assigned in the original dimension. We show the average

9



percentage of misassigned points over 10 independent runs for a varying
number of dimensions Dh ∈ b100,0.1,0.2,...,4e for the several datasets in Figure
1. For a given Dh the probability mh of assigning a point to a cluster which
is not closest on the original space varies among the datasets which suggests
that the optimal D for a given l or for a maximum computational cost might
be different.

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dh

A
vg

. M
is

as
si

gn
ed

 P
oi

nt
s 

(%
)

 

 

AT&T Faces
NIPS 1−12
Gaussian
Uniform

Figure 1: Average percentage of misassigned points for the several datasets. AT&T Faces
(K = 40), NIPS 1-12 (K = 10), Gaussian (K = 20) and Uniform (K = 20).

If mh is sufficiently small then we can stop at dimension Dh. Another
criterion for not evaluating further dimensions is that the number of iterations
in the previous dimension is the minimum, meaning that IRP has already
converged.

Using this probability we empirically choose for each dataset Dh1,...,l such
that mh1,...,l is the closest possible to a given error. We use an exponential

decay of mh1,...,l given by mh1e
−λ(h−1), being mh1 the initial probability of

error and λ the steepness of the decay. We choose D with l = 20, mh1 = 1
2

and λ = 1
8

for all datasets.
For each dataset we performed 20 independent runs with l = 20 and

report the results from l = 1 till l = 20. The MSE for the several datasets is

10



shown in Figure 2, and the number of iterations in each dimension is shown
in Figure 3. The MSE and running time for the different values of l for all
datasets is shown in Table 3.

The MSE on the original space decreases gradually as the dimension
increases for all datasets (see Figure 2). For both Gaussian and Uniform
datasets, on which the optimal solution is known, IRP (see Table 3) ap-
proximately reaches the optimal solution MSE (6.61 × 103 and 4.39 × 103

respectively, see Section 3.1)
The number of iterations also decreases gradually as the dimension in-

creases for all datasets (see Figure 3), being close to the minimum of possible
iterations for the AT&T Faces, Gaussian and Uniform datasets. The number
of iterations in dimension l = 10 is smaller than at l = 5 and at l = 20 less
than at l = 10 for all datasets (α = 0.005)

IRP for l = 10, 15, 20 (see Table 3) reaches a lower MSE than K-means on
original data while being faster with l = 10, 15 for all datasets (α = 0.005).

The good results across several datasets with distinct data distributions
(see Figure 1) indicate that the optimal D should result in a decay on the
probability of assigning a point to a cluster which is not the closest on the
original space, for which mh is an empirical approximation.

Finally to illustrate the differences in the solutions between K-means
and IRP K-means we generate one last synthetic dataset with K = 10 and
1000 dimensions. We visualize the solutions of each method using Principal
Components Analysis (PCA). Each cluster j is sampled from a multivariate
Uniform distribution U(cj−dj, cj+dj) where cj is sampled from a multivariate
Uniform distribution U(−1, 1) and dj is sampled from a multivariate Uniform
distribution U(0, 2). The dataset contains 1000 points randomly sampled
from each cluster with probability 1/K. The MSE of assigning all points to
the correct cluster is 4.23× 102 for this dataset. We perform 10 independent
runs of K-means and IRPl=20 using mh to choose Dh as before. The average
MSE of IRPl=20 is also 4.23 × 102 reaching always the same solution. The
average MSE of K-means is 4.70 × 102. After we obtained the clusters, we
use PCA to represent the data in 2 dimensions and show the cluster centers
closest to the average MSE of each method on Figure 4. It can be seen that
IRP clearly discovered the original clusters while K-means in some cases
has more than a center covering a cluster while on others the centers are in
between the actual clusters.

11



0 2 4 6 8 10 12 14 16 18 20
6

6.5

7

7.5

8

8.5

9

9.5
x 10

6

l

A
vg

. M
S

E

(a) AT&T Faces

0 2 4 6 8 10 12 14 16 18 20
4.9

4.95

5

5.05

5.1

5.15
x 10

−3

l

A
vg

. M
S

E

(b) NIPS 1-12

0 2 4 6 8 10 12 14 16 18 20
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

l

A
vg

. M
S

E

x 103

(c) Gaussian

0 2 4 6 8 10 12 14 16 18 20
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

l

A
vg

. M
S

E

x 103

(d) Uniform

Figure 2: MSE (vertical axis) for different values of l (horizontal axis) for the several
datasets. Sample average and standard deviation over 20 runs.

12



0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

l

Ite
ra

tio
ns

(a) AT&T Faces

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

l

Ite
ra

tio
ns

(b) NIPS 1-12

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

l

Ite
ra

tio
ns

(c) Gaussian

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

l

Ite
ra

tio
ns

(d) Uniform

Figure 3: Iterations (vertical axis) at dimension Dh=l (horizontal axis) for the several
datasets. Sample average and standard deviation over 20 runs.

13



Table 3: MSE and running time for the several datasets using IRP (l = 5, 7, 10, 15, 20).
Sample average and standard deviation over 20 runs.

C
la
ss
ic

I
R
P
l=

5

I
R
P
l=

7

I
R
P
l=

1
0

I
R
P
l=

1
5

I
R
P
l=

2
0

A
T

&
T

F
. MSE

(106)
6.88±
0.101

7.58±
0.203

7.16±
0.109

6.68±
0.120

6.51±
0.080

6.47±
0.074

Time
(s)

3.08±
0.538

0.30±
0.041

0.42±
0.048

0.63±
0.064

1.15±
0.085

2.26±
0.088

N
IP

S
1-

12 MSE
(10−3)

4.97±
0.036

4.99±
0.009

4.96±
0.006

4.94±
0.006

4.93±
0.004

4.92±
0.004

Time
(s)

59.97±
21.319

3.43±
0.207

6.07±
0.291

11.99±
0.345

38.32±
0.595

118.32±
1.376

G
au

ss
ia

n MSE
(103)

8.12±
0.376

7.22±
0.358

6.78±
0.201

6.71±
0.056

6.61±
0.001

6.61±
0.000

Time
(s)

4.02±
0.932

0.67±
0.062

0.92±
0.062

1.30±
0.073

2.01±
0.072

2.90±
0.092

U
n
if

or
m

MSE
(103)

4.94±
0.146

4.80±
0.119

4.53±
0.049

4.44±
0.020

4.39±
0.003

4.39±
0.001

Time
(s)

4.01±
0.741

0.76±
0.047

1.04±
0.046

1.48±
0.051

2.37±
0.058

3.43±
0.106

14



−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

XPCA
2

X
P

C
A

1

(a) K-means

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

XPCA
2

X
P

C
A

1

(b) IRP K-means

Figure 4: Comparison between K-means and IRP K-means using PCA. Each point is
represent by a small circle while each center is represented by a big circle.

15



4. Discussion

We introduced IRP K-means (see Section 2.2), a method for clustering
high-dimensional data which builds on random projection and K-means. The
iterative increase of dimensionality is analogous to cooling in simulated an-
nealing K-means [12], whose purpose is to avoid local minimums. However
unlike simulated annealing clustering it can reduce the running time instead
of increasing it orders of magnitude [2].

Experimental results on four high-dimensional datasets showed good re-
sults on an image dataset, a text dataset, and two synthetic datasets. IRP
K-means compared favorably to RP K-means (see Section 3.2), IRP with
(D = 10, 20, 50, 100) achieved a lower MSE than RP (D = 100) on all
datasets (α = 0.001).

Experimental results indicate that a good criterion for choosing D is (see
Section 3.3) according to a gradual decrease in the probability mh of a as-
signing a point to the a cluster which is not the closest in the original space.
Choosing D according to this criterion, IRP (with l = 10, 15, 20) reaches a
lower MSE than K-means on original data for all datasets while being faster
thank K-means (with l = 10, 15) (α = 0.005).

IRP K-means can be used with other clustering algorithms like a K-
means approximation algorithm [8]. Algorithm 2 for D = [D1, D2, ..., Dl] is
equivalent to initializing Algorithm 1 (with D = Dl) with cluster membership
obtained from Algorithm 2 (with D = [D1, D2, ..., Dl−1]). Therefore we can
use the algorithm described in [3] for Dl, and hold its MSE guarantees since
dimensions 1, 2, ..., l − 1 would be used only to initialize it.

Acknowledgments. The authors would like to thank João Sacramento and
two anonymous reviewers for their much helpful comments. This work was
supported by Fundação para a Ciência e Tecnologia (INESC-ID multiannual
funding) through the PIDDAC Program funds and through an individual
doctoral grant awarded to the first author (contract SFRH/BD/61513/2009).

[1] Achlioptas, D., 2003. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of Computer and System Sci-
ences 66, 671 – 687. Special Issue on PODS 2001.

[2] Al-Sultan, K.S., Khan, M.M., 1996. Computational experience on four
algorithms for the hard clustering problem. Pattern Recognition Letters
17, 295 – 308.

16



[3] Boutsidis, C., Zouzias, A., Drineas, P., 2010. Random Projections for
k-means Clustering, in: Advances in Neural Information Processing Sys-
tems 23, pp. 298 – 306.

[4] Dasgupta, S., 2000. Experiments with random projection, in: Uncer-
tainty in Artificial Intelligence: Proceedings of the Sixteenth Conference
(UAI-2000), pp. 143 – 151.

[5] Dasgupta, S., Gupta, A., 2003. An elementary proof of a theorem of
johnson and lindenstrauss. Random Structures & Algorithms 22, 60–65.

[6] Hecht-Nielsen, R., 1994. Context vectors: general purpose approximate
meaning representations self-organized from raw data. Computational
Intelligence: Imitating Life , 43–56.

[7] Johnson, W., Lindenstrauss, J., 1984. Extensions of lipschitz mappings
into a hilbert space. Contemp. Math. 26, 189–206.

[8] Kumar, A., Sabharwal, Y., Sen, S., 2004. A simple linear time (1 +
ε)-approximation algorithm for k-means clustering in any dimensions,
in: Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pp. 454 – 462.

[9] Li, P., Hastie, T.J., Church, K.W., 2006. Very sparse random projec-
tions, in: Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, ACM, New York, NY,
USA. pp. 287–296.

[10] Lloyd, S., 1982. Least squares quantization in pcm. Information Theory,
IEEE Transactions on 28, 129 – 137.

[11] Magen, A., 2002. Dimensionality reductions that preserve volumes
and distance to affine spaces, and their algorithmic applications, in:
Randomization and Approximation Techniques in Computer Science.
Springer. volume 2483 of Lecture Notes in Computer Science, pp. 953–
953.

[12] Selim, S.Z., Alsultan, K., 1991. A simulated annealing algorithm for the
clustering problem. Pattern Recognition 24, 1003 – 1008.

17


