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Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative
behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations,
combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the
population dynamics whenever individuals have a say in deciding which groups they will participate. Here
we propose a simple model in which dynamical group formation is described as a result of a topological
evolution of a social network of interactions. We show analytically how evolutionary dynamics under public
goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving
both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional
2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we
show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in
which cooperators prevail.

F
ew challenges have drawn as much attention from a broad range of disciplines as the evolution of coopera-
tive behaviour. From theoretical biology and behavioural ecology to economics, physics and mathematics,
the study of the emergence of pro-social behaviour remains an open and demanding quest, both from

experimental and theoretical points of view. In its most general flavour, cooperation dilemmas can be described as
a conflict between individual and collective decisions. Take, for instance, the N-person Prisoner’s dilemma (NPD)
— the most common game metaphor for a Public Goods Game (PGG)1–6. Here, N players have the opportunity to
contribute (or not) a certain amount c to a common pool (the ‘‘public good’’). The sum of all contributions is
invested (that is, it is multiplied by an enhancement factor F . 1) and the return is shared equally among all group
members, irrespective of their contribution. From an individual (so-called rational) point of view, defecting or
free-riding (not contributing) allows one to rip his/her share of the public good at no cost, to the extent that others
help filling in the pot by contributing. Hence, defection emerges as the rational option, leading to the doomsday
scenario of the tragedy of the commons2, reached when no one contributes and hence there are no resources to
share.

Evolutionary game theory (EGT) posits this problem of cooperation by embedding it in a population and
defining an evolutionary dynamics within that population of individuals. This formalism provides a natural and
intuitive approach to many social and biological eco-systems. Here, the individual game payoff is typically
associated with fitness or social success of an individual. The more successful (fitter) individuals will be imitated
by others, so that the number of individuals adopting a given behaviour will evolve in time1,7. In a well-mixed
scenario where each and every individual interacts equally likely with everyone else in the population, and in the
absence of additional mechanisms or stochastic effects, a population of Cooperators (Cs) and Defectors (Ds) will
inevitably evolve towards the extinction of Cs. Hence, natural selection leads to the same outcome — the tragedy
of the commons — as one expects from a group of rational players. This would happen despite the fact that all
players would be better off with overall cooperation.

Several additional mechanisms have been proposed to resolve this paradoxical outcome, from decisions
grounded in past encounters, to reputation-based strategies, risk aversion and punishment8–18. In particular, it
is now well-known that, for both 2-person and N-person interactions, the structure of the population may play a
determinant role in the evolution of a given behavior6,16,19–29. In a networked population, nodes typically represent
individuals, whereas links represent shared goals, investments or exchanges. Irrespective of the way our social ties
mold the overall population network, it is clear that the well-mixed assumption may only work in the limiting
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cases of small populations, as it is hardly conceivable that, in large
populations, everyone can potentially interact with everyone else.
Perhaps even more importantly, individuals may have a word on
their interacting partners, and with time decide who will be included
in their list of peers. In other words, individuals are expected to be
able to react against undesired partners, while striving to keep the
desired ones, thereby modifying the social network in which they are
embedded27,30–39. This problem can be addressed considering a
dynamical social network. In the following, we study and build up
the evolutionary dynamics of cooperation in a population of indivi-
duals playing PGGs on a network that may itself evolve as a result of
the feedback received from the game interactions.

In a networked context, social neighbourhoods may represent
individuals’ local universes of partners with whom they can particip-
ate in social dilemmas of cooperation. Hence, whenever interacting
in an N-person game, individuals will choose their partners from
the pool of those they are connected with. In well-mixed populations,
in turn, everyone shares the same set of potential partners, which
corresponds to the entire population. In this context, well-mixed
populations of players interacting in N-person dilemmas can be
conveniently viewed as embedded in a fully connected (complete)
interaction network (graph).

Let us add to such a setting the possibility that individuals reshape
their set of acquaintances. Links may be broken at different rates,
likely based on the type of link and its satisfiability6,31,32,40–42. Thus, in
a world of Cs and Ds, we have three types of links — CC, CD and DD
links — which we may characterize and differentiate, e.g., by attrib-
uting different break-up (cCC, cDC, cDD) and creation (aCC, aDC, aDD)
rates, respectively31,32. Depending on the relative values of these rates,
and on the composition of the population, different network struc-
tures will emerge, with direct impact on each individual’s neighbour-
hoods and ensuing returns from the games they play. These returns
will dictate the evolution of strategies in a population which will
change its composition, and consequently will influence the network
dynamics. In its full scope, this constitutes a tremendously hard
problem. In the following section, we shall start by describing in
detail a minimal model which, nonetheless, will allow us to gain
and analyze key insights of such a co-evolutionary dynamics.

Results
Let us consider a population of Z individuals, defined as nodes of
a dynamical and bidirectional graph. Individuals interact through
Public Goods Games (PGGs) played in groups of size N. Indi-
viduals setup groups by recruiting members of their neighbourhood
(of size z . N), which thus constitutes the pool of potential co-group
players.

The PGG described before has the structure of a NPD, such that
the payoff of Cs and Ds in a group of size N in which k individuals
play C and N-k individuals play D can be written as:

PD(k)~
kFc
N

PC(k)~PD(k){c

ð1Þ

where F , N ensures a NPD regime.
Let us now address network dynamics. We assume that indivi-

duals attempt to form new links at a constant rate a 5 aCC 5 aDC 5
aDD. However, the average lifetime of each link will depend on the
strategy of the individuals it connects. In this way, we distinguish
between CC, CD and DD links. Each of these will be broken at rates
cCC, cDC, cDD, respectively. This ‘‘active linking’’ dynamics can be
conveniently described by the following set of ordinary differential
equations31,32:

_Nlm(t)~a½Nlm(t){Nlm(t)�{clmNlm(t) ð2Þ
where Nlm(t) is the number of links between individuals of strategy l
and m ( l,mf g[ C,Df g), and Nlm(t) is the maximum possible number

of these links. This maximum is frequency dependent, in the sense
that it will depend on the number of individuals NI(t) and Nm(t)
playing strategies l and m, respectively:

Nlm(t)~
Nl(t) ½Nm(t){dlm�

1zdlm
ð3Þ

If the characteristic timescale of the linking dynamics is much
shorter than the time scale associated with strategy update (that is,
the time that an individual takes to revise his/her strategy), the net-
work will reach a steady state before the next strategy update takes
place. That state is characterized by a stationary number of links
given by

N�lm~wlmNlm ð4Þ

where wlm~a(azclm){1 represents the fraction of active l-m links.
Assuming that NC(t) 5 k and ND(t) 5 Z 2 k at a given steady state,

we can compute the average number of links that any cooperator and
defector will have:

vzCw ~
N�CDz2N�CC

k

vzDw ~
N�CDz2N�DD

Z{k

ð5Þ

Substituting (4) in (5) we can express ,zC. and ,zD. as a
function of the fraction of active links:

vzCw ~ wCD(Z{k)zwCC(k{1)

vzDw ~ wCD kzwDD(Z{k{1)
ð6Þ

The model description and calculations performed so far have
been carried out in the mean-field approach. In keeping with this
spirit, we now calculate the probability of having j cooperators in a
group of size N, centred on a cooperator (HC(k,j)) or defector
(HD(k,j)), respectively, whenever the composition of the population
is characterized by k Cs and Z 2 k Ds. To this end, we employ a
hypergeometric sampling10,12,43,44 and write:

HC(k,j)~
vzCw

N{1

 !{1
2NCC=k

j

 !
NCD=k

N{j{1

 !

HD(k,j)~
vzDw

N{1

 !{1
NCD= Z{kð Þ

j

 !
2NDD= Z{kð Þ

N{j{1

 ! ð7Þ

From these results we then determine the average fitness of
strategies C and D by averaging the payoffs over all possible group
compositions:

fC(k)~
XN{1

j~0

HC(k,j)PC ( jz1)

fD(k)~
XN{1

j~0

HD(k,j)PD(j)

ð8Þ

Let us now describe how strategies evolve in time. We adopt a
stochastic birth-death process combined with the pairwise compar-
ison rule7, which accounts for both biological or cultural evolution. In
a nutshell, in a biological setting, individuals with higher fitness will
reproduce more often; in a cultural evolution setting, individuals
with higher returns will tend to be imitated more often. To this
end, in each time-step, a randomly chosen individual i1 will choose
randomly another individual from the population i2. The former will
imitate the latter with a probability p, which increases with the fitness

difference. Here we adopt the Fermi distribution, p~
1

1ze{b(fi 2 {fi 1 )
,

where b conveniently specifies the intensity of selection (b R 0
represents neutral drift and b?z? represents pure imitation
dynamics)7,45.
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In summary, for a finite population of size Z, at each birth-death
event, there is a certain probability that a cooperator will change into
a defector, T 2, or vice-versa, T 1; they are given by

T+(k)~
k
Z

Z{k
Z{1

1
1ze+b(fC (k){fD(k))

ð9Þ

whereas the most probable direction of evolution, is given by the
so-called gradient of selection, G(k) 5 T1(k) 2 T2(k), a finite popu-
lation analogue of the rate of change of Cs stemming from the repli-
cator-like equation46 one obtains as Z R ‘. For finite Z, G(k) reads7

G(k)~
k
Z

Z{k
Z{1

tanh
b

2
fC(k){fD(k)ð Þ

� �
: ð10Þ

Whenever G(k) . 0 (G(k) , 0), selection will act to increase
(decrease) the number of Cs.

Gradients of selection. As discussed above, when individuals have
enough time to adapt their social ties before deciding whether or not
to change their behavioural strategy, then the system of ordinary
differential equations which characterizes the linking dynamics
may relax towards a steady state. Under such conditions we obtain
a closed expression for the average fitness of Cs ( fC) and Ds ( fD).
Clearly, this mean-field approach does not account for the fitness of
each particular individual – it confers an average, population-wide,
account of the evolution of each behaviour in the presence of a
dynamical population structure.

In the absence of any network adaptation mechanism, Ds will
benefit from higher returns when compared with Cs, making the
gradient of selection (see eq. (10)) G(k) , 0, irrespectively of the
fraction of Cs (k/Z). The same happens whenever links are randomly
created and destroyed irrespectively of the strategies of the indivi-
duals located at the edges of those links. This can be realized with an
adaptive network where cCC 5 cCD 5 cDD, shown in red in Fig. 1a.
Alternatively, we may also consider a more realistic scenario in which
the lifetime of a social link depends on the strategy of the individuals
it connects. For instance, an individual may be dissatisfied with the
return obtained from of her/his partners. This will typically happen
whenever an individual is linked to a D, in the sense that it is counter-
productive to anyone (being him a C or a D) to be connected (and
therefore have him as a potential group member) with a free-rider.

Let us define a scenario, which we shall refer to in the following as
Free Choice World (FCW), in which the linking dynamics is char-
acterized by unilateral decisions regarding the break-up of links. In
keeping with the previous discussion, this translates into cDD 5 cCD

. cCC or, more conveniently, into cDD 5 cCD 5 ecCC, where e $ 1
indicates how fast individuals react when they are linked to a
defector. This leads to a different reshaping of the neighbourhoods,
compared to the random situation described above, which, in turn,
will act to change individuals’ fitness. As a result, the impact of
strategies on network dynamics leads now to a feedback onto the
strategies, by changing their average fitness.

As shown in Fig. 1a, such network adaptation in group interac-
tions creates an evolutionary dynamics scenario corresponding, at a
population-wide level, to a new dilemma, characterized by two mixed
internal equilibria, which were absent both in well-mixed popula-
tions and in the random case (see red line). Furthermore, this modi-
fication of the shape of the gradient of selection G transforms
cooperation into a viable trait. While both Cs (below kL) and Ds
(above kR) become disadvantageous when rare, the co-existence
between Cs and Ds may become a finite population analogue (a
probability attractor) of a stable fixed point in infinite populations
at a frequency kR/Z. Hence, as long as cooperation initially prevails
above a certain level kL, network adaptation in the framework of the
FCW naturally leads to long periods of co-existence between Cs and
Ds, rendering cooperation viable.

Let us investigate the roots of G(k). This is equivalent to determin-
ing the roots of the fitness difference, C(k):fC(k){fD(k), which,
after some algebra becomes:

C(k)~
Fc
N

NwCC(k{1)zwCD(Z{k)

wCC(k{1)zwCD(Z{k)
{

�

(N{1)wCDk
wCDkzwDD(Z{k{1)

�
{c

ð11Þ

Eq. (11) is a second order polynomial in k, which means that C(k)
has between zero and two (real) internal roots (in the interval 0 , k ,

Z). Their associated stability will be determined by the signs of C(1)
and C(Z{1):

C(1)~
Fc
N

1z
1{N

1z(Z{2)=m

� �
{c

C(Z{1)~
Fc
N

1z
1{N

1z(Z{2)=n

� �
{c

ð12Þ

Where m~wCD=wDD and n~wCD=wCC .
Given that Z . N . 1, and whenever F , N – such that individuals

play a NPD, it is easy to verify that C(1)v0 and C(Z{1)v0. Thus,
we will either have zero or two internal roots, given the order of the
polynomial in Eq. (11). In other words we can either have an effective
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Figure 1 | Evolutionary dynamics of a NPD in adaptive social structure. We consider a Free Choice World (FCW, see text), grounded on unilateral

decision regarding adverse links, such that cDD 5 cDC 5 ecCC. a) Gradient of a selection for various values of e $ 1, whereas Z 5 200, N 5 4, F 5 3, b 5 1,

a 5 0.04 and cCC 5 0.1. Increasing e effectively transforms the game, at the population level, from a NPD — where cooperation will always tend to

decrease — to a different dilemma characterized by two internal fixed points, typical of an N-person coordination game. b) Roots of G(k), as a function of

F. Above a certain critical value (F . Fc), two internal roots appear that move to the absorbing states as e gets larger.
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defection dominance game — negative gradient for all values of k —
or an N-person coordination dilemma43, where the gradient of selec-
tion shows both coordination (kL) and coexistence (kR) equilibria,
with kLvkR. Differently, for F . N — where cooperation always
prevails in well-mixed populations — the situation will be reversed,
that is,C(1)w0 andC(Z{1)w0, in certain cases. For a given m and u,
there is a critical multiplication factor, Fc~N(vzZ{2)=
v(2{N)zZ{2½ �, with v~ maxfm,ng, above which the gradient

will be reversed, i.e., we either have a harmony game or a reversed
N-person coordination game with kRvkL.

The results shown in Fig. 1b confirm these features, and concern
the most intereresting case of F . N. For each value of F, one can
draw a horizontal line that defines the location of the internal roots at
the intersection with the curves drawn: one unstable root (kL) and
another stable root (kL , kR). Interestingly, with the increase of the
break-up rate (e), not only we observe an increase in the critical
number of Cs (kL) necessary to reach a stable cooperative basin of
attraction, but also we obtain an increase of the stable fraction of Cs
where the population will spend most of its time, once this basin is
reached. Fig. 1b also shows that only 2 types of dynamical scenarios
can appear: For large multiplication factors F (F RN), the above
combination involving 2 internal fixed points emerges, whereas the
distinctive defection dominance dilemma usually associated with the
NPD is recovered for low values of F (as F R1). It is noteworthy that
these results remain valid under a more conventional description
of evolutionary dynamics associated with the replicator-like dyna-
mics equation and infinite populations (by taking the limit Z??,
see Eq. (10)) – hence our application of nomenclature (derived
from deterministic dynamical systems) to stochastic evolutionary
dynamics.

Up to now, link break-up was taken to constitute a unilateral
decision. In reality, one can imagine situations in which a connection
is broken by mutual consent or as a result of some sort of negotiation
towards conflict resolution, which will naturally create an effective
break-up rate of links. Specific values will depend on the situation,
but in general one may safely assume that cCCwcCDwcDD. Hence, in
such a Bounded Choice World (BCW), the lifetime of links connect-
ing two Ds will most likely be shorter than the lifetime of links
connecting a C and a D (in the sense that it is crucial for a free-rider
to have a C in the group, but not additional free-riders). A simple
realization of this scenario is obtained assuming, as before cDD5

ecCC, and taking cCD 5 (cCC 1 cDD)/2. As shown in Fig. 2, this
variation with respect to the simpler FCW shown before, does not
change the nature of the effective dilemma one obtains at a popu-
lation level.

Tunneling towards a cooperative basin. Analysis of the gradient of
selection provides an overview of the population-wide dynamics.
This is particularly relevant, given the coordination barrier, which

divides the system in two basins of attraction. Classically one uses the
fixation probability to calculate the chance of a single C or D to
spread and completely invade a population of players using the
opposite strategy47. However, the existence of stable equilibria may
render such an analysis of the fixation probability misleading, as the
time required for the population to reach any monomorphic state
may become arbitrarily long48, in particular whenever G(k) exhibits
basins of attraction to stable polymorphic configurations. Further-
more, if one considers other forms of stochastic effects, such as
random exploration of strategies49 the system will ne3)ver actually
fixate.

A convenient alternative which overcomes the drawbacks of the
fixation probability, consists in the analysis of the stationary distri-
butions P(k/Z)50 of the complete Markov chain (of size Z 1 1),
defined by the transition probabilities to increase and decrease the
number of cooperators. To this end, it is convenient to assume that,
besides imitating the actions of the most successful individuals, indi-
viduals may explore the available spectrum of strategies with a given
(mutation) probability m49.

The probabilities entering the tridiagonal transition matrix

S~ pij
� �T

of the Markov chain are defined as pk,k+1~T+
m (k) and

pk,k~1{pk,k{1{pk,kz1, where T+
m stand for the transition prob-

abilities computed for an arbitrary mutation probability m, which are
given by Tz

m (k)~ 1{mð ÞTz(k)zm Z{kð Þ=Z for the probability to
increase from k to k 1 1 Cs and T{

m (k)~ 1{mð ÞT{(k)zmk=Z for
the probability to decrease from k to k 2 1 Cs. The stationary dis-
tribution is then obtained, as usual, from the eigenvector correspond-
ing to the eigenvalue 1 of S51,52.

Fig. 3a shows the stationary distribution — i.e., the prevalence in
time of a given configuration of the population specified by the
fraction of cooperators — for the FCW, adopting the same para-
meters of Fig. 1, with m 5 1/Z. As expected, for e 5 1, the population
spends most of the time in the vicinity of the k 5 0 configuration, as
we have a traditional defection dominant dilemma. Yet, as we
increase the rate at which individuals react to adverse ties (e), we
observe the emergence of a single peak near the coexistence equilib-
rium. Hence, regardless of the initial condition, the population is able
to profit from the stochastic effects — resulting both from imitation
errors and exploration dynamics — to tunnel through the coordina-
tion barrier and spend most of its time at a co-existence configuration
in which cooperators prevail.

Finally, as shown in Fig. 3b, group size N also plays an important
role. Using the same parameters of Fig. 3a and setting e 5 4, we now
vary the group size. For the values used, we always get mixed internal
equilibria that move closer to the monomorphic configurations as N
gets lower. Qualitatively the picture remains similar to the analysis
considered before, in the sense that, as long as we include mutations,
the population is able to overcome the coordination barrier and
remain most of the time in the configuration associated with the
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Figure 2 | Dynamics of a NPD in a Bounded Choice World. a) Gradient of a selection for different values of e $ 1, and b) the internal roots of the

gradient of selection. Both panels use the same parameters of Fig. 1.
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coexistence point. This is particularly relevant, as it shows that, even
when we considerably increase the group size (when compared with
the population size), network dynamics is able to keep highly coop-
erative standards, contrary to the conventional wisdom derived from
well-mixed populations.

Discussion
In this paper, we have addressed the evolution of collective coopera-
tive action in dynamical groups, the latter defined by a social network
of potential partners that evolve side by side with individuals’ beha-
viour. To do so, we extended a previously developed active-linking
analytical framework to N-person dilemmas, which resort to a mean-
field description of a network of interactions. Individuals play a
Public Goods dilemma and assess the duration of each individual
link, which will influence the probability of sharing participation in
the same group in the future. Whenever individuals have the chance
to promptly modify their universe of partners, the original game at a
population level differs from the one at individual level, in this case a
NPD. We have shown how the evolution of group composition can
affect the evolutionary dynamics of cooperators and defectors trans-
forming a defection dominance dilemma into a new one, character-
ized by two internal equilibria and two basins of attraction.

This type of dynamics starts to unveil an apparent unifying frame-
work in population dynamics under games of cooperation. Indeed,
similar results can be obtained from 2-person dilemmas in static and
dynamic social networks53–55, to repeated group interactions18 and
different classes of N-person dilemmas in well-mixed populations,
namely those in which individuals face the necessity of some form of
prior coordination to achieve a public good16,43,44. Similarly, here we
have shown how such kind of dynamics is also pervasive when indi-
viduals are able to adapt their potential partners in group interac-
tions.

Finally, we have shown how stochastic effects may be determinant
in the overall levels of cooperation. This is of particular importance,
as stochastic effects may become dominant as a result of errors of
different sorts, from behavioural mutations to errors of imitation7,49.
Indeed, stochastic effects render irrelevant the critical coordination
barrier of cooperators needed to reach a stable level of cooperation.
In practice, it is as if dynamical networks help escaping the tragedy of
the commons by transforming such doomsday scenario into a
dilemma in which both strategies can coexist.
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45. Szabó, G. & Toke, C. Evolutionary prisoner’s dilemma game on a square lattice.
Phys Rev E 58, 69–73 (1998).

46. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics.
(Cambridge Univ. Press, Cambridge, UK, 1998).

47. Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of cooperation
and evolutionary stability in finite populations. Nature 428 (6983), 646–650
(2004).

48. Antal, T. & Scheuring, I. Fixation of strategies for an evolutionary game in finite
populations. Bull. Math. Biol. 68, 1923–1944 (2006).

49. Traulsen, A., Hauert, C., De Silva, H., Nowak, M. A. & Sigmund, K. Exploration
dynamics in evolutionary games. Proc Natl Acad Sci U S A 106 (3), 709–712
(2009).

50. van Kampen, N. Stochastic processes in physics and chemistry. (North-Holland,
2007).

51. Imhof, L. A., Fudenberg, D. & Nowak, M. A. Evolutionary cycles of cooperation
and defection. Proc Natl Acad Sci U S A 102 (31), 10797–10800 (2005).

52. Karlin, S. & Taylor, H. M. A. A first course in Stochastic Processes, 2nd edition ed.
(Academic, London, 1975).

53. Van Segbroeck, S., Santos, F. C., Lenaerts, T. & Pacheco, J. M. Selection pressure
transforms the nature of social dilemmas in adaptive networks. New J Phys 13,
013007 (2011).

54. Pinheiro, F. L., Pacheco, J. M. & Santos, F. C. From Local to Global Dilemmas in
Social Networks. PLoS ONE 7 (2), e32114 (2012).

55. Pinheiro, F. L., Santos, F. C. & Pacheco, J. M. How selection pressure changes the
nature of social dilemmas in structured populations. New J Phys 14 (7), 073035
(2012).

Acknowledgments
This research was supported by FCT-Portugal through grants PTDC/FIS/101248/2008 and
PTDC/MAT/122897/2010, by multi-annual funding of CMAF-UL and INESC-ID (under
the project PEst-OE/EEI/LA0021/2011) provided by FCT-Portugal. Partial Financial
support by the National Science Foundation under Grant No. NSF PHY11-25915 is also
gratefully acknowledged.

Author contributions.
All authors have contributed equally to this work: they all designed and performed the
research, analyzed the data and wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Moreira, J.A., Pacheco, J.M. & Santos, F.C. Evolution of collective
action in adaptive social structures. Sci. Rep. 3, 1521; DOI:10.1038/srep01521 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1521 | DOI: 10.1038/srep01521 6

http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 2 Dynamics of a NPD in a Bounded Choice World.
	References
	Figure 3 Stationary distribution of cooperators in a FCW.

