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Abstract—Recent advances in biosensor technology enabled
the appearance of commercial wireless sensors that can measure
electrodermal activity (EDA) in user’s everyday settings. In this
paper, we investigate the potential benefits of measuring EDA
to better understand children-robot interaction in two distinct
directions: to characterize and evaluate the interaction, and to
dynamically recognize user’s affective states. To do so, we present
a study in which 38 children interacted with an iCat robot while
wearing a wireless sensor that measured their electrodermal ac-
tivity. We found that different patterns of electrodermal variation
emerge for different supportive behaviours elicited by the robot
and for different affective states of the children. The results also
yield significant correlations between statistical features extracted
from the signal and surveyed parameters regarding how children
perceived the interaction and their affective state.

Index Terms—social robots, affect recognition, children, elec-
trodermal activity.

I. INTRODUCTION

One of the main challenges in child-robot interaction is
to capture children’s spontaneous and genuine perceptions of
the robot and of the interaction in general. Relying solely on
traditional survey methods, such as questionnaires or inter-
views, can often lead to inadequate or misleading evaluations
of the interaction because of children’s intrinsic tendency to
please adults. This well studied phenomenon in the field of
psychology is known as suggestibility [1][2], and depends not
only on the content and format of the questions, but can also
be influenced by other factors such as the age and gender or
the interviewer/experimenter [3].

With the recent advances in biosensor technology, small,
wireless and non-intrusive sensors are becoming available
as commercial products. Examples of such devices include
Affectiva’s Q Sensor1 and edaPlux2, which can measure user’s
arousal through skin conductance, a form of electrodermal
activity (EDA) that increases when users are experiencing
excitement, attention, anxiety or high cognitive load, and
decreases when experiencing periods of boredom or relaxation
[4]. Although research exploring the use of such sensors in
HRI is increasing, so far very few studies included children
as the target users. Additionally, research shows that children’s
electrodermal responses can differ from the average responses
measured in adults [5].

1http://www.affectiva.com/q-sensor/
2http://www.plux.info/EDA

Another interesting application for physiological data is
real-time affect recognition [4][6]. Here, processed phy-
siological signals are usually combined with other modalities
(e.g., vision, context interpretation, and so on). The HRI
community is particularly interested in this application, since
socially and affect-aware robots are considered to be more
effective in engaging users for longer periods of time [7]. Yet
again, most of the existing systems were trained with data
collected from adult users [8][9], and children may not respond
to certain stimuli as adults do.

The main goal of this paper is to study the potential benefits
of measuring EDA to better understand children’s emotional
and cognitive processes while interacting with social robots
in real-world environments. As outlined above, children’s
EDA data can be useful for two distinct purposes. First,
physiological signals can be a reliable way of measuring
participant’s responses to the robot when compared, for ex-
ample, to questionnaires or video observation, more likely to
be affected by suggestibility. Secondly, EDA data can be used
to enhance the real-time prediction of affective states of users,
either using solely this type of data or by combining it with
other methods.

To achieve this goal, we collected EDA signals from 38
children while interacting with a social robot in their school
environment. To analyse the collected data, we propose an
expressive method based on temporal windows that enhances
local variations by computing angles of electrodermal varia-
tion, and considered multiple views of the signal obtained by
statistical and geometric metrics such as deviation, average,
kurtosis and gradient. Overall, the results suggest that differ-
ent patterns of electrodermal variation emerge for different
supportive behaviours elicited by the robot and for different
affective states of the children. The results also yield signi-
ficant correlations between statistical features extracted from
the signal and surveyed parameters regarding how children
perceived the interaction and their affective state.

This paper is organised as follows. In the next section, we
provide a brief literature review on previous HRI research
that employed physiological signals. After that, we present
the scenario that was used as case study in this paper. We
then present the study methodology and discuss the results.
We finalise the paper with some conclusions and implications
for future research directions in this area.



II. RELATED WORK

The existing works using physiological signals in HRI are
used either to evaluate participant’s responses to the robot or to
recognise the user’s affective state. However, the contributions
are still not many, especially if considering children as the
target users. In fact, to our knowledge, only one work collected
children’s physiological information to evaluate the interaction
with a social robot [10]. In this work, EDA data was collected
from 6 children interacting with an ASIMO robot. Each child
had to explain facts about animals to ASIMO, and the robot
varied the type of attentive behaviours displayed towards the
child depending on the study condition. The results of this
study suggest that EDA data can be used to discriminate
different types of arousal in children during the interaction.

Most of the previous research on physiological signals in
HRI has the main goal of recognising possible affective states
of users, since there is strong evidence in the literature that
physiological signals can disclose relevant information about
the user’s affective states [4][6]. One of such examples is
the work of Itoh and colleagues [11], that uses physiological
signals to induce stress levels by measuring user’s respiration,
heart rate, perspiration, pulse wave and motion. When the
robot detects high levels of stress in the user, it generates a
different motion in the attempt to reverse this state. In a user
study, they verified that the robot’s different motion reduced
participants’ stress levels. Similar results were obtained earlier
by Rani et al. [8] for the automatic recognition of anxiety,
using EDA signals among other physiological signals. By de-
tecting users’ anxiety level, the authors show in another paper
that the robot’s responses after recognising user frustration
impacted positively the interaction [12]. More recently, Kulić
and colleagues [9] used Hidden Markov models to estimate
user’s valence and arousal based on heart rate, perspiration and
facial muscle contraction signals. The model was trained with
data collected during an interaction between 36 participants
and a robotic arm.

The use of physiological signals, particularly electrodermal
activity, is not only being employed in HRI. It is also becoming
increasingly popular in other Human-Computer Interaction
fields, such as children’s interaction with virtual agents. For
example, Mower et al. [13] reported a study in which they
collected autistic children’s EDA signals while interacting with
an embodied conversational agent. In the same line of research,
Reis and Correia [14] developed The Imaginary Friend, an
embodied virtual agent that “walks along” with the user while
collecting user’s affective states in a virtual jar. The collected
affective states are a combination of electrodermal activity and
user’s self-reports in a mobile device.

Despite the growing body of research, there are still many
open questions and challenges to address regarding the use
of physiological signals in HRI. One of the limitations in
the presented studies is that most of them were collected in
laboratory environments. In this work, we aim to take the
state-of-the-art a step further by presenting the first HRI study
collecting children’s EDA signals in a real-world environment.

Fig. 1: Child playing with the iCat wearing the Q Sensor.

III. CASE STUDY

The case study scenario selected to investigate the potential
of electrodermal activity in child-robot interaction consists of
an iCat robot that acts as an empathic game companion for
children (see Fig. 1). The robot is able to play chess with a
child using an electronic chessboard3, while employing several
supportive behaviours based on the child’s affective state.
After every move played by the child, the iCat infers his/her
affective state and displays an empathic facial expression in
tune with the predicted affective state of the user. Additionally,
if the child’s affective state is negative with high probability,
the robot also displays socially supportive behaviours in the
attempt to reverse this state.

A. Multimodal Affect Recognition

The robot predicts the child’s affective state after every
move played by the child. To do so, a multimodal affect
detection system that takes into account visual features as well
as contextual information of the chess game returns, in real-
time, the probability of the user’s positive and negative valence
of feeling. The system is based on Support Vector Machines
(SVMs) [15].

The visual features considered by the affect recognition
system (e.g., whether the user is smiling or not, and head
direction information) are retrieved by a face tracking soft-
ware4, using a standard webcam placed in front of the child
(near the iCat). The contextual features (e.g., the state of the
game in the child’s perspective, the game evolution since the
previous move or if there were any captured pieces in that
move) are obtained using the evaluation functions of an open
source chess game engine5. The affect recognition system was
trained with data from Inter-ACT [16], a corpus collected
during previous studies of children playing with the iCat robot
(for more details on the affect recognition system, please refer
to [17]).

3http://www.dgtprojects.com/site/index.php/products/electronic-boards/usb
4http://www.seeingmachines.com/product/faceapi/
5http://www.tckerrigan.com/Chess/TSCP



Social Support Category Supportive Behaviours Examples of implementation in the iCat

Information Support Suggestion/advice “Need help? Touch my paw so I can suggest you a move.”
Teaching “That was not your best move, because now I can capture your Queen.”

Tangible Assistance Direct Task (Play a bad move)
Tension Reduction “Shall we start this exercise all over again?”,“I always say, lucky in love, unlucky in chess.”

Esteem Support Compliment “That was professionally done!”
Validation “Well done, you played what I would have played!”
Relief of Blame “Don’t worry, you didn’t have better options.”
Reassurance “Something’s not quite right here, but it will get better for sure.”

Emotional Support Relationship “I really enjoy playing with you!”
Understanding “I understand how you’re feeling, I’ve been through similar situations.”
Encouragement “Come on, I still believe in you!”

TABLE I: Examples of the social supportive behaviours implemented in the iCat.

B. Social Supportive Strategies

The supportive behaviours available for the iCat to display
were inspired on the framework defined by Cutrona et al.
[18], which separates social support in different categories:
information support (advice or guidance), tangible assistance
(concrete assistance, for example by providing goods or
services), esteem support (reinforcing the other’s sense of
competence), emotional support (expressions of caring or
attachment) and network support (social integration).

This framework not only provides principles on how to
generate different types of supportive behaviours, but also (and
more importantly) defines a structure, since similar supportive
behaviours are grouped within the same category. For example,
there is a clear separation between task-oriented (information
support and tangible assistance) and relationship-oriented be-
haviours (emotional, esteem and network support). Cutrona
and colleagues [18] even argue that there are individual
differences, such as personality or gender, in the preferences
of the support behaviour categories. For this reason, the robot
is able to learn, by trial and error, which are the support
behaviour categories that are more effective for a particular
child, and use behaviours from that category more often when
interacting with that child. This adaptation mechanism was
implemented using Reinforcement Learning. Since the goal is
to maximise the user’s positive valence, the reward function
is the difference between the user’s affective state before and
after the iCat employed the supportive behaviour [19].

Table I provides examples on how the different support
behaviour categories were implemented in the iCat. With the
exception of network support (for not being applicable to
this particular scenario), the supportive behaviours from all
the other remaining categories were adapted to the robot’s
behaviour. When the robot selects the support behaviour
category more effective for the child, one of the behaviours
of that category is selected depending on the context of the
game. For example, if the esteem support category is selected,
the iCat only congratulates the user for capturing a piece if
the user actually captured a piece in the previous move. When
several behaviours from the selected category are eligible to
display to the user, one of them is selected randomly.

IV. METHOD

We conducted an exploratory study using the case study
presented in the previous section. In the study, users interacted
with the iCat robot while wearing the Q Sensor6, a wireless
non-intrusive device for measuring electrodermal activity via
skin conductance. The device also contains an accelerometer
and measures body temperature. These two metrics were used
to detect and correct external interferences of the EDA signal.

A. Participants

The participants who took part in the study were third-grade
students from a Portuguese elementary school where children
have chess lessons as part of their maths curriculum. Consent
forms were distributed in the two classes of the third-grade of
the school. We ended up with 38 participants, 15 boys and 23
girls, with ages between 8 and 9 years old.

From the 38 participants, 13 of them (7 girls and 6 boys) had
prior exposure to the robot in a long-term study conducted in
the same school during five weeks [20]. For these participants,
this was the sixth time they were playing with the iCat. We
deliberately selected these participants to evaluate whether the
EDA signals were different after repeated exposure to the
robot. In other words, we were looking for differences in
children’s responses after the inherent novelty effect of the
first interactions.

B. Protocol

The Q Sensor provides more reliable results after a brief
warm up period. Therefore, we considered a warm-up period
of approximately 15 minutes, where users were wearing the
Q Sensor bracelet before the actual interaction with the robot.
During the first ten minutes of this period, they were at their
classroom. In the remaining five minutes, they were guided by
an experimenter to the room where the experiment was taking
place, which was located on the opposite side of the school.
This short walk also contributed to an increase in participants’
electrodermal activity.

At the scheduled time, each participant was guided to
the room where the experimental setting was installed. After

6http://www.affectiva.com/q-sensor/



sitting down in front of the iCat, the child was asked to play a
chess exercise against the robot and was given a short briefing
on how to move the iCat’s pieces in the chessboard. The chess
exercises consisted in playing a game from a predefined chess
position (different from the regular initial setup) suggested by
the chess instructor of the school. There were two different
exercises, an easy one in which children had advantage in
relation to the iCat, and a difficult exercise with a slight
advantage to the iCat side. Children were randomly assigned
to play only one of these two exercises: 19 played the easy
exercise and 19 were assigned to the difficult exercise.

The interaction with the robot lasted, on average, 15 min-
utes. If after this average time none of the players had
checkmated the other, a Wizard-of-Oz option would force the
iCat to end the game (either by giving up if it was losing,
or by proposing a draw to the child if the robot was in
advantage). Apart from this exception, the robot’s behaviour
was completely autonomous. There was only one experimenter
in the room to aid children in case of unexpected events and
to end the interaction if needed. After playing with the robot,
children were asked to fill a questionnaire in a separate room.

C. Data Collection

The main measure of this study was children’s EDA signals,
collected during the whole interaction using the Q Sensor. At
the beginning of the game we used the event marking feature
of the Q Sensor software to synchronise the EDA signals with
the remaining data collected during the study.

We also collected interaction logs, generated automatically
by the robot during the interaction. These logs contain, among
other useful information, the types of supportive strategies
employed by the robot in the different moments of the game,
and also the probability of the user’s affective state given by
the multimodal Affect Detection system.

Additionally, users’ subjective experience was assessed
through a questionnaire. The questionnaire contained several
items for each one of the following measures:
• Engagement: this measure has been extensively used in

HRI and has been defined from several perspectives. We
adopted the questionnaire items proposed by Sidner et al.
[21], who define engagement as “the process by which
two (or more) participants establish, maintain and end
their perceived connection”.

• Social Support: the perception of social support can be
defined as “the belief that, if the need arose, at least
one person in the individual’s circle would be avail-
able to serve one or more specific functions” [18]. The
questionnaire items measuring perceived support were
adapted from the Social Support Questionnaire for Chil-
dren (SSQC) [22], a self-report questionnaire designed to
evaluate children’s social support via five different scales:
parents, relatives, non-relative adults, siblings, and peers.
In this case, we adapted the Peer scale by replacing “a
peer” to “iCat”.

• Help and Self-Validation: these are two dimensions of a
Friendship Questionnaire previously employed in a study

where the iCat observes and comments the chess match
between two players [23]. With these measures, we intend
to evaluate how helpful children perceived the robot, and
to what extend they consider the iCat as encouraging
and able to help children to maintain a positive image
of themselves.

• Social Presence: “the degree to which a user feels access
to the intelligence, intentions, and sensory impressions
of another” [24]. This concept has been widely used
to measure people’s responses towards different tech-
nological artefacts and contains six different sub-scales:
co-presence (the degree to which the observer believes
she/he is not alone), attentional allocation (the amount
of attention the user allocates to and receives from the
robot), perceived message understanding/perceived affec-
tive understanding (the ability of the user to understand
the messages/affective states of the robot), and per-
ceived affective interdependence/perceived behavioural
interdependence (the extent to which the user’s emo-
tional/behavioural states affect and are affected by the
robot’s emotional/behavioural states).

D. Data Analysis

The collected data per game is composed of four com-
ponents: i) the participant’s profile and game conditions, ii)
the electrodermal activity throughout the game, iii) the iCat’s
interaction logs with the set of performed affective predictions
and employed supportive behaviors, and iv) the set of surveyed
parameters filled by the participant. The collected data was
integrated and analyzed according to four major steps.

First, the questionnaire ratings provided by each partici-
pant were processed following a simple procedure. For each
measure, all the questionnaire items evaluating that measure
were grouped and averaged. Since social presence is measured
as a combination of five different sub-scales, we used these
sub-scales separately. Therefore, we ended up with an average
rating, for each user, according to the following measures: en-
gagement, social support, help, motivation, co-presence, atten-
tional allocation, perceived affective understanding, perceived
message understanding, perceived affective interdependence
and perceived behavioural interdependence.

Second, electrodermal signals were analysed with the pur-
pose of understanding to which extent does the signal disclose
information related with: i) motivational and affective respon-
ses, and with ii) scores characterizing the overall interaction.

There are two key challenges on mining the EDA signals
under continuous interactions as the chess-playing sessions
targeted by this work. First, the variations related to the signal
behavior are subtle since there is no strong isolated stimulus.
Second, depending on the profile of the participant, the signal
may present an overall trend to increase (as participants get
closer to the end of the game) or to decrease (as the initial
expectations and novelty effect fades away). Therefore, local
responses to robot-driven actions can be masked by the overall
variation.



Fig. 2: Illustrative pre-processing of the electrodermal signal
using local angles with four symbols

Fig. 3: Feature extraction and analysis from the EDA signal

To surpass these challenges we adopted a novel and ex-
pressive pre-processing method to enhance local variations,
described in Alg. 1. This method relies on parametrized tem-
poral windows to compute the angles of local electrodermal
variation, as illustrated in Fig. 2. The angles are then translated
into symbols according to the input number of symbols. Angle
cut-off points are defined under a Gaussian assumption.

Input: Float[] eda, Integer nrOfSymbols, Integer deltaT
Output: Integer[] processedEda
Float[] angles = gaussianCutoffPoints(nrOfSymbols);
//example: angles'{-36,-12,0,12,36,90} for nrOfSymbols=6
foreach i← 1 to |eda| do

variation ← eda[i+deltaT]-eda[i];
slope ← toDegrees(arcTan(variation));
foreach j ← 1 to |angles| do

if slope<angles[j] then
processedEda ← processedEda ∪ j; break;

Algorithm 1: Pre-processing EDA from local variations

Finally, two mining strategies were adopted to analyse the
signal. The first strategy, illustrated in Fig. 3, retrieves a
broad set of features from the discretised and the locally
pre-processed signals, and combine them to characterize the
overall properties of the interaction. Thus, this strategy consid-
ers multiple views over signal’s absolute and local behaviour.
The features are mainly statistical and geometric including
dispersion metrics such as deviation, distortion and variance;
centroid metrics such as simple/harmonic/geometric average;
and other key metrics such as Pearson product-moment, kur-
tosis and gradient.

The second strategy, illustrated in Fig. 4, aims to character-
ize window-based responses related to changes in the partic-
ipant’s affective states as either a consequence of a changing
facial expression or a supportive behaviour of the robot. For
this purpose, we used several partitions over the discretised
and locally pre-processed signals under two alignment criteria:
according to i) the affective predictions by the robot, and to
ii) elicited supportive behaviours by the robot.

Having collected the overall partitions, we conducted a fea-
ture analysis (as described for the first strategy) and, addition-
ally, we applied sequential pattern miners to characterize the
emerging patterns for each group of partitions. The partitions

Fig. 4: Emerging patterns from the partitioned EDA signal

(or sequences) were grouped according to the affective predic-
tion (based on the percentage of positive, neutral and negative
affect) and to the elicited supportive behaviours (four groups).
Alg. 2 describes the adopted algorithm for the analysis of
emerging electrodermal sequential patterns across partitions.
The adopted sequential pattern miner is uSPAM [25]. The
resulting patterns were computed from common precedences
under a high level of support that represents a consensus
criterion across all signals. Additionally, different patterns
were generated under different relaxation conditions (allowing
for symbol-gaps). The analysis conducted by the proposed
algorithm is able to generalize the common behaviour of the
signal under a pattern-based model in relation to the robot’s
actions and to changes in the internal affective state of the
children.

Input: Signal[] signals, Time[][] affPred, State[][] affType
Output: Pattern[] genPatterns
Integer affLag ← getAffectiveLag(signals,affectivePredTime);
Signal[] affSignals;
foreach i← 1 to |signals| /*for each player*/ do

foreach j ← 1 to |affPred[i]|-1 /*for each partition*/ do
signal ← signals[i].segment(affPred[i,j],affPred[i,j+1],affLag);
signal ← localAnglePreProcessing(signal,nrSymbols);
affSignals[affType[i][j]] ← affSignals[affType[i][j]] ∪ signal;

foreach i← 1 to |affSignals| /*for each affective state*/ do
Bool converge = false;
Int support = 20%, allowedGaps = 0;
foreach j ← 1 to 10 do

patterns = uspam.run(affSignals[i],support,allowedGaps);
if converging(patterns) then converge = true; break;
else support+=2%; allowedGaps++;

if converge then genPatterns ← genPatterns ∪ consensus(patterns);

Algorithm 2: Mining generalized EDA patterns

V. RESULTS AND DISCUSSION

The introduced analysis was performed using the collected
EDA signals across a chess game (to characterize the experi-
mental setting and surveyed parameters) and over informative
partitions of the game (to predict responses to elicited sup-
portive behaviour and the user’s affect).



The use of EDA to disclose information related with ex-
perimental conditions is of limited potential. Although EDA
features can be used to predict the game result, there were no
additional statistically significance for additional conditions,
such as the differences regarding the gender or the repeated
exposure (first time versus repeated users).

A. Questionnaire Measures and Signal Statistical Properties

We ran Pearson’s correlation tests to determine whether the
measures obtained in the questionnaires (engagement, help,
motivation, social support and the social presence sub-scales)
reported in Table II were correlated with any of the overall
metrics of the signal (including deviation, distortion, variance,
simple/harmonic/geometric average, product-moment, kurtosis
and gradient). The most significant results for N = 38,
considering one-tailed probability, are reported below.

There was a significant relationship between user’s en-
gagement and signal features as kurtosis (r=.33, p<.05) and
Pearson’s moment-product coefficient between the signal and
a linear variable (r=.29, p<.05). Since kurtosis measures the
“peakedeness” of the signal, this result suggests that users
who found the interaction with the robot more engaging
were the ones who experienced more delineated electrodermal
oscillations during the game.

The motivation ratings were significantly correlated with
centroids metrics of the signal such as mode (r=.29, p<.05),
simple mean (r=.44, p<.01) and harmonic mean (r=.74,
p<.01). Since the values of the correlation are positive, this
means that higher values of motivation (that is, to what extend
children consider the iCat as encouraging and contribute to
maintaining a positive image of themselves) are correlated
with higher average values of the signal.

Finally, the attentional allocation dimension of social pres-
ence was significantly correlated with deviation metrics such
as average (r=-.34, p<.05), standard (r=-.35, p<.05) and
squared (r=-.39, p<.05) deviations, as well as with variance
(r=-.36, p<.05). These variables are negatively correlated,
which suggests that higher levels of attention are correlated
with lower variations in the signal.

The fact that different statistical and geometric metrics of
the signal are significantly correlated with different measures
suggests that processed EDA data can be used to capture
children’s perceptions of the robot at the end of the interaction.

B. Effects of the Robot’s Supportive Behaviours

The partitions framing the participants’ EDA response to the
iCat supportive behaviours have the following two properties:
assume a lag to exclude the iCat speech (since we are
addressing the effect of the behaviour and not evaluating the
way iCat approaches the participant), and assume a response
duration of 20 seconds. From the over 300 collected partitions,
we found significant differences on the emerging patterns for
each strategy. The required pre-processing and the mining of
the target patterns were, respectively, described in Alg.1 and
Alg.2. Under an alphabet of 6-length (being 0 a an accentuated
negative slope and 5 an accentuated positive slope), we were

Fig. 5: Emerging sequence patterns for the different supportive
behaviours displayed by the robot.

able to generalize the following precedences for each strat-
egy: i) information support <(1|2)(1)(1)(1|2)(1|2)(1|2)>, ii)
tangible assistance <(3)(3)(3|4|5)(3|4|5)(3|4|5)(3|4)>, iii)
esteem support <(1)(0|1)(0|1)(0|1)(0|1)(0)>, and iv) emo-
tional support <(1|2)(1|2)(1|2)(1|2)(1|2)>. These patterns
are graphically illustrated in Fig 5.

This generalized behaviour is based on the largest frequent
patterns satisfying the support requirements. For instance, a
common response to the information support strategy can
be described by a slight decrease of the EDA, since values
under 3 have a corresponding negative local angle. These
results suggest that the alternative behaviors elicit different
electrodermal responses. In particular, the first category, infor-
mation support behaviour, had the desired effect of alleviating
children’s stressful levels and potential negative affective state.
The second category, tangible assistance, appears to be the
strategy resulting in a more intense response (potentially
revealing attention or stress) from the users. These results are
in line with a previous study using the same scenario, in which
we found that tangible assistance was the least preferred type
of support by children [20]. The EDA levels increased possibly
due to the tension reduction comments provided by the robot
(e.g., “I always say, lucky in love, unlucky in chess”) that
children found a bit too “embarrassing”.

The support behaviour categories, esteem and emotional
support, were the ones who caused lower levels of EDA,
suggesting that these behaviours are the ones with better
efficacy on comforting the users (by putting them in a more
relaxed stated). However, lower EDA levels are not always
desirable: since high values are related with cognitive load,
this can be a desired state in learning oriented scenarios.

C. Using EDA to Predict Children’s Affect

Similarly to the followed procedure for the analysis of res-
ponses to elicited supportive behaviour, the partitions framing
the users’ affective state assume a tiny lag and a duration
in agreement with the iCat predictions. 722 partitions were
collected from the interaction logs of the 38 participants,



TABLE II: Questionnaire ratings for Engagement, Social Support, Help, Motivation, Co-Presence, Attentional Allocation,
Perceived Message Understanding (PMU), Perceived Affective Understanding (PAU), Perceived Affective Interdependence
(PAI) and Perceived Behavioural Interdependence (PBI).

Engagement Social Support Help Motivation Co-Presence Att. Allocation PMU PAU PAI PBI

First Interaction 4.42 3.75 4.21 4.81 4.69 4.65 4.50 4.27 4.27 4.15
Repeated Users 4.63 3.35 3.61 3.88 4.92 4.63 4.13 3.79 3.50 3.13

Easy Exercise 4.79 3.85 3.72 5.00 4.92 4.92 4.58 4.33 4.08 4.50
Difficult Exercise 4.50 3.83 4.67 4.79 4.43 4.29 4.21 4.64 4.57 4.71

All cases 4.56 3.65 4.03 4.54 4.75 4.62 4.34 4.20 4.05 3.99

Fig. 6: Emerging sequence patterns for the different affective
states of the children.

containing the probability of children’s negative, neutral and
positive valence at different moments of the interaction ob-
tained through the iCat’s affect recognition system. Again,
coherent patterns emerged (from the application of sequential
pattern miners over the pre-processed signal) across different
affective states. Under an alphabet of 6-length, we were able
to generalize the following sequences based on the largest
frequent patterns for three major affective states: i) nega-
tive valence <(1|0)(0)(0)(1|2|3)(1|2|3)>, ii) positive valence
<(2)(1|2)(1|2)(1|2)(1|2)(1)>, and iii) high score of neutral
valence <(3|4)(4)(4)(4)(3|4)(3|4)> (see Fig. 6 for a graph-
ical representation). We also considered the affective states
where the positive valence score is repressed and where the
negative valence score is repressed. As expected, the emerging
patterns were, respectively, similar to the negative and positive
affective states.

Interestingly, the states where the iCat predicts negative
affective states, which commonly correspond to states where
the user is neither moving nor conveying affective facial
expressions, are precisely the states where EDA is higher.
This seems to be correlated with states of high concentration,
attention and reasoning. Additionally, negative states appear to
be related with a local decrease of EDA baseline but a quick
recovery of the level when compared against negative states.

We also carried out Pearson’s correlation tests between
the affective states recorded in the interaction logs and the
statistical and geometric metrics of the partitions for both

the unprocessed and the pre-processed versions of the signal.
The following significant results were obtained with one-
tailed probability. Negative valence is significantly correlated
with quadratic error (r=.09, p<.05) in the unprocessed sig-
nal and with distortion in the unprocessed signal (r=.10,
p<.05), although the correlation coefficients are not too strong.
There was a significant relation between neutral valence and
squared deviations (r=-.07, p<.05), product-moment (r=.09,
p<.05) and kurtosis (r=-.33, p<.001) in the pre-processed
signal. Neutral valence was also moderately correlated with
kurtosis in the unprocessed signal (r=.17, p<.001). Finally,
positive valence was significantly related to squared deviations
(r=.01, p<.05) and quadratic error (r=-.12, p<.05) in the pre-
processed signal, as well as to kurtosis in the unprocessed
signal (r=-.08, p<.05).

Considering the results presented above, two main conclu-
sions can be drawn:

1) The negative affective states are characterised by lower
variations of the pre-processed signal (for being in-
versely correlated with dispersion features) but associ-
ated with increases in EDA, while the positive and neg-
ative affective states have more variations of the signal
(being positively correlated with squared deviations and
distortion, respectively), although these values were not
captured by the pattern-view analysis.

2) The Pearson product-moment can be used to differen-
tiate positive affective states from the remaining ones
(negative and neutral), since this metric is negatively
correlated with positive valence and positively correlated
with the other two states. Similarly, low kurtosis (flat
variations of the signal) can be used to exclude negative
affective states.

VI. CONCLUSIONS AND IMPLICATIONS
FOR FUTURE RESEARCH

In this paper, we presented one of the first HRI studies
in which children’s electrodermal activity was measured in a
real-world environment while interacting with a social robot.
We started by describing the study protocol and how the
collected data was processed and analysed. The results suggest
that statistical measures applied to the signal collected during
the whole interaction can be used to characterise children’s
perception of the robot and the interaction. In particular,
engagement, motivation and attention were found to be statis-



tically significant discriminated by electrodermal features. We
also found that the different supportive behaviours employed
by the robot (information support, tangible assistance, esteem
and emotional support) can elicit different patterns in the EDA
signal of the participants. Specific patterns also emerge when
children are experiencing different affective states (negative,
neutral or positive valence). Besides, significant correlations
were found between statistical features of the signal and both
the supportive behaviours and the valence of the children, sug-
gesting that these metrics can help in the automatic prediction
of children’s motivational and affective states.

The results presented in this paper yield some interesting
implications for future research in child-robot interaction.
First, EDA data can be a valuable and reliable method for
capturing children’s interaction with social robots. As such,
it can be used to complement and validate traditional survey
methods such as questionnaires, interviews or video obser-
vation. The fact that the study was carried out in children’s
regular school environment may have contributed positively
for this result since user studies in laboratory settings usually
can cause higher levels of stress in the participants (which
could undermine the EDA signals).

Another useful application of EDA data is on the automatic
prediction of user’s affective states. As reported in this paper,
different patterns emerged when children were experiencing
different affective states or were faced with different support-
ive behaviours displayed by the robot. Therefore, and consi-
dering that the sensors are becoming even more non-intrusive,
we anticipate that EDA data will play a very important role
in future affect recognition systems.
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