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A®ect recognition for socially perceptive robots relies on representative data. While many
of the existing a®ective corpora and databases contain posed and decontextualized a®ec-
tive expressions, a®ect resources for designing an a®ect recognition system in naturalistic
human!robot interaction (HRI) must include context-rich expressions that emerge in the
same scenario of the ¯nal application. In this paper, we propose a context-based approach to
the collection and modeling of representative data for building an a®ect-sensitive robotic game
companion. To illustrate our approach we present the key features of the Inter-ACT (INTEr-
acting with Robots!A®ect Context Task) corpus, an a®ective and contextually rich multi-
modal video corpus containing a®ective expressions of children playing chess with an iCat robot.
We show how this corpus can be successfully used to train a context-sensitive a®ect recognition
system (a valence detector) for a robotic game companion. Finally, we demonstrate how the
integration of the a®ect recognition system in a modular platform for adaptive HRI makes the
interaction with the robot more engaging.
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1. Introduction

As robots are increasingly being viewed as social entities to be integrated in our daily
lives,1 providing them with social perceptive abilities seems a necessary requirement
for enabling more natural interaction with human users.2 For example, a®ect sen-
sitivity, i.e. the ability to recognize people's a®ective states and expressions, is of
the utmost importance for a robot to be able to display socially intelligent behavior,3

a key requirement for sustaining long-term interactions with humans.4

While a®ect recognition has been extensively addressed in the literature,5 many
issues related to the design of a module for a®ect recognition to be integrated in
a human!robot interaction (HRI) framework still have to be investigated.

The design of an a®ect recognition system for socially perceptive robots, such
as robotic companions, requires representative data. Many of the existing corpora
and databases of a®ective expressions contain posed data collected in scenarios
which di®er from that of the ¯nal application.5 These often include portrayals
of prototypical emotions expressed by adults rather than application-dependent
states. Moreover, while many of the most recent databases contain multimodal data,
the availability of contextual information is still not frequent.

Nevertheless, naturalistic HRI requires a®ect recognition systems to be trained
and validated with contextualized a®ective expressions, i.e. expressions that emerge
in the same interaction scenario of the ¯nal application.4,6 In addition, representative
data for automatic inference of the user's a®ect in HRI should include not only
information about the user's behavior, but also information about the task that the
user and the robot are involved in and the behavior generated by the robot. In fact,
especially in face-to-face HRI, the robot and the user mutually in°uence each other in
a continuous cause and e®ect cycle: the behavior of the robot may elicit a response
from the user and, similarly, the behavior and actions of the latter may trigger the
generation of an appropriate response from the robot.2

In this paper, we propose an approach for the collection of naturalistic a®ect
resources to build an a®ect recognition system for a robotic game companion for
young children. The paper is divided in three main parts. First, we propose a
methodology for the collection and modeling of context-sensitive a®ect data in a
naturalistic, adaptive HRI scenario. To illustrate our approach, we discuss the key
features of the Inter-ACT (INTEracting with Robots!A®ect Context Task) corpus,7

an a®ective and contextually rich multimodal video corpus containing a®ective
expressions of children playing chess with an iCat robot.8,9 The Inter-ACT corpus
contains videos from multiple view-points that allow for the interaction to be cap-
tured from di®erent perspectives and includes synchronized contextual information
about the game and the iCat's behavior. The corpus is intended to be a compre-
hensive repository of naturalistic and contextualized, task-dependent data in an
educational game scenario with a robot companion. It is unique in its genre, as it
includes contextulized a®ective expressions of children, rather than adults, suitable
to train an a®ect recognition system for use in child!robot interaction. This is an
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important contribution of our work, as children's expressions di®er from those of
adults and their automatic analysis presents more challenges. Secondly, we show how
this corpus can be successfully used to train a context-sensitive a®ect recognition
system (a valence detector) for a robotic game companion. Finally, we demonstrate
how the integration of the a®ect recognition system in a modular platform for
adaptive HRI makes the interaction with the robot more engaging.

The paper is organized as follows. The next section discusses the challenges
in collecting a®ective corpora for HRI applications and provides an overview of
previous work on automatic a®ect recognition in HRI and on the use of context
in a®ect recognition frameworks. Section 3 provides an overview of the showcased
HRI scenario, while Sec. 4 describes the data collection and annotation process of
the Inter-ACT corpus, and Sec. 5 the traning and evaluation of the valence detector.
Section 6 provides an overview of the architecture of the robotic game companion
and presents methodology and results of an evaluation experiment conducted in a
primary school. Finally, Sec. 7 summarizes and discusses the main results.

2. Background

2.1. Affective corpora: Requirements for HRI

The design of a®ect-sensitive robotic companions requires research on a®ective
corpora to be taken beyond the state of the art. In the following, we review some
of the challenges in the collection of representative data for building an a®ect
recognition system for a robotic companion.

(1) Scenario-related states
Robotic companions require the design of a®ect recognition systems with the
ability to go beyond the recognition of prototypical emotions, and to allow for
more variegated a®ective signals conveying more subtle, scenario-related states
such as, for example, boredom, frustration, interest, willingness to interact,
engagement, etc., to be captured.4

(2) Spontaneous versus acted expressions
While examples of naturalistic databases are gradually increasing in the litera-
ture,10–12 the design of many existing a®ect recognition systems was largely
based on databases of acted a®ective expressions.5 While acted a®ective
expressions, contrary to spontaneous expressions, can be de¯ned precisely, allow
for the recording of several a®ective expressions for the same individual, and
can be characterized by very high quality, they often re°ect stereotypes
and exaggerated expressions, not genuine a®ective states, and they are often
decontextualized.13

(3) Multimodal a®ective expressions
Another important issue for a®ect-sensitive arti¯cial companions is the need for a
multimodal a®ect recognition system. It is expected that a companion is
endowed with the ability to analyze di®erent types of a®ective expressions,
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depending on the speci¯c interaction scenario. On the other hand, fusing
di®erent a®ective cues can allow for a better understanding of the a®ective
message communicated by the user to be achieved. While unimodal systems
(mainly based on facial expression or speech analysis) have been deeply inves-
tigated, studies taking into account the multimodal nature of the a®ective
communication process are still not numerous.5

(4) Context-rich descriptions
HRI applications require systems trained with data including contextual descrip-
tions synchronized with other modalities.14 For example, information about the
user, their arti¯cial interactant, the environment, the task they are involved in,
etc., becomes necessary to complement a®ective behavioral data.

(5) Contextualized a®ective expressions
A®ect expression depends on context. Most of the a®ective video corpora and
databases available in the literature contain expressions recorded in contexts
that are not speci¯c to a particular application.5 An exception is represented
by the CAL database by Afzal and Robinson,6 which contains a®ective
expressions collected in a computer-based learning environment. HRI requires
contextualized a®ective user expressions for system training and validation,
i.e. expressions collected in the same scenario of the ¯nal application.

2.2. Affect recognition in HRI

Recent advances in automatic a®ect recognition show that human a®ective states can
successfully be predicted using a variety of a®ective cues in several HRI applications.5

A few computational approaches for a®ect recognition have also been proposed
in the HRI and social robotics ¯elds. Kulic and Croft, for example, developed an
HMM-based system capable of estimating valence and arousal elicited by viewing
robot motions using physiological data such as heart rate, skin conductance and
corrugator muscle activity.15 Rich and colleagues16 proposed an approach for
the automatic recognition of engagement between a human user and a humanoid
robot. Their approach is based on the recognition of connection events such as
directed gaze, mutual facial gaze, conversational adjacency pairs and backchannels.
Liu et al.17 developed an a®ect inference mechanism based on physiological data for
real-time detection of a®ective states of children with autism spectrum disorder
interacting with a robot. Mower et al. presented an approach to detect user
engagement with a robot using physiological data.18

Previous work in the scenario investigated in this paper showed that children's
engagement with a robotic game companion can be successfully inferred using task
and social interaction-based features19 and expressive body postures data.20

2.3. Context-sensitive affect recognition

Of late there has been an increasing interest towards the role of context in research
on multimodal interfaces and multimedia applications.21

G. Castellano et al.

1350010-4



Context has been identi¯ed as a key requirement for meaningful content inte-
pretation in vision-based recognition systems.22 Morency et al.,23 for example, pro-
posed a context-based recognition framework that integrates information from
human participants engaged in a conversation to improve visual gesture recognition.
They proposed the idea of encoding dictionary, a technique for contextual feature
representation that models di®erent relationships between a contextual feature and
visual gestures.

On the other hand, a®ective states in HRI can be in°uenced by many di®erent
factors. Examples include the user's personality, gender, preferences, underlying
mood, history and goals, the task, the presence of other people, the events unfolding
in the environment, the type of behavior displayed by the interactant, etc. All this
can be referred to as context. This suggests that context can be used as an additional
source of data to improve the performance of an a®ect recognition system, when
other modalities are not su±cient or lead to a non-meaningful interpretation.

While some e®orts have been reported in the literature, only a limited number
of studies have addressed the problem of context-sensitive a®ect recognition. Kapoor
et al.,14 for example, proposed an approach for the detection of interest in a learning
environment by combining non-verbal cues and information about the learner's task
(e.g., level of di±culty and state of the game). Peters et al.24 modeled the user's
interest and engagement with a virtual agent displaying shared attention behavior,
by using contextualized eye gaze and head direction information. Sabourin and
colleagues25 investigated the automatic prediction of learner a®ect using dynamic
Bayesian networks modeling personality attributes, appraisal variables and student
activity in a learning environment. Malta et al.26 proposed a system for the multi-
modal estimation of a driver's irritation that exploits information about the driving
context. Martinez and Yannakakis27 proposed a method for the fusion of physio-
logical signals and game-related information for automatic a®ect recognition in a
game scenario. Their approach uses frequent sequence mining to extract sequential
features that combine events across di®erent user input modalities.

Previous work conducted by the authors in the iCat scenario showcased in this
paper showed that game context can be used to discriminate user a®ect28 and that
children's engagement with the robot can be recognized using a combination of task
and social interaction-based features.19

3. Scenario

The interaction scenario consists of a social robot, the iCat,8 that acts as the
opponent of a human player in a chess game. In this scenario, the iCat robot plays
the role of a game companion for children using an electronic chessboard. The user
sits in front of the chessboard, which is placed between the user and the iCat robot
(Fig. 1).

While playing with the iCat, children receive feedback on their moves through
the robot's facial expressions, which are generated by an a®ective system in°uenced

Multimodal A®ect Modeling

1350010-5



by the state of the game, and con¯rmation signals, such as small utterances and
nodding gestures. The iCat's a®ective system is self-oriented, which means that when
the user makes a good move, the iCat displays a negative facial expression, and when
the user makes a bad move, it expresses positive reactions. By interpreting the
a®ective reactions displayed by the iCat, children can acquire additional information
to better understand the game.

Previous studies in this scenario showed that, after repeated interactions with
the robot, children started realizing that the robot's behavior did not take into
account the emotions they experienced, and social presence decreased over time.29

To overcome these limitations, in this paper, we describe the collection and
modeling of a®ective representative data needed to train an a®ect recognition
system for the iCat robot. We anticipate that a®ect sensing will allow the robot
to adapt to the user's behavior in an appropriate way throughout the game, thus
leading to the establishment of interactions that are more engaging and more
successful over extended periods of time, which is an important requirement for
companionship.

4. The Inter-ACT Corpus

The Inter-ACT corpus consists of 156 six-second \thin-slices" of the interaction
between children and an iCat robot that play chess. Each slice of the interaction
is described by multimodal data: a frontal video capturing the face and the upper
body of the children, a lateral video capturing their lateral posture and full-body
movements, a video capturing the iCat, and a set of synchronised contextual features
that describe the events of the game and the behavior displayed by the robot. Videos
and contextual data together provide a comprehensive description of the ongoing
interaction.

Fig. 1. (Color online) User interacting with iCat in a primary school.
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4.1. Data collection

4.1.1. Subjects, scenario and setup

The data collection procedure was performed in two di®erent locations, a primary
school where every week children have 2 h of chess lessons, and a chess club where
children are more experienced and practice chess more frequently. Eight children
(six male and two female, average age 8.5) took part in the data collection procedure.

Every participant was asked to play two di®erent exercises, one with low and
one with medium di±culty, chosen by a chess instructor who was familiar with each
student's chess skills. By adopting two di®erent levels of di±culty we expected the
children to display a broader range of expressive behaviors.

In each exercise the robot begins the interaction by inviting the user to play.
After each move is made by the user, the iCat asks them to make its move as it does
not have any grasping mechanism to move the chess pieces by itself. Each interaction
ends when the user completes both exercises by winning, losing or withdrawing. The
duration of each exercise varied depending on the speci¯c participant, with exercises
lasting up to 15 min.

All the exercises were recorded with four video cameras: two capturing the
frontal view, one the lateral view of the children and one the iCat. To capture
the frontal view we used a ¯rewire camera (15 fps, 1024" 768 spatial resolution)
and a DV camera (25 fps, 720" 576 spatial resolution). For the lateral view, we used
a DV camera (25 fps, 720" 576 spatial resolution). A standard 25 fps webcam was
used to capture the behavior displayed by the iCat. Figure 2 shows some examples of
frames from the frontal, lateral and iCat's view.

Each video of the Inter-ACT corpus was segmented by an expert coder.
Segmentation was performed starting from the frontal videos in order to include
coherent samples of behavior: the corpus includes a balanced number of samples
displaying a range of di®erent expressions.

4.1.2. Contextual information

During the video recordings of our corpus, contextual information about the game
and the iCat's behavior was logged in real-time via a game engine built on top of the
chess engine from Tom Kerrigan's Simple Chess Program (TSCP).a After each move
made by the user on the electronic chessboard, the chess evaluation function returns
a new value, updated according to the current state of the game. Based on the history
of evaluation values, the game engine automatically extracts contextual features.

Every log entry contains a timestamp to enable the synchronization with the
corresponding video ¯les containing the users' non-verbal behaviors. There is one log
¯le associated with each exercise, which contains an entry for every move played by
the user, the consequent iCat's move and a set of contextual information retrieved

ahttp://www.tckerrigan.com/Chess/TSCP.
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after each move played by the user. Thus each video of the Inter-ACT corpus
includes the following synchronized contextual information.

Game state.A value that represents the condition of advantage/disadvantage of
the user in the game. This value is obtained by the same chess evaluation function
that the iCat uses to plan its own moves, but from the user's perspective. The more
the value of the game state is positive, the more the user is in a condition of
advantage with respect to the iCat and vice versa.

Game evolution. The di®erence between the current and the previous value
of the game state. A positive value for game evolution indicates that the user is
improving in the game, while a negative value means that the user's condition is
getting worse with respect to the previous move.

Captured pieces. If there were any captured pieces either by the user or by the
iCat, this value indicates the type of piece that was taken.

Game phase. A value that represents the phase of the game (game starts, after
user's move, after iCat's move, draw, user gives up, iCat gives up, user wins, user loses).

Level of di±culty. This value indicates the level of di±culty of the chess exercise.
User emotivector. It refers to the result of the mismatch between expectation

and actual outcome of the user's progress in the game. After each move made by

Fig. 2. (Color online) Examples of frames from the frontal, the lateral and the iCat's view in the Inter-
ACT corpus.
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the user, the chess evaluation function returns a new value, updated according to
the current state of the game. The robot's emotivector system30 is an anticipatory
system that captures this value and, by using the history of evaluation values,
computes an expected value for the chess evaluation function associated with the
user's moves. Based on the mismatch between the expected value and the actual
value, the system generates a set of a®ective signals describing a sentiment of reward,
punishment or neutral e®ect for the user.9

For example, if after three moves in the chess game the user has already captured
an iCat's piece, they might be expecting to keep the advantage in the game (i.e.
expecting a reward) after the iCat's next move. Therefore, if the iCat makes a
move that is worse than the one the user was expecting (e.g. by putting its queen in
a very dangerous position), the generated a®ective signal will be a \stronger reward",
which means that the state of the game is better than what the user was probably
expecting.

iCat's facial expressions. Based on the a®ective signals generated by the
emotivector system described above, the iCat provides feedback to the user by
displaying an a®ective facial expression.9 Each a®ective facial expression is a direct
consequence of the situation of the game and is the main channel through which
the iCat can communicate an a®ective message to the user.

4.2. Affect annotation

The Inter-ACT corpus contains a®ective labels that describe the user's a®ect in each
\thin-slice" of the interaction.

O®-line analysis of videos recorded during several interactions showed that
children display prototypical emotional expressions only occasionally. On the other
hand, we believe that the robotic game companion would bene¯t from the ability
to detect states emerging during the game and the social interaction with the iCat
robot, such as the valence of the a®ect experienced during the game and the level of
interest towards the robot:

(1) Valence of a®ect
The valence of the a®ect experienced by the user was chosen to measure the
degree to which the user's a®ect is positive or negative.31 This dimensional
description of a®ect appears to be adequate for the purpose of describing the
overall feeling that the user is experiencing throughout the game and the
interaction with the robot.

(2) Interest towards the robot
The level of interest towards the robot relates to the amount of time the user
pays attention to it.24 It can be considered as a social emotion, as it provides
information about the attitude of the user towards the robot. In human face-to-
face interaction, detecting whether someone is interested or not is a very
important social capability, which can also be of extreme importance to achieve
natural HRI.
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A®ect annotation was performed by a group of three expert coders. The annotation
was based on the frontal videos and was performed by asking the coders to focus on
the behavior displayed by the children, without access to any information about
the context. For each video the coders were requested to rate the level of valence
of a®ect (positive, negative or neutral) and the level of interest towards the robot
(high interest, low interest or medium interest). The annotation was based on the
de¯nitions of valence of a®ect and interest towards the robot provided above. The
coders were also asked to provide their con¯dence level (from 1 to 10) for each
annotation.

Inter-coder agreement was measured with the Fleiss' kappa statistics: results
showed an overall fair to moderate agreement (Fleiss' kappa= 0.37 for valence;
Fleiss' kappa=0.43 for interest towards the robot). A label for valence and interest
towards the robot for a speci¯c video of the corpus was selected when at least two out
of three coders agreed. In case of disagreement amongst all coders, the con¯dence
level provided by the coders was taken into account to determine the ¯nal label to
assign to each video.

In this work, we focus on the valence experienced by the user throughout the
game. The next section shows how we use the part of the corpus annotated in terms
of user valence to train an automatic valence detector to be integrated in our robotic
companion.

5. Valence Detector: Design and Evaluation

Previous work in the iCat scenario highlighted that some user expressions are more
frequent than others and help discriminate among positive and negative a®ect.

In terms of user expressions, the behaviors displayed by the children that are
mainly a®ected by the valence of a®ect are the eye gaze and the smiles: when the
a®ect is positive, children tend to look at the iCat and smile more than when the
a®ect is negative.4

As far as contextual information is concerned, previous work highlighted a key
role of game state and game evolution to discriminate between positive and negative
a®ect (i.e., the user's a®ect tends to be more positive than negative when the user is
winning or improving in the game).28

These ¯ndings highlight which are the features that may be more relevant to
the target recognition task, thus suggesting to focus the design of the valence
detector only on a limited subset of behavioral and contextual features. Therefore,
in addition to game state (GameState) and game evolution (GameEvolution),
described in Sec. 4.1.2, we extracted the following user behavioral features:

Smiles. We used faceAPI, a real-time face tracking toolkit from Seeing
Machines,b to track head movements and salient facial points. Facial landmarks are
provided in pixel coordinates frame (2D) or head coordinates frame (3D).

bhttp://www.seeingmachines.com/.
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Smile indicators were automatically extracted from portions of the Inter-ACT
corpus containing smile behavior in order to build a smile detector. These include
(1) geometrical indicators extracted from facial landmarks in pixel coordinates,
such as the ratio of the lips bounding box and the ratio of the bounding box de¯ned
by the eyebrows and lips corners and (2) lips corners in head coordinates.

In order to capture the local changes of the above indicators, we compute a
local behavior baseline at each frame by averaging each indicator over the previous
N seconds, and we subtract the local baseline to each indicator at each frame.
Empirical tests showed good results for N=0.27 s.

A smile detector based on SVMs was trained using 552 sample frames from the
Inter-ACT corpus, to classify frames as smiling or not smiling. Selected samples
included smiling and not smiling behavior of all eight children. For training and
testing the smile detector, we used the LibSVM library32 and a Radial Basis Func-
tion (RBF) kernel. The recognition performance using a \leave-one-subject-out"
cross-validation approach is 96.10%.

The smile detector was used to extract the probability of smile for each frame
of the videos of Inter-ACT corpus. For each video, the values of the probability
of smile were averaged over the whole video duration (6 s) to obtain the ¯nal
smile feature used to train the valence detector (AvgProbSmile).

Eye gaze.We performed manual annotation of eye gaze features. Three binary eye
gaze features were extracted for each video, depending on the amount of time the user
looked at the iCat during the 6 s of the video: LookingAtIcatHigh (when the user looks
at the iCat for 3 s or more), LookingAtIcatMedium (when the user looks at the iCat for
less than 3 s), NotLookingAtIcat (when the user does not look at the iCat at all).

An SVM classi¯er with RBF kernel provided by LibSVM32 was employed for
valence classi¯cation experiments, in order to predict three di®erent outputs for
valence of a®ect (positive, negative or neutral). The classi¯er was trained and tested
with 113 samples (see Table 1 for a summary of the features used in the training and
testing phase) of the Inter-ACT corpus. The remaining ones were disregarded due to
problematic tracking. This occurs, for example, when children move away from being
in a reasonable range of the camera. A \leave-one-subject-out" cross-validation
approach was followed during the training and testing phase, leading to a recognition
performance of 63% for predicting three di®erent outputs for valence of a®ect (three
labels: positive, negative or neutral ).

Table 1. Behavioral and contextual features.

Feature Category

AvgProbSmile Behavior
LookingAtIcatHigh Behavior
LookingAtIcatMedium Behavior
NotLookingAtIcat Behavior
GameState Context
GameEvolution Context
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In order to evaluate the e®ects of the robot's ability to perceive children's a®ect,
we integrated the valence detector into a novel platform for a®ect-sensitive, adaptive
HRI (Fig. 3) and performed a ¯eld experiment in a primary school, described in the
next section.

6. Experimental Evaluation

In this section, we describe the modular architecture of the iCat system and provide
an overview of the ¯eld experiment that we conducted and a summary of the results.

6.1. System architecture

The platform integrates an array of sensors in a modular client-server architecture
that includes a vision module, a game engine, an a®ect detection module (the valence
detector), an appraisal module and an action selection module (Fig. 3). After every
move made by the user, the user's a®ective state is inferred by the a®ect detection
module based on behavioral indicators provided by the vision module and contextual
indicators extracted by the game engine. Information about the user's a®ective state
is used to trigger the generation of empathic interventions by the robot.

In the following we describe the modules that compose the iCat's platform:

(1) Vision module. A standard Logitech webcam, positioned in front of the user
(Fig. 1), captures the non-verbal behavior displayed by the children during the
game and the interaction with the robot. The system performs tracking of head
movements and salient facial points via faceAPI and extracts information about

Fig. 3. (Color online) iCat system architecture.

G. Castellano et al.

1350010-12



users' gaze direction and probability of smile. After a calibration phase, the sys-
tem estimates the gaze direction of the user based on head direction and rotation
data. Furthermore, geometrical facial features extracted from the tracked facial
points are used to detect user's smiles using SVMs. Averaged eye gaze and smile
features are continuously sent in input to the a®ect detection module.

(2) Game engine. As described in Sec. 4.1.2, the game engine is built on top of
the chess engine from TSCP. After each move made by the user on the elec-
tronic chessboard, the chess evaluation function returns a new value, updated
according to the current state of the game. Based on the history of evaluation
values, the game engine automatically extracts game-related contextual features.

(3) A®ect detection module. The a®ect detection module consists of the SVM-
based valence detector described in Sec. 5. It continuously receives synchronized
features from the vision module and the game engine and provides as output
probability values for valence (i.e., whether the user is more likely to be
experiencing a positive, neutral or negative a®ect).

(4) Appraisal module. This module appraises the situation of the game and
provides as output information on the robot's a®ective state. Information on the
robot's a®ective state triggered by the game are given in input to the action
selection module to generate an appropriate a®ective facial expression.

(5) Action selection module. This module generates a®ective facial expressions as
a consequence of the robot's a®ective state and, when the user is not experiencing
a positive a®ect, selects an empathic strategy for the robot to display.

6.2. Methodology

In order to test the iCat system and evaluate the e®ects of the robot's ability to
perceive children's a®ect, we conducted a ¯eld experiment in a real classroom
environment.

6.2.1. Experimental setting

The study was conducted in a Portuguese elementary school where children play
chess two hours per week as part of their school curriculum. The experimental setting
comprised the robot, an electronic chessboard, a computer where all the processing
takes place and a webcam that captures the children's expressions to be analyzed
by the a®ect detection module (Fig. 1). Two video cameras were also used to record
all the interactions with the robot from a frontal and lateral perspective. The setting
was installed in the room where children have their weekly chess lessons. The
objective was to integrate the robot in the natural environment where children
usually play chess.

6.2.2. Procedure

A total of 26 children, with ages between 8 and 10 years old, participated in
the experiment. Participants were randomly assigned to two di®erent conditions,
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corresponding to two di®erent parametrizations of the robot's behavior:

(1) Neutral. The robot does not exhibit any empathic behavior. It simply com-
ments the moves in a neutral way (e.g., \you played well", \bad move", etc.).

(2) Empathic. When the user is not experiencing a positive a®ect, the iCat ran-
domly selects one of the available empathic strategies (i.e., providing encouraging
comments, letting the user play again if their move was not good, o®ering help and
intentionally playing a bad move33).

In addition to di®erences in the empathic behavior, the robot's a®ective feedback
is also di®erent in the two conditions. While in the empathic condition the robot's
a®ective behavior is user-oriented (i.e., the robot shows happiness if the user makes
good moves and sadness if the user makes bad moves), in the neutral condition the
robot's behavior is self-oriented (i.e., the robot shows sadness if the user makes good
moves, etc.). This is re°ected in the robot's facial expressions displayed after every
user's move. Our ¯nal sample consisted of 13 children in the empathic condition and
13 in the neutral condition.

Participants were guided to the room where the setting was installed and were
instructed to sit in front of the robot and play a chess exercise. The exercise was
the same for all the participants, and was suggested by the chess instructor so that
the di±culty was appropriate for the children. Two experimenters were in the
room controlling the experiment and observing the interaction. Each child played,
on average, 15min with the robot. After that period, depending on the state of
the game, the iCat either gave up (if it was in disadvantage) or proposed a draw
(if the child was loosing or if none of the players had advantage), arguing that it had
to play with another user.

6.2.3. Data collection

During the experiment for each human!robot interaction we automatically collected
a set of questionnaires reporting the children's levels of engagement with the robot,
perceived help and self-validation, for a total of 26 ratings for each variable.

After playing with the robot, participants were taken to another room where they
were asked to ¯ll in a questionnaire. Note that children from the age group taken into
consideration are su±ciently developed to answer questions with some consistency.34

Children were asked to rate their level of engagement with the robot, perceived
help and self-validation throughout the interaction using a 5-point Likert scale,
where 1 meant \totally disagree" and 5 meant \totally agree". Engagement is a
metric that has been extensively used both in HRI and human-agent interaction and
has been de¯ned from several perspectives.35,36 For example, Sidner et al. de¯ned
engagement as \the process by which two (or more) participants establish, maintain
and end their perceived connection".36 The questionnaire regarding engagement in
our study is based on the questions used by Sidner et al. to evaluate users' responses
towards a robot capable of using social capabilities to attract users' attention. As in
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the questionnaire used by Leite et al.37 help measures how the robot provided gui-
dance and other forms of aid to the users, whereas self-validation measures the degree
of reassuring, encouraging and helping the other to maintain a positive self-image.

6.3. Results

We performed a statistical analysis on the average ratings of engagement, help and
self-validation collected from the questionnaires. We veri¯ed that the distribution
of the data was not normal by applying the Kolmogorov!Smirnov test, so non-
parametric tests were applied.

Mann!Whitney tests were performed to assess the signi¯cance of the di®erences
in the ratings of engagement, help and self-validation observed in the neutral
and the empathic conditions (Figs. 4!6). The tests showed that the empathic con-
dition di®ered signi¯cantly from the neutral condition in terms of engagement
(U ¼ 46 r ¼ !0:4 p < 0:05), help (U ¼ 33 r ¼ !0:53 p < 0:05) and self-validation
(U ¼ 45 r ¼ !0:37 p < 0:05). These results suggest that participants in the empa-
thic condition signi¯cantly found the robot more engaging and helpful than
participants in the neutral condition and provided signi¯cantly higher scores for
self-validation.

Fig. 4. (Color online) Boxplot charts for \engagement".

Multimodal A®ect Modeling

1350010-15



Fig. 5. (Color online) Boxplot charts for \help".

Fig. 6. (Color online) Boxplot charts for \self-validation".
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7. Conclusion

In this paper, we proposed a context-based approach to the collection and modeling
of a®ective data in a naturalistic HRI scenario. To describe the proposed approach,
we discussed the key characteristics of the Inter-ACT corpus, a multimodal video
corpus of a®ective expressions emerging during the interaction with a robotic game
companion. The corpus is a comprehensive repository of visual data and synchro-
nized contextual information designed to train and evaluate an a®ect recognition
system for a robotic game companion.

The design of the Inter-ACT corpus addressed some of the latest challenges in
the collection of representative data for a®ect recognition in naturalistic HRI38,39:
the corpus contains multimodal, spontaneous a®ective expressions of young children,
scenario-related states and descriptors that carry information about the social and
the game context. We demonstrated how this corpus can be successfully used to train
a context-sensitive a®ect recognition system for a robotic game companion that
works in real world settings.

The integration of the valence detector into a novel platform for a®ect-sensitive,
adaptive HRI showed how the robot's ability to perceive children's a®ect has an
e®ect on their perception of the robot. The results showed that children perceived the
robot as more engaging and helpful and also provided higher ratings in terms of self-
validation.

These ¯ndings con¯rm the results of an ethnographic study on the perception
of empathic behavior conducted in the same scenario, which showed that the
robot's empathic behavior, generated as a response to the user's a®ect, a®ected
positively how children perceived the robot.33 These results show an improvement
over previous studies conducted with our robotic companion without the a®ect
sensitivity ability, which showed that the robot's social presence decreased over
time.29 The results provide support for our scenario-centred a®ect modeling and
recognition approach for building a robotic game companion for children, and are
con¯rmed by initial ¯ndings of studies conducted over several weeks in a primary
school.40

Future work will also focus on the integration of interest and engagement41

detectors in our companion's framework. We anticipate that a®ect sensing will lead
to the establishment of empathic and personalized interactions42,43 that are more
natural and engaging, which is an important requirement for companionship over
extended periods of time.44,45
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