
Iterative Quantum Tree Search

Lúıs Tarrataca and Andreas Wichert

GAIPS/INESC-ID
Department of Computer Science, Instituto Superior Técnico

Technical University of Lisbon
Avenida Professor Cavaco Silva
2780-990 Porto Salvo, Portugal

{luis.tarrataca,andreas.wichert}@ist.utl.pt

Abstract. Tree search algorithms are employed in order to solve a re-
current class of problems in the field of artificial intelligence. In this type
of problems, a solution is represented as a sequence of symbolic actions
whose length is also referred to as depth. When the depth of the shal-
lowest solution is unknown some form of iteration needs to be applied in
order to determine an appropriate limit. In this work we extend an ex-
isting O(

√
bd) method for quantum tree search in order to accommodate

for the requirements of iterative quantum tree search. We prove that the
computational complexity of our iterative proposal remains O(

√
bd).

Key words: iterative, quantum search; tree search.

1 Introduction

When no efficient polynomial-time algorithm to a problem is known, the solution
typically resides in analyzing the state space. In artificial intelligence problems,
such a procedure usually consists of examining a graph with a tree-like structure.
Such problems can be described by a tuple (Si, Sg, A) representing finite sets of,
respectively, initial states, goal states and actions whose application leads states
in Si to Sg. The solution to a problem is represented as a sequence of actions,
or path, leading the initial state to a goal state.

As an example lets consider one of the most frequent problems approached in
artificial intelligence, namely the missionaries and cannibals problem. In this
problem three missionaries and three cannibals need to cross a river using a
boat that holds only two people. In addition, the boat cannot cross the river
empty. The missionaries will be eaten if they are outnumbered by the cannibals
on either bank. Amarel proposed to solve the problem by depicting the current
state of the system as a vector of dimension 3 representing, respectively, the
numbers of missionaries, cannibals and boats on the initial bank of the river
[1]. The initial state is represented by vector < 3, 3, 1 > and the goal state by
< 0, 0, 1 >. Each action is also represented through the same vector notation.
Accordingly, the set of possible actionsA is {< 1, 0, 1 >,< 2, 0, 1 >,< 0, 1, 1 >,<

2 Lúıs Tarrataca and Andreas Wichert

0, 2, 1 >,< 1, 1, 1 >}. Manipulations to the overall system state are performed
through addition and subtraction of the respective action vectors.

Solving the problem is simply a matter of performing a tree search with the initial
state as the root, and alternating between addition and subtraction operations,
as depicted in Figure 1. Each depth layer d is responsible for adding at most
bd nodes to the tree, where b is the branching factor resulting from the number
of actions utilized. Each one of the bd leaf nodes requires a unique path leading
to them. Eventually, the goal state will be achieved through the sequence of
actions {< 0, 2, 1 >,< 0, 1, 1 >,< 0, 2, 1 >,< 0, 1, 1 >,< 2, 0, 1 >,< 1, 1, 1 >,<
2, 0, 1 >,< 0, 1, 1 >,< 0, 2, 1 >,< 0, 1, 1 >,< 0, 2, 1 >}. Although this specific
instance was restricted to three missionaries and three cannibals, the problem
can be generalized to any number of missionaries and cannibals.

<3,3,1>

<2,3,0> <1,3,0> <3,2,0> <3,1,0> <2,2,0>

<1,0,1> <2,0,1> <0,1,1> <0,2,1> <1,1,1>

Fig. 1: Missionaries-Cannibals search tree with branching factor b = 5, depth
d = 1.

The simplest tree search algorithms examine all possible sequences of moves until
goal states are reached. If a non-goal state is discovered then the current state
is expanded by applying admissible actions. This process enables the procedure
to obtain a new set of states to analyse. The choice of which state to expand
is determined by a search strategy. Strategies that can only distinguish between
goal states and non-goal states, without being able to determine if one state is
more promising than another, are referred to as uninformed search strategies.
Alternatively, some problems allow the use of information in order to expand the
most promising state. This is the method employed by informed and adversarial
search strategies. Furthermore, the algorithms can choose to expand child nodes
either up to a predetermined depth limit or iteratively increase the depth in
order to find the best bound.

Typically, the computational complexity of tree search algorithms is represented
as a function of the number of paths that need to be considered. For non-trivial
branching factors and depths, performing an exhaustive examination of all possi-
ble sequence of actions with this type of search requires probing an exponential
growth search space. Some of the best-know classical tree search procedures,
alongside the respective time complexities are presented in Table 1, which em-
phasizes that the complexity of these algorithms grows exponentially fast and

Iterative Quantum Tree Search 3

has a form resembling O(bd). This characteristic complexity form is observed for
the majority of these algorithms, with one notable exception namely that of the
minimax algorithm. The original minimax formulation was based on zero-sum
games, thus limiting its application to problems where no additional information
can be employed in order to restrict the dimension of the search space.

Search Reference Strategy Time

Depth-first [2] Uninformed O(bm)

Iterative-deepening [3] Uninformed O(bd)
Minimax [4] Informed/Adversarial O(bm)

Minimax α − β pruning [5] Informed/Adversarial O(
√
bm)

Table 1: Tree Search Algorithm Comparison (b - branching factor, d - depth of
a solution, m - maximum depth).

However, the advent of quantum computation has allowed for new search mech-
anisms that were previously unknown, and that are capable of producing impor-
tant speedups. What follows in an analysis of some of the most important meth-
ods for quantum search and our proposition for a possible extension. Namely,
the paper is organised as follows. Section 2 describes some of the main efforts
focusing on performing tree search through quantum computation and respec-
tive complexity improvements. Section 3 describes an iterative extension to an
existing methods. Section 4 elaborates on the computational complexity of the
iterative version. We present the conclusions of this work in Section 5.

2 Quantum Tree Search

Tree search is closely related to graph transversal which, from a quantum com-
putation perspective, has been approached through quantum random walks on
graphs. Quantum random walks are the quantum equivalents of their classical
counterparts ([6] provides an excellent introduction to the area). Quantum ran-
dom walks were initially approached in [7], [8], [9] and [10] in one-dimensional
terms, i.e. walk on a line. These concepts were then extended to quantum ran-
dom walks on graphs in [11], [12], [13] and [14]. Quantum random walks can
also provide a probabilistic speedup relatively to their classical parts, namely
the hitting time for some specific graphs, i.e. the time it takes to reach a certain
vertex B starting from a vertex A, can be shown to be exponentially smaller [15].
Other examples of quantum random walks include how to adapt the models to
perform a search [16], [17], [18], and [19].

Additionally, tree search also has similarities with boolean constraint satisfaction
problems. In [20] a continuous-time quantum walk was developed that showed
how to compute the value of a balanced binary NAND tree in O(

√
N) time,

where N is the number of leaf nodes. This result was subsequently mapped

4 Lúıs Tarrataca and Andreas Wichert

into discrete-time in [21] and [22]. Ambainis developed a nearly optimal discrete
query quantum algorithm for evaluating NAND formulas [23]. This result was
later extender in order to prove that for any AND-OR formula of size N , there
exists a bounded-error N

1

2
+o(1) time quantum algorithm, based on a discrete-

time quantum walk [24]. These results provided the theoretical basis to show
that it was possible to develop quantum algorithms for evaluating MIN-MAX
trees with N

1

2
+o(1) queries. This procedure was done through a simple reduction

of a MIN-MAX tree to an AND-OR tree [25].

However, most of these approaches focused on either graph transversal or the
calculation of a value associated with the root node, whereas the central task
in classical tree search consists in determining a path from the root node to
a solution state, if one exists. An alternative approach was suggested in [26]
which: (1) builds a superposition |ψ〉 of all possible sequences of actions up to
a fixed depth limit d, as illustrated in Expression 1; and (2) employs Grover’s
algorithm in order to search through the state space of |ψ〉 alongside purposely
designed oracles Od|q〉|a〉 → |q〉|a ⊕ f(q)〉, where |q〉 is a query register, |a〉 an
answer register and f(q) is a function responsible for outputting 1 if q leads to a
goal state, and 0 otherwise (please refer to [27] and [28]). Expression 1 employs
set Ad consisting of all the possible sequences of actions up to depth-level d.
Each element of |a〉 ∈ Ad = |a0, a1, · · · , ad〉 where ak represents the action
taken at depth level k, ∀k ∈ [0, d]. Accordingly, a measurement of |ψ〉 will yield
a state containing the sequence of possible moves that lead to a solution. Since
all possible paths are covered, and therefore all of the leaf nodes, this effectively
means that set Ad has cardinality bd. Consequently, through Grover’s algorithm,
the authors are able to achieve a running time of O(

√
bd).

|ψ〉 = 1√
bd

∑

a∈Ad

|a〉 (1)

In this work we purpose a simple iterative extension to the quantum tree search
method discussed in [26], [27] and [28]. The classical iterative-deepening pro-
cedure is as an optimal admissible form of tree search capable of finding the
best depth limit [29]. In addition, classical iterative-deepening also preserves the
original complexity, respectively O(bd). This procedure is carried out through
a systematic increase of the search of the depth until a limit d, representing
the depth of the shallowest goal node [30]. What follows is a description of our
algorithm accompanied by the analysis of its complexity.

3 Iterative Quantum Tree Search

In order to obtain the desired iterative behaviour we choose to enclose our proce-
dure in a while loop, as illustrated in Algorithm 1. This way it becomes possible
to systematically go through all possible depth values d alongside oracle O, i.e.

Iterative Quantum Tree Search 5

Od, until a goal state is found. Since we need to evaluate if applying Od leads
to a solution (line 7) we can combine the oracle alongside Grover’s iterate for

a total of
√
bd times in order to evaluate a superposition of all the available

sequences of actions up to depth-level d, i.e. Ad (line 8). After applying Grover’s
algorithm, we can perform a measurement M on the superposition, if the state
ξ obtained is a goal state (line 9), then the computation can terminate since a
solution was found at depth d (line 11). Notice that if goal states are present in
the superposition, then Grover’s amplitude amplification scheme allows for one
of them to be obtained with a high probability. Otherwise, we need to expand
the search depth to level d + 1 (line 13) and repeat the process from the start.
As a result, this procedure requires building a new superposition of actions Ad+1

each time a solution was not found in Ad. Algorithm 1 does not guarantee that
variable d will ever be found, i.e. the search may not terminate. Accordingly,
the while loop will execute forever unless the state ξ in line 10, obtained after
the measurement, is a goal state.

Algorithm 1 Iterative Quantum Tree Search

1: d← 0
2: ξ ← ∅
3: |s〉 ← i

4: while true do

5: |q〉 ← 1√
bd

∑
∀x∈Ad |x〉 ⊲ Build superposition of actions

6: |a〉 ← 1√
2
(|0〉 − |1〉)

7: |ψ1〉 ← Od|q〉|a〉 ⊲ Mark if goal states exist at depth d

8: |ψ2〉 ← G
√
bd |ψ1〉 ⊲ Apply Grover’s iterate

9: ξ ← M |ψ2〉 ⊲ Measure the superposition
10: if ξ ∈ Sg

11: return ξ ⊲ If a goal state was found terminate
12: else

13: d← d+ 1 ⊲ Otherwise, continue searching

4 Complexity Analysis

Quantum iterative deepening search may seem wasteful, because each time we
apply Od to a superposition spanning Ad we are necessarily evaluating the states
belonging to previous depth levels multiple times, ∀d > 0. However, the bulk
of the computational effort comes from the dimension of the search space to
consider, respectively bd, which grows exponentially fast. As pointed out in [29]
if the branching factor of a search tree remains relatively constant then the
majority of the nodes will be in the bottom level. This is a consequence of each
additional level of depth adding an exponentially greater number of nodes. As a

6 Lúıs Tarrataca and Andreas Wichert

result, the impact on performance of having to search multiple times the upper
levels is minimal.

This argument can be stated algebraically by analysing the individual time com-
plexities associated with each application of Grover’s algorithm for the various
depth levels. This argument is illustrated in Expression 2 which gives an overall
time complexity of O(

√
bd) remaining essentially unchanged from that of the

original quantum tree search algorithm discussed in [26].

√
b0 +

√
b1 +

√
b2 + · · ·+

√
bd = O(

√
bd) (2)

Our proposal is therefore able to perform tree search with an inherent quadratic
speedup relatively to its classical counterparts. This speedup can be perceived
in two ways namely either as cutting the depth factor in half or as reducing the
original branching factor from b to

√
b. Notice that this speedup is only obtained

when the space has a branching factor of at least 2, otherwise the search is not
influenced by the parallelism provided by quantum computation.

In addition, employing Grover’s algorithm requires some sort of binary encoding
mechanism so that the states present in the superposition |ψ〉 analysed map into
adequate sequences of actions. Depending on specific conditions of the search
tree being considered, namely the average branching factor and the maximum
branching factor, respectively bavg and bmax, it becomes possibles to determine if
a significant portion of the states belonging to |ψ〉 maps into an admissible path.
In [26] it was shown that deciding on whether or not this version of quantum
tree search outperforms classical methods can be expressed as a function of bavg
and bmax. More concretely, classical tree search will deliver better performance

when bavg ≤ 2
⌈log2bmax⌉

2 [26].

5 Conclusions

An analysis of the state space generated by classical search algorithms typically
requires O(bd) time. Quantum tree search enables a quadratic improvement over
its classical counterpart. However, some form of iteration needs to be applied
when the depth of the shallowest solution is not known a priori. In this work
we presented a simple iterative quantum tree search method based on an un-
informed search strategy that can be perceived as the quantum counterpart of
the classical iterative-deepening algorithm. Our approach combines Grover’s al-
gorithm alongside a set of measurements in order to deliver a performance of
O(

√
bd).

Iterative Quantum Tree Search 7

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia (FCT)
(INESC-ID multiannual funding) through the PIDDAC Program funds and FCT
grant DFRH - SFRH/BD/61846/2009.

References

1. S. Amarel, On representation of problems of reasoning about action. Edinburgh
University Press, 1971.

2. J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algorithms for graph manip-
ulation,” Commun. ACM, vol. 16, no. 6, pp. 372–378, 1973.

3. D. Slate and L. R. Atkin, “Chess 4.5 - northwestern university chess program,” in
Chess Skill in Man and Machine, (Berlin), pp. 82–118, Springer-Verlag, 1977.

4. J. von Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische Annalen,
vol. 100, no. 1, pp. 295–320, 1928.

5. T. Hart and D. J. Edwards, “The tree prune (tp) algorithm. artificial intelligence
project memo 30,” tech. rep., Massschusetts Institute of Technology, Cambridge,
Massachusetts, 1961.

6. B. D. Hughes, Random Walks and Random Environments, vol. Volume 1: Random
Walks. Oxford University Press, USA, 1995.

7. Y. Aharonov, L. Davidovich, and N. Zagury, “Quantum random walks,” Phys. Rev.
A, vol. 48, pp. 1687–1690, Aug 1993.

8. D. Meyer, “From quantum cellular automata to quantum lattice gases,” Journal
of Statistical Physics, vol. 85, pp. 551–574, 12 1996.

9. A. Nayak and A. Vishwanath, “Quantum walk on the line,” tech. rep., DIMACS
Technical Report, 2000.

10. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, “One-
dimensional quantum walks,” in ACM Symposium on Theory of Computing,
pp. 37–49, 2001.

11. E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Phys. Rev.
A, vol. 58, pp. 915–928, Aug 1998.

12. T. Hogg, “A framework for structured quantum search,” PHYSICA D, vol. 120,
p. 102, 1998.

13. D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, “Quantum walks
on graphs,” in Proceedings of ACM Symposium on Theory of Computation
(STOC’01), pp. 50–59, July 2001.

14. A. M. Childs, E. Farhi, and S. Gutmann, “An example of the difference between
quantum and classical random walks,” Quantum Information Processing, vol. 1,
no. 1, pp. 35–43, 2002.

15. A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman, “Ex-
ponential algorithmic speedup by quantum walk,” in Proceedings of the 35th ACM
Symposium on Theory of Computing (STOC 2003), pp. 59–68, Sept. 2003.

16. N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search algo-
rithm,” Phys. Rev. A, vol. 67, p. 052307, May 2003.

17. A. Ambainis, “Quantum search algorithms,” SIGACT News, vol. 35, no. 2, pp. 22–
35, 2004.

18. A. Ambainis, J. Kempe, and A. Rivosh, “Coins make quantum walks faster,” 2005.

8 Lúıs Tarrataca and Andreas Wichert

19. A. Ambainis, “Quantum walk algorithm for element distinctness,” SIAM Journal
on Computing, vol. 37, p. 210, 2007.

20. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum algorithm for the hamilto-
nian nand tree,” Theory of Computing, vol. 4, no. 1, pp. 169–190, 2008.

21. A. M. Childs, B. W. Reichardt, R. Spalek, and S. Zhang, “Every NAND for-

mula of size N can be evaluated in time N
1

2
+o(1) on a quantum computer,” eprint

arXiv:quant-ph/0703015, Mar. 2007.
22. A. M. Childs, R. Cleve, S. P. Jordan, and D. Yonge-Mallo, “Discrete-query quan-

tum algorithm for nand trees,” Theory of Computing, vol. 5, no. 1, pp. 119–123,
2009.

23. A. Ambainis, “A nearly optimal discrete query quantum algorithm for evaluating
NAND formulas,” ArXiv e-prints, Apr. 2007.

24. A. Ambainis, A. Childs, and B. Reichardt, “Any and-or formula of size n can be

evaluated in time n
1

2
+o(1) on a quantum computer,” in Foundations of Computer

Science, 2007. FOCS ’07. 48th Annual IEEE Symposium on, pp. 363 –372, oct.
2007.

25. R. Cleve, D. Gavinsky, and D. Yonge-Mallo, “Quantum algorithms for evaluating
min-max trees,” in Proceedings of Theory of Quantum Computation, Communica-
tion, and Cryptography (TQC 2008) (Y. Kawano and M. Mosca, eds.), vol. 5106,
pp. 11–15, Springer Berlin / Heidelberg, 2008.

26. L. Tarrataca and A. Wichert, “Tree search and quantum computation,” Quantum
Information Processing, vol. 10, no. 4, pp. 475–500, 2011. 10.1007/s11128-010-
0212-z.

27. L. Tarrataca and A. Wichert, “Problem solving and quantum computation,” Cog-
nitive Computation, vol. 3, no. 4, pp. 510–524, 2011.

28. L. Tarrataca and A. Wichert, “A hierarchical sorting oracle,” in Proceedings of the
Fifth International Quantum Interaction Symposium (M. Melucci, D. Song, and
I. Frommholz, eds.), 2011.

29. R. E. Korf, “Depth-first iterative-deepening : An optimal admissible tree search,”
Artificial Intelligence, vol. 27, no. 1, pp. 97 – 109, 1985.

30. S. J. Russell, P. Norvig, J. F. Canny, D. D. Edwards, J. M. Malik, and S. Thrun,
Artificial Intelligence: A Modern Approach (Second Edition). Prentice Hall, 2003.

	Iterative Quantum Tree Search
	Luís Tarrataca and Andreas Wichert
	Introduction
	Quantum Tree Search
	Iterative Quantum Tree Search
	Complexity Analysis
	Conclusions

