
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 693519, 16 pages
http://dx.doi.org/10.1155/2013/693519

Research Article
A Framework for Robust Address Assignment in WSNs
Whispering to Avoid Intruders

Carlos Ribeiro, Ivo Anastácio, André Costa, and Marcia Baptista

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, R. Alves Redol 9, 1000 Lisboa, Portugal

Correspondence should be addressed to Carlos Ribeiro; carlos.ribeiro@ist.utl.pt

Received 22 October 2012; Revised 2 August 2013; Accepted 4 August 2013

Academic Editor: Yang Xiang

Copyright © 2013 Carlos Ribeiro et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless sensor networks (WSNs) are becoming bigger, and with this growth comes the need for new automatic mechanisms for
initializations done by hand. One of those mechanisms is the assignment of addresses to nodes. Several solutions were already
proposed for mobile ad hoc networks but they either (i) do not scale well for WSN; (ii) have no energy constraints; (iii) have no
security considerations; (iv) or have nomechanisms to handle fusion of network partitions.Weproposed an address self-assignment
protocol which uses negative acknowledgements and an improved version of a flood control mechanism to minimize the energy
spent; uses a technique named whispering to achieve robustness against malicious nodes; is able to detect dynamic network re-
joint and dynamic node addition without exchanging specific messages; and handles both dynamic events without compromising
routing tables.

1. Introduction

Wireless sensor networks (WSNs) have been arousing the
interest of both researchers and the general community.
WSNs are networks composed of small and cheap devices
with sensing abilities which are able to communicate with
each other through radio signals.The combination of sensing
and radio communication abilities makes these networks
ideal to build distributed sensing networks where each node
collaborates by sensing one or more phenomena in its
neighborhood and relaying it to a central node.

In order to be cheap and last for long periods without
management, sensor nodes have several challenging con-
straints, from which the most important one is energy. Thus,
every algorithm and protocol designed for sensor networks
should always be energy conservative.

Given that sensor networks should be deployed on every
kind of environment, including very hostile environments,
security should be a major concern. Usually, achieving secu-
rity implies some energy loss. However, this loss should be
kept to a minimumwhen there is no threat to defend against.

1.1. The Naming Problem. One of the problems of sensor
networks is the naming. Given that a sensor network could be

comprised of a large amount of nodes, the unique addressing
of each node may be a problem. Currently, nodes are ini-
tialized by hand with a unique number when the code
is uploaded to the sensor node. In the initial versions of
wireless sensors’ operating systems, every sensor had to be
programmed individually through physical contact using a
special programming device. In those days, initialization was
not a big issue because it could be easily done with the
programming. However, currently, wireless sensors are being
programmed using their wireless network [1, 2], whichmakes
naming much more difficult.

Given that sensor programming is currently done by
wireless radio and that wireless radio communications
require addressing each individual sensor, the naming cannot
be piggybacked on sensor programming as it used to be.

The 6LowPan [3] initiative solves this problem by assign-
ing an IPv6 address to each node, which ensures its unique-
ness because it results from the combination of the personal
area network (PAN) address, where the node is, and the 64
bit unique manufacturer address of the node’s link layer [4].
Since these data are known by each node, the assignment can
be donewithout contacting the neighborhood, thus achieving
a zero configuration solution. However, 6LowPan assumes
the existence of a link layer address and depends on its

2 International Journal of Distributed Sensor Networks

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

C
ol

lis
io

n
pr

ob
ab

ili
ty

Number of nodes

Figure 1: Collision probability with the number of nodes deployed.

existence. 6LowPan is specially tuned to be used with the
802.4.15 link layer which supports two types of address: a
64 bit address and a 16 bit address. The 64 bit address is a
global unique manufacturer address, and the 16 bit address is
a dynamic address unique only within each PAN. The 16 bit
address is used whenever possible because 64 bit addresses
make the communication headers too big for small devices.
In TinyOS, the usual payload length is 29 bytes, and the
maximum packet size in 802.15.4 radio is 128 bytes [5]; thus,
it is very inefficient to use 16 bytes just for the link layer
addressing purposes (8 bytes for the receiver and 8 for the
sender).

The 802.15.4 [6] 64 bit unique address is manufacturer
specified; thus, it is always available, but the 16 bit address
must be derived by a special protocol that ensures its
uniqueness within the PAN. Notice that it is not possible to
use the random assignment solution, as in IPv6 self-assigned
addresses, because the probability of two nodes choosing the
same address (a.k.a address collision) is given by the birthday
paradox 𝑝(𝑋(𝑛

𝑡
)) = 1 − ∏

𝑛
𝑡
−1

𝑖=1
(1 − 𝑖/2

16
), in which 𝑋 is a

discrete uniform distribution of addresses and 𝑛
𝑡
is the total

number of nodes deployed. As it can be seen in Figure 1,
the collision probability is over 10% with only 120 nodes and
reaches 50% with ∼300 nodes.

The 802.15.4 link layer address assignment protocol
(LLAA) assumes the existence of a single PAN coordinator.
The coordinator is responsible for defining the address
domain to be usedwith the PAN and for dividing that address
domain between its direct neighbors. Each of the neigh-
bors takes one address for itself and divides the remaining
addresses by its direct neighbors.Theprotocol continues until
every node has an address.This protocol clearly does not scale
well; it is prone to waste of address space if the tree created
during the assignment is not balanced; it does not handle well
node hording; and it is easily attacked by a malicious node

near the coordinator; for example, it may take every address
for itself, thus preventing others from getting addresses.

Besides LLAA, several other proposals have been made
to dynamically assign short unique addresses to nodes [7–
14]; however, most assume that every node in the PAN must
have a unique address [7–9, 11] and/or that there is one
central coordinator for each PAN [10, 12–14]. While the latter
assumption is mostly true, although not always, the former
requirement is often unnecessary.

Addresses are necessary both for identification and rout-
ing; however, both global identification and routing are
often done with other types of identifiers. Often, the only
requirement is that the addresses are locally unique, that is,
that only the direct neighbors of each node have distinct
addresses [15, 16].

In WSNs, nodes are often identified by data attributes
and not by their unique global addresses. For instance, in
the direct diffusion protocol [17], communication is data
centric. A node requests data by sending an interest to named
data. This interest is propagated to its neighbors, building
an interest tree. Whenever a source needs to send data, the
data flows hop by hop over that interest tree to all nodes
that have manifest interest in it. In this situation, there is no
need for a global node identification, since only data must be
named, although local addresses are still needed to exchange
messages between neighbors.

On the other hand, 6LowPan drafts define two types
of routing: “mesh-under” and “route-over” routing [4]. The
former usually requires PAN unique addresses, unless some
sort of direct diffusion routing protocol is used, but the
latter only requires local-uniqueMAC addresses, because the
actual routing is done with IPv6 addresses. In this case, the
MAC addresses are used to distinguish the message source
and destination within the same “network segment,” that is,
within the radio range of the source node, because every node
behaves as an IPv6 router. There are several reasons to prefer
“route-over” to “mesh-under” routing, the main one is that
every existing network diagnostic tool for IP management
will not work if a “mesh-under” routing is used [18].

Assuming that only local unique addresses are needed,
the problem is much more simple, but we still cannot use
random self-assigned addresses, because the probability that
𝑘 nodes, in the direct vicinity of each other, choose the same
address over an address space of size |𝐴|, on a network with
𝑁 nodes and an average of 𝑛 neighbors per node, is given by
(1)

𝑃col (𝑘-way) = 1 − (1 − (
1

|𝐴|
)

𝑘−1

)

((
𝑛+1

𝑘
)+(𝑁−𝑛−1)×(

𝑛

𝑘−1
))

.

(1)

As it can be seen in Figure 2, the number of nodes that
need to be deployed to have a 10% collision probability with
an average of 20 neighbors, with an address space of 16 bit, is
just 356.

1.2. Proposal. We have developed a message efficient and
secure protocol to ensure the distribution of local unique

International Journal of Distributed Sensor Networks 3

5 10 15 20 25 30

N
um

be
r o

f n
od

es
 d

ep
lo

ye
d

Number of reachable nodes

10
3

10
4

10
2

Collision probability >10%

Collision probability >50%

Figure 2: Number of nodes deployed for achieving a 10% and
50% collision probability with the average number of nodes directly
reachable by each node.

addresses among neighbor nodes. The protocol is more
efficient in terms of number of messages than similar ones,
and it is secure against a bounded number of malicious nodes
and is able to handle late deployment scenarios and partition
rejoining without resetting established addresses (i.e, without
breaking established routes between nodes).

The protocol efficiency is obtained through the use of
only negative acknowledgements and through an improve-
ment over a previously proposed flooding control technique.
The security features of the protocol are obtained without
cryptography, through a technique namedwhispering.We are
assuming that sensor nodes are sold without key material in
place. If cryptographic keys are going to be needed, they will
be distributed later over the wireless medium together with
sensor programming. Finally, the solution to handle partition
rejoining is accomplished using nicknames between sensors.

The next section describes relevant related work. Sections
3 and 4 describe and evaluate the basic protocol and the
solution to avoid intruders, respectively. Section 5 describes
the solution to handle the incremental deployment of new
sensors, and, finally, Section 6 concludes and presents future
work.

2. Related Work

The naming problem which we intend to solve has been
addressed before for WSNs and for mobile ad hoc networks
(MANET). The IETF Zeroconf working group proposed a
solution forMANETs [7] that rely on the discovering abilities
of the underlying routing protocol. In this proposal, each
node independently chooses an address and then sends a
routing requesting packet to that address. If a route is found
within a timeout period, it concludes that the address is
already in use; otherwise, the address is not used and the
protocol ends. The main problem of this protocol is the

definition of the timeout when the number of hops needed
to reach every node in the network increases. The protocol
was developed forMANETs and does not scale well forWSNs
where the number of nodes and hops between them is much
higher.

Unlike the Zeroconf working group proposal, most
naming solutions’ goal is to find a unique 2-hop address.
This problem is known as the neighborhood unique naming
(NUN) problem and is similar to the classical coloring graph
problem with conditions at distance 2. In [19], it is proven
that there is no determinist self-stabilizing algorithm to solve
the NUN problem in uniform and anonymous networks under
a distributed scheduler, and it proposes a self-stabilizing
probabilistic algorithm. The algorithm is very simple: each
node keeps two variables, one with its address and one
with the address of two colliding nodes in its neighborhood;
if there are no collisions in the neighborhood, the second
variable is empty; each node starts by asking every neighbor
their address to calculate the second variable; it then asks its
neighbors for their variables’ values; if any of these values
is equal to its own address, the node randomly chooses
another. The algorithm was proven to self-stabilize, although
no protocol was given to implement it. In particular, it is not
clear how messages from two distinct nodes with the same
address can not be confused with a repetition of a previous
message.

The same strategy is followed in [20], but instead of
using the 2-hop neighborhood, it uses a 3-hop neighborhood
and a cache in every node to keep the addresses of its
3-hop neighborhood. It claim, that by using the 3-hop
neighborhood it bounds each node number of attempts to
choose an address. However, no consistency protocol for the
3-hop neighborhood cache is given, which makes it difficult
to calculate the average number ofmessages required to reach
a consistent state.

A cache is also used in [15] to keep addresses of direct
neighbors. In this proposal, each node sends a periodical
message with its address. This message is stored in the cache
of its neighbors. If a node detects that two of its neighbors
have the same address, it sends a warning message to one
of them. With this protocol, nodes may change addresses
several times during the lifetime of the network which may
not be acceptable by every application or routing protocol.
Moreover, the periodic broadcasting of addresses may be
too energy expensive, and the authors fail to prove the self-
stabilization of the protocol.

The approach followed in [8, 9] is different but also
probabilistic. They leverage on the wireless nodes’ ability to
detectmedia access collisions to know if there are other nodes
contending for an address or not. If a node discovers that no
one else is broadcasting at the same time, it takes the address
for itself, and everyone else knows that that address is taken. If
several nodes broadcast at the same time, they all flip a coin to
decide if they will participate in the next round. On average,
only half of the contenders transmit in the next round. After
several rounds, only one node will transmit and will get the
address. Although simple, this solution assumes that the radio
is able to listen at the same time it transmits, which is not true
in most inexpensive radio transmitters.

4 International Journal of Distributed Sensor Networks

The solution proposed in [15] is able to handle dynamic
scenarios by periodically repeating the protocol. In this
proposal, each node sends a periodical message with its
address. Each node keeps a log with every message seen by
it; if it detects a duplicate address, it sends a warning message
to both nodes. Upon receiving the warning message, both
nodes choose another address and announce it again. With
this protocol, nodes may change address several times during
the life-time of the network which may not be acceptable by
every application or routing protocol. Moreover, the periodic
broadcasting of IDsmay be too energy expensive, and it is not
clear how the periodic address announcement is notmistaken
with an address collision.

The work of [11] proposes the use of the location of each
node in space to assign a unique field address but does not
describe how to run a localization protocol without addresses
or how to cope with common localization errors produced by
such protocols.

With the exception of the solution described in [21], most
2-distance graph coloring algorithms and address assignment
protocols are either deterministic and semicentralized or
distributed and probabilistic. The reason why distributed
protocols are probabilistic is the fact that, under a distributed
and unfair scheduler, every node may precisely copy all the
other nodes’movements always choosing the same addresses;
thus, the algorithm may never end. Clearly, a deterministic
solution is better than a probabilistic one, because there
is always the possibility that it never ends. However, most
deterministic solutions do not scale well because they are
either centralized or semi-centralized.

The centralized solution is never used in MANETs or
WSNs. It would be similar to having a DHCP server replying
to every node, which clearly does not scale beyond a few
dozens of nodes. The semi-centralized solutions work by
starting the assignment process at one specific central node
and then distributing the assignment workload among other
nodes. The DRCP and DAAP protocols [10] work together
to assign addresses in MANETs. The DRCP is used by the
node requesting an address as in DHCP: the node starts by
asking if any of its neighbors is acting as a DRCP server, and
if some of them reply, it chooses one of them to get the address
from. After having received the address, the node uses the
DAAP protocol to ask its DRCP server for half of its pool of
addresses, and it then proceeds by acting as a DRCP server.

As described before, the 802.15.4 protocol uses two
types of addresses: 64 bit global unique addresses and 16
bit network unique short addresses. The 64 bit addresses
are used at the beginning of the network deployment to
establish the 16-bit addresses, which are used thereafter. The
protocol which establishes the 16-bit addresses is similar to
DRCP/DAAP. However, instead of using two distinct steps
for assigning an address and for assigning a pool of addresses,
802.15.4 only uses one; instead of giving up half of its address
space to each child node, a node equally divides its pool of
addresses among its neighbors.

The 802.15.4 distribution of addresses is specially unfitted
for very unbalanced field topologies.This problem is handled
in [12] by adapting the address distribution strategy to
the network topology, at the cost of some more messages.

The work of [13] also tackles the same problem but chooses
a different solution. Although centralized, the proposed
protocol does not define the addresses centrally; instead, it
uses the relative hop-count location of each node to the other
nodes to build each node address. The central node is used
just as the center of a radial coordinate system, which is built
by exchanging messages with that central node.

Another centralized protocol is proposed in [14].
Although the goal of the protocol is the establishment of a
field unique address, it starts by specifying a local unique
address to allow for point to point communication in the rest
of the protocol. However, the description of this first phase
is very short, and it advocates that a simpler beacon system
is enough to detect address collisions within the protocol,
which is not true because the address must be unique in a
2-hop scenario and not only in a 1-hop scenario.

None of the centralized or semi-centralized address
assignment protocols scale well when the number of nodes
is too large or the address space is too small. The solution
presented in [21] does not have this problem, but it is costly
in terms of time. In essence, the solution uses a token to
establish an order between nodes’ address assignment, which
in a network of several hundred nodes may take some time.
Moreover, this solution requires the synchronized update of
state variables in both sender and receiver nodes. This is a
problem when nodes do not have a valid address, because in
such situations, it is difficult to establish a single receiver.

Finally, most 2-distance graph coloring algorithms [21–
23] try to find the graph coloring which uses the minimum
number of colors. We have a much more relaxed goal. We
want to find a 2-distance graph coloring with a minimum
number of messages, bounded by a maximum of 216 colors.

3. Basic Protocol

The basic protocol objective is twofold: (i) ensure a unique
local identification on the WSN over a distance 2 neigh-
borhood with an arbitrary large probability 𝑝 < 1 and
(ii) minimize the energy loss by minimizing the number of
messages sent and received.

The protocol assumes no local or global knowledge of
topological information. This includes global and relative
geographic coordinates, number of neighbors, local and
global density, or even the global number of nodes. This is
important in a scenario wheremost sensor nodes do not have
a GPS module and are distributed randomly over the sensor
field. In such scenario, it is not possible to know geographic
information at every sensor without running a localization
protocol, which can only be run if proper addressing is in
place. Therefore, although topological information may be
acquired in the future, it is not available at initialization time.

Unlike several initialization protocols [19, 20], we have
chosen to keep state variables private to each node; that is,
we avoid the use of caches with partial knowledge of the
state variables of other nodes. Although such caches would
improve the nodes’ knowledge over their neighborhood, we
avoid expensive cache coherence protocols.

International Journal of Distributed Sensor Networks 5

The basic protocol is very simple, each node chooses a
random address for itself and asks its neighbors if they have
chosen the same address. If at least one of themhas chosen the
same address, it replies with a NACK, saying that a collision
was found; otherwise, each receiving node rebroadcasts the
query to its own neighborhood. The nodes receiving these
rebroadcasts check the receiving packet for a collision with
their own addresses. If they find a collision, they reply in
the same way as the first hop nodes does; otherwise, they do
nothing. A complete description of the protocol is given in
Listings 1, 2 and 3. Listing 1 contains the main functions, the
init() function initiates the address assignment protocol
of each node, and the receive() function handles the
reception of every message from the protocol.

Notice that there are no positive replies, only negative
ones. This is because the probability of finding a node with
the same address in a 2-hop neighborhood is very low; thus,
in the usual scenario, only query messages are sent. Note that
the probability that a node in a 2-hop neighborhood chooses
the same address of the query node is given by 𝑝

𝑐
(|𝐴|, 𝑛) =

1 − (1 − 1/|𝐴|)
4𝑛, that is, ∼10−3 for a 20 node neighborhood

and a 16-bit address space, which is much lower than the
probability of finding a collision in a 2-hop neighborhood
(the birthday paradox).

The first problem that the protocol needs to overcome is
how to distinguish the rebroadcast messages originated in
itself from the ones originated in other sensors. If a node
trying to establish an address receives a query for that same
address, it should answer declaring that that address has been
taken, even if that action results in neither of the nodes
sticking with the address. However, if the node is hearing an
echo of its own query, it should do nothing. Thus, we need a
way to uniquely identify the messages.

The messages sent by each node are stamped with a
collision free 64 bit node address (extended address). This
extended address can be a manufacturer unique number,
when available, or a random number generated whenever
a node starts. However, as we will describe later, a random
number is preferred over a manufacturer unique number for
security reasons. Note that extended addresses are only used
in the context of the initialization protocol. Afterwards, only
short addresses are used. In fact, the protocol can be seen as
a recoloring protocol with a smaller color space.

Two other similar problems happen when a rebroadcast
node needs to relay a NACK back to the original querying
node and when a node receives a NACK for its own address.
In both cases, nodes should only act uponNACKswhichwere
triggered by their own queries; otherwise, the protocol may
not stabilize.

Self-stabilization, as defined in [24], is an important
property of a distributed protocol. It ensures that regardless of
the initial state of the system and regardless of the scheduling
of actions taken by each participating node the system will
reach a legitimate final state in a finite number of steps.

Beauquier et al. [25] redefined self-stabilization for prob-
abilistic protocols in such a way that regardless of the initial
state of the system and regardless of the scheduler strategy the
system will reach a legitimate final state with probability 1.

Using the framework for proving self-stabilization of prob-
abilistic protocols defined in [25], it can be shown that the
previously described protocol, satisfies the above mentioned
definition of self-stabilization, if extended addresses are used
to link queries and replies.

Informally, the framework, defined in [25], states that a
probabilistic protocol is self-stabilizing for a given specifica-
tion if there is a sequence of predicates over system states
𝐿
𝑖
(𝑆
𝑘
) ⋅ ⋅ ⋅ 𝐿

𝑛
(𝑆
𝑘
) where 𝑆

𝑘
is the system state at step 𝑘 ≥ 0

and 𝑛 > 𝑖 ≥ 0 such that the following conditions hold.

(i) The last predicate 𝐿
𝑛
(𝑆
𝑘
) (known as the legitimate

predicate) of the sequence is a predicate that identifies
a legitimate final state according to the specification.

(ii) For every scheduler, the probability of reaching a
system state satisfying the specification from a state
verifying the legitimate predicate is 1, which can be
formalized by the following conditional probability:

𝑃(
𝐿
𝑛
(𝑆
𝑚+𝑘

)

𝐿
𝑛
(𝑆
𝑚
)
) = 1, 𝑘 > 0, 𝑚 ≥ 0. (2)

(iii) For every scheduler strategy, if the probability of
reaching a state verifying one predicate in the
sequence is 1, then the probability of reaching a state
verifying the next predicate in the sequence is also 1,
which can be formalized by the following conditional
probability.

𝑃(
𝐿
𝑖+1

(𝑆
𝑚+𝑘

)

𝐿
𝑖
(𝑆
𝑚
)

) = 1, 𝑘 ≥ 1. (3)

The first two are easily verified by the protocol. If we
choose 𝑛 to be the total number of nodes, and 𝐿

𝑖
(𝑆
𝑘
) =

{𝑁cf(𝑆𝑘) ⩾ 𝑖}, where 𝑁cf(𝑆𝑘) is the number of nodes with a
collision free address in state 𝑆

𝑘
, the last predicate (𝐿

𝑛
(𝑆
𝑘
))

clearly identifies a legitimate final state (first requirement).
Moreover, after reaching a legitimate state (i.e. every node
has a 2-hop unique identifier), the protocol ceases to send
NACKs. Since addresses are only changed when a NACK
arrives, the system will reach a final configuration verifying
the specification (second requirement).

To prove that the protocol satisfies the last requirement,
we will use another result from [25]. It states that the third
requisite is verified if predicates are closed and verify the local
convergence property. A predicate 𝐿

𝑖
is closed if for every

𝑆
𝑘
and 𝑚 > 0, 𝐿

𝑖
(𝑆
𝑘
) ⇒ 𝐿

𝑖
(𝑆
𝑘+𝑚

). Two predicates are
said to verify the local convergence property if, according
to a scheduling strategy, the probability of reaching a state
verifying the second predicate from a state verifying the first
predicate, in less than 𝑘 > 1 steps, is greater than 𝛿 > 0.

The predicate 𝐿
𝑖
(𝑆
𝑘
) = {𝑁cf(𝑆𝑘) ⩾ 𝑖} is closed under

the given protocol, because whenever a node chooses a
2-hop unique address and every 2-hop neighbor has the
opportunity to reply and does not do it, the node sticks with
that address forever, provided that it only acts upon NACKs
to its own queries. Notice that, if the node tries to optimize
the process of detecting a collision by overhearing NACKs

6 International Journal of Distributed Sensor Networks

typedef enum {

Query, NACK, ColQuery, ColReply, ColSolve} msgtype t; //Message Types.
typedef struct { //Message structure.
uint16 t d add, s add; // Destination and source addresses.
msgtype t type; //Message type.
byte hop; // First or second hop.
uint64 t xadd [4]; // Vector with extend addresses.

} msg t;
uint16 t myAdd; // Assigned short address
uint16 t queryPower, replyPower; // Query and Reply transmission power variables.
uint16 t pwrStep // Power step reduction.
uint64 t myXAdd, prev xadd; // Extended address and previous extended address.
Name: init
Description: Starts the address self-assignment procedure.
init() {

myXAdd= largerandom(); // Choose a random extend address
queryPower = replyPower= MaxPower; // Sets the power step
pwrStep = (MaxPower − MinPower)/NCircles; // for each ring
newAddress(); // Chooses a new address

}

Name: receiveMsg
Description: Processes each received message. The “Query” and “NACK” message types are part of the address

assignment protocol, while the “ColQuery”and “ColReply” are part of the collision solving protocol.
void receiveMsg(message t msg) {

switch(msg.type) {

case Query: // Query message received
if(msg.s add== myAdd && msg.xadd[0]!= myXAdd) { // Test if there is a collision

sendNack(msg); // Send a NACK if there is a collision
} else if(!duplicate(msg)){ // Test if a copy was previously received.

if(msg.hop == 0) { // If it is a fist hop query schedule
msg.hop = 1; // a message for transmission after some time.
sendQueryAfter(msg, delayStep∗msg.strength/pwrStep)

}

} else if(incCtr(msg) > MaxCtr) // Inc. and test the 𝑛𝑜 of copies
markAsTrans(msg); // If bigger than threshold, remove

break; // the message from the sending queue.
case NACK: // Negative ACK received

if (msg.hop==1 && // If it is a NACK to a 2nd hop query
(msg.xadd[1]== myXAdd || msg.xadd[1]== prev xadd)) { // that was sent by me
msg.hop = 0; sendNack(msg); //Then send a NACK to the original query node.

}

if (msg.xadd[msg.hop]== myXAdd) // If is is a NACK to a query sent by me
if(add2Ctr (msg.hop) || // Inc. the counter of NACKs and if exceeds the

(msg.hop==0 && msg.s id== myAdd)) // threshold or I’m the original query node (1st hop),
newAdd(); // choose a different address.

break;
case ColQuery: // Receive a Collision Query message

msg ={msg.s add, myAdd, ColReply, myXAdd}; // Send a reply
send(msg, replyPower); // with my short and extended addresses.
break;

case ColReply: // Receive a Collision Reply message
if(isNotMsgScheduledTo(msg.s add, msg.xadd[0])) { // if is the first message

msg = {msg.s add, myadd, ColSolve, msg.xadd[0]}; // Schedule a ColSolve msg
scheduleMsgToSend(msg, timeout); // with only its address
falsePositives++; // If no more ColReplies arrive this is a false positive

} else { // If is the second message it confirms the collision
addXAddToMsg(msg.s add, msg.xadd[0]); // Add the extended address to the msg
markAdd(msg.s add); //Mark the address as a collision
falsePositives−−; // Confirm that it was not a false positive

}

break;}}

Listing 1: Main protocol functions. The init() and receive() functions are the main protocol functions.

International Journal of Distributed Sensor Networks 7

typedef struct { // Node signal strength record
uint 16 add; // the address of this record
byte ss avg [2]; // signal strength average.
byte n [2]; //messages received.
boolean solving; // is already solving a collision

} NodeRecord;
const int maxMsgCount = 15;

Name: recMsgPwr
Description: Record the message strength for each source address and type.

Analyses the previous maxMsgCount measurements and decide to start a collision solving procedure.

void recMsgPwr(int add, // Source address
int isB, // 1-broadcast, 0-otherwise.
int ss) { // signal strength.

NodeRecord nrec = getAddRecord(add); // Find the record of the node with that address
if (nrec.solving) // If its already solving a collision for the node

return; // with that address, returns.
if(nrec.n[isB] >)0 { // If the number of messages record for that address is >0

int ci = 4 + falsePositives; // Set the confidence level to 4 (4∗sigma: −99.99% ci) plus
// the number of false positives to dynamically adjust the ci.

byte diff = abs(ss − nrec.ss avg[isB]); // Diff between the signal strength (ss) and the average ss
if(diff > ci∗0.003∗ss) // If diff is bigger then the confidence level

startColSolving(add); // starts the collision solving protocol
}

if(nrec.n[isB] > maxMsgCount) { // If the number of record msgs is bigger then the maximum
nrec.n[isB] = 1; // resets the count and
nrec.ss avg[isB] = ss; // the signal strength average

} else {

nrec.n[isB]++; // Increments the message record count
int delta = ss − nrec.ss avg[isB]; // calculates the new signal strength
nrec.ss avg[isB] += delta/nrec.n[isB]; // average.

}

}

Listing 2: Detecting an address collision using previous information on signal strength.

to queries initiated by other nodes, it does not verify this
property and may not stabilize.

Given the collision probability 𝑝
𝑐
and the probability of

finding a 2-hop unique identifier 𝑝
𝑠
= 1 − 𝑝

𝑐
, the probability

of collision after 𝑘 independent trials is 𝑃
𝑐
(𝑘) = 𝑝

𝑘

𝑐
, and the

probability of success is 𝑃
𝑠
(𝑘) = 1 − 𝑝

𝑘

𝑐
. Thus, if we take 𝛿 =

𝑃
𝑠
(𝑘 − 1), then 𝑃

𝑠
(𝑘) > 𝛿, provided that 𝑝

𝑐
< 1. Notice that

after only three trials the collision probability is in the order
of magnitude of ∼10−10 for networks with a neighborhood
density from 8 to 16 nodes and a 16 bit address space.

3.1. Broadcast Problems. One of the previously described
problems of the protocol is that it relies on broadcast mes-
sages. Broadcast messages are inherently unreliable because
whenever the number of nodes in the neighborhood is not
known, the emitter will not be able to know if messages have
arrived or not. However, inWSNs, the problem is even worse
becausemessagesmay not arrive formanymore reasons than
in other network scenarios:

(i) thewell knownhidden terminal problem in radio net-
works may prevent messages from arriving without
being noticed by the emitter;

(ii) depending on the MAC protocol, nodes may have
the receiver asleep, to prevent energy loss, when a
broadcast message arrives.

The common solution to improve broadcast reliability is
to repeat each broadcastmessage several times to improve the
probability of being received.However, this solution increases
the potential of message collision whenever several nodes are
trying to broadcast a message. When some of these messages
are rebroadcasts of previously arrived broadcast messages, we
may be facedwith the so called broadcast stormproblem [26].

To reduce the broadcast storm problem, we use the
counter-based solution proposed in [26] enriched with dis-
tance information. In the original counter-based solution,
some nodes are prevented from rebroadcasting a received
message in order to minimize the number of messages
sent. Whenever a node receives several replicas of the same
message, it concludes that most of its neighbors have already
received the message; thus, it does not need to send it again.
By avoiding sending messages, nodes are minimizing the
broadcast storm problem and are saving energy, but they
are increasing the probability of not reaching nodes that
they should. In [26], it is shown that, in a homogenous

8 International Journal of Distributed Sensor Networks

Name: newAddress
Description: Generate a new short address and send it after a random delay

void newAddress() {

myAdd = random(); // Generate a new random short ID.
sendQueryAfter(msg, randDelay); // Sends a Query for that short ID.

}

Name: add2Counter
Description: Counts 1st and 2nd hop NACKs and reduces transmission power accordingly
boolean add2Counter(byte hop) { // Count the number of NACKs received.

static int secCtr

secCtr += hop==0?1:3; // A NACK at the 2nd hop decreases power faster than at 1st.
if (secCtr>9 && queryPower>0) { // If to many NACKs were received:

queryPower −= pwrStep; // decreases the power, unless power
secCtr = 0; // is already zero; resets the counter;
prev xadd = myXAdd; // saves the previous extended address;
myXAdd= largerandom(); // and generates a new one.
return true; // Inform that a new short address must

} // be generated.
return false; //There is no need to generate

} // a new short address yet.

void sendQueryAfter(msg t msg, int delay) { // Query messages are sent
msg.type = Query;

msg.xadd[msg.hop] = myXAdd; // with the extended addresses
sendAt(msg, queryPower, time()+delay); // and with current queryPower.

}

void sendNack(msg t msg) {

msg.type = NACK; send(msg, replyPower); // NACK messages are sent
} // with replypower.

Listing 3: Auxiliar functions.

radio network, the uncovered area of a rebroadcast is directly
related to the number of copies already received. In the
original implementation, nodes rebroadcast after a random
delay, provided that in the meantime they have not received
enough copies of the samemessage. In the proposed solution,
nodes further away from the source broadcast first, thus
increasing the probability that nodes closer to the source are
prevented from broadcasting.

There are other methods to minimize broadcast storms
with better efficiency ratios, that is, the ratio; between the
covered area and the number of broadcasting nodes is better
with other methods. However, all these methods require
either the knowledge of the topological localization of each
node [26] or, at least, each node’s neighbors [27].

In the proposed protocol, after receiving a querymessage,
the node checks if that message has been previously received.
If themessage has been previously receivedmore than a spec-
ified number of times, the message is marked as transmitted.
Otherwise themessage is scheduled for broadcast after a delay
directly proportional to the power of the received message
(line 44 in Listing 1).The result is that the retransmission area
is divided into concentric rings. The nodes in each of these

rings rebroadcast at more or less the same time. Notice that
rings are not evenly distributed in space because the reception
power varies with the inverse square of the radius, which is
more or less consistent with the error in measuring message
strength, which is much bigger for low power receptions; that
is, outer rings are wider than inner rings because outer nodes
have less accurate positioning than inner nodes.

The first question that arises is the number of copies
that need to be received in order to prevent the message
to be rebroadcasted. Williams and Camp [28] found that
for networks with densities lower than 11 neighbors this
threshold must be ≥4 to get a maximum coverage, that
is, minimize the number of nodes that never receive the
message. However, their scenario is different from ours (we
need to cover a 2-hop region while they need to cover the
whole network), and they do not use the reception signal
strength to schedule rebroadcasts.

We have modified the 802.11 MAC layer of the J-Sim sim-
ulator [29] to incorporate our identity assignment features
and tested over a field of 𝑛 = 300 nodes using the free
propagation model. The sensors were placed randomly on a
rectangular field with an area 𝐴 = (𝑛/(𝑘 + 1))𝜋𝑟

2, where 𝑟 is

International Journal of Distributed Sensor Networks 9

0
1
2
3
4
5
6
7

2 3 4 5 6 7 8 9 10
Threshold

M
es

sa
ge

 n
ot

 ar
riv

ed
 (%

)

Not power aware
Power aware

Figure 3: Impact of the threshold value on the percentage of
messages not delivered, with and without power aware rebroadcast
delay.

11
11.5

12
12.5

13
13.5

14
14.5

15
15.5

16

0
Message not arrived (%)

Not power aware
Power aware

0.01 0.1 1 10

x
se

nd
 en

er
gy

Figure 4: Energy spent by each node (divided by the energy spent
by a single message transmission) for a given coverage.

themaximum transmission distance and 𝑘 = 12 is the average
number of neighbors of a node. The results are depicted in
Figures 3, 4, 5, 6, and 7 and are analysed below.

The graph in Figure 3 shows the impact on the percentage
of uncovered area with the chosen threshold. As expected,
the uncovered area decreases when the threshold increases.
However, it can be seen that the threshold required to achieve
a significant coverage is much lower with the signal strength
information than without it. To get a coverage of 99.5% (i.e.,
0.5% of messages not received), we need a threshold of 6
without reception power information and a threshold of 4
with reception power information.

A lower threshold is better because it reduces the number
of messages sent, thus improving energy consumption and
minimizing the broadcast storm problem. In the end, the
choice is between energy and coverage. Figure 4 shows the
energy spent by each node as a function of the desired
coverage. In this graph, we have assumed a simplified energy
model in which sending a message consumes one energy
unit, the reception of a message consumes 1/10 of a unit, and
everything else is negligible.

14
12
10

8
6
4
2
0

108 96 75432

M
es

sa
ge

 se
nt

 p
er

 n
od

e

Threshold

2-neighbors
12-neighbors

Figure 5: Number of messages sent by node with threshold value
and density.

Again, as expected, the coverage increases with energy
consumption both in the original solution and in the
improved one. However, the solution which makes use of
reception strength information is able to achieve better
coverage with the same energy. In some cases, the uncovered
area is 10 times smaller with the same energy consumption.

The resulting protocol is very fast. Figure 5 shows that
each node sends around 4 to 12messages on average to ensure
the completeness of the protocol depending on the density of
the field (threshold values have very little effect).

However, it is clear that even with this model some of
the messages are not going to be delivered which may affect
the correctness and stability of the protocol. It is obvious
that the stability of the protocol is not affected because the
number of NACK messages does not increase. On the other
hand, the correctness is clearly affected because if a query
or a NACK message does not reach some of the neighbors,
two or more nodes may choose the same address without
noticing. However, the probability of an undetected collision
is very small (for a 99.5% coverage, the probability of a 2-
way undetected collision on a network with 1000 nodes and
20 neighbors is ∼0.1%) and may be handled by the protocol
described in Section 5.

4. Avoiding Intruders

The previous scenario assumes that every node behaves well.
If one or several nodes start replying to every query saying
that they have already chosen that address, the well behaved
nodes may end up with a depleted battery after repeating
the query several times. If well behaved nodes do not share
individual cryptographic key material with every neighbor,
they are not able to distinguish well behaved neighbors from
badly behaved neighbors. In such scenario, the only solution
is to speak progressively softly until the badly behaved nodes
are not able to hear the query.This is similar to whispering to
your neighbor to prevent intruders from overhearing.

Whispering prevents nodes from communicating with
more distant nodes which may have a negative impact
on the network connectivity. We minimize this impact by
reducing the power only as much as necessary and only in

10 International Journal of Distributed Sensor Networks

Without whispering

0

50

100

150

200

250

0 50 100 150 200 250

Success
Fail
Bad

X position

Y
po

sit
io

n

(a)

With whispering

0

50

100

150

200

250

0 50 100 150 200 250

Success
Fail
Bad

X position

Y
po

sit
io

n

(b)

Figure 6: Impact of whispering over the percentage of affected nodes, in the presence of a percentage of badly behaved ones.

0

10

20

30

40

50

60

1 2 3 4 5 6

70

Malicious nodes (%)

Fa
ile

d
no

de
s (

%
)

Without whispering
With whispering

(a)

With whispering

Fa
ile

d
no

de
s (

%
)

0
5

10
15
20
25
30
35
40
45

Number of neighbors

Without whispering

2 3 4 5 6 7 8 9 10 1211

(b)

Figure 7: Relation between the percentage of failed nodes with the percentage of malicious nodes and network density, with and without
whispering.

the nodes which are direct neighbors of the badly behaved
one. Notice that, if a node receives a NACK originated at
his neighbor’s neighbor, reducing the power may prevent it
from communicating with legitimate neighbors which are
closer to it than the badly behaved node. It is its neighbor
that should reduce transmission power. However, a node can
not know for sure if a NACK is being relayed or produced at
its neighbor, since a badly behaved node may always forge a
NACK as if it were being relayed. Our solution was to reduce
the power more quickly at nodes receiving NACKs to be
relayed. Therefore, the only way a malicious node is able to
force another node to reduce its transmission power rapidly
is by being near; otherwise, it can only affect the node through
relayed NACKs.

The reduction of transmission power should only affect
queries, and the reply messages should be transmitted at full

power; otherwise, a node could be prevented from sending a
NACK only because it has a badly behaved node near it (see
line 55 of Listing 1 and function add2ctr() in Listing 3).

After receiving a query from a node, a badly behaved
node may start issuing NACKs to random addresses, even
if it does not receive any more queries (because of query
power reduction) trying to guess the next chosen address. To
prevent it, a node should change its extended address every
time it reduces its query transmission power.

A final word about the necessity of keeping the previous
extended address after changing to a new one: the previous
extended address is required whenever a node changes its
address and it was already participating in another query as a
relay node. If aNACKarrives, itmust be relayed because there
is no way to tell if that is a legitimate NACK from a colliding
node or a malicious one.

International Journal of Distributed Sensor Networks 11

This protocol is not able to completely prevent badly
behaved nodes from stopping well behaved ones from choos-
ing an address, but itminimizes the number of affected nodes.
We have tested it by modifying a small percentage of nodes
of our J-SIM simulator such that they behaved as malicious
nodes would, if they wanted to prevent the protocol from
succeed. We assumed that malicious nodes are also energy
constrained and are not able to be radiating messages all the
time. Instead, they reply with NACKmessages to every query
and continue to do so for a period after receiving the query,
trying to guess the extended address used by the request that
is whispering. As before, the number of nodes was set to 300
and the wireless range and deployment field size was chosen
such that the average number of neighbors of each node is
𝑘 = 12.

Figure 6 shows the effect of a small percentage of mali-
cious nodes (2%) over a field of 300 randomly deployed
nodes. Dark triangles represent malicious nodes, light rhom-
bus represent nodes that were able to choose a collision free
address, and dark squares represent nodes that were not able
to choose an address or became isolated from nonmalicious
nodes by the effect of power reduction.

As expected, the number of nodes which were not able to
get an address with whispering is much smaller than without
it. With whispering, the affected nodes are in the direct
vicinity of themalicious nodes, while withoutwhispering, the
affected nodes are spread over their 2-hop neighborhood.

The number of affected nodes is obviously dependent on
the number of badly behaved ones, but it is also dependent
on the network density.The number of failed nodes increases
when the number of nodes in the vicinity of malicious ones
increases. Figure 7 shows how the percentage of affected
nodes increases with the percentage of malicious ones and
with the network density. In both cases, the percentage
of failed nodes is much lower and increases much slower
with whispering than without whispering. In fact, with
whispering, the variation of failed nodes with the network
density is almost negligible, while without whispering, the
effect is very noticeable.

5. Handling Incrementally Deployed Scenarios

One important feature of address assignment protocols,
which is often forgotten, is its ability to handle late deployed
sensors and merging of network partitions. The deployment
of additional sensors may be necessary either to improve
the sensor coverage or to improve the network lifetime; the
sensors in place may be at the end of its battery. The merging
of network partitions may happen either because there was
an obstacle dividing nodes at the time of deployment which
is now removed or because the addition of new nodes made
two or more networks reachable to each other.

In such scenarios, address collisionsmay happen, because
at the time of address assignment, not every node knew
about each other. Most address assignment protocols do not
consider these scenarios, and the ones that do choose to
rerun the assignment protocol in the colliding nodes [15].
This strategy may have a negative impact on routing, because

0 200 400 600 800 1000

Pr
ob

ab
ili

ty
 o

f c
ol

lis
io

n

Number of nodes

Between 3 nodes
Between 2 nodes

10
−3

10
−4

10
−5

10
−6

10
−7

10
−8

10
−9

10
−12

10
−11

10
−10

Figure 8: Collision probability between 2 nodes and between 3
nodes for a field with a density of 25 neighbors.

every route established through those nodes needs to be
rebuilt.

Another problem that these protocols need to handle is
how to detect the existence of colliding addresses. In [15],
address collisions are detected during the periodically neigh-
borhood query which is done for this purpose. However,
given that the addition of new nodes and the merging of
networks are rare, such a scheme is too energy expensive. In
[30] (a protocol designed for MANETs), each packet has an
additional 64 bit unique number which is used to detected
address collisions, but that is not an option in WSNs given
the size of each packet.

Whenever a node is added or a barrier is lifted between
two ormore network partitions, it is possible that two ormore
nodes with the same address became reachable by a single
node. A 𝑘-𝑤𝑎𝑦 collision happens whenever 𝑘 nodes with the
same address are reachable by one node, a.k.a the detecter.
The probability of having a k-way collision after the address
assignment protocol runs is given by the probability of having
a k-way collision 𝑃col(𝑘-way) (1) times the probability of a k-
way cut during the address assignment protocol. Assuming
that a 2-way cut is given by 𝑝cut(2-way), then the probability
of a k-way cut is given by

𝑝cut (𝑘-way) = (𝑝cut (2-way))
(
𝑘

2
)

, (4)

because it requires a cut between every two pairs of nodes in
the k-way collision.

Figure 8 shows the probability of collision for 3-way and
2-way collisions for several number of nodes after running
the address assignment protocol, giving an address space
|𝐴| = 2

15 (15 bit addresses, we will use the extra bit
for collision solving), a neighborhood of 25 nodes, and a
probability of a 2-way cut of 1. The collision probability is
around 10

7 times below for 3-way collisions in comparison
with 2-𝑤𝑎𝑦 collisions.

12 International Journal of Distributed Sensor Networks

Given the above results, we make the hypothesis that k-
way collisions with 𝑘 > 2 are extremely unlikely, and we
are going to focus our efforts in detecting and solving 2-way
collisions.

5.1. Detecting Address Collisions. Our approach to detect
address collisions is motivated by the way that people distin-
guish two voices in a crowd. If one of the voices is loud and
the other is soft, then there are probably two persons talking.
If the heard sentences do not make sense because they seem
garbled, then it is possible that they are produced by more
than one person. Neither of these heuristics gives precise
information about the existence of colliding addresses, but
they may be used as triggers for a collision solving protocol.

The former solution is independent on the transport
protocol, while the latter is not. In order to detect out-of-
order messages, the transport protocol must have the notion
of order which is not the case for many transport protocols in
WSNs; this is why we have chosen the former solution.

Given the hypothesis that only 2-way collisions may
happen whenever the network changes, only two scenarios
are possible:

(i) the address of the added node is the same of one of the
nodes already in the network, and both are reachable
by a third node (merge of partitions),

(ii) the address of two of the nodes in the network is the
same, and they are reachable by the new node (node
addition).

The first scenario is simpler than the second, although, as
we will see, they will be handled the same way. If the nodes in
the network knew each other, they are able to know the signal
strength (SS) average and standard deviation ofmessages sent
by each other. If one of the nodes detects a message with a
SS much different from the usual, it may suspect an address
collision, although, to be sure, it will have to run the collision
solving protocol described in the next section. The second
scenario is a bit more troubling because the colliding nodes
are both new for the detecting node.

We have started by using an algorithm fromKnuth [31] to
incrementally calculate the average SS and standard deviation
𝜎SS of the SS without having to keep all samples, that is, the
calculus is incremental. In order to get a four nines confidence
level in the collision detection, we checked if the SS of each
message was within four times the standard deviation of the
average (5):

SS − SS

𝑖

< 4𝜎SS. (5)

Otherwise; we would signal a collision. However, we have
realized that the SS average varies over time due to battery
drain and environment changes, leading to large standard
deviations and making the system irresponsive to address
collisions. Figure 9 shows a typical signal strength over time
of messages received in a field of MicaZ Motes using the
TinyOS 802.15.4 stack; themeasurementswere taken between
two sensors 1 meter apart sending a message to each other,
every second, for 150 seconds long.The first approach to solve
this problem was to calculate the SS average and standard

215

220

225

230

235

240

245

250

Si
gn

al
 st

re
ng

th

Time

Figure 9: Signal strength of messages received by the same node
over time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

210 215 220 225 230 235 240 245

St
an

da
rd

 d
ev

ia
tio

n

Signal strength

Low noise
High noise
Compromise curve

Figure 10: Standard deviation behavior with the signal strength
(SSmax = 255) of messages.

deviation using only the last few messages; however, that too
proved ineffective because the standard deviation with too
few messages lacked the necessary precision.

Instead of computing both the average and standard
deviation, we chose to compute the average over the last few
messages and estimate the standard deviation based on the
average. In order to do it, we have analyzed the standard
deviation of messages’ SS sent by the same node at different
distances and in different places.

We have realized that the most relevant factor to the
measurements of standard deviation is the place where the
measurements were done, in particular if the test site has
many wifi antennas working. This is consistent with several
reports of interference between Wifi and 802.15.4 networks.
We called such scenarios noisy ones and all the others
nonnoisy since we did not find other relevant differences.

Figure 10 depicts the standard deviation variation with
signal strength and noisy versus non-noisy environments.We

International Journal of Distributed Sensor Networks 13

Table 1: Error rate at different distances (in meters) and noise levels.

False detections Regulatory mechanism Noisy environment Nonnoisy
1m 5m 10m 15m Total total

Negatives 0% 1% 3% 0% 4% 0%

Positives Without 6% 1% 0% 4% 11% 0%
With 0% 0% 0% 0% 0% 0%

have placed two nodes transmitting at 1, 5, 10, and 15 metters
in noisy and non-noisy environments and measured the
average and standard deviation of the received signal strength
for each distance and environment over 150 messages. For
each calculated average, we have plotted the correspondent
standard deviation and drawn a line showing that, frequently,
standard deviation is higher for higher reception strengths.
As expected, the standard deviation over a few messages is
very small in low noise scenarios and is almost twice in high
noise scenarios (Figure 10).

A good compromise is given in Figure 10, in which the
predicted standard deviation is given by �̂�SS = 0.003SS

𝑖
.

Our measurements showed that (5) with �̂�SS instead of 𝜎SS
is suitable both for low and high noise scenarios; however,
if for extremely high noise scenarios the number of false
collisions detected by this protocol is too high, we incorporate
a self-regulatory mechanism which increases the standard
deviation every time a false positive is detected.

This solution has another advantage: it is able to handle
both collision scenarios. Notice that, if a node arrives to a
network and starts to communicate with two other nodes
with the same address at the same time, it will not have
previous information about average and standard deviation;
therefore, it will not be able to find discrepancies with past
history. However, with this solution, although the averagewill
still be wrongly calculated because it will be something in
between the two signals of the two communicating nodes, the
standard deviationwill not changemuch,whichwill allow the
detection of the collision.

Listing 2 shows that whenever a message is received with
a signal strength above or below a predefined confidence
interval the solving protocol (see Section 5.2) is started.
Notice that the set of values kept for each address is comprised
by: the average of the signal strength of every message
received (ss avg); the number of messages received from
that address; and a value indicating that a conflict is being
solved. Notice, also, that the record structure uses two sets of
values for each address, because it is expected that broadcast
communications be donewith a different transmission power
than unicast communications. The transmission power of
unicast communications is usually adapted to the distance
between peer nodes, while the broadcast communications do
not have this kind of adaptation.

We have conducted two sets of experiments, usingMicaZ
sensor nodes running TinyOS 2.0, in three different environ-
ments: two small non-noisy environments and one open and
noisy environment, that is, a large student hall with many
students moving, each one with its own laptop device with
Wifi and many Wifi antennas in the vicinity. The first set of

experiments was designed to detect false positives, and the
second to detect false negatives.

5.1.1. False Positives. The false positive ratio is an important
metric because it impacts the energy consumed by each node
in the collision solving protocol; that is, running the collision
solving protocol is expensive and should be triggered as
seldom as possible. We have placed two nodes at different
distances (1, 5, 10, and 15 meters) sending messages to each
other and measured the amount of times that the algorithm
detected a false collision (Table 1), that is, the number of
times one of the nodes received two messages from a single
node, with signal strengths different enough to be mistakenly
identified as coming from two different nodes with the same
ID. We have conducted 10 experiments at each distance and
environment, each experiment exchanging 300messages (150
messages each), and we have taken the average number of
false positives. As expected, the number of false positives in
the non-noisy scenarios was close to 0% which is consistent
with the four nines accuracy specification. In the noisy
environment, the system showed a rate of almost 11% of false
positives without the regulatory mechanism, but with the
regulatory mechanism, after just 3 false positives, it reached a
steady state where no more false positives occurred (0% false
positives).

Another interesting result is the distribution of false
positives with the distance. Most false positives (6%) were
experienced when the colliding nodes were 1 meter apart
from the arriving node. For larger distances, within the
transmission ratio of our nodes (in noisy environments 15
meters), the false positive rate is much lower, which may
be related to the saturation of the signal (it is difficult to
distinguish two persons shouting very near to us).

5.1.2. False Negatives. Although we have defined two colli-
sion scenarios: the arriving node connecting two networks
previously disconnected and the arriving node having the
same address of another node, we have only measured the
false negatives in the former, because it is more general than
the latter. The main difference between the two scenarios is
the node that detects the collision; in the “connecting two
networks scenario” it is the arriving node that detects the
collision while in the “arriving node scenario with duplicate
address” it is one of the other existing nodes that detects the
collision. From a detection point of view the main difference
between the two detecting nodes is that the former one has
no history of messages received (it has just arrived) and the
latter may have received messages before from one of the
duplicate address nodes. Therefore the former scenario is

14 International Journal of Distributed Sensor Networks

Figure 11: Area where the arriving node needs to be placed in order
to detect the collision. The dark rhombus represents the arriving
node and the light circles the colliding nodes.

harder to detect.Moreover, the algorithm specifies that after a
predefined number of messages (maxMsgCount) the history
of received messages is cleaned, therefore in the long run the
two scenarios are equal.

In order to assess the false negative rate of the first
scenario, we have chosen the worst possible placement of
nodes for the purpose of collision detection. Assuming that
all nodes have an equal radio range, the arriving one will be
in the position of connecting two previously disconnected
nodes with potentially the same address if it is placed within
the intersection of the two radio coverages, and the difficulty
of detecting the collision will be higher when the node
is placed at the exact same distance of the two colliding
nodes (Figure 11), since it will receive messages from both
of them with similar strength. Again, we have conducted 10
experiments with 150 messages each at each combination of
distance, environment, and regulatory mechanism (with and
without) and taken the average number of times that the
collision was not detected.

The protocol shows 0% of false negatives (Table 1) if it is
closer to one of the colliding nodes or if it is run in a low
noise environment; however, in a high noise environment
with the two colliding nodes at exactly the same distance,
we have experienced a false negative rate of 4%. A false
negative does not mean that the arriving node will never
detect the collision, it justmeans that it is not able to detect the
collision within the frame period of 2 times maxMsgCount.
Nonetheless, fast detection is important to minimize the
impact of garbled communications.

5.2. Collision Solving Protocol. The collision detection pro-
tocol described in the previous section does not provide a
definitive answer on the existence of an address collision. It
ends by sending a query to every node with a specific address.
Only if several nodes reply (with different extend addresses)
the collision is confirmed.

When a node detects a collision, it gives to every node
with the same address a nickname, and informs the node of
that nicknameThe situation is similar to having two students

in the same class named John, and we refer to one as “Little
John” and to the other as “Big John.” Notice that they will
still be named John for every one else, and we cannot just
name them “Little” and “Big,” because we would create other
collisions.

The solution is to reserve one bit from the 16 bit addresses
for nicknames. Therefore, only 15 bit of the 16 bit addresses
are assigned by the address assignment protocol, and the
remaining bit is originally set to zero. When a node detects
a collision it informs each of the colliding nodes that one
of their addresses will have to set the bit to one. Each
of the colliding nodes stores in a table the nickname for
which it is known by that node. Whenever the node that
changed its address receives a message from the node that
detected the collision, it will only accept it if the bit on the
destination address is set to one. Notice that other nodes
continue to communicate with the node that changed the
address with the old address; the change is only relevant for
the communication with nodes that detect the collision.

This solution is only able to solve a single collision. If the
address of a node collides with two other nodes, the protocol
does not work because it would be possible for a node to
end up being known by two nicknames by two different
nodes, which would have a negative impact in broadcast
communications. In fact, unicast communications would not
be affected because the node could choose the nickname
to use depending on the message destination; however, for
broadcast communications, the node would not know the
nickname to choose. Nevertheless, this is not a big problem
because 3-way collisions are much less probable than 2-way
collisions.

The proposed algorithm is shown in Listing 1. The
algorithm assumes that the node detecting the collision (the
initiator) has sent a “collision query” message (ColQuery) to
all the nodes with the colliding address (line 26 in Listing
2). After receiving that message, a node replies with its
extended address. When the initiator receives a “collision
reply” (ColReply) message, it schedules a “collision solving”
message (ColSolve) to be sent after a predefined timeout.
If the node receives another “collision reply” message with
a different extended address, it confirms the existence of a
collision. If that happens, it marks the address that has a
collision andmodifies the “collision solving”message waiting
to be sent by adding the new extended address. Finally,
upon receiving the “collision solving” message, the colliding
nodes choose independently the one that is going to adopt
a nickname by comparing the extended addresses. The one
with the smallest extended address adds a nickname to its
address. Note that whenever there is no collision, that is,
the collision detection protocol had a false positive none of
the nodes adopts a nickname, because the smallest extended
address in the message is 0 which is an invalid extended
address.

The cleanMsg function is used whenever a message
is received. If the message comes from someone with a
nickname and the receiver has not detected that collision
(some other node did), the nickname bit is clean.This ensures
that a node that adopted a nickname may use it in broadcast
communications.

International Journal of Distributed Sensor Networks 15

6. Conclusion

The address self-assigning problem is a well-studied problem
in the MANET world, but it has not received much attention
in the WSN world. In this paper, we have described a simple
address self-assignment protocol and proved its correctness.
To improve the protocol performance, we have proposed an
improvement to awell-knownmethod of controllingmessage
floods, based on the level of the power of message reception.

We have introduced the whispering technique to handle
intruders when cryptographic keys are not available or have
been compromised and show how to use it in the proposed
protocol.We believe that this is a valid security technique and
intend to study its application in other protocols.

We have designed and tested a very energy efficient
mechanism (it does not use specific messages for that pur-
pose) to detect late address collisions with a very low error
rate. Finally, we have proposed the use of aliases to handle
late address collisions without disrupting routing and other
session tables.

The combination of all these protocols result in a very
robust address assignment framework which was imple-
mented in TinyOS 2.0 and tested in MicaZ motes.

Acknowledgment

This work was supported by national funds through FCT—
Fundação para a Ciência e a Tecnologia, under project PEst-
OE/EEI/LA0021/2013.

References

[1] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh,
andK. Rothermel, “FlexCup: a flexible and efficient code update
mechanism for sensor networks,” in Wireless Sensor Networks,
vol. 3868 of Lecture Notes in Computer Science, pp. 212–227,
2006.

[2] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th Annual IEEE International Conference
on Local ComputerNetworks (LCN ’04), pp. 455–462,November
2004.

[3] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6
over low-power wireless personal area networks (6LoWPANs):
overview, assumptions, problem statement, and goals,” RFC,
4919 (Informational), 2007.

[4] Z. Sheby, P. Thubert, J. Hui, S. Chakrabarti, and E. Nordmark,
“LowPan neighbor discovery extensions,” Internet-Draft draft-
ietf-6lowpan-ipv6-nd-02, Internet Engineering Task Force,
2009.

[5] “IEEE.IEEE Std 802.15.4: wireless MAC and PHY specifications
for LR-WPAN,” IEEE Computer Society, 2003.

[6] L. A. N. Wireless, “Medium access control (MAC) and physical
layer (PHY) specifications,” IEEE Std, 802, 2007.

[7] A. Mobile, C. E. Perkins, and S. R. Das, “IP address autocon-
figuration for ad hoc networks,” Internet Draft draft-ietfmanet-
autoconf-01.txt, Internet Engineering Task Force,MANETWG,
2000.

[8] K. Nakano and S. Olariu, “Randomized initialization protocols
for ad hoc networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 11, no. 7, pp. 749–759, 2000.

[9] A. Micic and I. Stojmenovic, “A hybrid randomized initial-
ization protcol for tdma in singlehop wireless networks,” in
Proceedings of the International Parallel Distributed Processing
Symposium (IPDPS ’02), pp. 147–154, 2002.

[10] A. J. McAuley and K. Manousakis, “Self-configuring networks,”
in Proceedings of the 21st Century Military Communications
Conference (MILCOM ’00), pp. 315–319, IEEE Computer Soci-
ety, Los Angeles, Calif, USA, October 2000.

[11] Y. Tian, M. Sheng, and J. Li, “Virtual grid spatial reusing
algorithm for MAC address assignment in wireless sensor
network,” in Proceedings of the 20th International Conference on
Advanced Information Networking and Applications (AINA ’06),
vol. 1, pp. 649–654, Vienna, Austria, April 2006.

[12] M. S. Pan, H. W. Fang, Y. C. Liu, and Y. C. Tseng, “Address
assignment and routing schemes for ZigBee-based long-thin
wireless sensor networks,” in Proceedings of the Vehicular
Technology Conference (VTC ’08), pp. 173–177, Singapore, May
2008.

[13] Y. Liu and L. M. Ni, “Location-aware ID assignment in wireless
sensor networks,” in Proceedings of the IEEE International
Conference on Mobile Ad Hoc and Sensor Sysetems (MASS ’06),
pp. 525–529, Vancouver, Canada, October 2006.

[14] J. Lin, Y. Liu, and L.M. Ni, “SIDA: self-organized ID assignment
in wireless sensor networks,” in Proceedings of the IEEE Interna-
tonal Conference on Mobile Adhoc and Sensor Systems (MASS
’07), pp. 1–8, Pisa, Italy, October 2007.

[15] C. Schurgers, G. Kulkarni, and M. B. Srivastava, “Distributed
assignment of encoded MAC addresses in sensor networks,” in
Proceedings of the 2nd ACM International Symposium onMobile
Ad Hoc Networking and Computing (MobiHoc ’01), pp. 295–298,
ACM Press, October 2001.

[16] C. Ribeiro, “Robust sensor self-initialization: whispering to
avoid intruders,” in Proceedings of the International Conference
on Emerging Security Information, Systems, and Technologies
(SECURWARE ’07), pp. 101–107, IEEE Computer Society, Valen-
cia, Spain, October 2007.

[17] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed diffusion for wireless sensor networking,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–16,
2003.

[18] G.Mulligan, “The 6LoWPANarchitecture,” inProceedings of the
4th Workshop on Embedded Networked Sensors (EmNets ’07),
pp. 78–82, ACM Press, New York, NY, USA, June 2007.

[19] M. Gradinariu and C. Johnen, “Self-stabilizing neighborhood
unique naming under unfair scheduler,” in Euro-Par 2001
Parallel Processing, vol. 2150 of Lecture Notes in Computer
Science, pp. 458–465, 2001.

[20] T.Herman and S. Tixeuil, “A distributed TDMA slot assignment
algorithm for wireless sensor networks,” in Algorithmic Aspects
of Wireless Sensor Networks (ALGOSENSORS), vol. 3121 of
Lecture Notes in Computer Science, pp. 45–58, 2004.

[21] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang, “Self-stabil-
izing population protocols,” ACM Transactions on Autonomous
and Adaptive Systems, vol. 3, no. 4, article 13, 2008.

[22] M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen,
and A. A. McRae, “Distance-two information in self-stabilizing
algorithms,” Parallel Processing Letters, vol. 14, no. 3-4, pp. 387–
398, 2004.

16 International Journal of Distributed Sensor Networks

[23] T. Moscibroda and R. Wattenhofer, “Coloring unstructured
radio networks,” in Proceedings of the 17th Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA ’05),
pp. 39–48, ACM Press, New York, NY, USA, July 2005.

[24] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control,” Communications of the ACM, vol. 17, no. 11, pp. 643–
644, 1974.

[25] J. Beauquier, M. Gradinariu, and C. Johnen, “Randomized self-
stabilizing and space optimal leader election under arbitrary
scheduler on rings,” Tech. Rep. 99-1225, Universite Paris Sud,
1999.

[26] Y. C. Tseng, S. Y. Ni, Y. S. Chen, and J. P. Sheu, “The broadcast
storm problem in a mobile ad hoc network,”Wireless Networks,
vol. 8, no. 2-3, pp. 153–167, 2002.

[27] H. Lim and C. Kim, “Multicast tree construction and flooding
in wireless ad hoc networks,” in Proceedings of the 3rd ACM
International Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (ACM MSWiM ’00), pp. 61–68,
ACM Press, New York, NY, USA, August 2000.

[28] B. Williams and T. Camp, “Comparison of broadcasting tech-
niques for mobile ad hoc networks,” in Proceedings of the 3rd
ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc ’02), pp. 194–205, June 2002.

[29] A. Sobeih, J. C. Hou, L. C. Kung et al., “J-Sim: a simulation
and emulation environment for wireless sensor networks,” IEEE
Wireless Communications, vol. 13, no. 4, pp. 104–119, 2006.

[30] N. H. Vaidya, “Weak duplicate address detection in mobile ad
hoc networks,” in Proceedings of the 3rd ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc ’02), pp. 206–216, ACM Press, June 2002.

[31] D. E. Knuth,TheArt of Computer Programming: Seminumerical
Algorithms, vol. 2, 1981.

Submit your manuscripts at
http://www.hindawi.com

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013
Part I

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Distributed
Sensor Networks

International Journal of

ISRN
Signal Processing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mechanical
Engineering

Advances in

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

ISRN
Sensor Networks

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

ISRN
Robotics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Electronics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Journal of 

Sensors

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Active and Passive
Electronic Components

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Electrical and Computer
Engineering

Journal of

ISRN
Civil Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

