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INESC-ID and Instituto Superior Técnico, Technical University of Lisbon
Av. Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal

pedro.sequeira@gaips.inesc-id.pt, {fmelo,ana.paiva}@inesc-id.pt

Abstract. In this paper we propose a novel associative metric based on
the classical conditioning paradigm that, much like what happens in na-
ture, identifies associations between stimuli perceived by a learning agent
while interacting with the environment. We use an associative tree struc-
ture to identify associations between the perceived stimuli and use this
structure to measure the degree of similarity between states in factored
Markov decision problems. Our approach provides a state-space metric
that requires no prior knowledge on the structure of the underlying de-
cision problem and is designed to be learned online, i.e., as the agent
interacts with its environment. Our metric is thus amenable to applica-
tion in reinforcement learning (RL) settings, allowing the learning agent
to generalize its experience to unvisited states and improving the over-
all learning performance. We illustrate the application of our method in
several problems of varying complexity and show that our metric leads
to a performance comparable to that obtained with other well-studied
metrics that require full knowledge of the decision problem.

1 Introduction

Associative learning is a paradigm from the field of behaviorism that posits
that learning occurs whenever a change in behavior is observed [1]. Classical
conditioning is one of the best-known associative learning paradigms. It is one of
the most basic survival tools found in nature that allows organisms to expand the
range of contexts where some of their already-known behaviors can be applied.
By associating co-occurring stimuli from the environment, the organism can
activate innate phylogenetic responses (e.g., fight or flight responses) to new
and previously unknown situations.

In this paper, we leverage this idea to reinforcement learning (RL). RL agents
explore their environment and gather information that allows them to learn the
best actions to take in different situations. Many classical RL methods, such
as Q-learning, allow the agent to successively estimate how good each action
is in every state, eventually conveying to the agent the information necessary
to select only the best actions in all states. This typically requires the agent to
experience every action in every state a sufficient number of times [2]. This need
for “sufficient” visits to every state-action pair is often impractical, particularly
in large environments, and several general approaches have been proposed to
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mitigate this need, relying mostly on some form of function approximation (we
refer to [3] for references and discussion).

However, certain scenarios present some particular structure that can be lever-
aged by the learning algorithm to improve the learning performance—namely, by
alleviating the requirement of sufficient visits to every state-action pair. For ex-
ample, in scenarios where the state is described by a finite set of state-variables
(i.e., where the state is factored), it is often possible to use this structure to
improve the efficiency of RL [4]. This is particularly true if many of the state-
variables are irrelevant for the task that to be learned, and it is possible to
improve the learning performance by identifying such irrelevant state-variables,
allowing the learning agent to focus only on those that are relevant [5, 6].

Our approach builds on all aforementioned ideas. We introduce a method that
allows the learning agent to identify associations between perceived stimuli dur-
ing its interaction with the environment. Specifically, given a learning scenario
with a factored state space, we use a pattern mining technique to build an asso-
ciation tree that identifies the occurrence of frequent patterns of state-variables
(henceforth referred as stimuli) [7]. These associations are similar in spirit to
those that natural organisms identify in their interaction with the environment,
and are then used by the agent to build a metric that identifies two states as
being “close” if they share multiple/frequent stimuli. This metric is learned on-
line and combined with Q-learning, as proposed in [8] to improve the learning
performance of our agents and use current information to update the value of
states that are considered similar according to the associative metric.

The main contribution of our approach is to provide a general-purpose state-
space metric that requires no prior knowledge on the structure of the underlying
decision problem. The associative tree and the similarity metric are both learned
online, i.e., while the agent is interacting with its environment, making it par-
ticularly amenable to use in a reinforcement learning setting. We illustrate the
application of our method in several factored Markov decision processes (MDPs)
of varying complexity and show that our metric leads to a performance compa-
rable to that obtained when using well-studied metrics from the literature [9].

2 Background

In this section we introduce the necessary background on both the biological and
computational concepts that will be used throughout the paper.

2.1 Reinforcement Learning

The field of reinforcement learning (RL) addresses the general problem of an
agent faced with a sequential decision problem [2]. By a process of trial-and-
error, the agent must learn a “good” mapping that assigns states to actions.
Such mapping determines how the agent acts in each possible situation and is
commonly known as a policy. In a sense, reinforcement learning is the computa-
tional counterpart to the notion of reinforcement used in operant conditioning
and behavior analysis [2, 10].
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RL agents can be modeled using Markov decision processes (MDPs). At every
step t, the agent/environment is in state X(t) = x, with x ∈ X and chooses an
action A(t) = a, with a ∈ A. Both X and A are assumed finite. Given that
X(t) = x and A(t) = a, the agent/environment transitions to state y ∈ X with
probability given by

P(y | x, a) � P [X(t+ 1) = y | X(t) = x,A(t) = a]

and receives a reward r(x, a), and the process repeats. The agent must choose
its actions so as to gather as much reward as possible, discounted by a positive
discount factor γ < 1. Formally, this corresponds to maximizing the value

v = E

[∑
t

γtr(X(t), A(t))

]
, (1)

where, as before, X(t) and A(t) denote the state and action at time-step t,
respectively. The reward function r implicitly encodes the task that the agent
must accomplish. It is a well-known fact that in (finite) MDPs it is possible
to find a policy π∗ : X → A maximizing the value in (1). Associated with the
optimal policy π∗ is the optimal Q-function,

Q∗(x, a) = E

[∑
t

γtr(X(t), A(t)) | X(0) = x,A(0) = a

]
,

from which the optimal policy can easily be computed [2].
In many MDPs the state X(t) can be described using a finite set of state

features Xi(t), i = 1, . . . , n, each taking values in some feature space Xi. The
state-space thus corresponds to the cartesian product X = X1 × . . .× Xn. The
structure exhibited by such factored MDPs, both in terms of transition prob-
abilities and reward function, can often be exploited, leading to more efficient
solution methods [4,11]. The computational gains can be particularly noteworthy
if many of the state-features are irrelevant for the underlying task to be solved
by the agent. In fact, it is possible to greatly improve the performance of solution
methods by identifying such irrelevant state-features and focusing only on those
that are relevant [5,6]. In this paper, we refer to an element x = (x1, . . . , xn) as a
state and to an element xi ∈ Xi as a stimulus. We consider stimuli as categorical
nominal data, i.e., variables that describe discrete values.

If the MDP model is known, the function Q∗ can easily be computed using,
for example, dynamic programming. However, in RL settings, the dynamics P
and reward r of the MDP model are typically unknown. The agent must thus
learn Q∗ through interactions with its environment. This can be achieved using,
for example, the Q-learning algorithm [10], that updates the estimate for Q∗ as

Q̂(x(t), a(t))← (1− αt)Q̂(x(t), a(t)) + αt(r(t) + γmax
b

Q̂(x(t+ 1), b)
)
, (2)

where x(t) and a(t) are the state and actions experienced (sampled) at time t,
r(t) is the received reward and x(t + 1) is the subsequent state. Q-learning is
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guaranteed to converge with probability 1 as long as every state-action pair is vis-
ited infinitely often and the step-size sequence, {αt}, verifies standard stochastic
approximation conditions.

The need for infinite visits to every state-action pair is unpractical in many
situations, and several general approaches have been proposed to mitigate this
need. In this paper we adopt a simple technique proposed in [8], whereQ-learning
is combined with a spreading function that “spreads” the estimates of the Q-
function in a given state to neighboring states. Formally, given a similarity func-
tion σt(x, y) that measures how close two states x and y are, the Q-learning with
spreading update is given by

Q̂(x, a(t))← (1−αt)Q̂(x, a(t)) +αtσt(x, x(t))
(
r(t) + γmax

b
Q̂(x(t+1), b)

)
. (3)

As discussed in [8], convergence of Q-learning with spreading to the optimal
Q-function can be guaranteed as long as the spreading function σt converges to
the Kronecker delta-function at a suitable rate.1

2.2 Classical Conditioning

Figure 1 illustrates a typical setting for a classical conditioning experimental
procedure. In a first phase, known as initial pairing or training, an organism’s
biologically significant unconditioned stimulus (US) is paired with a neutral,
biologically meaningless stimulus, called the conditioned stimulus (CS) [1, 12].
The US—for example food or an electrical shock,—reflexively evokes innate,
automatic unconditioned responses (UR)—for example, salivating or freezing.
The neutral CS can be any event that does not result in an overt behavioral
response from the organism under investigation (e.g., the sound of a bell, a light
or even the presence of a person). In a second phase (testing), and after a few
pairings between the US and CS, have occurred, the experimenter measures the
level of response from the organism when exposed to the CS alone, with no US
being presented. The experimenter typically observes a change in response from
the organism in the presence of the CS, which now evokes a conditioned response
(CR) similar to the UR evoked by the US.

Following the example in Fig. 1, the presence of Pavlov alone made the dogs
start salivating in anticipation of food delivery. This change in response is due to
the development of an association between a representation of the CS and one
of the US, arising from the co-occurrence of both stimuli. This is the main idea

1 Actually, the algorithm described in [8] also considers spreading across actions. In
this paper we address only spreading across states.
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behind Pavlov’s stimulus substitution theory [12], where the CS “substitutes”
the US in evoking the reflexive response.

The evolutionary advantages behind such associative mechanism could be
the ability of organisms to broaden the contexts where they apply some advan-
tageous response, and to anticipate the biological significance of co-occurring
events [13]. By determining associations between stimuli in the environment,
animals are able to: (i) recognize contexts (states) of the environment and thus
anticipate rewards or punishments and consequences of behavior that are sim-
ilar to those observed in previous interactions; (ii) integrate information from
previous observations with new, never before experienced stimuli.

Inspired in these ideas from classical conditioning, our learning approach: (i)
spreads action and reward information (the Q-values) between similar states; (ii)
integrates information in new, unknown states, from the Q-values of previously
experienced similar states.

3 Associative Metric for RL

In this section we introduce a new associative metric to be used in factored
MDPs. We take inspiration in the classical conditioning paradigm introduced
in the previous section, and port some of the underlying principles into an RL
context, effectively improving the performance of RL agents.

To better explain our learning procedure let us consider a behavior phe-
nomenon associated with the classical conditioning paradigm known as secondary
conditioning or sensory preconditioning as an example to follow throughout this
section. Secondary conditioning takes place whenever a CS (CS1) that is trained
to predict some US is paired with a different CS (CS2), either before or after
CS1 and US are paired. By means of this secondary association, CS2 also be-
comes associated with the US value through its association with CS1, and ends
up evoking the same kind of CR [14]. Figure 2 illustrates an example of the sec-
ondary conditioning phenomenon, where, for explanatory purposes, we consider
that the stimuli come from different perceptual modalities.

Biologically speaking, after being trained with sound-shock pairings followed
by sound-light pairings, the agent should be able to predict the presence of the
shock whenever it perceives the light, even if the two stimuli never co-ocurred.
From a more computational perspective, the learning procedure should discover
that environmental states involving light and shock are somehow associated. In
this manner, whatever value is associated with the stimulus “shock” should,
to some extent, also be associated with “light”, and the outcome of executing
similar actions in associated states should, to some extent, be similar.

We can therefore decompose the learning problem into two sub-problems:
identifying associated states and using the information about some experienced
states in other (associated) states. Sections 3.1 and 3.2 describe our approach in
addressing the first sub-problem, where we propose the combination of a sensory
pattern tree and a new associative metric to measure the distance between as-
sociated states. In Section 3.2 we discuss how this metric can then be combined
with Q-learning with spreading to improve the performance of an RL agent.
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Fig. 3. The construction of an associative sensory tree. The updated and inserted nodes
at each step are marked with a dashed line. (a) The steps involving the construction
of the tree after an initial observation of state x(1) = (CS1,US, ∅), where the sensory
itemsets associated with each new node are explicitly indicated; (b) Updated tree after
observing state x(2) = (CS1, ∅,CS2). The depth of each node is explicitly indicated.

3.1 Sensory Pattern Mining

As we have seen in Section 2.2, one of the fundamental aspects in the classical
conditioning paradigm is the ability of individuals to establish associations be-
tween the stimuli they perceive. Stimuli that are frequently perceived together
are more likely to lead to similar value and outcome than stimuli that seldom
co-occur. Inspired by this idea, our approach aims at endowing learning agents
with a mechanism allowing them to determine how “similar” two states are
based on how many associated stimuli they share. To determine such associ-
ations we follow a method introduced in [7], where an online sensory pattern
mining technique is proposed to identify associations between stimuli occurring
in the agent’s perceptions, while the agent interacts with its environment. This
method identifies such associations by incrementally constructing an associative
sensory tree, using a variation of the FP-growth algorithm [15] commonly used
for transactional pattern mining.

We denote a collection of state-elements s = 〈xi1 , . . . , xik〉, with k ≤ n, as a
sensory itemset. We assume without loss of generality that each feature-space
Xi, i = 1 . . . , n, is an ordered set2. The general sensory pattern mining algorithm
in [7] dynamically builds a sensory tree as follows:

2 We note that the specific order of the elements Xi ∈ X is not important, as long as
it remains fixed throughout learning. This is a requirement of the tree construction
algorithm that guarantees a minimal representation [7].
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– At every time-step t, the agent observes state X(t) = (x1(t), . . . , xn(t));
– Given X(t), the algorithm updates the tree by keeping two lists: an “open”

list, initially containing all elements xi(t) ∈ X(t) to be inserted into the tree;
an “ancestor” list containing the nodes in the tree updated so far, which at
the beginning of each update contains only the ROOT node (see Fig. 3(a));

– The algorithm then picks one element xi(t) from the “open” list at a time,
ignoring absent elements (∅). For each element, a child node s is created for
each node in the “ancestor” list, with counter n(s) = 1. If the child node
already exists, its counter is incremented by 1 (see Fig 3(b)). Each new node
in the tree represents a sensory itemset, i.e., a sub-combination of elements
obtained from X(t). The nodes’ counter represents the number of times the
corresponding itemset was observed by the agent so far.

Referring back to the example in the beginning of this section, let us con-
sider that we have the state-space X = X1 × X2 × X3, where X1 = {CS1, ∅},
X2 = {US, ∅} and X3 = {CS2, ∅}, where ∅ represents the absence of a partic-
ular stimulus. In other words, each state x ∈ X is described by the presence
or absence of each of the three stimuli Xi, i = 1, . . . , 3. Figure 3 shows the
steps involving the construction of the tree when the agent perceives the state
X(1) = x = (CS1,US, ∅) (sound-shock pairing) from the environment followed
by state X(2) = y = (CS1, ∅,CS2) (sound-light pairing).

Given the associative sensory tree, one can measure at each time-step the
degree of association between stimuli in some sensory itemset s, using the Jaccard
index [16] which can be used to measure the similarity of sample sets. Given the
itemset s = 〈xi1 , . . . , xik〉, let d(s) and n(s) denote, respectively, the depth of
and the counter associated with the corresponding node in the tree. For nodes
not directly below the ROOT (d > 1), the Jaccard index of s is given by

J(s) =
n(s)∑

sd
(−1)d(sd)+1n(sd)

, (4)

where the summation is taken over all nodes sd in the dependency tree of s,
i.e., the subtree containing all nodes in the “ancestor” list obtained after intro-
ducing itemset s in the tree.

Returning to our example, we can now calculate the Jaccard index of state x
by solving (4):

J(s) =
n(CS1,US, ∗)

n(CS1, ∗, ∗) + n(∗,US, ∗)− n(CS1,US, ∗) =
1

2

As expected, the index is inferior to 1, as stimulus CS1 also appears in y, where
the US is absent.

We conclude by noting that associative sensory trees are variations of FP-
trees, which are known to provide a compact representation of large transac-
tional databases [15]. Associative sensory trees have an important advantage
over FP-trees, since all information necessary to compute the degree of associa-
tion between stimuli is trivially accessible from the tree (unlike in an FP-tree).
We refer to [7] for further discussion.
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3.2 Associative Metric for Factored MDPs

To define a metric using the associative sensory tree described in the previous
section, we introduce some additional notation that facilitates the presentation.
For any state x ∈ X , let S(x) denote the set of all sensory itemsets associated
with x. This corresponds to the set of all sub-combinations of stimuli in the
dependency tree of the sensory itemset s associated with x.

We are now in position to introduce our state-space metric. Given the sensory
tree at time-step t, we consider the distance between two states x and y as

dA(x, y) = 1−
∑

s∈S(x)∩S(y) Jt(s)∑
s∈S(x)∪S(y) Jt(s)

. (5)

The distance dA is indeed a proper metric, as it can be reduced to the Tanimoto
distance [17] between two vectors associated with x and y, each containing the
Jaccard indices for the sensory patterns associated with x and y, respectively.
Intuitively, the metric in (5) translates the rationale that two states x and y
are “similar” if either they share many stimuli and/or many associated stimuli
(stimuli that often co-exist).

Having defined the associative metric we can tackle the first problem de-
fined in the beginning of the section and determine whether two states are
similar or not. We can define S(x) = {(CS1,US, ∗), (CS1, ∗, ∗), (∗,US, ∗)} and
S(y) = {(CS1, ∗,CS2), (CS1, ∗, ∗), (∗, ∗,CS2)}. The distance between x and y in
the example can then be calculated from (5) as

dA(x, y) = 1− 1

0.5 + 0.5 + 1 + 0.5 + 0.5
=

2

3

This means that the degree of similarity between the two states is 1/3. It follows
that our proposed model supports the secondary conditioning phenomenon: the
light and foot shock stimuli have some degree of association by means of the
sound stimulus, although CS2 and US were never observed together by the agent.

Now that we are able to identify similar states we describe how the metric in
(5) can be combined online with Q-learning with spreading. In the experiments

reported in this paper, we use the spreading function σt(x, y) = e−ηtdA(x,y)2 .
The sequence {ηt} is a slowly increasing value that ensures that σt approaches
the Kronecker delta function at a suitable rate, and dA is the metric defined
in (5). As seen in Section 2.1, at each time step t the spreading function σt

uses information from the current state X(t) to update all other states y ∈ X ,
depending on the similarity between X(t) and y calculated according to the
structure of the sensory tree at t.

3.3 MDP Metrics and Function Approximation in RL

The notion of “similarity” between states has recently been explored in the MDP
literature as a means to render solution methods for MDPs more efficient [9,18].
In fact, by identifying “similar” states in an MDP M, it may be possible to
construct a smaller MDPM′ that can more easily be solved.
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As established in [19], “similarity” between MDP states is best captured by
the notion of bisimulation. Bisimulation is an equivalence relation ∼ on X in
which two states x and y are similar if r(x, a) = r(y, a) for all a ∈ A and

P [X(t+ 1) ∈ U | X(t) = x,A(t) = a] = P [X(t+ 1) ∈ U | X(t) = y,A(t) = a] ,

where U is some set in the partition induced by ∼. Lax bisimulation is a general-
ization of bisimulation that also accounts for action relabeling. Both bisimulation
and lax bisimulation led to the development of several MDP metrics in which,
if the distance between two states x, y is zero, then x ∼ y [9].

While MDP metrics such as the one above were designed to improve efficiency
in MDP solution methods, the best grounded MDP metrics—namely, those re-
lying in the so-called Kantorovich metric—are computationally very demand-
ing [9]. Additionally, they require complete knowledge of the MDP parameters,
which renders them unsuitable for RL.

Nevertheless, many RL methods using function approximation implicitly or
explicitly exploit some state-space metric [20, 21]. Metrics with well-established
theoretical properties (e.g., the bisimulation metric discussed above) could po-
tentially bring significant improvements to RL with function approximation.

The metric proposed in this paper, being computed online, is suitable for RL.
Besides, as our results show, in MDPs with a factored structure, our metric is
able to attain a generalization performance that matches that obtained with
more powerful metrics (such as the bisimulation metric).

4 Experimental Results

In this section we describe several simple experiments aiming at illustrating the
applicability of our method. The experiments show the potential of combining
the proposed associative metric with spreading in Q-learning, providing a boost
in the agent’s performance in several factored MDP problems. The main conclu-
sions stemming from the experiments are analyzed and discussed.

To assess the applicability of our method, we applied Q-learning with spread-
ing using σt defined earlier and our associative metric in several factored envi-
ronments, with a state-space that could be factored into between 1 and 4 factors,
with a number of states between 20 and 481, and 5 actions. The transition prob-
abilities between states and the reward function were generated randomly. We
present the results obtained in 4 of those environments having, respectively, 20
states (5 × 4), 60 states (5 × 4 × 3), 120 states (5 × 4 × 3 × 2) and 481 states
(9 × 7 × 7, where the dimension and number of factors was chosen randomly).
In all scenarios we use γ = 0.95 and uniform exploration.

We compare the performance of standard Q-learning with that of Q-learning
with spreading using several metrics. In particular, we compare 3 metrics:
– A local metric, d�, computed from the transition probabilities of the MDP.

Given two states x, y ∈ X , d�(x, y) corresponds to the average number of
steps necessary to transition between the two states, which in grid-world
scenarios roughly corresponds to the Manhattan distance. The distance be-
tween states that do not communicate was set to an arbitrary large constant.
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(a) 20 states (2 factors). (b) 60 states (3 factors).

(c) 120 states (4 factors). (d) 481 states (3 factors).

Fig. 4. Performance of Q-learning with spreading in different factored scenarios mea-
suring the error in the Q-values. We compare different metrics with varying knowledge
of the MDP parameters. Results are averages over 10 independent Monte-Carlo trials.

– A simplified bisimulation metric, db [9]. The distance db is a simplified version
of the bisimulation metric that relies on the total variation norm discussed
in Section 3.3 and originally proposed in [9, Section 4.2].3 We note that this
is a theoretically sound metric that, however, requires complete knowledge
of both P and r.

– The associative metric dA described in Section 3.2.

For each of the test scenarios, we ran 10 independent Monte-Carlo trials, and
evaluated the learning performance of the different methods by comparing the
speed of convergence to the optimal Q-function. The parameter ηt was opti-
mized empirically for each metric in each environment so as to optimize the
performance of the corresponding method. Figure 4 depicts the average results.

We note, first of all, that our method always outperforms both standard
Q-learning and the local metric. The fact that our method learns faster than
standard Q-learning indicates that, in these scenarios, the associations between
stimuli provide a meaningful way to generalize the Q-values across states. It
is also not surprising that our method generally outperforms the local metric,
since it implicit assumes that there is some “spacial” regularity that can be used
to generalize Q-values across neighboring states. However, this is generally not
the case, meaning that in some scenarios the local metric does not provide a
significant improvement in performance—see, for example, Figs. 4(a) and (d).

The bisimulation metric, although a simplified from [9], is a metric that takes
into consideration both the transition structure and the reward function of the
3 To simplify, we treat each state as an equivalence class. We refer to [9].
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MDP. As such, it is not surprising that it allows for good generalization. The fact
that our metric performs close to the bisimulation metric in several scenarios—
see, for example, Figs. 4(a), (b) and (c)—is, on the other hand, a significant
result, since our metric is learned online, while the agent interacts with the
environment and so uses no prior knowledge on the MDP.

Finally, we note that our metric relies on the factorization of the state-space
to build the sensory tree, since the latter is built by associating state-variables
that co-occur frequently. In a non-factored MDP, our method would essentially
reduce to standard Q-learning. The reliance of our metric on the factorization
of the state-space justifies, to some extent, the result in Fig. 4(d). In fact, this
corresponds to a large MDP where the “factors” of the state-space are also large.
Therefore, not only is the problem larger and, thus, harder to learn, but also our
method is able to generalize less than in other more factored scenarios.

5 Concluding Remarks

In this paper we proposed a new state-space associative metric for factored
MDPs that draws inspiration from classical conditioning in nature. Our metric
relies on identified associations between state-variables perceived by the learning
agent during its interaction with the environment. These associations are learned
using a sensory pattern-mining algorithm and determine the similarity between
states, thus providing a state-space metric that requires no prior knowledge on
the structure of the underlying decision problem. The sensory pattern-mining
algorithm relies on the associative sensory tree, that captures the frequency of
co-occurrence of stimuli in the agent’s environment.

It is worth mentioning that the size of the associative sensory tree exhibits a
worst-case exponential dependence in the number of state-factors (not states).
However, aside from the memory requirements associated therewith, the struc-
ture of the tree is such that the computation of the distance is linear in the
number of factors, which is extremely convenient for the online processing of
distances. Moreover, as discussed in Section 3.1, the adopted tree representa-
tion can safely be replaced by other equivalent representations, such as the FP-
tree [15] that, while more efficient in terms of memory requirements, may render
the computation of the distance computationally more expensive.

Additionally, we note that the maximal size of the tree is only achieved when
all the state space has been explored. However, it is in the early stages of the
learning process—when little of the state space has been explored—that the use
of associative metric may be more beneficial. Our results indicate that the combi-
nation of our metric with standard Q-learning does lead to an improved learning
performance that is comparable to that obtained with other more powerful met-
rics that use information both from the transitions and rewards of the MDP.
The specific strategy used to integrate the metric with Q-learning (i.e., the de-
caying spreading function) enforces that when the size of the tree approaches its
maximum size, the contribution of the associative metric to learning is generally
small. Therefore, limiting the tree size to some pre-specified maximum or using
tree-pruning techniques as those discussed in [7] should have little impact on the
performance of our proposed method.
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