
MODEN: Obstacle-driven Elastic Network for
Line-of-Sight Communication?

Francisco S. Melo and Manuela Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{fmelo,veloso}@cs.cmu.edu

Abstract. In this paper, we address the problem of connecting two
distant communication nodes by deploying a number of mobile robots
that act as gateways between the towers. To address this problem, we
propose ODEN, a path-planning algorithm that relies on an elastic net-
work to produce an obstacle-free path between the two towers. This
algorithm builds over a previous elastic-network-based path-planning al-
gorithm and overcomes some of the major limitations of this algorithm.
We also propose an extension of ODEN to address the more complex sit-
uation in which multiple pairs of towers must be connected in a common
environment. We illustrate the results obtained with both ODEN and its
multi-path counterpart, MODEN, in several test-scenarios.

1 Introduction
In this paper, we consider the problem of connecting two distant communication
nodes (henceforth referred as “towers”) placed in such a way that no communi-
cation is possible between them. To overcome this difficulty, a number of mobile
robots can be deployed in the environment. These robots possess the ability to
communicate with the towers (when in range) and with each other. In the most
general setting, we assume that the robots have only local knowledge about the
configuration of the environment (e.g., about the existence and position of ob-
stacles) obtained by means of any local on-board sensors. The purpose of the
robots is to navigate the environment until a configuration is reached in which
the two towers are connected, as illustrated in Fig. 1.

In this paper, we model this problem as a path planning problem between the
positions of the two towers and use an “elastic network” to model the movement of
the gateway robots deployed in the environment. Our algorithm is an extension of
a previous method proposed in [1], in which the path is represented as an elastic
network initialized as a straight-line between the two target positions. The mobile
? This work was partially supported by the Information and Communications Tech-
nologies Institute, the Portuguese Fundação para a Ciência e a Tecnologia, under
the Carnegie Mellon-Portugal Program. A preliminary version of this work was pre-
viously presented at 7th Portuguese Robotics Festival and Scientific Meeting, 2007.



Obstacle

Node A

Node B

Robot 1

Robot 2

Robot 3

Fig. 1. Illustration of the typical scenario considered in the paper.

nodes in the network (the mobile robots in our scenario) are “attracted” toward
free-space and “repelled” away from the obstacles, yielding an obstacle-free path.

The contributions of this paper are two-fold. On one hand, we improve on the
original algorithm from [1] by proposing a new update rule that yields smoother
and more efficient deployment of the robots, in a sense soon to be made clear.
This leads to the ODEN algorithm, our first contribution. On the other hand, we
propose an extension of ODEN to address the more complex situation in which
multiple pairs of towers must be connected in a common environment. In this
situation, and to minimize interference, it is desirable that the deployment of
the robots is conducted in such a way as to minimize intersection between the
different communication paths. This leads to MODEN, the “multi-path” version
of ODEN and the second contribution of this paper.

To motivate this work, consider, for example, a forest fire situation in which
firemen must maintain contact with a base-station. In order to do so, they can
carry small, portable mobile units that they drop as they move toward their as-
signed position. These units will ensure connectivity between each fireman and
the base-station by locally adjusting their position so as to improve connectiv-
ity and minimize interference. Aimed at such applications, the approach in this
paper explicitly considers the existence of obstacles in the environment, driving
this work away from other works addressing open space deployment and con-
nectivity [2]. Furthermore, we are particularly interested in modeling scenarios
in which the robots move in an unstructured (outdoor) environment. In these
scenarios, signal obstruction can arise from obstacles such as groups of trees that
can actually be traversed by the robot, but cause severe decrease in the ability
of the robot to communicate with its neighbors. Also, in the setting considered
herein, we are not concerned with radio-based navigation or localization, a topic
of recent current research [3–7]. As will be apparent from our algorithm, the
robots need only minimal navigation capabilities. In particular, the algorithm
will not require them to use any localization or path planning algorithm, but
simply execute very simple movement primitives (such as moving straight in a
given direction). Finally, the problem considered herein is, in a sense, closely
related to the problem addressed in [8]. The latter work proposes an algorith-
mic procedure to determines when the robots can move in order not to loose
the overall connectivity of the network. In this paper we propose an algorithmic
procedure to determine how the robots can move in order to improve the overall
connectivity of the network.



Obstacle

Sample point

wi

wi+1

wi−1

(a)

Sample point

wi+1

wi−1
wi

Obstacle

(b)

Fig. 2. Several updates of the closest PU, depending on the sampled point.

2 Path Planning Using an Elastic Network
The algorithm described in [1] makes use of an elastic network of “processing
units” (PU) linking the two target towers throughout the environment (hence-
forth abusively referred as the configuration space for the network). The network
is initialized as a straight line between the two towers and we denote by U t the
set of all units in the network at iteration t. The algorithm proceeds at each
iteration t by sampling a random point within a distance of r around the net-
work, i.e., a point in the “perceptual range” of some robot in the network. It
then updates the position of the nearest node in the network (the best matching
unit, BMU) according to the following heuristic:

– If the sample point is in free space, it “attracts” the BMU toward it (see
Fig. 2(a));

– If the sample point is in occupied space, it “repels” the BMU away from it;
– If both the sample point and the BMU lie in occupied space, the BMU

moves orthogonally to the line segment whose extreme points are BMU’s
neighboring units (Fig. 2(b)).

Once the BMU is updated, its immediate neighbors are updated accordingly.
The points used in the updates are randomly sampled around the nodes in
the network, in a region with radius r that is successively decreased to a final
minimum value of rF . The algorithm starts by “pulling the network” toward
large regions of free space and then locally adjusts the network to the “details”
of the environment.

It is worth noting that, in terms of the robots in the network, these “abstract”
operations can be implemented in a remarkably simple way. At each iteration,
one of the robots in the network uses its sensor information to move toward
a randomly chosen position in free-space. This will typically cause the signal
strength between the robot and its neighboring robots to change. The neighbor-
ing robots then adjust their positions so as to compensate for the change in the
signal strength. We also note that, in practice, this operation can be performed
by multiple robots simultaneously, as long as none of the robots are contiguous
or share a neighbor.

Finally, every λ time instants, a new unit is added in between the two most
distant units in the network until a maximum number of units is reached. This
condition could easily be replaced by similar condition of adding a new unit (a
new robot) whenever the distance between two nodes in configuration space was
above a pre-specified threshold. However, the use of a temporal condition allows
the initial updates to be more efficient.



(a) No obstacles. (b) 25 obstacles.

Fig. 3. Trajectories obtained by the original algorithm.

The term elastic network arises from the fact that each unit exerts some
conservative tension on its neighboring units so as to maintain their relative
positions. In other words, the updated PU is “pulled” by its neighbors and also
“pulls” its neighboring units. More details on the algorithm can be found in the
referred work [1]. This “elastic tension” between neighboring units can be seen as
a local adjustment that each of the units performs whenever one of its neighbors
moves in order to improve connectivity.

The method has several interesting properties. It is extremely simple to im-
plement. It only requires a sampling mechanism around the network and the
evaluation of the attraction function. This attraction function merely determines
whether a point is in free-space or in occupied space and the update of a unit
reduces to a few extremely simple operations that translate into very simple mo-
tion commands. Also, given its simplicity, it is a surprisingly efficient algorithm,
being in fact able to find obstacle-free paths between the desired points with very
little computational effort. The examples reported in [1] were able to determine
obstacle-free paths in several complex environments in few thousand iterations.
Furthermore, it does not require any search or any model of the environment,
but just a sampling function able to determine whether a point lies in free-space
or not. Finally, the method is local in that each unit is updated considering only
its immediate neighborhood. This is a very interesting feature of the algorithm
for the particular set of problems we are interested in. In our setting, each unit is
actually an independent robot that must adjust its individual position communi-
cating only with its neighboring units and sampling the surrounding space, but
the method still provides a way of determining a global obstacle-free network.

However, it also presents several inconveniences. First of all, the algorithm
will often spend a lot of iterations updating units that need not be updated. This
happens, for example, in an obstacle-free environment or any environment where
there is a lot of free space, where most of the units will already start away from
any obstacle. Furthermore, because sample points in free-space keep attracting
the network to free-space, this may lead to peculiar trajectories as depicted in
Fig. 3. Finally, the algorithm was designed to run for a fixed (usually large)
number of iterations and takes generally this number of iterations to terminate
before a path is produced. In the next section we propose a modification of the
algorithm that, while maintaining the simplicity of the original algorithm and
its functional principle, alleviates the reported inconveniences.



Obstacle

(a)

Obstacle

New point

(b)

Obstacle

Edge
intersects

object

Unit inside
object

Obstacle

(c)

Fig. 4. Situations addressed by the new update mechanism. (a) Situation where further
updating is desirable. (b) The extra point solves the problem. (c) Two different classes
of “updatable” units.

3 The ODEN Algorithm
In this section we describe two fundamental changes to the algorithm in the pre-
vious section: a new update mechanism for the units and an additional condition
to introduce new units in the network. These modifications yield the ODEN al-
gorithm,1 and readily overcome the inconveniences pointed out in the previous
section. We also present the results obtained with ODEN that show the intro-
duced modifications to actually improve the overall efficiency and performance
over the original algorithm.

3.1 The Update Mechanism

Recall that the two main inconveniences reported in the previous section are
the many iterations spent updating units that need not be updated and the fact
that the whole network is attracted toward free-space, this leading to undesirable
trajectories. This undesirable behavior is mainly due to continuous updating of
units that are already in free space. To overcome such phenomenon we introduce
a simple modification to the algorithm: we partition the set U t into two sets, U t

U

and U t
F . The set U t

U contains the “updatable” units and the set U t
F contains the

“fixed” units. In a first approach, we consider the set U t
F as the subset of U t lying

in free-space. Therefore, we update only the units that lie inside objects.
There is a purpose in continuously updating the different PUs even when

they are in free space. Consider the situation depicted in Fig. 4(a). In this sit-
uation there is an obstacle between the two depicted units that may hamper
the corresponding communication channel. In the original algorithm, the two
units depicted would be continuously updated, eventually pulling their common
edge out of the obstacle. If we consider the set U t

F as containing all units in free
space, none of the two units depicted will ever be updated again, and the path
thus obtained will not be obstacle-free, even if all units may eventually lie in
free space. To overcome this situation, we consider a second class of updatable
units: those whose contiguous edges intersect any of the obstacles. In Fig. 4(c)
we illustrate the two classes of updatable units.

One final remark to refer that, in order to determine if a given edge intersects
any object, we sample several random points along the edge and test whether
they lie in free space. The number of points depends on the actual length of
the edge. This method generally produces quite reliable results even without

1 Obstacle-Driven Elastic Network.



sampling too many points. In the case of actual robots, the same information
can generally be determined from the link between the two robots.

3.2 Introducing New Units
Recall that in the original algorithm a new unit is added to the network every
λ iterations up to a maximum pre-determined number of units. The addition of
such extra units, as well as a decrease in the sampling radius around the network,
allows the network to converge to smoother trajectories and forces the updates
to consider increasingly local data around each unit (see [1] for complete details).

Considering the modified version of the algorithm described insofar, it is
possible and indeed likely that all units reach free-space before λ iterations have
occurred. This implies that the algorithm will “stall” until a new unit is intro-
duced. As such, we include an additional condition in the algorithm, and a new
unit is added to the network if any of two conditions is verified:

– Whenever λ iterations have occurred; or
– Whenever U t

U is empty.

If the algorithm introduces a new unit in the network before λ iterations have
occurred, the sampling radius is, nevertheless, decreased accordingly.

We note that the introduction of new units also alleviates the problem de-
scribed in Fig. 4(a). In fact, in many situations such as the one in Fig. 4(a), a
new point will actually be added between the two points in Fig. 4(a), leading to
a solution like the one on Fig. 4(b).

3.3 The ODEN algorithm
We refer to the modified version of the algorithm as ODEN, standing for

obstacle-driven elastic network. ODEN is summarized in Algorithm 1, where α
is a randomly chosen number such that −β ≤ α ≤ β and F is the attraction
function.2. The parameters tmax, λ, β, η0 and η1 are common to the algorithm
in [1]. The first two parameters represent, respectively, the maximum number of
iterations for the algorithm and the number of iterations between two insertions
of a new point. The last three parameters define the “update rates” and “elastic
coefficient” used in the updates of the various components of the algorithm. The
input parameters xI and xF represent the positions of the two towers and N0

and Nmax represent the initial and final number of nodes in the network.

3.4 Experimental Results with ODEN
We tested ODEN in several random environments with different degrees of com-
plexity. In all results displayed, the algorithm was run with the same parameters
as those reported in [1].3

Figure 5 presents the results obtained in the same environments as those
in Fig. 3, illustrating how ODEN is able to overcome the inconveniences of
2 The attraction function is just an indicator function for an obstacle, taking the value
of 1 if x is in the free-space and −1 otherwise.

3 In particular, we use N0 = 10, Nmax = 100, β = 0.0025, η0 = 0.05, η1 = 0.01, rI = 2,
rF = 0.7 and tmax = 40, 000.



Algorithm 1 The ODEN algorithm.
Require: xI , xF , N0, Nmax, rI , rF ;
1: Set w0 = xI and

wi = xI + i · xF − xI

N0 − 1
, i = 1, . . . , N0 − 1.

2: Set t = 1, Lins = 0, N = N0;
3: Compute U t

U ;
4: if U t

U = ∅ then
5: Set t = Lins + λ and goto 17;
6: end if
7: Randomly choose wi ∈ U t

U ;

8: Set r = rI ·
(

rF
rI

)t/tmax
;

9: Randomly choose x ∈ X such that ‖x− wi‖ < r;
10: Set wj = arg minw∈Ut

U
‖x− w‖;

11: if F (x) > 0 then
12: wj ← wj + η0(x− wj) + β(wj−1 + wj+1 − 2wj);
13: wj±1 ← wj±1 + η1(x− wj±1);
14: else
15: wj ← wj + α

(wj+1+wj−1)⊥

‖wj+1+wj−1‖
;

16: end if
17: if t− Lins ≥ λ then
18: Lins = t;
19: Insert wnew such that wnew =

wk+wk+1
2

, where

‖wk − wk+1‖ = max
wi∈Ut

U

‖wi − wi+1‖.

20: N = N + 1;
21: Update U t

U ;
22: end if
23: if t < tmax and (I 6= ∅ ∨N < Nmax) then
24: Set t = t+ 1 and goto 7;
25: else
26: Exit;
27: end if

the original algorithm reported in the previous section. Figure 6 presents the
results obtained in several random environments ranging from 20 to 100 random
obstacles. It is worth noting that even if the algorithm does not take into account
the minimization of the length of the path, the obtained paths often exhibit small
perturbations from the initial straight path. Note also that the intersection effect
in Fig. 4(a) is not observed in the trajectories, even if in many situations the
path is close to these.

Finally, Fig. 7 presents the results obtained in environments with non-random
obstacles. The distributions of the obstacles in these environments can be seen



(a) No obstacles. (b) 25 obstacles.

Fig. 5. Trajectories obtained with ODEN in the environments of Fig. 3, corresponding
to 100% and approximately 77% of free-space.

(a) 20 obstacles. (b) 40 obstacles. (c) 60 obstacles.

(d) 80 obstacles. (e) 100 obstacles.

Fig. 6. Sample network outlines obtained with ODEN in five random environments
with diverse number of obstacles, respectively corresponding to approximately 82%,
64%, 46%, 28% and 10% of free-space.

(a) (b) (c)

Fig. 7. Trajectory obtained with ODEN in environments with non-random obstacles.

as possible worst-case situations for the algorithm. Notice that the algorithm is,
in fact, able to deliver the expected collision-free paths.

We note that, in the first set of environments, the algorithm is generally
able to deliver a solution and stop within few iterations. This is in clear contrast
with the original method, which would run for a predefined number of iterations.
Also, ODEN generally performs better on more sparse environments than in en-
vironments with little free space. This is easily explained if we consider that the



algorithm proceeds by sampling the space around the network and pulling the
network toward free-space and away from the obstacles. If few sample points lie
in free space, more iterations will be required for the algorithm to find a proper
path. Finally, “thin” obstacles may be hard to sample and, therefore, hard to
avoid. We produce one further experiment to test the performance of the algo-
rithm when a single thin, long obstacle is found in the environment. The result
is presented in Fig. 7(c). Even though the environment has a single obstacle and
is, in general, a sparse environment, the algorithm took a considerable number
of iterations (≈ 720) before a solution was found.

4 MODEN: ODEN in Multi-path Domains

We now address the more complex problem of connecting n pairs of towers in a
common environment. Given the positions in configuration space for all towers in
the set, we are interested in determining individual paths joining the two towers
in each of the n pairs, so that the paths are non-intersecting. The requirement
for non-intersecting paths is mainly to avoid undesirable interference between
the corresponding communication channels. We henceforth refer to the nodes
between the pair of towers i as the network ENi and refer to the positions of the
corresponding towers as the “initial” and “final” points of ENi (with no particular
convention as to which is the initial and which is the final).

Given the initial and final points in configuration space for each of the n
networks, we can apply the ODEN algorithm to determine the path describing
each network individually, yielding n distinct paths, EN1, . . . , ENn. However,
this approach does not take into consideration the existence of the other networks
in the same environment and will probably lead to intersecting paths. A simple
idea to overcome such difficulty is to consider each PU in the path of other
networks as the center of some obstacle when running ODEN for each network
ENi.4 The size of the obstacle can be adjusted as a parameter. This strategy
turns the other networks’s path into “obstacles” and ODEN should thus produce
individual trajectories that do not intersect, if possible.

Sample point

Sample point

(a)

Sample point

Sample point

(b) (c)

Fig. 8. Situations that may lead to intersection. (a) Different networks sample on
opposite sides. (b) Same network samples on opposite sides of neighboring network. (c)
Two networks keep “chasing” each other.
4 The consideration of the other networks as an obstacle can also be implemented
using the connectivity information between the robots in the networks.



Algorithm 2 The MODEN algorithm.
Require:

{
x1

I , . . . , x
n
I

}
,
{
x1

F , . . . , x
n
F

}
, N0, Nmax, rI , rF ;

1: Initialize Xobs with the obstacles from the environment;

w0 = xI ;

wi = xI + i · xF − xI

N0 − 1
, i = 1, . . . , N0 − 1.

2: for all i=1,. . . ,n do
3: Pi = ODEN(xi

I , x
i
F , N0, Nmax, rI , rF );

4: Append Pi to Xobs (the extreme units in the network are not considered);
5: end for

However, if ODEN updates all trajectories simultaneously, this will lead to
intersecting paths. Consider the situation depicted in Fig. 8(a). If the samples
used to update each path continue to be sampled in opposite sides of the other
path, the final paths will unavoidably intersect. Furthermore, situations may
occur in which the paths keep “chasing” each other, as they keep sampling free
points in one direction while trying to avoid the other path (Fig. 8(c)).

To minimize such phenomenon, we introduce an ordering among the net-
works and run the ODEN algorithm sequentially according to that order. Ac-
cording to this ordering, it is possible to refer to each of the networks in the
set as EN1, . . . , ENn, where ENi stands for the ith network in the given order-
ing. We now successively apply the ODEN algorithm to each of the networks
EN1, . . . , ENn individually: we determine the path for network EN1 using the
ODEN algorithm and considering only the original obstacles in the environment.
Then, for each other robot ENi, i = 2, . . . , n, we determine the corresponding
path using the same ODEN algorithm, but considering as obstacles the paths of
the networks EN1, . . . , ENi−1 besides the natural obstacles in the environment.
Finally, to alleviate the intersections arising from cross-sampling (Fig. 8(b)), we
include a small adaptive bias in the random sampling process.

4.1 The MODEN algorithm

MODEN is summarized in Algorithm 2, where {x1
I , . . . , x

n
I } and {x1

F , . . . , x
n
F }

denote the sets of initial and final points for the n networks. Pi is the path
generated for ENi. As for the bias in sampling, recall that ODEN uses points
sampled in a region of radius r around the network to update the units in the
network. A sample point x is given by

x = wi + rx∠θx,

where wi is a unit in the network, rx is a random number between 0 and r, and
θx is a random angle between 0 and 2π. Let I1, . . . , Ik be a uniform partition of
the interval I = [0, 2π]. A uniform sampling procedure chooses an angle θx in Ii
with probability pi = 1/k. Suppose that the chosen angle at some iteration was
αx and the corresponding point x is in free space. Then, the probabilities pi are



(a) (b) (c)

Fig. 9. Trajectories obtained for 2 networks in different environments.

(a) (b) (c)

Fig. 10. Sample trajectories obtained for problems with coincident endpoints and with
multiple networks (3 and 5).

biased toward the direction αx according to

pi =

{
pi + ε(1− pi) if αx ∈ Ii;
(1− ε)pi otherwise

and then normalized to yield
∑

i pi = 1.

4.2 Results using the multi-path algorithm

We now present the results of MODEN in different scenarios. In Fig. 9 we present
the trajectories obtained in environments with 15 and 30 random obstacles and 5
non-random environments, where the networks joint different initial positions to
a common final position. We then applied the algorithm to the extreme situation
where two paths must joint the same initial and final positions. Notice that this
implies that the paths for both networks are coincident in the initial iteration.
Figures 10(a) depicts the results obtained in environments with 30 obstacles. In
Fig. 10(b) and 10(c) we depict the results obtained when 3 and 5 networks are
considered.

As in Section 3, the algorithm was run with the same parameters as those
reported in [1]. The dimension of the “virtual obstacles” around each PU is 1

3 of
the size of the actual random obstacles.

5 Discussion
From our results, we claim ODEN to be an simple but efficient algorithm, being
able to provide obstacle-free paths even in environments with a large percentage
of occupied area. In a practical application, ODEN simply requires a sampling
function to evaluate whether a point in configuration space is in free-space or
inside an obstacle. This information can easily be retrieved from sensorial data



and makes this method simple to implement. On the other hand, the sampling
mechanism supporting ODEN implies that the algorithm is less effective in en-
vironments with little free-space or with very thin obstacles. In the former case,
it will be hard to sample points in free-space to pull the network away from the
obstacles. In the latter case, it will be hard to sample the obstacles so as to drive
the network away from them.

MODEN extends the simple principle behind ODEN to multi-path scenar-
ios, while remaining a local method driven by obstacles. MODEN attests the
applicability of ODEN in more complex problems and suitably illustrates the
effectiveness of ODEN’s underlying working principle. Nevertheless, and in spite
of the encouraging results, we should remark that if the initial straight-line path
of the several networks intersects, it is generally not possible to ensure a non-
intersecting solution. And it may also happen that the path for the first network
renders the task of finding an obstacle and intersection-free path infeasible.

As future work, it would be interesting to explore the use of richer attraction
functions F . If the attraction function F is more than an “obstacle-indicator”,
the algorithm may use the extra information to drive the updates in a more
informed fashion and thus improve its performance.

Another interesting discussion arises from the consideration of ODEN and
MODEN as path planning algorithms, in which each network corresponds to the
actual path of one robot. In the particular case of MODEN, the requirement
of non-intersecting paths in multi-robot path planning is not such a usual ap-
proach, as more elaborate ways exist to coordinate multiple robots wandering in
a common environment (see, for example, the approaches in [9,10]). Nevertheless,
non-intersecting paths alleviate the need for any knowledge of the robot dynam-
ics/communication capabilities. The paths generated by the algorithm would
be immediately usable by the robots, without considering any coordination or
synchronization mechanism to prevent on-path collisions.

(a) ODEN. (b) PRM.

Fig. 11. Trajectories obtained with ODEN and PRM.

We note that, as with ODEN, environments with little free space also cause
difficulties to probabilistic path planning methods such as PRMs [11]. Also, the
fact that ODEN uses all nodes in defining its path implies that, in general it
will be able to locally adjust to the obstacles, producing potentially shorter
paths. Figure 11 compares the paths obtained with ODEN and PRM in an
environment with 60 random obstacles. A more extensive comparison of the



performance ODEN againsta that of other state-of-the-art planning methods is
still necessary to further understand the applicability of ODEN in more general
scenarios than those considered here.

References

1. Moreno, J., Castro, M.: Heuristic algorithm for robot path planning based on a
growing elastic net. In: 12th Portuguese Conf. Artificial Intelligence. (2005) 447–
454

2. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals.
In: Int. Symp. Distributed Autonomous Robotic Systems. (2006) 135–144

3. Howard, A., Siddiqi, S., Sukhatme, G.: An experimental study of localization using
wireless ethernet. In: 4th Int. Conf. Field and Service Robotics. (2003)

4. Peng, C., Shen, G., Han, Z., Zhang, Y., Li, Y., Tan., K.: A beepbeep ranging
system on mobile phones. In: ACM Conf. Embedded Networked Sensor Systems.
(2007)

5. Poduri, S., Sukhatme, G.: Constrained coverage for mobile sensor networks. In:
IEEE Int. Conf. Robotics and Automation. (2004) 165–171

6. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: 6th ACM Conf. Mobile Computing and Networking. (2000) 32–43

7. Ziparo, V., Kleiner, A., Nebel, B., Nardi, D.: RFID-based exploration for large
robot teams. In: IEEE Int. Conf. Robotics and Automation. (2007) 4606–4613

8. Reich, J., Misra, V., Rubenstein, D., Zussman, G.: Spreadable connected auto-
nomic networks (SCAN). Tech. Rep. CUCS-016-08, CS Dep., Columbia Univ.
(2008)

9. Bennewitz, M., Burgard, W., Thrun, S.: Optimizing schedules for prioritized path
planning of multi-robot systems. In: IEEE Int. Conf. on Robotics and Automation.
(2001) 27–276

10. Švestka, P., Overmars, M.: Coordinated path planning for multiple robots.
Robotics and Autonomous Systems 23 (1998) 125–152

11. Kavraki, L., Švestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Trans. Robotics and
Automation RA-12(4) (1996) 566–580


