
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-009-9104-y

Coordinated learning in multiagent MDPs
with infinite state-space

Francisco S. Melo · M. Isabel Ribeiro

Springer Science+Business Media, LLC 2009

Abstract In this paper we address the problem of simultaneous learning and coordination
in multiagent Markov decision problems (MMDPs) with infinite state-spaces. We separate
this problem in two distinct subproblems: learning and coordination. To tackle the problem of
learning, we survey Q-learning with soft-state aggregation (Q-SSA), a well-known method
from the reinforcement learning literature (Singh et al. in Advances in neural information pro-
cessing systems. MIT Press, Cambridge, vol 7, pp 361–368, 1994). Q-SSA allows the agents
in the game to approximate the optimal Q-function, from which the optimal policies can be
computed. We establish the convergence of Q-SSA and introduce a new result describing
the rate of convergence of this method. In tackling the problem of coordination, we start by
pointing out that the knowledge of the optimal Q-function is not enough to ensure that all
agents adopt a jointly optimal policy. We propose a novel coordination mechanism that, given
the knowledge of the optimal Q-function for an MMDP, ensures that all agents converge to
a jointly optimal policy in every relevant state of the game. This coordination mechanism,
approximate biased adaptive play (ABAP), extends biased adaptive play (Wang and Sand-
holm in Advances in neural information processing systems. MIT Press, Cambridge, vol 15,
pp 1571–1578, 2003) to MMDPs with infinite state-spaces. Finally, we combine Q-SSA
with ABAP, this leading to a novel algorithm in which learning of the game and coordination
take place simultaneously. We discuss several important properties of this new algorithm and
establish its convergence with probability 1. We also provide simple illustrative examples of
application.

Keywords Multiagent MDPs · Infinite state-spaces · Simultaneous learning and
coordination · Q-learning with soft-state aggregation · Approximate biased adaptive play

F. S. Melo (B)
School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, PA 15213, USA
e-mail: fmelo@cs.cmu.edu; fmelo@inesc-id.pt

M. I. Ribeiro
Institute for Systems and Robotics, Instituto Superior Técnico,
Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
e-mail: mir@isr.ist.utl.pt

123

Auton Agent Multi-Agent Syst

1 Introduction

Reinforcement learning (RL) addresses the problem of a decision-maker faced with a sequen-
tial decision problem and using evaluative feedback as a performance measure [42]. The gen-
eral purpose of RL is to find a “good” mapping that assigns “perceptions” to “actions” and
classically addresses situations in which a single decision-maker interacts with a stationary
environment.

The powerful methods and impressive results of RL [12,46,48] have rendered this frame-
work quite popular among the computer science and robotic communities, and recent years
have witnessed increasing interest in extending RL methods to multiagent problems. Markov
games (also known as stochastic games) and several variations or specializations thereof
have been used to model multiagent RL problems [23]. Several researchers have applied
single-agent RL methods (with adequate adaptations) to this multiagent framework.

Among the first, Littman [23] introduced the Minimax-Q algorithm as an extension of
Q-learning to zero-sum Markov games. Hu and Wellman [19] later proposed Nash-Q as an
elaboration of Minimax-Q that can be applied to general-sum Markov games. The authors
established convergence of Nash-Q requiring, however, somewhat stringent conditions, as
argued in [5,24]. This lead to the development of Friend-or-Foe Q-learning (FF-Q) [25].
FF-Q simplifies some of the computational burden involved in Nash-Q iterations, while
retaining the convergence properties of the latter in most classes of games. In a somewhat
related line of work, joint-action learners combine Q-learning with fictitious play in fully
cooperative multiagent MDPs [11]. Fictitious play was also combined with prioritized sweep-
ing to address planning in adversarial scenarios [52].

Gradient-based learning policies are analyzed in detail in [7,41]. In another work, Bowling
and Veloso [9] propose a policy-based learning method that applies policy hill-climbing with
a varying learning step, using the principle of “win or learn fast” (WoLF-PHC). Many other
works on multiagent learning systems can be found in the literature—see, for example, the
surveys works of [6,39].

However, most multiagent RL research focuses on problems in which the state-space is
typically finite and not too large,1 and only a few works on multiagent learning address prob-
lems with very large/infinite state-spaces. Some examples include the work of [7], where
the WoLF (win-or-learn-fast) principle is combined with function approximation in Markov
games with large or infinite state-spaces. The authors experimentally validate this combined
method by applying it to the Goofspiel game, which has about 1011 states when using an
ordinary card deck. Guestrin et al. [18] use coordination graphs to achieve coordination in
multiagent problems with infinite state-spaces. This coordination mechanism uses structured
communication and a variable elimination procedure to achieve coordination. In a related
work [21], coordination graphs are also used to achieve coordination in continuous domains,
this time with no communication assumed. Finally, Singh et al [41] also refer the interest of
applying gradient ascent techniques to games with infinite state-spaces.

In this paper, we contribute another step in the research of solution methods for multi-
agent problems with infinite state-spaces. Concretely, we focus on fully cooperative mul-
tiagent decision problems, in which the state-space is a subset of Rp , for some finite

1 A curious fact that is worth mentioning is that Samuel’s pioneer works back in the 1950–1960s, already
address a gaming application with a huge state-space [37,38]. Also, the impressive results in generalization
obtained by Tesauro’s backgammon player also feature learning in a game with a huge state-space [46,47]. Both
authors addressed learning in decision problems with large state-spaces and resort to approximation mech-
anisms to attain some level of generalization. However, both authors consider learning from a single-agent
perspective.

123

Auton Agent Multi-Agent Syst

p. In addressing this class of problems, we assume that the decision-makers have little prior
knowledge on the scenario at hand. Therefore, they must learn a representation of the task
for decision-making and then commit to a common joint behavior that is optimal in some
sense. We assume that no explicit communication takes place, i.e., consensus must emerge
from the mutual interaction among the different agents and with the environment.2 There-
fore, in this paper we feature cooperation as coordination: the multiple decision-makers must
coordinate their individual decisions to yield an optimal joint behavior. It is worth noting
that even in the simplified (fully cooperative) setting considered here, infinite state-spaces
already pose several important challenges, not only in terms of learning but especially in
terms of coordination.

In our approach we start by considering separately two distinct “subproblems”, which can
roughly be defined as:

• Learning the structure of the decision problem, where each decision-maker must learn a
compact representation of the MMDP from which an optimal policy can be determined;

• Coordination where, in the presence of multiple optimal policies, all decision-makers
agree upon one such policy without any explicit communication;

In the remainder of the paper, we generally refer to the first subproblem as the problem of
learning and to the second as the problem of coordination. To address the first of the two,
we propose the use of Q-learning with soft-state aggregation (Q-SSA). The combination of
Q-learning and soft-state aggregation has been studied in the RL literature using different
approaches [17,40,50]. In this paper, we describe the application of Q-SSA to multiagent
MDPs with infinite state-spaces and introduce a modified version of the result in [40] on the
convergence of Q-SSA. In particular, we identify the conditions required for Q-SSA to con-
verge with probability 1 (w.p.1) in MMDPs with infinite state-spaces. We also establish a new
result describing the rate of convergence of Q-SSA. This analysis is conducted in Sect. 3.

In addressing the problem of coordination, we introduce one of the main contributions of
the paper, a novel coordination mechanism that we refer as approximate biased adaptive play
(ABAP). This method is an extension of biased adaptive play (BAP) to infinite settings. BAP
was first introduced in [53] and builds on a variation of fictitious play known as adaptive
play.3 We establish convergence of ABAP to an optimal policy w.p.1 when the game structure
is known. The description of ABAP and corresponding analysis can be found in Sect. 4.

The ABAP method proposed in this paper differs from other coordination methods in
several aspects. First of all, ABAP assumes that no communication takes place. On the other
hand, ABAP is rational and convergent in self-play, in the sense of [8]. This is an important
advantage of ABAP: in the presence of a heterogeneous group of decision-makers, ABAP
is still able to converge to the best decision-rule possible if, for some reason, the other
decision-makers are constrained to follow some particular sub-optimal individual policy.

In Sect. 5 we get to the final contribution of the paper, and combine ABAP with Q-SSA,
this leading to the coordinated approximate Q-learning (CAQL) algorithm.4 As will soon
become apparent, some of the valuable aspects of this new method are its sound convergence

2 The consideration of no explicit communication can be supported by several arguments (bandwidth con-
straints, cost of communication, possible added complexity to the problem, etc.). We do not pursue such
arguments here and refer to several works that discuss these issues in greater detail [14,49].
3 Fictitious play was first introduce in [10] and its convergence properties analyzed in several posterior works
[22,36]. Adaptive play was introduced in [55].
4 We must emphasize that our method, although baring a somewhat similar designation, has no relation
whatsoever with the coordinated reinforcement learning algorithms proposed in [18].

123

Auton Agent Multi-Agent Syst

properties and broad applicability. We analyze how ABAP can be interleaved with Q-SSA
without affecting the convergence of either method, thus establishing convergence of CAQL.
In Sect. 6 we also illustrate the performance of CAQL in simple illustrative scenarios and
discuss several properties of the method. Finally, we conclude in Sect. 7 with some final
remarks.

To minimize the disruption of the presentation, we collected some background material
on Markov chains in Appendix A and all the proofs of all relevant results in Appendix B.

2 Background

Aiming at making the paper as self-contained as possible, we start by reviewing several fun-
damental concepts from game theory and Markov processes that constitute the background
for all the material in the paper. We also introduce a couple of well-known results that are
relevant in establishing the contributions in the paper.

2.1 Markov decision problems

Let X be a compact subset of Rp , for some finite p, and let {X (t)} a X -valued controlled
Markov chain. In other words, {X (t)} is a stochastic process in which the distribution of the
random variable (r.v.) X (t + 1) depends on the values of the r.v.s X (t) (the state at time t)
and A(t) (the action at time t) and is given by

Pa(x,U) � P [X (t + 1) ∈ U | X (t) = x, A(t) = a] ,

for any measurable set U ⊂ X . The A-valued process {A(t)} represents the control pro-
cess: A(t) is the control action at time instant t and A is the finite set of possible actions. A
decision-maker must determine the control process {A(t)} so as to maximize

V (x, {A(t)}) � E

[∞∑
t=0

γ t R(X (t), A(t)) | X (0) = x

]
, (1)

where 0 ≤ γ < 1 is a discount-factor and R(x, a) represents a random “reward” received
for taking action a ∈ A in state x ∈ X . We assume that the control process {A(t)} is
adapted to the σ -algebra generated by {X (t)} and that there is a bounded real-valued func-
tion r : X ×A× X → R, assigning a reward r(x, a, y) every time a transition from x to y
occurs after taking action a, such that

E [R(x, a)] =
∫
X

r(x, a, y)Pa(x, dy).

This simplifies the notation without introducing a great loss in generality. We refer to the
5-tuple (X,A,P, r, γ) as a Markov decision problem (MDP).

Given an MDP (X,A,P, r, γ), the optimal value function V ∗ is defined for each state
x ∈ X as

V ∗(x) � max{A(t)}E
[∞∑

t=0

γ t R(X (t), A(t)) | X (0) = x

]

123

Auton Agent Multi-Agent Syst

and verifies the recursive relation

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y)+ γ V ∗(y)

]
Pa(x, dy), (2)

which is a form of the Bellman optimality equation. The optimal Q-values are defined for
each state-action pair (x, a) as

Q∗(x, a) =
∫
X

[
r(x, a, y)+ γ V ∗(y)

]
Pa(x, dy). (3)

For future reference, we define the Bellman operator H as

(HQ)(x, a) =
∫
X

[
r(x, a, y)+ γ max

b∈A Q(y, b)

]
Pa(x, dy), (4)

where Q is a general function defined over X ×A and taking values in R. Notice that Q∗ is
the fixed-point of H. From Q∗ we can define the mapping π∗ as

π∗(x) = arg max
a∈A

Q∗(x, a), ∀x ∈ X .5

The control process defined for all t by A(t) = π∗(X (t)) is optimal in the sense that
V (x, {A(t)}) = V ∗(x), for all x ∈ X . The mapping π∗ is an optimal policy for the MDP
(X,A,P, r, γ). It then follows that V ∗(x) accounts for the expected total discounted reward
associated with the optimal policy when the initial state is x , while Q∗(x, a) measures the
expected total discounted reward associated with the optimal policy when the initial state is
x and the first action is fixed to be a.

More generally, we define a (stationary) policy as any mappingπ over X×A that generates
a control process verifying, for all t ,

P [A(t) = a | X (t) = x] = π(x, a).

Since π(x, ·) is a probability distribution over A, it must satisfy∑
a∈A

π(x, a) = 1.

for all x ∈ X . We write V π (x) instead of V (x, {A(t)}) if the control process {A(t)} is gen-
erated by π . A deterministic policy is a policy assigning probability 1 to a single action in
each state. We denote such policy as a mapping π : X → A that generates a control process
{A(t)} verifying A(t) = π(X (t)) for all t .

We emphasize that the optimal control process can be obtained from the optimal (deter-
ministic) policy π∗, which can in turn be obtained from Q∗. Therefore, the Markov decision
problem (X,A,P, r, γ) is solved once the function Q∗ is known for all pairs (x, a).

5 On a side note, we should point out that, in general, arg max
a∈A

Q∗(x, a) is a set and as such we should write

π∗(x) ∈ arg max
a∈A

Q∗(x, a). However, and to simplify the presentation, we adhere to the slight abuse of notation

as in the expression above.

123

Auton Agent Multi-Agent Syst

2.1.1 The Q-learning algorithm

The “classical” approach to reinforcement learning considers MDPs with a finite state-space
X . Under this finiteness assumption, Q∗ (and hence any corresponding estimates) can be
represented as an |X |× |A|matrix. In the remainder of this section, we focus on MDPs with
finite state-space X , postponing to the next section the treatment of problems where X is no
longer finite.

In order to compute the Q-function for a given MDP without any previous knowledge of
the transition kernel P and the reward function r , Watkins proposed in 1989 the Q-learning
algorithm [54]. Q-learning is implemented as follows: given an MDP (X,A,P, r, γ) and
an infinite sample trajectory {x(t)} of the underlying Markov chain obtained with some sam-
pling policy π , let {a(t)} and {r(t)} denote the corresponding sample sequence of actions
and rewards. Q-learning successively updates the estimate Q for Q∗ using the rule

Q(x, a)← (1− αt (x, a))Q(x, a)+ αt (x, a)

[
r(t)+ γ max

b∈A Q(x(t + 1), b)

]
, (5)

where {αt } is a (x, a)-dependent step-size sequence. The estimate Q converges to Q∗w.p.1 as
long as

∑
t αt (x, a) = ∞ and

∑
t α

2
t (x, a) <∞, where α(x, a) = 0 if (x, a) 	= (x(t), a(t)).

This condition is usually stated by saying that Q-learning converges as long as every state-
action pair is visited infinitely often.

Q-learning uses a policy π (not necessarily optimal) to generate an infinite trajectory and
convergence to Q∗ is attained as t goes to infinity. The optimal control law, represented as
the optimal policy π∗, can then be computed from Q∗. Q-learning converges to Q∗ indepen-
dently of the policy π chosen, as long as the requirement of infinite visits to all state-action
pairs is met. For concreteness, we henceforth refer to the policy used during learning, i.e., the
policy used to generate the sample trajectories {x(t)}, {a(t)} and {r(t)}, as the learning policy.

2.1.2 Multiagent MDPs

A multiagent MDP (MMDP) is a tuple (N ,X , (Ak),P, r, γ), where N is the number of
agents, X is the state-space, A = ×N

k=1Ak is the set of joint actions, P is the controlled
transition kernel and r is the joint reward function. The differences between an MMDP and
an MDP lie essentially on the fact that the action-space A of the former is the Cartesian
product of the N individual action-spaces, Ak , and thus corresponds to the joint action-
space. This means that the transition probabilities in an MMDP depend on the actions of all
agents. Therefore, the A-valued process {A(t)} represents the joint control process: at each
time instant t each agent k independently chooses an action Ak(t) from Ak . The joint action
A(t) is obtained by combining all individual actions A1(t), . . . , AN (t), and is represented
as a tuple A(t) = (A1(t), . . . , AN (t)). We denote by A−k(t) a reduced action, obtained by
removing the individual action Ak(t) from A(t).

As the chain moves from state X (t) to state X (t + 1), all agents receive a reward
r(X (t), A(t), X (t + 1)). The purpose of each decision-maker is to determine the individual
control process {Ak(t)} so as to maximize the functional

V (x, {A(t)}) = E

[∞∑
t=0

γ t R(X (t), A(t)) | X (0) = x

]
, (6)

where 0 ≤ γ < 1 is once again a discount-factor and R(x, a) represents the random reward
received by all agents when they take action a ∈ A in state x ∈ X .

123

Auton Agent Multi-Agent Syst

It is worth noting that an MMDP models a fully cooperative decision problem. In fact,
since the reward function is common to all agents, whatever is “good” for one is good for all.
In other words, all agents are trying to optimize the same objective function. On the other
hand, since the state-evolution process and the reward received by each agent both depend on
the actions of all agents, the agents must coordinate their action choice in order to ensure that
their joint behavior is optimal. We postpone further discussions on the issue of coordination
to Sect. 2.2.

An individual policy for agent k is denoted as πk and defines the probability of agent k
playing each action ak ∈ Ak when the process is in state x ∈ X . In other words, it is a
mapping defined on X ×Ak that generates a process {Ak(t)} verifying, for all t ,

P [Ak(t) = ak | X (t) = x] = πk(x, ak),

with ak ∈ Ak . A joint policy is a tuple π = (π1, . . . , πN) of individual policies, where
π(x, a) represents the probability of the joint action a being played in state x when all agents
follow the policy π . We refer to π−k as a reduced policy, obtained from π by removing the
individual policy of agent k.

As mentioned above, in an MMDP all agents share the same joint goal (maximizing the
total expected reward over all admissible joint control sequences). Therefore, apart from the
way by which actions are chosen, there is no other significant difference between an MDP and
its multiagent counterpart. This means that most properties from MDPs discussed in Sect. 2.1
carry without change to MMDPs. In particular, we write V π (x) instead of V (x, {A(t)}) if
the joint control process {A(t)} is generated by a joint policy π . Like MDPs, MMDPs always
have at least one optimal joint policy and we can define the optimal value function and the
optimal Q-function as in MDPs. The optimal value function also verifies (2). However, the
fact remains that the decision process in MMDPs is distributed and requires coordination to
be addressed explicitly [3].

2.2 Game theory

We now review several basic concepts on game theory used throughout the paper. Specifi-
cally, we discuss the fundamental class of matrix games and the biased adaptive play (BAP)
coordination mechanism.

2.2.1 Matrix games

An N -agent matrix game is a tuple (N , (Ak), (rk)), where N is the number of agents in the
game, A = ×N

k=1Ak is the finite set of all joint actions and rk is a function assigning a payoff
rk(a) to agent k, when the joint action a ∈ A is played.6 A joint action a ∈ A is a tuple
a = (a1, . . . , aN). We denote by a−k a reduced action, obtained by removing the individual
action ak from a.

An individual policy for agent k is denoted as πk and defines the probability of agent k
playing each individual action ak ∈ Ak in the game. A deterministic policy is known in the
game-theoretic literature as a pure policy, and a mixed policy otherwise. As in MMDPs, a
joint policy is a vector π = (π1, . . . , πN) of individual policies, where π(a) represents the
probability of the joint action a being played when all agents follow the policy π . We refer
to π−k as a reduced policy, obtained from π by removing the individual policy of agent k.

6 For the sake of uniformity, we adopt the general designation of “agent” instead of the more common game-
theoretic designation of “player”.

123

Auton Agent Multi-Agent Syst

The individual policy π∗k of agent k is a best response to a reduced policy π−k if agent k
cannot improve its expected reward by using any other individual policy, i.e.,

E(π−k ,π
∗
k)

[rk(a)] ≥ E(π−k ,πk) [rk(a)] . (7)

A Nash equilibrium is a joint policy π∗ = (π∗1 , . . . , π∗N) in which each individual policy π∗k
is a best response to the reduced policy π∗−k . Every finite matrix game has at least one Nash
equilibrium [32]. A Nash equilibrium π∗ is strict if the inequality in (7) is strict for every
individual policy π∗k .

A game in which r1(a) = . . . = rN (a) for all a ∈ A is fully cooperative. In this class of
games there is always (at least) one pure Nash equilibrium that yields maximum payoff for
all agents (a Pareto optimal Nash equilibrium). In the remainder of this paper, we consider
only fully cooperative games and thus refer to such an equilibrium as being an optimal joint
policy for the game.

It is worth noting that that, in an MMDP, the function Q∗ defines at each state x ∈ X a
fully cooperative matrix game �x =

(
N , (Ak), r∗

)
with r∗(a) = Q∗(x, a). We refer to each

such game as a stage-game. As shown in [4], if all agents coordinate in an optimal policy in
each stage-game �x , they will coordinate in an optimal policy for the MMDP. We use this
result extensively in Sect. 5.

2.2.2 Biased adaptive play

The existence of at least one optimal policy does not imply its uniqueness. In fact, many
games possess multiple optimal policies and this can lead to the so-called coordination prob-
lem [3], also known as the equilibrium selection problem in the game-theoretic literature. To
better understand this problem consider the matrix game in Fig. 1a. It is a two-agent game
in which each agent has two actions available. Agent 1 can choose any of the actions a1 or
b1. Similarly, agent 2 can choose any of the actions a2 or b2.

In this game there are two optimal policies and there is no particular reason why one agent
should prefer any of the two optimal policies to the other. Therefore, it may happen that
agent 1 adheres to the policy (a1, a2), thus playing a1, while agent 2 adheres to the policy
(b1, b2), thus playing b2. Alas, the joint action obtained, (a1, b2), is far from optimal.

This very simple example illustrates the coordination problem that often occurs in fully
cooperative matrix games and, as will soon become apparent, in MMDPs. Even if all agents
know the game, it is necessary to explicitly address the problem of coordination by means of
a specific coordination mechanism. The purpose of this mechanism is to ensure that, in the
presence of multiple optimal policies, all agents commit to the same one.

Fig. 1 Simple two-agent,
two-action team matrix game.
The optimal policies (i.e., the
Pareto optimal equilibria) are
marked in bold in the payoff
matrix and with a double line in
the best-response graph

20

20

−5

−5

a2

b1

b2

a1

(a) Payoff matrix.

(a1 2) (a1 2)

(b1 2)(b1

, a , b

, b, a2)

(b) Best-response graph.

123

Auton Agent Multi-Agent Syst

It is worth mentioning that equilibrium selection problems also occur in more general
games, in which different agents can have different rewards. In its most general form, it is a
difficult problem and a topic of intense research in game theoretic literature.

In this paper, we are interested in an adaptive mechanism that ensures coordination to
emerge as the agents repeatedly play the game.7 One such mechanism was introduced in
[53] and is known as biased adaptive play (BAP). BAP is a variant of fictitious play [10,36]
and is designed to address coordination problems in fully cooperative repeated games. Both
fictitious play and BAP rely on the fundamental observation that the past action choices of
other agents can be used to estimate their policy. The distinctive features of BAP that set it
apart from fictitious play are (1) an incomplete sampling mechanism that ensures that certain
pathological behaviors observed with fictitious play do not occur [55]; (2) the construction
of an auxiliary virtual game that ensures that, in self-play, all agents converge to an optimal
joint policy.

To formalize BAP, we need some preliminary concepts.

Definition 1 (Best response graph) Let � = (N , (Ak), r) be a fully-cooperative repeated
game with finite action-space A = ×N

k=1Ak . The best response graph for � is a directed
graph G = (V, E), where V = A and, given any two vertices a, b ∈ V , (a, b) ∈ E if
and only if a 	= b, there is exactly one agent k for which bk is a best response to a−k , and
a−k = b−k .8

The vertices in the best response graph thus correspond to all joint actions in the game
and an edge between two vertices a and b implies that there is exactly one agent k that can
improve its performance by changing its action from ak to bk , as long as no other agent
changes its action. Clearly, a sink in the best response graph corresponds to a Nash equilib-
rium, since no agent can individually improve its performance by changing only its action.
The best-response graph for the simple 2-agent, 2-action example in Fig. 1a is depicted in
Fig. 1b.

Let now � = (N , (Ak), r) be a repeated game and D ⊂ A a set containing some of the
pure Nash equilibria in � (and no other joint actions).

Definition 2 (Weakly acyclic game) A repeated game � = (N , (Ak), r) is weakly acyclic
if, given any vertex a in its best response graph, there is a directed path to a vertex a∗ from
which there is no exiting edge. It is weakly acyclic with respect to (w.r.t.) the bias set D if,
given any vertex a in the best response graph of �, there is a directed path to either a Nash
equilibrium in D or a pure strict Nash equilibrium.

We are now in position to introduce BAP. Given a repeated game � = (N , (Ak), r), we
construct a virtual game V G = (

N , (Ak), r̂
)
, where r̂(a) = 1 if a is an optimal joint policy

for � and r̂(a) = 0 otherwise. Every Nash equilibrium in this new game corresponds to an
optimal policy in the original game. Therefore, if all agents are able to coordinate in a Nash
equilibrium in V G, they will have coordinated in an optimal policy in the original game, as
desired. If we now set D = {

a ∈ A | r̂(a) = 1
}
, then V G is always weakly acyclic w.r.t. the

bias set D [53].

7 A game in which the agents repeatedly engage in the same matrix game is known as a repeated game.
Repeated games allow for the possibility of having an agent change its policy depending on past plays of the
other agents. This is not possible in standard matrix games, which are one-shot games.
8 Note that since G is a direct graph, (a, b) represents a distinct edge from (b, a). In particular, the direction
of the edges in G indicates the “best-response direction”. Therefore, if there is an edge from a to b in G and
the two joint actions differ on their kth component, then bk is the best response to a−k (or, equivalently, b−k).

123

Auton Agent Multi-Agent Syst

Let Ht denote the m most recent plays in � at time t , i.e.,

Ht = {a(t − m + 1), . . . , a(t − 1), a(t)} .
For any 0 < K ≤ m, a K -sample from Ht is a set of K plays randomly drawn without
replacement from Ht . We denote a K -sample from Ht as K(Ht).

Given the virtual game V G, at each time instant t ≥ m and independently from all other
agents, each agent k draws a K -sample Kk(Ht) from the history of the m most recent plays
and checks if:

1. There is a joint action a∗ ∈ D such that, for all played actions a ∈ Kk(Ht), a−k = a∗−k ;
2. There is at least one played action a ∈ Kk(Ht) such that a ∈ D.

If these two conditions are verified, agent k concludes that all remaining agents have coordi-
nated in an action in D. Therefore, agent k chooses its best response a∗k so that

a∗ = (a∗−k, a∗k) = arg max
a(τ)∈Ht

{τ | a(τ) ∈ Kk(Ht) and a(τ) ∈ D} .

If any of the above conditions is not verified, agent k uses the K -sample to estimate the
expected payoff of each of its individual actions as

E Pt (ak) =
∑

a−k∈A−k

r̂(a−k, ak)
nK (a−k)

K
,

where nK (a−k) denotes the number of times that the reduced action a−k appears in the K -
sample Kk(Ht). Notice that E P(ak) estimates the value of the individual action ak given
the average policy of the other agents according to the K -sample. Agent k then chooses its
action randomly from the best response set

B Rt =
{

a∗k | E Pt (a
∗
k) = max

ak∈Ak
E Pt (ak)

}
. (8)

It is now worth detailing the fundamental intuitive principles behind BAP. The funda-
mental idea behind BAP is to track the actions chosen by the other agents, using these as an
indication of their policy (in this sense, BAP is similar to fictitious play). However, unlike
fictitious play, it does not use the complete history, but only the most recent m actions. In a
sense, this “short-term memory” allows BAP to cope with other agents that are also adjusting
their policy.

Another fundamental idea in BAP is to further sub-sample this short-term memory, by ran-
domly choosing only k of the m actions. Sub-sampling ensures (probabilistically) that BAP
does not enter undesirable cycles of suboptimal action choice. To illustrate this phenomenon,
consider again the game in Fig. 1a, and suppose that each of the two agents keeps track of the
past plays of the other agent to choose its own actions. However, in similar circumstances,
agent 1 is biased toward choosing action a while agent 2 is biased toward action b. At the first
time-step, therefore, agent 1 will choose a1 and agent 2 b2, leading to a suboptimal action.
In the following time-step, agent 1 notices that agent 2 chose action b2 and acts accordingly,
choosing action b1. The converse happens with agent 2, whom will choose action a2, again
leading to a suboptimal action. In the following time-step, each agent has played each action
exactly once, so again agent 1 chooses action a1 and agent 2 chooses b2. It is easy to see
that leads to a cycle of suboptimal actions in which the two agents have the worst possible
performance. This adverse effect can sometimes be observed for example in fictitious play,
but is avoided in BAP due to the sub-sampling mechanism.

123

Auton Agent Multi-Agent Syst

Finally, conditions 1 and 2 ensure that, probabilistically, the agents “follow” the best
response graph associated with the game. The fact that this game is weakly acyclic w.r.t.
some bias set that contains only optimal policies ensures that all agents will eventually con-
verge to an optimal policy, as intended.

The following theorem can be found in [53].

Theorem 1 Let� = (N , (Ak), r) be a fully cooperative repeated game that is weakly acyclic
w.r.t. some bias set D. If

K ≤ m

L(�)+ 2
,

then biased adaptive play converges w.p.1 to either a strict Nash equilibrium or a Nash
equilibrium in D.

The constant L(�) is defined as L(�) = maxa∈A L(a), where L(a) is the shortest path
in the best response graph of � going from vertex a to either a strict Nash equilibrium or a
Nash equilibrium in D.

It is worth noting that the particular “path” followed by BAP depends on the K -sam-
ples drawn by the different agents along the process. Therefore, BAP does not necessarily
converge to the equilibrium “closest” to the starting vertex.

The above result formalizes the convergence properties of BAP, establishing BAP as a
sound coordination mechanism that, as will soon become apparent, can also be effectively
used in the class of problems considered in this paper.

3 The problem of learning

In this section, we address the problem of learning/approximating the optimal Q-function
in MMDPs with infinite state-spaces. To this purpose, we start by introducing Q-learning
with soft-state aggregation (Q-SSA), an algorithm to approximate the optimal Q-function
for MDPs with infinite state-spaces [40]. We establish convergence of this algorithm w.p.1
and produce a new result that describes the rate of convergence of Q-SSA. We then extend
Q-SSA to MMDPs with infinite state-spaces, since the latter class of problems can be seen
as generalized MDPs in which the decision-making process is distributed.9

3.1 Q-learning with soft-state aggregation

In the original Q-learning algorithm, the Q-values are updated according to (5) that we repeat
here for commodity

Q(x, a)← (1− αt (x, a))Q(x, a)+ αt (x, a)

[
r(t)+ γ max

b∈A Q(x(t + 1), b)

]
.

This algorithm implicitly requires the function Q to be explicitly represented, which is clearly
impossible if X is not a finite set. In this paper we are interested in those situations in which
X is a compact subset of Rp , for some finite p.10 This means that, in general, we cannot
apply the Q-learning algorithm in its original form.

9 A similar analysis was conducted in [44] in a more restricted class of games.
10 In the remainder of the paper, whenever we refer to the state-space X as a compact subset of Rp , we
implicitly assume p to be finite.

123

Auton Agent Multi-Agent Syst

To address this difficulty, we consider a representation of Q∗ as the linear combina-
tion of a fixed set of basis functions. Consider then a set of linearly independent func-
tions {φi , i = 1, . . . ,M} defined over X and taking values in R. We admit the functions
φi , i = 1, . . . ,M , to verify

φi (x) ≥ 0
M∑

i=1

φi (x) = 1.

This means that the functions φi , i = 1, . . . ,M provide a soft-partition of the state-space X
into M sets U1, . . . ,UM , each defined as

Ui � supp(φi).

The value of φi (x) can be interpreted as a “probability” of x belonging to Ui . We now seek a
good representation for Q∗ among the parameterized family of functions Q = {Qθ }, where
each Qθ is defined over X ×A and takes values in R, and can be written as

Qθ (x, a) =
M∑

i=1

φi (x)θ(i, a) = φ�(x)θ(a).

In the above expression, θ is a M × |A| parameter matrix and we write θ(a) to denote the
ath column of θ . We also denote by φ(x) the column vector with i th component φi (x) and
write � for the transpose operator.

In general, Q∗ /∈ Q, but the elements of Q can be compactly represented by means of
the corresponding parameter θ . Therefore, we can replace the algorithm for finding Q∗ by a
suitable “equivalent” algorithm to find a parameter θ∗ such that Qθ∗ is the best approximation
of Q∗ in Q. We thus move from a search in an infinite-dimensional function space to a search
in a finite dimensional space, RM×|A|. This, however, has an immediate implication: unless
if Q∗ ∈ Q, we will not be able to determine Q∗ exactly.

Let M = (X,A,P, r, γ) be an MDP with compact state-space X ⊂ Rp and let π be
any given (stationary) stochastic policy. Suppose that {x(t)}, {a(t)} and {r(t)} are sampled
trajectories of states, actions and rewards from M using the policy π . The modified update
rule for Q-learning with soft-state aggregation is

θ(a)← (1− αt (a))θ(a)+ αt (a)φ(x(t))

[
r(t)+ γ max

b∈A Qθ (x(t + 1), b)

]
(9)

where αt (a) = 0 if a 	= a(t).
The next result formally establishes the convergence of Q-SSA when a stationary learn-

ing policy π is used and is a restatement of Corollary 1 in [40]. Given an MDP M =
(X,A,P, r, γ), we denote by (X ,Pπ) the Markov chain induced in M by π and assume
this chain to be geometrically ergodic, with invariant measure µπ . Roughly speaking, this
condition ensures that behavior of the algorithm along the sample trajectories of (X ,Pπ)
can be analyzed as if the samples were drawn according to µπ . We refer to Appendix A for a
formal definition. We also assume that π(x, a) > 0 for all a ∈ A andµπ -almost all x ∈ X .11

Theorem 2 Let M, π and {φi , i = 1, . . . ,M} be as defined above. For any initial condition
θ0 ∈ RM×|A|, it holds that:

11 We write that a given condition ρ(x) holds for µπ -almost all x ∈ X if the set of states x ∈ X for which
ρ(x) does not hold has null µπ measure.

123

Auton Agent Multi-Agent Syst

1. Q-SSA converges w.p.1 as long as the step-size sequence verifies∑
t

αt (a) = ∞
∑

t

α2
t (a) <∞

for all a ∈ A;
2. The limit point θ∗ of Q-SSA verifies

θ∗(a) = Eµπ [φ(x)(HQθ∗)(x, a)] . (10)

Proof See Appendix B.

We emphasize that the above result guarantees convergence of Q-SSA under suitable con-
ditions but provides no guarantees on the quality of the obtained approximation. Although
we do not pursue such development here, it is possible to show that the Q-function obtained
with Q-SSA is the “optimal Q-function” for an associated decision problem obtained from
M. Nevertheless, the quality of the obtained approximation will greatly depend on the repre-
sentational power of the set of basis functions chosen. We refer to Sect. 7 and [40] for further
discussion on these issues.

For the developments in Sect. 5 we also need some bound on the rate of convergence
of Q-SSA. Previous work has addressed the rate of convergence of classical Q-learning
[15,20,43], but to the extent of our knowledge, the following is the first result on the conver-
gence rate of Q-SSA:

Theorem 3 Under the conditions of Theorem 2, the sequence {θt } generated by Q-SSA
verifies the following bound w.p.1:

lim sup
‖θt − θ∗‖∞√

maxa αt (a) log
(∑t

τ=0 ατ (a)
) ≤ K

for some K > 0, as long as

αt (a) =
{ 1

nt (a)
, if a = a(t)

0, otherwise

with nt (a) denoting the number of times that action a has been tried up to time instant t .

Proof See Appendix B. �
The previous result states that the convergence of θ to θ∗ verifies a bound similar to the

law of iterated logarithm.12 Defining

Et �

√√√√max
a
αt (a) log

(
t∑

τ=0

ατ (a)

)
.

and using the standard notation for asymptotic complexity, the statement in Theorem 3
becomes, simply, ∥∥θt − θ∗

∥∥∞ ∈ O(Et).

12 Note, for example, that if |A|=1, the step-size sequence becomes αt = 1/t and the bound in Theorem 3
reduces to the law of iterated logarithm.

123

Auton Agent Multi-Agent Syst

3.2 Multiagent MDPs with infinite state-spaces

We now extend Theorems 2 and 3 to MMDPs with infinite state spaces.
Let M = (X,A,P, r, γ) be an MDP with compact state-space X ⊂ Rp . Consider also a

set of N independent decision-makers (agents), each agent k having a repertoire Ak of indi-
vidual actions such that A = ×N

k=1Ak . In other words, suppose that A in the MDP M is the
Cartesian product of the individual action-spaces Ak . The MMDP� = (N ,X , (Ak),P, r, γ)
thus defined is equivalent to the MDP M and, as pointed out before, the only difference
between M and � lies on the fact that, in the former, the decision process is inherently cen-
tralized. Taking advantage of this close relation between � and M we can extend the results
concerning Q-SSA to multiagent scenarios in quite a straightforward manner.

Let then � = (N ,X , (Ak),P, r, γ) be an MMDP with compact state-space X ⊂ Rp . As
remarked above, the only difference between applying Q-SSA to an MDP or to an MMDP
lies on the fact that, in the latter, the action sequence {A(t)} is generated in a distributed fash-
ion. This implies, in particular, that the convergence of the algorithm should not be affected
and the sequence {θt } generated by Q-SSA will still converge w.p.1. Furthermore, if all
agents follow the same algorithm, the sequence of estimates {θt } will be the same for all
agents and all will converge to the same Q-function Q∗θ .

We thus obtain the following immediate corollary of Theorem 2. Once again, letπ be a sta-
tionary joint policy and (X ,Pπ) the corresponding Markov chain with invariant probability
measure µπ .

Theorem 4 Let � be an MMDP as defined above and π a stationary joint policy so that the
induced chain (X ,Pπ) verifies the conditions of Theorem 2. Further let {φi , i = 1, . . . ,M}
be a set of basis functions verifying the conditions of Theorem 2 and {αt } the step-size
sequence defined as

αt (a) =
{ 1

nt (a)
, if a = a(t)

0, otherwise

for all a ∈ A. Then, the conclusions of Theorems 2 and 3 hold for the sequence {θt } generated
by Q-SSA when applied to �.

The above result establishes the convergence of Q-SSA in MMDPs and provides an
asymptotic bound on the corresponding rate of convergence. This constitutes the first step in
building an algorithm for simultaneous learning and coordination in MMDPs with infinite
state-spaces. We next proceed to the problem of coordination.

4 The problem of coordination

As Q-SSA handles the problem of learning, we now address the problem of coordination.
In particular, we discuss convergence in behavior as we extend BAP to cope with MMDPs
with infinite state-spaces.

4.1 Biased adaptive play in MMDPs with infinite state-spaces

Recall the BAP mechanism described in Sect. 2.2. This coordination mechanism uses sam-
ples from the history of past plays to estimate the average policies of the agents in the game.
These estimates are then used to choose a best response policy, as long as the game is known.

123

Auton Agent Multi-Agent Syst

When applying standard BAP to MMDPs with a finite state-space, coordination on each
state requires that such state be visited a sufficient number of times to ensure that (1) adequate
action sampling can take place; and (2) there is sufficient time to attain coordination, since
the convergence guarantees in Theorem 1 are asymptotic. Successive visits to a state provide
each agent with a sample of the other agents’ policies in that particular state and hence the
requirement that every state be visited infinitely often must be satisfied.

Formally, the condition of infinite visits amounts to requiring the underlying Markov chain
to be irreducible (every state is “visitable”) and recurrent (each “visitable” state is visited
infinitely often). In the infinite state-space case, we instead require the underlying Markov
chain to be ψ-irreducible (meaning that all but a negligible part of the state-space is “visit-
able”) and Harris recurrent (meaning that every “visitable” region of the state-space is visited
infinitely often). We will return to this point further ahead in this section.

Consider an MMDP with compact state-space X ⊂ Rp . Due to the infinite nature of the
state-space, it is generally impossible to ensure that any particular state in the state-space is
visited infinitely often. Therefore, we cannot apply standard BAP as described in Sect. 2.2
to the infinite state-space setting.

In adapting BAP to cope with infinite state-spaces, coordination at each state should rely
not only in past visits to that particular state but should also use the information provided
by plays in nearby states. The intuition behind this idea can be easily clarified. Each agent k
can no longer use the past history at a particular state x to infer the other agents’ policy in
that state, since there is the possibility that it was never visited before. Instead, agent k will
assume that the policies of the other agents in the states sufficiently close to x do not change
significantly. If this assumption holds, agent k can use the past history at nearby states to
estimate the policy of the other agents at state x .

To implement this idea, we rely on the distance between two states x and y in X as an indi-
cation on the “similarity” between the states.13 As will soon become apparent, this approach
suitably adapts BAP to MMDPs with infinite state-spaces while ensuring coordination in all
but a negligible part of the state-space.

4.2 Approximate coordination

We now describe approximate biased adaptive play (ABAP) and establish its convergence
w.p.1. To this purpose, we consider a simplified setting in which coordination takes place
independently of the control of the underlying Markov process. This has several advanta-
ges. First of all, it allows us to disregard several technicalities concerning the underlying
Markov chain. Secondly, it greatly facilitates the proof of our convergence result. Finally, as
will become apparent in the next section, it will allow an easy combination of ABAP with
Q-SSA. We postpone to the conclusions (Sect. 7) a thorough discussion on the implications
of this simplified setting.

We begin by introducing two fundamental properties of Markov chains, namely ψ-irre-
ducibility and Harris recurrence. We refer to Appendix A for a more detailed review on
Markov chains.

13 Other concepts of “similarity” are, of course, possible. We return to this discussion in Sect. 7 and also in
Appendix B.

123

Auton Agent Multi-Agent Syst

Definition 3 Let {X (t)} be a Markov chain with transition kernel P. The chain is ψ-irre-
ducible if there is a maximal measure ψ on X such that ψ(U) > 0 if and only if

∞∑
t=0

Pt (x,U) > 0 (11)

for any x ∈ X and any measurable set U ⊂ X .14

Intuitively, the above definition simply means that all sets U with positive ψ measure (and
only those) have a positive probability of being visited by the process {X (t)} at some point
in time, independently of the initial state of the chain.

Definition 4 Let {X (t)} be a ψ-irreducible Markov chain, and let ηU denote the number of
visits to a set U in an infinite trajectory of the chain. The chain is Harris recurrent if

P [ηU = ∞ | X (0) = x] = 1, (12)

for any x ∈ X and any measurable set U ⊂ X .

Intuitively, the above definition means that sets U with positive ψ measure are visited an
infinite number of times.

Let M = (N ,X , (Ak),P, r, γ) be an MMDP with compact state-space X ⊂ Rp and
finite joint action-space A. Let Q∗ be the optimal Q-function for M and define, for each
x ∈ X , the stage-game�∗x = (N , (Ak), Q∗(x, ·)). To introduce and analyze ABAP, we resort
to an auxiliary process {X (t)} evolving in X . For the moment, we disregard the nature of
this process that will become clear in Sect. 5.

We assume this process {X (t)} to be a ψ-irreducible and Harris recurrent Markov chain,
with a irreducibility measure absolutely continuous w.r.t. the Lebesgue measure in Rp .15

At every time instant t , the N agents in M engage in the repeated game �∗X (t) where X (t)
is the state of the auxiliary process at time t . The sole purpose of the agents is to coordinate
in an optimal policy in each stage-game �∗x ; the agents have no knowledge otherwise on the
MMDP M or on the auxiliary process {X (t)} and consider the payoffs Q∗(x, ·) at different
stage-games �∗x to be independent. This technical artifice allows us to discard the effect of
the joint actions of the agents on the state evolution of the MMDP. The agents merely visit
the states in X along the trajectories of {X (t)} and coordinate in each visited stage-game �∗x .

Define the history of the game at time t as

Ht = {x(0), a(0), x(1), a(1), . . . , x(t − 1), a(t − 1), x(t)} ,
where the subsequence {x(t)} is a sample trajectory of the process {X (t)} and each joint
action a(τ), τ < t corresponds to that chosen by the agents in the stage-game �x(τ). At
each time instant t , each agent determines the distance between the current state x(t) and
each state x(τ), τ < t , occurring in Ht , given by ‖x(t)− x(τ)‖ for some norm ‖·‖. It then
chooses m occurrences from this history so as to minimize the corresponding distance. The

14 Maximal in this context means that, for any other measure ϕ that also verifies (11), it holds that ϕ � ψ .
As seen in [31], the existence of at least one measure ϕ verifying (11) immediately implies the existence of
one such measure that is maximal.
15 As discussed in Sect. 7 and Appendix B, the requirement of absolute continuity of ψ w.r.t. µLeb ensures
that the topology of the state-space is well-adapted to the usual topology of Rp . This requirement arises from
the definition of “similar states” in terms of a distance of the form d(x, y) = ‖x − y‖.

123

Auton Agent Multi-Agent Syst

sample set thus obtained, denoted as Sm(x(t),Ht), contains the m elements in Ht closer to
x(t), i.e., those minimizing

m∑
i=1

‖x(t)− x(ti)‖ .

We remark that a particular state x ∈ X may occur in Sm(x(t),Ht) more than once. On the
other hand, if two occurrences x(ti) and x(t j) verify

‖x(t)− x(ti)‖ =
∥∥x(t)− x(t j)

∥∥
and only one such occurrence must be chosen, then the most recent one should be picked.
In the example above, if t j > ti then x(t j) would be chosen. We also notice that, due to the
ψ-irreducibility and Harris recurrence of {X (t)}, given any state x ∈ X and a corresponding
neighborhood U with positiveψ-measure, there is a time T0 such that, w.p.1, Sm(x, Ht) ⊂ U
for all t > T0.

Once the set Sm(x(t),Ht) is determined, the corresponding m plays can now be used to
draw a K -sample and proceed as in standard BAP.

The following theorem establishes the convergence of ABAP w.p.1 in all but a negligible
set of states.

Theorem 5 Let M and {X (t)} be as defined above. In particular, assume that {X (t)} is ψ-
irreducible and Harris recurrent with irreducibility measure absolutely continuous w.r.t. the
Lebesgue measure, µLeb. Let Q∗ be the optimal Q-function for M, continuous in X in all
but a ψ-null set of states. If the N agents in M engage in the coordination games described
above while following ABAP, they will coordinate in an optimal policy w.p.1 at ψ-almost
every state in X , as long as the conditions for convergence of BAP (Theorem 1) are met.

Proof See Appendix B.

Notice that Theorem 5 is somewhat more restrictive than its finite counterpart, as it requires
continuity of Q∗ ψ-almost everywhere. However, this condition simply ensures that the func-
tion Q∗ is “well-behaved”, so that coordination at a given point x can be achieved by observing
the past plays in points “sufficiently close” to x .

It is also worth discussing the requirement of absolute continuity of the irreducibility
measure ψ w.r.t. µLeb. This requirement ensures that the topology of the state-space X is
“well-adapted” to the usual topology of Rp , and greatly facilitates the verification that the set
of points in which ABAP may not converge has null ψ measure. However, this is a technical
condition assumed for commodity of proof and we expect Theorem 5 to hold in more general
settings. We refer to Sect. 7 and Appendix B for further discussion on this issue.

In the following section we combine the Q-SSA algorithm described in the previous
section with approximate biased adaptive play described in this section, yielding a method
for simultaneous learning and coordination. Our construction closely follows that in [53].

5 Coordinated approximate Q-learning

In this section, we contribute one other novel algorithm that we refer as coordinated approx-
imate Q-learning (CAQL). As anticipated in previous sections, this algorithm combines
Q-SSA and ABAP. With sufficient exploration, CAQL guarantees that the estimates Qθ

123

Auton Agent Multi-Agent Syst

converge to an approximation of Q∗ and the agents’ policies converge to an optimal policy
w.r.t. this obtained approximation.

In CAQL, the agents are simultaneously estimating/approximating Q∗ and learning how
to coordinate, by interleaving the iterations of Q-SSA and ABAP. ABAP depends critically
on the output of Q-SSA and, as will soon become apparent, this requires a modification of
the basic ABAP algorithm that ensures that ABAP can accommodate with the crude estimates
of Q∗ produced by Q-SSA during earlier iterations.

5.1 Combining Q-SSA and ABAP

As pointed out above, there is one main difficulty in combining ABAP with Q-SSA since,
at each time instant t , the agents do not know the optimal function Q∗ as assumed in Sect. 4.
Instead, the agents have access only to an estimate Qθt thereof that they must use to choose
their actions and coordinate. This means that, during learning, some sub-optimal actions
may appear as optimal and vice-versa, potentially posing difficulties to ABAP.16 Therefore,
having simultaneous learning and coordination while retaining the convergence guarantees
of both Q-SSA and ABAP cannot be ensured merely by running ABAP and Q-SSA in
parallel.

The intuitive idea to overcome this difficulty is to built an approximate virtual game from
Qθt . This virtual game will include not only the optimal actions according to the current esti-
mate Qθt but all actions that “appear” to be close to optimal. Then, as t →∞, sub-optimal
actions are gradually removed.

To formalize this idea, we start with the following definition.

Definition 5 Given a general function F : A→ R, an action a∗ ∈ A is ε-optimal w.r.t. F if

F(a∗) ≥ max
a∈A F(a)− ε.

The basic procedure of CAQL is as follows. Let M = (N ,X , (Ak),P, r, γ) be an MMDP
with compact state-space X ⊂ Rp and let π be a stochastic stationary joint policy. We refer
to the process {X (t)} induced by π as the learning process and to π as the learning policy.
Suppose that {x(t)}, {a(t)} and {r(t)} are sampled trajectories of states, actions and rewards
from M obtained by following the joint policy π . As in Sect. 3, we consider a set of linearly
independent functions {φi , i = 1, . . . ,M} defined over X and taking values in R. We denote
by Qθt the function

Qθt (x, a) = φ�(x)θt (a),

where the sequence {θt } is generated recursively according to the update rule

θt+1(a) = (1− αt (a))θt (a)+ αt (a)φ(x(t))

[
r(t)+ γ max

b∈A Qθt (x(t + 1), b)

]
. (13)

The functions Qθt thus obtained provide successive approximations for the optimal Q-func-
tion Q∗. This component of CAQL, which simply applies Q-SSA with a stationary learning
policy π , addresses the problem of learning. We must now combine it with the coordina-
tion mechanism implemented using ABAP. We consider the learning process {X (t)} as the

16 We note that optimal actions can be “ruled out” by BAP at earlier stages of learning, when its associated
Q-value is still inaccurately estimated, which may impact negatively the performance of the algorithm. We
refer to [53] for further discussion on this issue. It is also worth noting that without the requirement for
simultaneous learning and coordination, both algorithms can be easily combined, as seen in [28].

123

Auton Agent Multi-Agent Syst

auxiliary process used in ABAP (see Sect. 4), and use the successive estimates
{

Qθt

}
instead

of the actual function Q∗ (which is unknown) to define the successive stage-games used in
ABAP.

Let optεt (x) denote the set of all ε-optimal actions w.r.t. Qθt at state x , i.e.,

optεt (x) =
{

a∗ ∈ A | Qθt (x, a∗) ≥ max
a∈A Qθt (x, a)− ε

}
.

and define the virtual game V̂ Gε
t = (N , (Ak), r̂t), where

r̂t (a) =
{

1 if a ∈ optεt (x(t))
0 otherwise.

As in Sect. 4, at each time-step t the N agents in M engage in the repeated game V̂ Gε
t . The

sole purpose of the agents is, once again, to coordinate in an optimal policy in each game
V̂ Gε

t , discarding any knowledge otherwise on the MMDP M. We denote the sequence of
joint actions thus obtained by

{
â(t)

}
and now define the history of the game at time t as

Ht =
{

x(0), â(0), x(1), â(1), . . . , x(t − 1), â(t − 1), x(t)
}
.

Notice that the sequence of actions {a(t)} obtained according to π is never considered in the
process of coordination.

Given the history Ht , each agent now proceeds as in ABAP (see Sect. 4). In particular,
each agent computes the set Sk

m(x(t),Ht) by determining the m states in Ht closer to x(t).
Each agent then draws a K -sample h from Sm(x(t),Ht) to be used to determine the expected
payoff of each action ak ∈ Ak w.r.t. the virtual game V̂ Gε

t . As in BAP and ABAP, the K -
samples are drawn individually by each agent and independently of the other agents. Each
agent can now find the corresponding best response action a∗k , unless the two BAP conditions
described in Sect. 2.2 are met. For commodity, we repeat such conditions here:

1. There is a joint action a ∈ optεt (x(t)) such that, for all played actions â ∈ h, â−k = a−k ;
and

2. There is at least one played action â ∈ h such that â ∈ optεt (x(t)).

Notice that the virtual games V̂ Gε
t can not be stored in memory, since there may be infinitely

many of them (due to the fact that X is infinite). This, however, poses no difficulty, as each
such game can easily be determined from Qθt as needed.

Given all individual actions at time t , (â1(t), . . . , âN (t)) = â(t), each agent updates the
history of the game, Ht , and the game moves to a new state x(t + 1) according to the proba-
bilities Pπ defined by the learning policy π . All agents receive the corresponding reward r(t)
and use the observed transition (x(t), a(t), r(t), x(t+1)) to update each parameter vector θt

using the update rule (13). Notice that the sequence of actions
{
â(t)

}
obtained from ABAP

is never considered in the process of learning.
Finally, making ε → 0 at an adequate rate, we expect that all suboptimal actions are

eventually discarded from the virtual games V̂ Gε
t , hopefully ensuring convergence to an

optimal policy with respect to Qθ∗ . The rate at which ε→ 0 must take into account the rate
of convergence of the learning algorithm, i.e., the rate at which the sequence θt converges to
the corresponding limit point θ∗. This issue is addressed in the continuation, as we establish
the convergence of CAQL.

With this, we conclude the description of the CAQL algorithm. Figure 1 provides a pseudo-
code description of CAQL.

123

Auton Agent Multi-Agent Syst

5.2 Convergence of CAQL

To establish convergence of CAQL, we need the bound for the rate of convergence of Q-SSA
from Theorem 3. Notice that in the CAQL algorithm the rate at which ε decays to zero is
determined by the function B. To establish convergence of CAQL, we must ensure that such
decay takes place at an adequate rate, given the convergence of Q-SSA. Using the bound in
Theorem 3, we are in position to formalize all conditions for the convergence of CAQL.

Algorithm 1 The CAQL algorithm for one agent k. ABAP is implemented in instructions 9 through 22 and
Q-SSA in instruction 25. The function B : R→ R in instruction 28 controls the decay of ε to zero.

Initialization:

1: Initialize t = 0, H0 = {x(0)} and ε = ε0
2: for all a ∈ A do
3: Initialize nt (a) = 1
4: Initialize θt (i, a) = 0
5: end for

Coordination: Given current state x(t)

6: if t ≤ m then
7: Randomly select an action
8: else
9: DeterminêV Gεt = (N , (Ak), r̂t), with

r̂t (a) =
{

1 if a ∈ optεt (x(t))
0 otherwise

10: Define D = {
a ∈ A | r̂t (a) = 1

}
11: Compute Ht = Sk

m(x(t),Ht)
12: Compute h = K(Ht)
13: for all ak ∈ Ak do
14: Compute

E Pt (ak) =
∑

a−k∈A−k

r̂t (a−k , ak)
nh(a−k)

K

15: end for

16: Compute B Rt =
{

ak | ak = arg max
bk∈Ak

E Pt (bk)

}

17: if Conditions 1 and 2 hold then
18: Choose the most recent joint action in h ∩ D
19: else
20: Randomly choose an action in B Rt
21: end if
22: Update Ht ← Ht ∪

{
x(t), â(t)

}
;

23: end if

Learning: Given current transition triplet (x(t), a(t), x(t + 1))

24: nt+1(a(t))← nt (a(t))+ 1;
25: Update θt according to (13);
26: t ← t + 1;
27: if ε ≥ ε0 B(nt) then
28: ε = ε0 B(nt);
29: end if

123

Auton Agent Multi-Agent Syst

Theorem 6 LetM = (N ,X , (Ak),P, r, γ)be an MMDP with compact state-spaceX ⊂ Rp

and finite action-space A. Let π be a stationary joint policy such that the Markov chain
(X ,Pπ) is geometrically ergodic with invariant probability measure µπ absolutely contin-
uous w.r.t. µLeb. Let {φi , i = 1, . . . ,M} be a set of basis functions verifying the conditions
of Theorem 2 and continuous µπ -almost everywhere. Further assume that

1. The function B decreases monotonically to zero and verifies

lim
t→∞

Et

B(t)
= 0. (14)

2. The step-size sequence {αt } verifies the conditions of Theorem 3;
3. The cardinality m of the sets Sm(x,Ht) and the length K of the K -samples verify m ≥

K (N + 2).

Then, the sequence {θt } generated by CAQL converges w.p.1 to θ∗ as defined in (10). Further-
more, all agents converge w.p.1 to an optimal joint policy w.r.t. the obtained approximation
Qθ∗ for µπ -almost every x ∈ X .

Proof See Appendix B.

Let us briefly go over the statement of the above theorem. In CAQL, ABAP must use the
estimates for Q∗ coming out of Q-SSA. At the earliest steps of learning, these estimates
are typically very crude and it is possible that some sub-optimal action appear as optimal
and vice-versa. If this is the case, ABAP in its original formulation would construct a virtual
game in which the actual optimal actions are not valued but, instead, the suboptimal actions
are. This can cause a bias in the ABAP estimation process and the convergence guarantees
provided for CAQL would no longer hold.

The result on Theorem 3 provides an upper bound on the estimation error associated with
any given action (optimal or not) at iteration t . Therefore, when running ABAP at iteration
t , we require that

1. The virtual game values all actions that are within ε of the (apparently) optimal actions;
2. ε is larger than the bound in Theorem 3;
3. ε converges to zero.

If the above conditions are met, all optimal actions (and probably some suboptimal actions)
are valued in the virtual game at all iterations. As t →∞, the bound in Theorem 3 goes to 0,
translating the fact that Q-SSA converges. By ensuring that ε → 0 without violating (14),
we ensure that all sub-optimal actions are eventually ruled out of the virtual games used by
ABAP. This, in turn, guarantees the latter to coordinate in an optimal action.

In practice, the algorithm does not depend critically on the value of ε as long as it verifies
the conditions in the above theorem. A crude approximation of the bound in Theorem 3 can
easily be found and, therefore, it is relatively simple to set the decay schedule for ε. We
refer to [53], where a similar artifact is used to combine the original BAP mechanism with
model-based learning in a finite setting.

We conclude by noting that the requirements of ψ-irreducibility and Harris recurrence in
ABAP follow from the assumption of geometric ergodicity.

123

Auton Agent Multi-Agent Syst

Fig. 2 Example of a continuous
indoor environment. The dotted
black squares represent the
“crash area” around each robot

Goal 2 Goal 1

Fig. 3 Situation of possible
crash

0.1

Environment space

Robot 1

Robot 2

Crash area 0.1

6 An illustrative example

We now analyze an example of application of CAQL to two simple multi-robot navigation
tasks.

Consider the indoor environment in Fig. 2. Two mobile robots (1 and 2) must navigate to
the corresponding goal regions, signaled with the bold colored lines. The environment is a
1 × 1 square, and the state of each robot k at each time instant is a pair (xk, yk) of coordi-
nates.17 The coordinates of the corners in the goal regions are (1, 1) and (0, 1), respectively,
and the corresponding goal regions are 0.1 × 0.1 squares, as depicted in Fig. 2. We denote
the goal region for robot k by Gk and by G the Cartesian product of G1 and G2. In their
trajectories, the robots must learn not to crash into each other by avoiding lying in the same
0.1× 0.1 area simultaneously (see Fig. 3 for an illustration). We denote the state of robot k
at time t by Xk(t), k = 1, 2. The state of the group is thus a pair X (t) = (X1(t), X2(t)) and
can take any value in ([0; 1] × [0; 1])× ([0; 1] × [0; 1]).

Each robot has four individual actions available, namely moving N , S, E and W . Each
individual action moves the robot a random distance between 0 and 0.3 in the corresponding
direction. We consider the movements of the robots to be independent of each other.

This problem can be modeled by the MMDP M = (N ,X , (Ak),P, r, γ) where

17 We use boldface symbols x and y to denote the physical coordinates of one robot to distinguish these from
the symbols x and y used to denote generic elements of the state-space X .

123

Auton Agent Multi-Agent Syst

– N = 2;
– X = ([0; 1] × [0; 1])× ([0; 1] × [0; 1]);
– Ak = {N , S, E,W } for k = 1, 2;
– The transition probabilities are defined by a transition kernel P given by

Pa(x,U) = Pa1(x1,U1)Pa2(x2,U2)

where a = (a1, a2), x = (x1, x2) and U is any measurable subset of X of the form
U = U1×U2. Pak (xk,Uk), k = 1, 2, denotes the single-robot transition probabilities for
robot k according to the description above, where Uk represents a measurable subset of
Xk ;

– The reward function r is defined as

r(x, a, y) =
⎧⎨
⎩

20 if y ∈ G;
−10 if ‖y1 − y2‖∞ < 0.1;
0 otherwise;

– We consider γ = 0.95.

Note that, in the above MMDP, we consider that the joint goal of the robots is to reach their
goal positions while avoiding crashing into each other.

We tested our algorithm by allowing the agents to interact with the environment and one
another in two distinct phases. In a first phase, the learning phase, the agents were allowed to
explore and learn during 104 time steps. During this learning stage, the robots applied CAQL
with sampled trajectories from the game obtained using a uniform random policy. Because
of the finite learning time, we used a non-vanishing step-size sequence (see Fig. 4). We also
used a finite history of past plays, Ht , with a maximum length of 1,000.

In a second phase, the test phase, the agents were again placed in the environment and
allowed to execute the policy learned in the learning phase in episodes of 100 consecutive
time-steps each, during which we evaluated the performance of the group. To evaluate the
performance of the group, we collected four different statistics, namely

1 2 3 4 5 6 7 8 9 10

−4

−3

−2

−1

Number of visits (x 104)

S
te

p−
si

ze
 v

al
ue

 (
po

w
er

 o
f 1

0)

Step−size sequence

Fig. 4 Step-size sequence {αt (a)} as a function of the number of visits to action a, nt (a). The labels in the
vertical axis correspond to powers of 10

123

Auton Agent Multi-Agent Syst

• Total discounted reward that should provide a good estimator on how good the learned
policy is. In a sense, it also provides some information on the quality of the approximation
Qθ∗ obtained with Q-SSA. The two next statistics provide further details on the quality
of the obtained approximation.

• Number of negative rewards that details how well the robots learn to actually avoid the
undesired crashes.

• Percentage of successful runs detailing the percentage of episodes in which the robots
were able to reach the desired configuration.

• Number of suboptimal actions that details how well the ABAP algorithm was able to
tackle the coordination problems for this game.

For the purpose of comparison we also provide the results obtained

1. Using the approximation obtained with Q-SSA but with a centralized controller—cor-
responding to the centralized solution in terms of coordination;

2. Using the approximation computed using Q-SSA but ignoring the ABAP coordination
policy and just letting each robot choose its own action greedily—corresponding to the
uncoordinated solution.

The comparison of the three different policies (dubbed CAQL, Centr., and Uncoord.) provides
a good evaluation of the impact of ABAP in ensuring coordination in this particular problem.

For comparison purposes, we ran two different experiments, each using a different par-
tition of the state-space and each consisting in the aforementioned learning and test phases.
In the first experiment, we used a hard partition consisting of 81 mutually exclusive sets.
This partition can be implemented simply by using step-functions, as depicted in Fig. 5. We
summarize the results from this first experiment in Table 1.

In a second experiment, we used a soft-partition in which the state-space was also divided
into 81 “soft” sets, obtained as the support of Gaussian kernels. Figure 5 illustrates the relation
between hard and the soft partitions for a 1-dimensional state-space. Since in both experi-
ments the basis functions provide similar partitions of the state-space, we expect the results

Fig. 5 Relation between hard
and soft partitions in a
1-dimensional state-space. The
solid line corresponds to the hard
partition and the dotted line to the
soft partition. The sets in the
partition are defined as the
support of the different basis
functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

State

B
as

is
 fu

nc
tio

ns

Relation between hard and soft partitions

φ
1

φ
2 φ

3

123

Auton Agent Multi-Agent Syst

Table 1 Comparative results of CAQL against the optimal and uncoordinated policies in the navigation
domain, using a hard state-space partition with 81 basis functions

Tot. disc. reward Miscoord. Succ. runs (%) Subopt. act.

CAQL 29.3± 5.17 1.0± 0.98 100 10.7± 3.80

Centr. 32.8± 3.85 1.6± 1.15 100 0.0± 0.00

Uncoord. 24.5± 5.95 3.5± 2.71 100 30.0± 4.07

The reported results were obtained after the learning period was complete. We present the average results
obtained over 1, 000 Monte-Carlo runs

Table 2 Comparative results of CAQL against the optimal and uncoordinated policies in the navigation
domain, using a soft state-space partition with 81 basis functions

Tot. disc. reward Miscoord. Succ. runs (%) Subopt. act.

CAQL 29.1± 4.02 0.1± 0.30 100 17.0± 3.78

Centr. 30.2± 7.49 0.0± 0.00 100 0.0± 0.00

Uncoord. 17.4± 7.26 3.5± 2.65 97.0 43.9± 4.89

The reported results were obtained after the learning period was complete. We present the average results
obtained over 1, 000 Monte-Carlo runs

in both experiments to be similar. We summarize the results from the second experiment in
Table 2.

Several remarks are in order. First of all, concerning the function Qθ∗ computed by the
Q-SSA component of CAQL, the results in both experiments indicate that the algorithm
was able to learn a “successful” approximation of the optimal Q-function. In fact, observing
the performance of the centralized team (“Centr.”) team both in terms of successful runs
and miscoordinations, we conclude that the learned policy allows the robots to successfully
fulfill the intended task, reaching the respective goals and avoiding crashes. We classify the
obtained approximation as “successful” since we are unable to determine the true optimal
Q-function and, therefore, we can only evaluate the quality of the approximation by the
quality of the obtained policy.

A second remark is concerned with the ABAP component of CAQL. As seen in Tables 1
and 2, CAQL clearly outperforms the uncoordinated team in both experiments.18 This, as
observed before, is a clear indication that the ABAP coordination mechanism effectively
addresses the problem of coordination in the presence of multiple equilibria in such MMDPs.
This is particularly clear by observing the number of suboptimal actions performed by CAQL
and the uncoordinated team.

It is also worth mentioning that the suboptimal actions observed when running CAQL
may arise from two different factors. Considering that the convergence results for ABAP are
asymptotic,

– The finite time and history may influence the ability of the algorithm to coordinate in
some regions of the state-space that have been seldom visited.

18 As a quick note, it is worth pointing out that, given the sample size (1, 000), the differences between the
different methods in both Tables 1 and 2 are statistically very significant. Note, for example, that the 99.9%
confidence interval for the average total discounted reward of CAQL in Table 1 is [29.26, 29.34] while for the
uncoordinate team is [24.45, 24.55].

123

Auton Agent Multi-Agent Syst

– Since the policy used during learning was uniform, it is possible that not all regions of
the state-space were visited equally thoroughly.

Another interesting observation is that, even though using both sets of functions the results
are very similar, the total discounted reward received is slightly larger in the experiment using
a hard partition (Table 1) while the number of mis-coordinations is slightly smaller in the
experiment using a soft partition (Table 2). This means that, while the hard partition is appar-
ently more efficient for navigation toward the goal regions, the soft partition seems to be more
efficient in preventing crashes between the robots. The observed difference also confirms our
previous observation that the performance of the algorithm will greatly depend on the choice
of basis functions.

Finally, we notice that, in the experiment with a soft-partition (Table 2), the subopti-
mal actions arising from the lack of a coordination mechanism in the “uncoordinated team”
greatly impact the ability of the robots to reach their goal. This is evident both in terms of
total discounted reward and in terms of successful runs.

We conclude this section with the results obtained in the environment of Fig. 6 that further
illustrate some of the points discussed above. Once again, two mobile robots must navigate
to the corresponding goal regions, signaled with the bold colored lines and the problem is,
in all aspects, similar to the one considered above. The fundamental difference is that, in
this environment, the robots have only available four narrow corridors that have the exact
width of the “crash area”. This means that the two robots can only cross the same hallway in
opposite directions if they “stick” to opposite walls, as depicted in Fig. 7.

We again tested CAQL by allowing the agents to explore and learn for 104 time steps (the
learning phase), after which the learned policy is evaluated in episodes of 100 consecutive
time-steps each (the test phase). We again tested our method using both hard and soft parti-
tions of the state-space, this time consisting of 64 sets. We summarize the results obtained
with each partition in Tables 3 and 4.

Fig. 6 Continuous indoor
environment with narrow
hallways. As in Fig. 2, the dotted
black squares represent the “crash
area” around each robot. Note
that this particular environment is
much more coordination critical,
since the robots can hardly cross
the same hallway in opposite
directions without crashing

Goal 2 Goal 1

Fig. 7 The two robots can only
cross the same hallway in
opposite directions without
crashing if they “stick” to
opposite walls

123

Auton Agent Multi-Agent Syst

Table 3 Comparative results of CAQL against the optimal and uncoordinated policies in the navigation
domain of Fig. 6, using a hard state-space partition with 64 basis functions

Tot. disc. reward Miscoord. Succ. runs (%) Subopt. act.

CAQL 36.7± 4.50 1.8± 1.28 100 0.01± 0.03

Centr. 36.8± 4.25 1.8± 1.19 100 0.00± 0.00

Uncoord. 30.1± 7.77 2.5± 1.28 100 4.42± 1.59

The reported results were obtained after the learning period was complete. We present the average results
obtained over 1, 000 Monte-Carlo runs

Table 4 Comparative results of CAQL against the optimal and uncoordinated policies in the navigation
domain of Fig. 6, using a soft state-space partition with 64 basis functions

Tot. disc. reward Miscoord. Succ. runs (%) Subopt. act.

CAQL 10.5± 13.60 0.3± 0.45 54.7 0.00± 0.00

Centr. 10.8± 13.47 0.3± 0.43 55.7 0.00± 0.00

Uncoord. 5.1± 9.12 0.3± 0.82 41.1 14.54± 17.28

The reported results were obtained after the learning period was complete. We present the average results
obtained over 1, 000 Monte-Carlo runs

In this scenario, CAQL exhibits a performance that is essentially similar to that of the
centralized controller. This is visible with both sets of functions, but it is particularly flagrant
in the results using a soft partition.

Another interesting aspect is that, in this scenario, the difference between the total dis-
counted reward attained with a hard partition (Table 3) and that achieved using a soft partition
(Table 4) is significantly more pronounced than in the previous scenario. This can be explained
by noticing that the geometric nature of the corridors is more amenable to a hard partition of
the state-space that closely replicates the geometry of the environment. Interestingly, once
again the number of mis-coordinations is inferior in the experiment using a soft partition,
reinforcing the idea that the hard partition is apparently more efficient for navigation toward
the goal regions while the soft partition seems to be more efficient in preventing crashes
between the robots.

7 Discussion

We now discuss several important issues referred along the text and postponed to these
concluding remarks.

7.1 Quality of approximation

As mentioned in Sect. 3, Q-SSA computes an approximation to Q∗ that verifies

Qθ∗(x, a) = φ�(x)Eµπ [φ(z)(HQθ∗)(z, a)] .

Generally, such function will be different from Q∗. In fact, defining the operator

(�q)(x, a) � φ�(x)Eµπ [φ(z)q(z, a)]

123

Auton Agent Multi-Agent Syst

we can rewrite the above fixed-point equation as

Qθ∗(x, a) = (�HQθ∗)(x, a). (15)

Observing (15) it should be clear that Q∗ 	= Qθ∗ unless if Q∗ is also a fixed point of �.
In spite of this apparently discouraging fact, further insight can be obtained by exploring

the relation between Q∗ and Qθ∗ . First of all we recall that, by assumption,

‖φ(x)‖1 �
∑

i

|φi (x)| = 1,

which implies that ‖�q‖∞ ≤ ‖q‖∞. Therefore,∥∥Qθ∗ − Q∗
∥∥∞ ≤ ∥∥Qθ∗ −�Q∗

∥∥∞ + ∥∥�Q∗ − Q∗
∥∥∞

= ∥∥�HQθ∗ −�HQ∗
∥∥∞ + ∥∥�Q∗ − Q∗

∥∥∞
≤ γ ∥∥Qθ∗ − Q∗

∥∥∞ + ∥∥�Q∗ − Q∗
∥∥∞ .

From here, we obtain ∥∥Qθ∗ − Q∗
∥∥∞ ≤ 1

1− γ
∥∥�Q∗ − Q∗

∥∥∞ .
The expression above provides an upper bound on the error in the obtained approximation in
terms of the difference between �Q∗ and Q∗. Interpreting �Q∗ as a “pseudo-projection”,
‖�Q∗ − Q∗‖∞ can be seen as the “distance” between Q∗ and the family of functions Q
spanned by {φi , i = 1, . . . ,M}.

Another interesting aspect about the obtained approximation concerns an associated deci-
sion problem, as seen in [40]. Let M = (X ,A,P, r, γ) be an MDP and {φi , i = 1, . . . ,M} a
set of basis functions verifying the conditions in Sect. 3. Define the stochastic process {Z(t)},
where each random variable Z(t) takes values in {1, . . . ,M}. This new process is governed
by the probabilities

P [Z(t) = i | Ft] = φi (X (t)),

where Ft is the σ -algebra generated by {X (0), . . . , X (t), A(0), . . . , A(t)}. Taking Z(t) as an
indirect observation of the state X (t), the joint process {X (t), Z(t)} is a partially observable
Markov decision process with a finite observation space O = {1, . . . ,M} and compact
state-space X ⊂ Rp .

Consider now the Markov chain induced by the learning policy, (X ,Pπ), and let µπ
denote the corresponding invariant measure. From the stationary version of (X ,Pπ) we can
build a stationary version of {Z(t)} where, for all t ,

P [Z(t) = i] = Eµπ [φi (x)]. (16)

From this stationary process Z(t), we define a general (non-Markov) decision process M̂ =
(O,A, P̂, r̂ , γ), where

– O is the observation space, {1, . . . ,M};
– A is the action space of the original MDP M;
– P̂ defines the “average” transition probabilities, given by

P̂a(i, j) = Eµπ

[
φi (x)φ j (y)

]
�

∫
X
φi (x)

∫
X
φ j (y)Pa(x, dy)µπ(dx).

123

Auton Agent Multi-Agent Syst

– r̂ defines the “average” reward, given by

r̂(i, a) = Eµπ [φi (x)r(x, a, y)]

�
∫
X
φi (x)

∫
X

r(x, a, y)Pa(x, dy)µπ(dx).

– γ is the discount factor of the original MDP M.

Let us discuss a little the meaning of the several elements above. Consider, for example, the
probabilities P̂a(i, j). As can easily be checked,∑

j

P̂a(i, j) = Eµπ [φi (x)]

and, in general, the term on the right-hand side is different from 1. In fact, P̂a(i, j) represents
not the probability of moving to state j given that the process started in state i and action a
was taken, but the probability of observing a transition from i to j given that the action a
was taken and the process is distributed according to (16).

Returning to Q-SSA, some algebraic manipulation leads to the conclusion that the param-
eter θ∗ computed by the algorithm verifies the following recursion:

θ∗(i, a) = r̂(i, a)+ γ
M∑

j=1

P̂a(i, j)max
b
θ∗(j, b)

and can be interpreted as the “optimal” Q-function for M̂.
We conclude with two relevant remarks. First of all, learning with function approximation

in the cooperative scenarios considered in this paper is not excessively different from the
same problem in single-agent scenarios. This is evidenced by the results in Sect. 3, in which
the result for cooperative multiagent scenarios follows immediately from its counterpart in
single-agent scenarios. Therefore, it is expectable that our results can be extended to other
approximation architectures for which convergence results are available (e.g., point-based
approximations [33,45]), although requiring the result in Theorem 3 to be extended to these
methods.

Secondly, as argued above, the use of function approximation generally implies that the
optimal Q-function, Q∗, cannot be recovered exactly. This impacts the quality of the obtained
approximation. In cooperative multiagent settings, this means that the agents will coordinate
in an “approximately optimal” policy. Guarantees on the quality of such approximately opti-
mal policies follow from similar bounds in single-agent problems such as those found in [2].
However, to our knowledge, it remains an open question how the use of function approxi-
mation impacts the set of equilibria in general (non-cooperative) games.

7.2 “On-policy” coordination

When describing the ABAP algorithm, we considered an auxiliary process that “isolated”
the transitions of the chain from the coordination process. In this sense, the coordination
mechanism was “off-policy”, in that the actions of the agents did not affect the dynamics of
the underlying Markov chain. As argued before, the purpose of this mathematical device was
to avoid any concerns about the dependence of the behavior of the underlying Markov chain
on the action choice of the agents.

123

Auton Agent Multi-Agent Syst

When combining ABAP with Q-SSA, we again resorted to such a process: we considered
a learning policy driving the trajectories of the MMDP that was independent of the process
of coordination. This separated the problem of learning from that of coordinating, ensuring
that the same algorithm could tackle both problems simultaneously and in parallel.

In the case of a finite state-space, biased adaptive play can be combined with learning
algorithms with no need for such artifice [26,53]. This is essentially due to two reasons:

1. Many classical algorithms can compute Q∗ independently of the learning policy used
(e.g., Q-learning);

2. BAP ensures coordination in the optimal policy even in the presence of exploratory
moves [53].

Therefore, the combination of BAP with, for example, Q-learning, can be implemented tak-
ing only a few minor precautions to ensure proper exploration and adequate tuning of the ε
parameter (as in CAQL).

In the case of infinite state-spaces, off-policy RL methods with function approximation
exhibit unsound behavior when a changing learning policy is used [51]. This has an immediate
implication: since in ABAP the agents necessarily adjust their policy toward an optimal pol-
icy, such methods can only be used as we did here, by separating learning and coordination.
On the other hand, if convergence guarantees for on-policy RL methods can be established
[30,35], it is unclear how such methods can be combined with ABAP. This difficulty arises
even in the benign case of finite state-spaces, when combining BAP with on-policy learning
methods. We refer to [26] for further discussion on this topic.

7.3 Storage of infinite histories

The ABAP algorithm, as formulated in Sect. 4, stores the complete history of the coordina-
tion process. This is fundamental in establishing the asymptotic convergence properties of
the algorithm, since only the complete history of the process can guarantee that there are
sufficient samples of “every” neighborhood in the state-space.

In practice, however, storing the potentially large trajectories of the algorithm is often
impractical, both in terms of memory consumption and in terms of search. Therefore, actual
implementations of CAQL as the one illustrated in Sect. 6 must usually “disregard” such
requirement and use a fixed-size history. The latter should be chosen sufficiently large to
ensure proper sampling of the state-space, but our experience showed that the impact of a
fixed-size history is often negligible in many applications. The “optimal” history length will
depend on the invariant measure induced by the learning policy, µπ , and on the support of
the Q-function used for coordination.

7.4 Absolute continuity of ψ with respect to µLeb

Another requirement in Theorems 5 and 6 is related with the absolute continuity of µπ with
respect to the Lebesgue measure, µLeb. As mentioned in Sect. 4, this requirement ensures
that chain (X ,Pπ) is well-adapted to the concept of “nearby states” used in ABAP.

To clarify this observation, we recall that the fundamental idea in ABAP is to use the
policy of other agents in nearby states to coordinate in any given state x . This relies on two
implicit assumptions, namely

1. The dynamics of the underlying Markov process are “similar” in such nearby states;
2. The optimal policy for the game is “similar” in such nearby states.

123

Auton Agent Multi-Agent Syst

x2x1

Q∗(1)

Q∗(

x, a

x, a2)

U(x1) U(x2)

Fig. 8 “Pathological example”, in which the existence of an atom {x2} may prevent coordination

Concerning 1, consider the chain {X (t)} along which the agents coordinate in CAQL.19 As
seen in Sect. 5, this process is not driven by the actions of the agents and is purposely kept
separated from the coordination mechanism. Coordination in CAQL is considered in terms
of Qθ∗ and, as seen before, this approximation depends on the long-term behavior of {X (t)},
encapsulated in its invariant measure, µπ . On the other hand, by using any of the usual met-
rics in Rp , we are implicitly imposing the standard topology in Rp , to which the Lebesgue
measure is naturally adapted. Therefore, absolute continuity of µπ w.r.t. µLeb immediately
ensures that µπ is well-adapted to the underlying topology imposed by the metric.

The above requirement also excludes chains that exhibit certain undesirable “pathological
behaviors”. Consider, for example, the function depicted in Fig. 8. There is an action a1 that
is optimal for all states in a neighborhood of x1 and, therefore, samples from this neighbor-
hood can be used to coordinate in x1. This does not happen in x2: any neighborhood of x2

will include states in which only a1 is optimal and states in which only a2 is optimal. If µπ
is absolutely continuous w.r.t. µLeb, then the set {x2} will have 0 µπ -measure. However, if
this is not the case, it is possible to have an “atom” of probability, {x2}, that may prevent
coordination in this particular state.

Two final remarks are in order. First of all, CAQL can be modified to accommodate any
general similarity criterion (e.g., using kernels). Assuming such criterion to induce a com-
plete and separable topology T on X , the condition of absolute continuity w.r.t. µLeb should
then be replaced by the condition that µπ be defined on the Borel σ -algebra associated
with T .

Secondly, it is our conviction that the requirement of absolute continuity of µπ w.r.t. µLeb

can be alleviated at a cost of a more evolved proof. The central idea would be to use the
Lebesgue decomposition theorem to reduce the coordination problem to each atom and thus
establish the convergence of ABAP in such atoms.

19 We keep the discussion in terms of CAQL, but the same can be carried out using exactly the same arguments
to just ABAP.

123

Auton Agent Multi-Agent Syst

7.5 Rationality and convergence

Bowling and Veloso [8] introduce two properties that one would expect from any “intelli-
gent” learning agent, namely rationality and convergence. An agent is rational if it is able
to converge to an individual policy that is a best response to the policies of the other agents,
as long as the other agents all converge to stationarity. This is important, for example, in
situations where the other agents may have limitations. A rational agent should be able to
take these limitations into consideration when choosing its own individual policy.

On the other hand, an agent is convergent in self-play if it converges to a stationary policy
against other learning agents using the same learning algorithm. In other words, a convergent
agent should be able to converge even if the other players in the game also adapt their policies.

By construction, CAQL is convergent in self-play. Furthermore, because of the simul-
taneous learning of Q, if the other agents all follow (or eventually reach) some stationary
policy, this will reflect in the estimate of the Q-values associated with each action, and the
best-response set defined in (8) will only include the actions that are actually best responses
to the stationary policy of the other agents. This means that CAQL is also rational.

Nevertheless, an interesting question that is worth exploring in future work is concerned
with the convergence of CAQL against other classes of learners. We have no theoretical
results on this question at this point, but we dare to conjecture the following:

– Without any assumption on the particular coordination mechanism followed by the other
agents, we believe that it may not be possible to establish convergence of ABAP in the
presence of general learning agents. The rationale behind this conjecture is that it should
be possible to design an “adversarial” mechanism that always chooses the “worst” action
for ABAP. Even if such a mechanism would be senseless and of no practical usefulness,
it would still provide a counter-example against which ABAP might not converge.

– To the extent of our knowledge, joint action learners (JAL) as proposed in [11] have
only been applied in MMDPs with finite state-spaces. However, we note that JAL can
be obtained from BAP by taking m = K = t at each iteration t . Therefore, it should
be possible to adapt JAL to infinite settings by again considering ABAP and taking, at
each iteration t , m = K = t . In the presence of agents following this modified version
of JAL, and since the underlying coordination mechanism in both methods is similar, we
still expect CAQL to converge.

Another very interesting question that is also worth exploring is concerned with the appli-
cation of CAQL/ABAP in cooperative settings in which not all agents share the same reward
function. This is the case, for example, in scenarios with a similar reward structure as the
well-known game of Battle-of-Sexes (BoS). Such scenarios are still “cooperative”, in the
sense that they require the agents to coordinate in one of the possible equilibria, but different
agents prefer different equilibria.

One fundamental difference between the game of Battle-of-Sexes and the class of games
considered in this paper is that there is no coordination equilibrium in the sense of Littman [24].
In the Battle-of-Sexes, although both equilibria are Pareto optimal, none of the two actually
gives the maximum payoff to both agents. We note, however, that the best response graph
for the game is still weakly acyclic, which means that BAP would still converge.

In this paper, we addressed learning and coordination/equilibrium selection in scenarios
in which:

1. All agents share the reward function;
2. All agents have full access to the state of the game;

123

Auton Agent Multi-Agent Syst

3. All agents have full access to the actions played by the other agents.

However, there are many important real-world problems in which one or more such assump-
tions do not hold. None of these two problems (learning and equilibrium selection) is trivial
to deal with in real-world multiagent scenarios. As for 1, even in finite settings and focusing
only on the learning aspect of the problem (i.e., ignoring the equilibrium selection aspect of
the problem), few algorithms can actually tackle general sum games with any guarantees of
convergence, and typically require somewhat restrictive conditions on the game. Nash-Q
and FF-Q are among the few learning algorithms that address this very broad class of games
with any formal guarantees of convergence, and there is certainly room for further work on
this topic.

As for 2 and 3, there is a great body of work on problems with partial observability, and
many models of different complexity have been proposed to address such problems (e.g., Dec-
MDPs, Dec-POMDPs [1], I-POMDPs [16]). However, in such partially observable settings,
the problem of decentralized decision-making is known to be NEXP-complete even in fully-
cooperative two-agent games with finite state-spaces [1]. In other words, even if the model
of the multiagent system is completely known and we focus on the problem of planning tak-
ing into account that, at execution-time, the agents have only local knowledge, the inherent
complexity of the problem is prohibitive.

Nevertheless, the fact that CAQL accommodates for the use of function approximation
already implies that it should be possible to extend our results to scenarios with a simplified
form of partial observability—namely, centralized partial observability. In a recent work,
we also started to explore learning in cooperative settings where each agent is allowed to
have its own payoff function [29]. However, the extension of the results in this paper both to
general-sum and to partially observable settings remains a very interesting avenue for future
work.

Acknowledgments The authors would like to acknowledge the helpful discussions with Manuela Veloso,
who pointed out that the use of observed actions at nearby points might be useful to extend BAP to infinite
state-spaces. We also acknowledge the anonymous reviewers for their many comments and suggestions that
contributed to improve the overall clarity of the paper, as well as for several interesting issues that contributed
to enrich the discussions in the paper. This work was partially supported by the Portuguese Fundação para a
Ciência e a Tecnologia under the Carnegie Mellon-Portugal Program and the Information and Communica-
tions Technologies Institute (ICTI) (www.icti.cmu.edu) and also under Programa Operacional Sociedade do
Conhecimento (POS_C) that includes FEDER funds. The views and conclusions contained in this document
are those of the authors only. The first author acknowledges the PhD grant SFRH/BD/3074/2000.

Appendix

A Markov Chains

In this Appendix, we review some background material on Markov chains. In particular, we
introduce several concepts that describe different types of stable behavior in this class of
processes. In particular, we discuss

– The concept of ψ-irreducibility, that roughly translates the ability of a chain to reach all
parts of the state-space;

– The concept of recurrence, that roughly translates the ability of a chain to revisit infinitely
often all “relevant” parts of the state-space;

– The concept of positivity, that roughly translates the notion of equilibrium behavior in
this class of processes;

123

www.icti.cmu.edu

Auton Agent Multi-Agent Syst

– The concept of ergodicity, that roughly translates the notion of convergent behavior in
this class of processes.

We start by defining a homogeneous Markov chain as a discrete-time stochastic process
{X (t)}, where each r.v. X (t), t ≥ 0, takes values in X . The r.v. X (0) is distributed according
to an initial measurede µ0, i.e.,

P [X (0) ∈ U] = µ0(U),

where U ⊂ X is any measurable set. The distribution of each r.v. X (t), t > 0, depends on
the value of X (t − 1) according to the transition probabilities

P [X (t) ∈ U | X (t − 1) = x] = P(x,U), (17)

where U ⊂ X is any measurable set. We refer to the kernel P as the transition kernel for
the chain. We henceforth refer to a Markov chain either as a sequence {X (t)} or as a pair
(X ,P) with the implicit assumption that some initial measure is understood. We also define
the T -step transition kernel as

PT (x,U) � P [X (t + T) ∈ U | X (t) = x]

and represents the probability of the chain entering the set U at time T , given that it departs
from state x . The T -step transition kernel can be defined recursively from the transition kernel
P as

P1(x,U) = P(x,U) Pt (x,U) =
∫
X

P(y,U)Pt−1(x, dy).

Given an arbitrary measurable set U ⊂ X , the first return time to U , τU , is defined as

τU = min {t > 0 | X (t) ∈ U },
and is a r.v. that corresponds to the first time-step in which the chain enters the set U . Note
that, by definition, τ > 0. Given a measure ϕ on X , a Markov chain is ϕ-irreducible if

P [τU <∞ | X (0) = x] > 0,

for any x ∈ X and any measurable set U ⊂ X such that ϕ(U) > 0. This means that a chain is
ϕ-irreducible if it is possible to define a measure ϕ that assigns positive measure only to those
sets that can be reached from any initial state. If a Markov chain (X ,P) is ϕ-irreducible, then
there is a maximal irreducibility measure ψ for which (X ,P) is ψ-irreducible.20

All maximal irreducibility measures are equivalent and hence a chain can be classified as
being ψ-irreducible without specifying the maximal irreducibility measure ψ .

Let now ηU denote the r.v. corresponding to the number of visits to a measurable set
U ⊂ X in an infinite trajectory of the chain. Then, a set U is said Harris recurrent if, for any
x ∈ X ,

P [ηU = ∞ | X (0) = x] = 1.

Therefore, a Harris recurrent set is a set that is visited infinitely often from any initial condi-
tion. A ψ-irreducible Markov chain is Harris recurrent if any measurable set U ⊂ X such
that ψ(U) > 0 is Harris recurrent. Therefore, in a Harris recurrent chain, any “parts” of the
state-space that can be visited from every initial condition will be visited an infinite number
of times.

20 In this context, ψ is a maximal if ψ � ϕ for any irreducibility measure ϕ.

123

Auton Agent Multi-Agent Syst

Previous works that establish similar results to those portrayed in this paper but in finite
state-space settings (see, for example, [27,53]) typically require that every state x ∈ X
be visited infinitely often. In the more general state-space setting considered herein, that
requirement translates in the above notions of ψ-irreducibility and Harris recurrence.

Given a Markov chain (X ,P), a probability measure µ is called invariant if∫
X

P(x,U)µ(dx) = µ(U). (18)

for any measurable set U ⊂ X . When it exists, the invariant probability measure for a chain
is equivalent to the maximal ψ-irreducibility measure for that chain. The invariant proba-
bility measure for a chain describes, in a sense, its “steady-state” behavior. A ψ-irreducible
Markov chain admitting an invariant probability measure is called a positive chain.

A Markov chain (X ,P) is geometrically ergodic if there is a constant r > 1 such that, for
any initial measure µ0 on X ,

∞∑
t=0

r t
∥∥µ0Pt − µ∗∥∥ <∞,

where
∥∥µ0Pt − µ∗∥∥ is the total variation distance between µ0Pt and µ∗.21 Intuitively, a

Markov chain is geometrically ergodic if it converges exponentially fast to its invariant
distribution. It is important to refer that geometric ergodicity is a stronger condition than
ψ-irreducibility and Harris recurrence, and usually implies the latter two.

Finally, given a Markov chain (X ,P) and a measurable function f : X → R, the Poisson
equation for the chain w.r.t. f is

v(x)− (Pv)(x) = f (x)− µ f, (19)

where we used the following compact notation

(Pv)(x) � E [v(X (t + 1)) | X (t) = x] =
∫
X
v(y)P(x, dy);

µ f � Eµ [f (x)] =
∫
X

f (x)µ(dx).

If the chain (X ,P) is positive Harris, the solution v to (19) is well defined for all x ∈ X and
verifies

v(x) =
∞∑

t=0

[
(Pt f)(x)− µ f

]
. (20)

Roughly speaking, the Poisson equation quantifies the expected error incurred when approx-
imating µ f by its sample mean computed along a trajectory of the chain.

21 Recall that the total variation distance between two probability measures µ and ν on a set X is defined as

‖µ− ν‖ = sup
U
|µ(U)− ν(U)| ,

with the supremum taken over all measurable subsets U of X .

123

Auton Agent Multi-Agent Syst

B Proofs

In this Appendix we present the proofs of the several theorems along the text. We resort to
several classical results from stochastic approximation theory, introduced as needed. Given a
general vector x ∈ Rp , we denote its i th component interchangeably by x(i) or xi . Also, for
a vector-valued function f : Rp → Rq , we denote its i th component at x by fi (x). Finally,
for a p× q matrix A, we denote its (i, j) component interchangeably by A(i, j) or Ai, j and
its j th column by either A(j) or A j . The (i, j) component of a matrix-valued function f at
x is denoted by fi, j (x) and its j th column by f j (x). In the remainder of this section, ‖·‖
denotes the max-norm.

B.1 Proof of Theorem 2

To establish the convergence of Q-SSA we make use the following result from [2, Proposi-
tion 4.5].

Theorem 7 Consider the general algorithm

θt+1(a) = (1− αt (a))θt (a)+ αt (a) [ha(θt)+ Ma(t + 1)+ εa(t)] , (21)

such that the following hold w.p.1:

1. The step-size sequence {αt } verifies, for all a ∈ A∑
t

αt (a) = ∞
∑

t

α2
t (a) <∞;

2. The sequence {M(t)} verifies

E [M(t + 1) | Ft] = 0 E
[‖M(t + 1)‖2 | Ft

] ≤ K
(
1+ ‖θt‖2

)
,

where Ft is the σ -algebra generated by {(M(τ), ε(τ)), τ = 1, . . . , t}.
3. The sequence {ε(t)} is asymptotically negligible, i.e., there is a sequence {ct } going to 0

such that

‖ε(t)‖ ≤ ct (1+ ‖θt‖).
4. The map h : RM → RM is a contraction, i.e.,∥∥h(θ)− h(θ ′)

∥∥ ≤ γ ∥∥θ − θ ′∥∥
with 0 ≤ γ < 1.

Then, for any θ0, the sequence {θt } recursively defined by (21) converges w.p.1 to the fixed
point of h.

To establish the convergence of Q-SSA, we verify that each of the conditions in the above
result hold.

We start by writing (9) as (21). To that purpose, given the learning process {X (t)}, let us
introduce the process {Z(t)} defined as Z(t) = (X (t − 1), X (t)). Then, for z = (x, y), let
the ath column of the matrix-valued function H be defined as

Ha(θ, z) = φ(x)
(

r(x, a, y)+ γ max
b∈A Qθ (y, b)

)
.

123

Auton Agent Multi-Agent Syst

We now write (9) as

θt+1 = θt (1− αt)+ (h(θt)+ δ(t + 1))αt , (22)

with the ath columns of h given by

ha(θt) = Eµπ

[
φ(x)

(
r(x, a, y)+ γ max

b∈A Qθt (y, b)

)]

and

δa(t + 1) = Ha(θt , Z(t + 1))− ha(θt).

In (22), we denoted by αt the diagonal matrix with component (a, a) given by αt (a), with
the implicit understanding that (22) denotes not a single equation but |A| distinct equations,
one for each a ∈ A. We will stick to this notation in the remainder of the proof.

The expectation in the definition of h is well-defined as a consequence of the assumption
of geometric ergodicity of (X ,Pπ). Going one step further, we let v denote the solution of
the Poisson equation

v(θ, z)− (Pπv)(θ, z) = H(θ, z)− h(θ).

We now use the Poisson equation above to further decompose δ(t), which will simplify the
verification of the conditions of Theorem 7. Some explicit computations yield

δ(t + 1) = H(θt , Z(t + 1))− h(θt)

= v(θt , Z(t + 1))− (Pπv)(θt , Z(t + 1))

= v(θt , Z(t + 1))− (Pπv)(θt , Z(t))

+ (Pπv)(θt , Z(t))αt−1α
−1
t − (Pπv)(θt+1, Z(t + 1))

+ (Pπv)(θt+1, Z(t + 1))− (Pπv)(θt , Z(t + 1))

+ (Pπv)(θt , Z(t))
(
1− αt−1α

−1
t

)
.

Letting

M(t + 1) = v(θt , Z(t + 1))− (Pπv)(θt , Z(t)),

η1(t + 1) = (Pπv)(θt , Z(t))αt−1α
−1
t − (Pπv)(θt+1, Z(t + 1)),

η2(t + 1) = (Pπv)(θt+1, Z(t + 1))− (Pπv)(θt , Z(t + 1)),

η3(t + 1) = (Pπv)(θt , Z(t))
(
1− αt−1α

−1
t

)
,

we get

ε(t + 1) = η1(t + 1)+ η2(t + 1)+ η3(t + 1)

and (22) finally becomes

θt+1(a) = (1− αt (a))θt (a)+ αt (a) (ha(θt)+ Ma(t + 1)+ εa(t + 1)) .

We are now in position to verify the conditions of Theorem 7. Condition 1 holds by assump-
tion. Concerning condition 2, it can be shown that {M(t)} is a convergent martingale sequence
(see, for example, [13]). In particular, it is immediate that Eµπ [M(t + 1) | Ft] = 0. On the
other hand, we notice that

‖H(θ, z)‖ ≤ K0(1+ ‖θ‖) ‖H(θ1, z)− H(θ2, z)‖ ≤ K1 ‖θ1 − θ2‖ (23)

123

Auton Agent Multi-Agent Syst

for some positive constants K0 and K1. Combining the above facts with (20), we get

‖v(θ, z)‖ ≤ K ′0(1+ ‖θ‖) ‖v(θ1, z)− v(θ2, z)‖ ≤ K ′1 ‖θ1 − θ2‖ (24)

for some positive constants K ′0 and K ′1 (for further details on the properties of v, see Chap. 17
of [31]). This implies that

E
[‖M(t + 1)‖2 | Ft

] ≤ KM
(
1+ ‖θt‖2

)
for some positive constant KM .

Proceeding to condition 3 and using (23) and (24) we have

‖η2(t + 1)‖ ≤ K ‖θt+1 − θt‖ ≤ K ′ ‖αt‖ (1+ ‖θt‖)
‖η3(t + 1)‖ ≤ K ′′

∥∥1− αt−1α
−1
t

∥∥ (1+ ‖θt‖),
for some positive constants K , K ′ and K ′′. Furthermore, taking α−1 = 0, we have

T∑
t=0

η1(t + 1)αt = −(Pπv)(θT+1, z(T + 1))αT

and hence

lim
T→∞

∥∥∥∥∥
T∑

t=0

η1(t + 1)αt

∥∥∥∥∥ = 0.

Since, by assumption,
∑

t αt (a) = ∞ for all a ∈ A, we have that ‖η1(t)‖ → 0.
Finally, it remains to show that h(θ) is a contraction. To see this, and denoting by hi,a the

(i, a) component of h,

∣∣hi,a(θ1)− hi,a(θ2)
∣∣ = ∣∣∣∣Eµπ

[
φi (x)

(
γ max

b∈A Qθ1(y, b)− γ max
b∈A Qθ2(y, b)

)]∣∣∣∣
≤ γEµπ

[
|φi (x)|

∣∣∣∣max
b∈A Qθ1(y, b)−max

b∈A Qθ2(y, b)

∣∣∣∣
]

≤ γEµπ

[
max
b∈A

∣∣Qθ1(y, b)− Qθ2(y, b)
∣∣]

= γEµπ

[
max
b∈A

∣∣∣φ�(y) (θ1(b)− θ2(b))
∣∣∣]

≤ γEµπ

[
max
b∈A

∥∥∥φ�∥∥∥
1
‖θ1(b)− θ2(b)‖∞

]
= γ ‖θ1 − θ2‖ .

This establishes the first statement of Theorem 2. To establish the second statement, notice
that the fixed point θ∗ of h verifies

θ∗i,a = hi,a(θ
∗)

= Eµπ

[
φi (x)

(
r(x, a, y)+ γ max

b∈A Qθ∗(y, b)

)]
= Eµπ [φi (x)(HQθ∗)(x, a)] .

This concludes the proof of Theorem 2. �

123

Auton Agent Multi-Agent Syst

B.2 Proof of Theorem 3

In establishing the statement of the theorem, we consider a “synchronous” version of Q-SSA
in which all a-components are updated simultaneously. This greatly simplifies the presen-
tation, allowing us to use standard results from the stochastic approximation literature. The
result for this synchronous version can, nevertheless, be extended to the general case. In fact,
from Theorem 2, we know that θt → θ∗ w.p.1 and, therefore, the rate of convergence of the
algorithm can be studied component-wise. Considering the asymptotic rate of convergence
of the slowest component of θt we obtain a lower bound for the rate of convergence of all
components.

We resort to the following theorem from [34]. We denote by IU the indicator function for
U , defined as

IU (x) =
{

1 if x ∈ U
0 otherwise.

Theorem 8 Consider the general algorithm

θt+1 = θt + αt
(
h̄(θt)+ M(t + 1)+ ε(t + 1)

)
,

such that the following hold for a > 2 and b > 1:

1. The step-size sequence {αt } is given by

αt = 1

t
.

2. There is a neighborhood U of θ∗ in which

E [M(t + 1) | Ft] IU (θt) = 0, (25a)

sup
t

E
[‖M(t + 1)‖a | Ft

]
IU (θt) <∞, (25b)

‖ε(t + 1)‖ ≤ O
(∥∥θt − θ∗

∥∥)+ r(t + 1), (25c)

with ‖r(t + 1)‖ IU (θt) ∈ O(
√
αt). Furthermore, there is a matrix C such that

lim
t→∞E

[
M(t + 1)M�(t + 1) | Ft

]
= C. (26)

3. There is a neighborhood U of θ∗ such that

h̄(θ) = A(θ − θ∗)+ O

(∥∥θ − θ∗∥∥b
)
,

where A is a stable matrix.

Then, denoting St =∑t
τ=0 ατ , we have w.p.1

lim sup
‖θ − θ∗‖√
αt log(St)

≤ K (27)

for some constant K > 0.

To prove the statement in Theorem 3, we start by writing

h̄(θ) = h(θ)− θ,

123

Auton Agent Multi-Agent Syst

where h is the mapping defined in the proof of Theorem 2. Then, Theorem 3 holds as long
as the conditions from Theorem 8 above hold. Since we are considering the synchronous
version of Q-SSA, this implies that condition 1 is automatically verified.

Concerning condition 2, we note that the different conditions in (25) and (26) basically
impose bounds on {M(t)} in a close vicinity of the limit point θ∗ and restrict the conver-
gence behavior of both {M(t)} and {ε(t)} around that same point. We excuse from repeating
a detailed derivation here and just point out that these easily follow from the bounds for
{M(t)} and {ε(t)} derived in the proof of Theorem 2. In particular, (25a, 25b), and (26)
follow trivially from Condition 2 in Theorem 7 and from the fact that {M(t)} is a convergent
martingale [13]. On the other hand, (25c) trivially follows from the proof of Theorem 2 where
Condition 3 is verified.

Finally, consider the ordinary differential equation (ODE)

θ̇t = h̄(θt) = h(θt)− θt .

Notice that this ODE has as unique equilibrium point θ∗. To establish condition 3, we study
the stability properties of θ∗ as an equilibrium point of the above ODE. Let θ̃t = θt − θ∗.
We have, for p ≥ 1,

d

dt

∥∥∥θ̃t

∥∥∥
p
= d

dt

⎛
⎝∑

i,a

θ̃
p
t (i, a)

⎞
⎠

1/p

= 1

p

⎛
⎝∑

i,a

θ̃
p
t (i, a)

⎞
⎠

1/p−1
d

dt

∑
i,a

θ̃
p
t (i, a)

=
∥∥∥θ̃t

∥∥∥1−p

p

∑
i,a

θ̃
p−1
t (i, a)

d

dt
θ̃t (i, a)

=
∥∥∥θ̃t

∥∥∥1−p

p

∑
i,a

θ̃
p−1
t (i, a)

(
hi,a(θt)− θt (i, a)

)
.

Using the fact that h̄(θ∗) = 0,

d

dt

∥∥∥θ̃t

∥∥∥
p
=

∥∥∥θ̃t

∥∥∥1−p

p

∑
i,a

θ̃
p−1
t (i, a)

(
hi,a(θt)− hi,a(θ

∗)− θt (i, a)+ θ∗(i, a)
)

=
∥∥∥θ̃t

∥∥∥1−p

p

∑
i,a

θ̃
p−1
t (i, a)

(
hi,a(θt)− hi,a(θ

∗)
)− ∥∥∥θ̃t

∥∥∥
p
.

Using Hölder’s inequality in the summation yields

d

dt

∥∥∥θ̃t

∥∥∥
p
= ∥∥h(θt)− h(θ∗)

∥∥
p −

∥∥∥θ̃t

∥∥∥
p
.

Taking the limit as p→∞ and using the fact that h is a contraction, we have

d

dt

∥∥∥θ̃t

∥∥∥ = (γ − 1)
∥∥∥θ̃t

∥∥∥ < 0,

which implies that θ∗ is a globally asymptotically stable equilibrium point. This, in turn,
implies that h̄ can be linearized around θ∗ yielding condition 3. This means that the synchro-
nous version of the algorithm verifies the bound in (27).

123

Auton Agent Multi-Agent Syst

Specializing this bound to the “slowest component” of θt , we finally get that

lim sup
‖θ − θ∗‖√

maxa αt (a) log
(∑t

τ=0 ατ (a)
) ≤ K

and the proof is complete. �

B.3 Proof of Theorem 5

In this proof we show that the set of states in which ABAP may not converge is contained
in a set with null Lebesgue measure. We require several intermediate results that build up to
the final statement of the theorem.

Let us first assume Q∗ to be continuous. This means that the function V a(x) = Q∗(x, a)
is continuous for each a ∈ A. Take an arbitrary point x ∈ X and an arbitrary action a0 ∈ A.
Then, one of two statements below holds:

1. Q∗(x, a0) < maxa∈A Q∗(x, a). If this is the case, due to the continuity of Q∗ in x ,
the inequality above holds for some neighborhood U of x . In other words, there is a
neighborhood U of x such that Q∗(y, a0) < maxa∈A Q∗(y, a), for all y ∈ U . This has
an interesting implication: for every point x ∈ X there is a neighborhood U such that

opt(y) ⊂ opt(x), (28)

for all y ∈ U , where opt(x) is the set of optimal joint actions at state x .
2. Q∗(x, a0) = maxa∈A Q∗(x, a). If this is the case, two possible situations can occur:

(a) There is a neighborhood U of x such that a0 ∈ opt(y) for all y ∈ U ;
(b) Given any neighborhood U of x there is a point y ∈ U such that a0 /∈ opt(y);

Denote by D(a0) the set of points x ∈ X verifying 2b and define the sets D =⋃
a∈A D(a)

and C = X − D. Before establishing several important properties of these two sets, C and
D, we note that all states x ∈ C have a neighborhood in which all states have the same
optimal actions. Therefore, in terms of coordination, each such neighborhood can be treated
as a single state, and this is indeed the idea behind ABAP. Therefore, to establish the result
in the theorem, it remains essentially to show that D has zero Lebesgue measure.

We now show that

Lemma 1 The set C is an open set and D = ∂C.

Proof From 1 and 2a, we see that a point x ∈ C has a neighborhood U such that U ∩D = ∅.
This means that C = int (C) and thus C is open. On the other hand, since D = X − C ,
∂C ⊂ D. Since C and D are complementary and C = int (C), the second statement of the
lemma follows. �

Since D = ∂C , it is immediate that D is closed and therefore measurable. In turn, C is
open and thus also measurable. We proceed with the following result.

Lemma 2 The set D defined above verifies µLeb(D) = 0.

Proof Recall that the function Q∗ is continuous in x . Therefore, the function

V ∗(x) = max
a∈A Q∗(x, a)

123

Auton Agent Multi-Agent Syst

is also continuous. We define a new function Ga as Ga(x) = V a(x)− V ∗(x). Clearly, Ga is
continuous and Ga(x) ≤ 0 for all x ∈ X . We now show that�Ga = {x ∈ X | Ga(x) < 0} is
an open set. Clearly, any point x ∈ �Ga has a neighborhood U ⊂ �Ga , due to the continuity
of Ga . This means that any point in �Ga is an interior point and the set is, therefore, open.
Since X is compact,�Ga is a bounded open set and its boundary has null Lebesgue measure.

But then, by construction, we have that

∂C ⊂
⋃
a∈A

∂�Ga ,

and the conclusion follows. �

As discussed above, for each state x ∈ C there is a neighborhood U such that opt(x) =
opt(y), for all y ∈ U . This can be seen by noticing that a point in C either verifies Condition 1
or Condition 2a above, for every action a ∈ A. In other words, the set of optimal actions
is “constant” in U and past plays at any states in U can be used for coordination. On the
other hand, the set of optimal actions in any neighborhood of a state in D is “not constant”
in the above sense. The above result ensures, however, that this set is “negligible” (in terms
of Lebesgue measure).

Now given any state x ∈ C and a corresponding neighborhood U , it is immediate that
the virtual game obtained by setting to 1 all optimal actions and to 0 all non-optimal actions
is the same in every point in U . This implies that, if ψ(U) > 0, there is a time T0 such
that, w.p.1, Sm(x, Ht) ⊂ U for t > T0 and ABAP reduces to BAP around x . Since, for all
t > T0 all K -samples are drawn from Sm(x, Ht), convergence of standard BAP ensures that,
for all points in C , ABAP coordinates in an optimal Nash equilibrium w.p.1. And, since ψ
is absolutely continuous w.r.t. µLeb, Lemma 2 suffices to conclude that convergence to an
optimal policy in all but a ψ-null set of points.

Several important observations are in order. First of all, coordination in a given state x ∈ X
relies on past plays at “nearby” states. We could extend this concept of “nearby states” by
considering a general similarity criterion between states in X . Coordination in a state x ∈ X
would now rely on past plays at similar states.

Secondly, we notice that a notion of “distance” in X naturally induces a topology on X ,
from which concepts such as open set, neighborhood or boundary arise. When using a gen-
eral similarity criterion between states, the topology for X must be built from this criterion,
and all the above derivations hold.

Finally, a fundamental aspect of the proof above is that the set D has null ψ-measure.
This fact, arising from Lemma 2 and the assumption of absolute continuity of ψ w.r.t. µLeb,
binds the dynamic behavior of the chain (encapsulated in the ψ-measure) and the geome-
try induced by the similarity criterion (in our case, encapsulated in the Lebesgue measure).
Using a general similarity criterion will induce some general topology on X . In that case,
the condition of absolute continuity of ψ w.r.t. µLeb should be modified to account for this
fact. In particular, convergence of ABAP will require some condition ensuring that ψ is
“well-adapted” to the geometry induced by the similarity criterion.

To conclude the proof of Theorem 5, suppose now that Q∗ is continuous in all but aψ-null
set of points. Then, the previous proof holds for every point x in which Q∗ is continuous,
and the proof is complete. �

123

Auton Agent Multi-Agent Syst

B.4 Proof of Theorem 6

As in Sect. 4, let �∗x(t) denote the virtual game built from Qθ∗(x(t), ·). To establish our result

we first show that the rate at which εt → 0 guarantees that V̂ Gε
t → �∗x(t). This is established

in the following result.

Lemma 3 Let � = (N ,X , (Ak),P, r, γ) be a team Markov game and �T the event that,
for t > T , V̂ Gε

t = �∗x(t) for an agent following Q-SSA. If B(t) decreases monotonically to
zero and

lim
t→∞

Et

B(t)
= 0,

then limT→∞ P [�T] = 1.

Proof The proof closely follows the proof of Lemma 6 in [53].
Let x ∈ X be some fixed state and let λT be the event that, for all t > T ,

max
a∈A

∣∣Qθt (x, a)− Qθ∗(x, a)
∣∣ < K0

2
B(t).

Since, by assumption,

lim
t→∞

Et

B(t)
= 0,

it holds that

lim
t→∞

K1Et

K0 B(t)
= 0,

for any positive constant K1. Since, from Theorem 3,∥∥Q(θt)− Q(θ∗)
∥∥ ≤ ∥∥θt − θ∗

∥∥ ≤ K0Et

w.p.1, then given any ρ > 0 there is a time instant T0(ρ) > 0 such that, for all t > T0,

P [λt] > 1− ρ. (29)

Take now two actions a, b ∈ A such that a ∈ opt(x) and b verifies

b = arg max
u /∈opt(x)

Qθ∗(x, u).

Define the quantity δ = |Qθ∗(x, a)− Qθ∗(x, b)|. By assumption, B(t)→ 0 and, therefore,
there is a time instant T1 such that, for all t > T1,

K0 B(t) <
δ

2
. (30)

Let T = max {T0, T1}. For all t > T it holds with probability p > 1− ρ that, given any
action b /∈ opt(x),

Qθt (x, b)+ K0 B(t) < Qθ∗(x, b)+ K0 B(t)+ K0

2
B(t)

< Qθ∗(x, b)+ δ
2
+ δ

4

≤ max
u∈A Qθ∗(x, u)− δ

4
< max

u∈A Qθt (x, u). (31)

123

Auton Agent Multi-Agent Syst

The first inequality arises from (29); the second inequality arises from (30); the third inequal-
ity arises from the definition of δ and the last inequality arises from (29) once again. On the
other hand, for all t > T it holds with probability p > 1−ρ that, given any action a ∈ opt(x),

Qθt (x, a)+ K0 B(t) > Qθ∗(x, a)+ K0

2
B(t) > max

u∈A Qθt t(x, u). (32)

The first inequality arises from (29) and the second inequality from (30).
By construction, we have that εt ≤ ε0 B(t), and hence εt ≤ K0 B(t) as long as ε0 ≤ K0.

Then, combining (31) and (32), it holds with probability p > 1− ρ that, for all t > T ,

Qθt (x, b) < max
u∈A Qθt (x, u)− εt

Qθt (x, a) > max
u∈A Qθt (x, u)− εt ,

for any actions a ∈ optεt (x) and b /∈ optεt (x). The first expression implies that, for any
t > T , no suboptimal action belongs to optεt (x); the second expression implies that all
optimal actions do belong to optεt (x). This means that, for all t > T such that x(t) = x ,
V̂ Gε

t = �∗x with probability p > 1− ρ and, therefore, P [�T] > 1− ρ. The conclusion of
the lemma follows. �

Convergence of θt to θ∗ arises as an immediate consequence of Theorem 4. That same
theorem also states that

lim sup
‖θt − θ∗‖

Et
≤ K0.

Therefore, Lemma 3 guarantee that, w.p.1, the sequence of virtual games V̂ Gε
t obtained from

the sequence of estimates
{

Qθt

}
converges to the virtual games �∗ obtained from {Qθ∗ }.

On the other hand, let C be the set defined in the proof of Theorem 5. Since the func-
tions φi are continuous µπ almost everywhere, so is Qθ∗ . The fact that the chain (X,Pπ) is
geometrically ergodic implies, in particular, that it is ψ-irreducible and Harris recurrent.

Take some state x ∈ C and let �T be the event that, for all t > T , V̂ Gε
t = �∗x(t). From

Lemma 3, given any ρ1 > 0 there is T1(ρ1) such that

P [�t] > 1− ρ1

for all t > T1. Furthermore, since x ∈ C , it holds that opt(y) ⊂ opt(x) for all y ∈ U
(refining the neighborhood U , if necessary).

Suppose now that�T1 occurs for some T1 > 0. From Theorem 5, ABAP converges w.p.1
to an optimal policy in all states in U and, in particular, in x . In other words, if �T1 occurs,
ABAP converges w.p.1 to an optimal policy in x . Yet to put it differently, there is a time
T2(ρ2, T) such that, for any t > T2,

P [λt | �T] > 1− ρ2,

where ρ2 is an arbitrary positive constant and λT is the event that, for t > T , all agents play
an optimal policy if they visit state x . But then there is a time instant T3(ρ1, ρ2) such that,
for all t > T3,

P [λt] > P [λt | �t] P [�t] = (1− ρ1)(1− ρ2) > 1− ρ1 − ρ2.

Since ρ1 and ρ2 are arbitrary, the conclusion of the theorem follows. �

123

Auton Agent Multi-Agent Syst

References

1. Bernstein, D. S., Zilberstein, S., & Immerman, N. (2002). The complexity of decentralized control
of Markov decision processes. Mathematics of Operations Research, 27(4), 819–840.

2. Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming optimization and neural
computation series. Belmont, MA: Athena Scientific.

3. Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In Proceedings of
the 16th international joint conference on artificial intelligence (IJCAI’99) (pp. 478–485).

4. Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In Pro-
ceedings of the 6th conference on theoretical aspects of rationality and knowledge (TARK-96) (pp.
195–210)

5. Bowling, M. (2000). Convergence problems of general-sum multiagent reinforcement learning. In
Proceedings of the 17th international conference on machine learning (ICML’00) (pp 89–94). Morgan
Kaufman.

6. Bowling, M., & Veloso, M. (2000a). An analysis of stochastic game theory for multiagent reinforce-
ment learning. Technical Report CMU-CS-00-165, School of Computer Science, Carnegie Mellon
University.

7. Bowling, M., & Veloso, M. (2000b). Scalable learning in stochastic games. In Proceedings of the
AAAI workshop on game theoretic and decision theoretic agents (GTDT’02) (pp. 11–18). The AAAI
Press, Published as AAAI Technical Report WS-02-06.

8. Bowling, M., & Veloso, M. (2001). Rational and convergent learning in stochastic games. In Proceedings
of the 17th international joint conference on artificial intelligence (IJCAI’01) (pp. 1021–1026).

9. Bowling, M., & Veloso, M. (2002). Multi-agent learning using a variable learning rate. Artificial
Intelligence, 136, 215–250.

10. Brown, G. W. (1949). Some notes on computation of games solutions. Research Memoranda RM-
125-PR. Santa Monica: RAND Corporation.

11. Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative multiagent
systems. In Proceedings of the 15th national conference on artificial intelligence (AAAI’98) (pp.
746–752).

12. Crites, R. H., & Barto, A. G. (1998). Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33(2–3), 235–262.

13. Duflo, M. (1997). Random iterartive Models. In Applications of Mathematics (Vol. 34). Springer.
14. Durfee, E. H., Lesser, V. R., & Corkill, D. D. (1987). Coherent cooperation among communicating

problem solvers. IEEE Transactions on Computers, 36(11), 1275–1291.
15. Even-Dar, E., & Mansour, Y. (2003). Learning rates for Q-learning. Journal of Machine Learning

Research, 5, 1–25.
16. Gmytrasiewicz, P., & Doshi, P. (2005). A framework for sequential planning in multiagent set-

tings. Journal of Artificial Intelligence Research, 24, 49–79.
17. Gordon, G. J. (1995). Stable function approximation in dynamic programming. Technical Report

CMU-CS-95-103, School of Computer Science, Carnegie Mellon University.
18. Guestrin, C., Lagoudakis, M. G., & Parr, R. (2002). Coordinated reinforcement learning. In Proceedings

of the 19th international conference on machine learning (ICML’02) (pp, 227–234).
19. Hu, J., & Wellman, M. P. (2003). Nash Q-learning for general sum stochastic games. Journal of

Machine Learning Research, 4, 1039–1069.
20. Kearns, M., & Singh, S. (1999). Finite-sample convergence rates for Q-learning and indirect algorithms.

In M. J. Kearns, S. A. Solla, & D. A. Cohn, (Eds.), Advances in neural information processing
systems (Vol. 11, pp. 996–1002). Cambridge, MA: MIT Press.

21. Kok J. R., Spaan, M. T. J., & Vlassis, N. (2002). An approach to noncommunicative multiagent
coordination in continuous domains. In: M. Wiering, (Ed.), Benelearn 2002: Proceedings of the 12th
Belgian–Dutch conference on machine learning (pp. 46–52). Utrecht, The Netherlands.

22. Leslie, D. S., & Collins, E. J. (2006). Generalised weakened fictitious play. Games and Economic
Behavior, 56, 285–298.

23. Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In
R. López de Mántaras, & D. Poole (Eds.), Proceedings of the 11th international conference on
machine learning (ICML’94) (pp. 157–163). San Francisco, CA: Morgan Kaufmann.

24. Littman, M. L. (2001). Value-function reinforcement learning in Markov games. Journal of Cognitive
Systems Research, 2(1), 55–66.

25. Littman, M. L. (2001b). Friend-or-foe Q-learning in general-sum games. In Proceedings of the 18th
international conference on machine learning (ICML’01) (pp. 322–328). San Francisco, CA: Morgan
Kaufmann.

123

Auton Agent Multi-Agent Syst

26. Melo, F. S., & Ribeiro, M. I. (2007a). Rational and convergent model-free adaptive learning for team
Markov games. Technical Report RT-601-07, Institute for Systems and Robotics, February.

27. Melo, F. S., & Ribeiro, M. I. (2007b). Learning to coordinate in topological navigation tasks. In
Proceedings of the 6th IFAC symposium on intelligent autonomous vehicles (IAV’07) (to appear),
September.

28. Melo, F. S., & Ribeiro, M. I. (2008). Emerging coordination in infinite team Markov games. In Proceed-
ings of the 7th international conference on autonomous agents and multiagent systems (AAMAS’08)
(pp. 355–362).

29. Melo, F. S., & Veloso, M. (2009). Learning of coordination: Exploiting sparse interactions in multiagent
systems. In Proceedings of the 8th international conference on autonomous agents and multiagent
systems (AAMAS’08) (pp. 773–780).

30. Melo, F. S., Meyn, S. P., & Ribeiro, M. I. (2008). An analysis of reinforcement learning with function
approximation. In Proceedings of the 25th international conference on machine learning (ICML’08)
(pp. 664–671).

31. Meyn, S. P., & Tweedie, R. L. (1993). Markov chains and stochastic stability. Communicatons and
Control Engineering Series. New York: Springer.

32. Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36, 48–49.

33. Ormoneit, D., & Sen, Ś. (2002). Kernel-based reinforcement learning. Machine Learning, 49, 161–178.
34. Pelletier, M. (1998). On the almost sure asymptotic behaviour of stochastic algorithms. Stochastic

Processes and Their Applications, 78, 217–244.
35. Perkins, T. J., & Precup, D. (2003). A convergent form of approximate policy iteration. In S. Thrun,

S. Becker, & K. Obermayer (Eds.), Advances in neural information processing systems (Vol. 15,
pp. 1595–1602). Cambridge, MA: MIT Press.

36. Robinson, J. (1951). An iterative method of solving a game. Annals of Mathematics, 54, 296–301.
37. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of

Research and Development, 3(3), 210–229. Reprinted in IBM Journal of Research and Development,
44(1/2), 206–226, 2000.

38. Samuel, A. L. (1967). Some studies in machine learning using the game of checkers II: Recent
progress. IBM Journal of Research and Development, 11, 601–617.

39. Sen, S., & Weiß, G. (1999). Learning in multiagent systems, chapter 6 (pp. 259–298). Cambridge,
MA: MIT Press.

40. Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Reinforcement learning with soft state aggregation.
In Advances in neural information processing systems (Vol. 7, pp. 361–368). Cambridge, MA: MIT
Press.

41. Singh, S. P., Kearns, M., & Mansour, Y. (2000). Nash convergence of gradient dynamics in general-sum
games. In Proceedings of the 16th conference on uncertainty in artificial intelligence (UAI’00) (pp.
541–548).

42. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Adaptive computation
and machine learning series (3rd ed.). Cambridge, MA: MIT Press.

43. Szepesvári, C. (1997). The asymptotic convergence rates for Q-learning. Proceedings of Neural
Information Processing Systems (NIPS’97), 10, 1064–1070.

44. Szepesvári, C., & Littman, M. L. (1999). A unified analysis of value-function-based reinforcement
learning algorithms. Neural Computation, 11(8), 2017–2059.

45. Szepesvári, C., & Smart, W. D. (2004). Interpolation-based Q-learning. In Proceedings of the 21st
international conference on machine learning (ICML’04) (pp. 100–107). New York, USA: ACM
Press, July.

46. Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neu-
ral Computation, 6(2), 215–219.

47. Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of the
ACM, 38(3), 58–68.

48. Tong, H., & Brown, T. X. (2000). Reinforcement learning for call admission control and routing
under quality of service constraints in multimedia networks. Machine Learning, 49(2–3), 111–139.

49. Tsitsiklis, J. N., & Athans, M. (1985). On the complexity of decentralized decision making and
detection problems. IEEE Transactions on Automatic Control AC, 30(5), 440–446.

50. Tsitsiklis, J. N., & Van Roy, B. (1996). Feature-based methods for large scale dynamic program-
ming. Machine Learning, 22, 59–94.

51. Tsitsiklis, J. N., & Van Roy, B. (1996). An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5), 674–690.

123

Auton Agent Multi-Agent Syst

52. Uther, W., & Veloso, M. (2003). Adversarial reinforcement learning. Technical Report CMU-CS-03-107,
School of Computer Science, Carnegie Mellon University, January.

53. Wang, X., & Sandholm, T. (2003). Reinforcement learning to play an optimal Nash equilibrium in
team Markov games. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information
processing systems (Vol. 15, pp. 1571–1578). Cambridge, MA: MIT Press.

54. Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College, University
of Cambridge, May.

55. Young, H. P. (1993). The evolution of conventions. Econometrica, 61(1), 57–84.

123

	Coordinated learning in multiagent MDPs with infinite state-space
	Abstract
	1 Introduction
	2 Background
	2.1 Markov decision problems
	2.2 Game theory
	3 The problem of learning
	3.1 Q-learning with soft-state aggregation
	3.2 Multiagent MDPs with infinite state-spaces

	4 The problem of coordination
	4.1 Biased adaptive play in MMDPs with infinite state-spaces
	4.2 Approximate coordination

	5 Coordinated approximate Q-learning
	5.1 Combining Q-SSA and ABAP
	5.2 Convergence of CAQL

	6 An illustrative example

	7 Discussion
	7.1 Quality of approximation
	7.2 ``On-policy'' coordination
	7.3 Storage of infinite histories
	7.4 Absolute continuity of with respect to Leb
	7.5 Rationality and convergence

	Acknowledgments
	A Markov Chains
	B Proofs
	B.1 Proof of Theorem 2
	B.2 Proof of Theorem 3
	B.3 Proof of Theorem 5
	B.4 Proof of Theorem 6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

