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Abstract—In this paper we present a collaborative artificial
intelligence (AI) module for a turn-based, multiplayer, environ-
mental awareness game. The game is a version of the EnerCities
serious game, modified in the context of a European-Union project
to support sequential plays of an emphatic robotic tutor interact-
ing with two human players in a social and pedagogical manner.
For that purpose, we created an AI module capable of informing
the game-playing and pedagogical decision-making of the robotic
tutor. Specifically, the module includes an action planner capable
of, together with a game simulator, perform forward-planning
according to player preferences and current game values. Such
predicted values are also used as an alert system to inform the
other players of near consequences of current behaviors and
advise alternative, sustainable courses of action in the game. The
module also incorporates a social component that continuously
models the game preferences of each player and automatically
adjusts the tutor’s strategy so to follow the group’s ‘‘action
tendency”. The proposed AI module is therefore used to inform
about important aspects of the game state and also the human
players actions. In this paper we overview the properties and
complexity of this collaborative version of the game and detail the
Al module and its components. We also report on the successes
of using the proposed module for controlling the behavior of
a robotic tutor in several experimental studies, including the
interaction with children playing collaborative EnerCities.

I. INTRODUCTION

The development of artificial tutors that can assist students
in their learning activities and provide educators with a rich
and multi-faceted tool for teaching has been the topic of
significant research in recent decades. The EMOTE project
(http://www.emote-project.eu/) aims at developing a new gen-
eration of artificial embodied tutors that have perceptive ca-
pabilities to engage in empathic interactions with learners in
a shared physical space [1]. Towards this goal, a learning
scenario involving a modified version of the serious game
EnerCities (EC) [2] was developed in which an artificial
tutor interacts with two students towards the construction of
an energy-sustainable city.

The multiplayer version of EC featured in the learning
scenario is a collaborative game, where each of the three
players assumes one of three possible roles: Mayor, Economist
and Environmentalist. Each player has access to a different set
of actions that contribute to the development of the city in
different ways. By jointly discussing the impact of different
actions in the sustainability of the city, the students have the
opportunity to get in touch and deepen their understanding
about processes such as sustainability, greenhouse effect, acid
rain, and global warming.
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In light of the pedagogical goals of the project, the artificial
tutor should not only act as one of the players, but also to
interact with the other players, highlighting the impact of
certain actions and assisting in their understanding of the long-
term effects of different plays [1]. In its plays, the artificial
tutor should be able to both induce and avert certain situations,
in order to present the students with a variety of scenarios
about which they can discuss the topics of the game. The
ability of the tutor to “drive” (to some extent) the flow of
the game must rely on a robust, flexible and adaptive artificial
intelligence module that is able to plan the game play towards
different goals that may be adjusted along the game [3].

In this paper we propose an artificial intelligence (AI)
module that enables the artificial tutor in EMOTE to play
the multiplayer version of EC in an effective and adaptive
manner. The Al module is able to play optimally—in a score
maximizing sense—while allowing a human supervisor to
adjust the score that guides the action selection process. In
this manner, the tutor’s play can vary from more “environment-
friendly” to completely “money-driven”. Besides allowing for
this flexibility, the AI module also maintains a high-level
model of the strategy adopted by the other players, and
automatically adjusts its own scoring process to maximize the
probability of reaching a sustainable city configuration.

We propose a search-based approach in which the states
(corresponding to the nodes in the search tree) capture rel-
evant features of the game that can be weighted differently
depending on the specific play-behavior that is desired from
the tutor. At the same time, the algorithm keeps a statistic that
summarizes play tendencies of the other players, which allows
the search to adapt to the particular strategies adopted by the
other players.!

Our results show that the AI module is able to effectively
respond to different strategies by the other players. Addi-
tionally, the particular state representation adopted provides
the necessary input to other modules of the artificial tutor,
enabling it both to explain its own plays as well as discuss the
advantages or disadvantages of the plays of others.

II. A MULTIPLAYER, COLLABORATIVE EC GAME

As mentioned above, given the collaborative and pedagog-
ical nature of the interactive scenario developed in EMOTE,
the original game of EC had to be modified to support
the sequential plays between the two human subjects and

IThis can be seen as a feature-based adaptation of fictitious play [4].
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Fig. 1. A grid-world representation of the available cells in EC. Numbered
cells represent the level at which they are available in the game. “City Hall”
is a built-in structure. Different colors represent distinct Surfaces.
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the autonomously controlled robotic tutor. In this section we
overview the rules and dynamics behind EC and highlight the
differences detail its multiplayer, collaborative version of the
game, henceforth denoted by MCEC, for which we developed
the AI module.

A. Game Rules and Dynamics

As explained earlier, EC is a turn-based game whose global
objective is to raise awareness on environmental issues related
with energy consumption for people playing the game [2].
Associated with EC is a ciry with a certain population level.
In addition, the city has a set of resources whose levels vary
throughout the game as a consequence of the player’s actions,
namely oil, (electric) power and money. The game also has a
set of scores related to different aspects of the city’s health,
specifically well-being, environment and economy.”> In terms
of actions, at each turn, the player can build a new structure,
upgrade up to 3 existing structures, implement policies or
simply skip the turn. The goal of the EC game itself is to
build a sustainable city until a certain level of population is
attained. We refer to such goal as the game designer’s goal.

The game’s city is represented by 45 distinct cells on
which a player can build structures. There are 21 different
structures available and 56 distinct upgrades one can perform,
thus averaging at 2.6 upgrades per structure. A grid-world view
of the city and its cells is depicted in Fig. 1, including the
game level at which they become available. Each structure
and the upgrades performed over them, together with the
type of surface on which it is built, dictate part of the
cell’s contribution to the different game scores as well as the
change, in each turn, to the available resources and population.
The other part is determined by influences from the adjacent
structures and surfaces in the 4 cardinal directions. A game
session progresses trough 4 different levels. A change in level
occurs when a certain amount of population is reached, making
available more kinds of structures and more space on which
to build them, as can be seen in Fig. 1. The game ends
whenever one these conditions is met: a sustainable city with a
population level of 200 is reached in level 4; the city runs out

2In the original version of EC, this scores are respectively referred to as
people, planet and profit. Due to the multiplayer nature of MCEC, we chose
a different nomenclature.
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Fig. 2. The user interface of MCEC with all game scores, population and
resources levels visible to the players in a unified location of the screen.

of non-renewable resources, i.e., the oil level goes below zero.
A city is considered sustainable when all game scores have an
above-zero level. In practice, the objective of a subject playing
EC is to satisfy the first condition. We refer to such goal as
the players’ goal.

B. Multiplayer EnerCities

The transition from EC to its multiplayer version, MCEC,
is straightforward. The game can be played by up to three
players, each portraying a different role related to one of
the game scores. Specifically, a Mayor player is associated
with the well-being score, an Economist player with the city’s
economy and an Environmentalist with the environment score.
Apart from policy-implementation and actions that improve
the city’s population level (residence-building actions) and the
city’s energy level, all other available actions are directed
at enhancing a specific game score. As a consequence, in
MCEC each role-playing subject will have available only a
subset of the game’s build and upgrade actions, i.e., the ones
directed at improving its associated score. In the context of
the scenario being developed, the interaction with the game is
also transformed to support multiplayer interaction between the
robotic tutor and the human subjects within the same physical
space. This is achieved by displaying the game’s interface in a
large multi-touch table and letting the subjects perform actions
by clicking in a separated area of the table’s screen [5].

C. Challenges in MCEC

In this section we analyze the challenges in creating an Al
module to control the behavior of a robotic tutor in a scenario
involving interactions with human subjects playing MCEC. A
challenging aspect of building an Al module for MCEC is
that there is no “global score” to be maximized during the
game. Instead, a series of conditions related to game scores
and resources values has to be satisfied at each turn so that
a city is sustainable. For example, to advance in the game
one must build residential structures. As an effect, this will
generally impact the resources being spent, i.e., less money
available, more energy and oil being consumed. In turn, this
causes a need to address the shortfall resources by building
other kinds of structures. The more of these structures are
built, the less space is available to build homes to raise the
population’s volume and therefore advance through the levels
of the game. Ultimately, in EC there are no “wild” or “magic”
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actions that augment all the relevant game levels at the same
time. Therefore, a careful consideration of all aspects and their
future impact in the city’s health must be taken into account
at each turn throughout time.

Also, in MCEC the influencing power of each player is
restricted by its own subset of possible actions. As such, EC
becomes a collaborative game in this multiplayer version—the
players must cooperate, each contributing to different aspects
of the city’s health, so to achieve a sustainable city. Although
the actions of a player implicitly impact each of the scores
in a distinct manner, the objective of MCEC is the same as
the single-player’s version, i.e., finish the game with enough
population in a sustainable city. However, this does not mean
that each player must maximize its associated score. In fact,
despite being more ‘“targeted” at improving some aspect of
the game, most of the available actions influence several game
scores and the amount of available resources when executed.
They also critically impact the future states of the game since
structures, upgrades and policies cannot be “undone” (e.g., by
building the “wrong” structure one may end up with no
available space to increase the game’s level). This fact makes
the game inherently non-competitive, but makes it difficult to
consider “good” plays for each of the game roles given any
situation of the game.

Another challenge in the modeling of the robotic tutor’s
behavior is that he is able to play any of the roles in MCEC.
The AI module has therefore to have the sufficient task
knowledge that allows it to generate the best game plays given
any possible situation of the game. This is also useful for
the tutor’s purposes as it allows him to play “as if he was
one of the other player’s” and thus develop theory-of-mind
reasoning and propose action alternatives when suitable. There
are also real-time restrictions associated with the Al module—
it has to provide information on actions and other game-related
information in a timely manner so to avoid “breaks” on the
flow of interaction with the humans subjects [6].

D. Analysis of MCEC

We now analyze MCEC’s topology as a game. As men-
tioned above, the players’ goal is to progress to level 4 of the
game having a population level of 200 and a sustainable city.?
As such, the utility function for this game is one that provides
a positive value to terminal states satisfying this condition,
and a negative value to all other terminal states, i.e., when
o0il < 0. Moreover, we can define MCEC as a common interest
game, i.e., all the players benefit if they cooperate in order
to achieve the “common-goal”. If we consider the game’s
state as the state of the city—it’s current structures, upgrades,
implemented policies and resources levels—, it is also a game
of perfect information for the players as the environment is
fully-observable, as depicted in Fig. 2, and all the actions are
deterministic, i.e., there is no stochasticity of any sort [7].

Before going into the mechanisms behind the AI Module
responsible of controlling the autonomous game actions of the
robotic tutor it is important to assess MCEC’s game complex-
ity. Determining such characteristic for MCEC analytically is
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TABLE 1. MEAN VALUES FOR THE GAME LENGTH (NUMBER OF TURNS
UNTIL GAME TERMINATION) AND NUMBER OF ACTIONS per TURN
AVAILABLE FOR EACH ROLE IN MCEC. RESULTS WERE TAKEN FROM 10°
MONTE CARLO TRIALS. SEE TEXT FOR DETAILS.

Metric Mean Value

Game length 23.8 £ 164

» | Economist 113.3 + 186.8
_§ Environmentalist ~ 68.7 £ 100.2
<c6 Mayor 83.4 + 125.7
Player average 88.4 + 1432

a hard task given the complex inter-effects that each action
has on the several game components and the rules associated
with game termination. As such, we devised a Monte Carlo
experimental procedure in which we performed a series of
random-walks over the state-space of the game in the following
way. We performed a total of 106 games of MCEC with
a random play order between the roles. At each turn, we
chose a random action for the respective player and the game
ended whenever a terminal state was reached. We recorded
the mean values for the game length in terms of number
of actions performed during the game, and the number of
available actions that each player/role has at each turn. This
allows us to estimate the average depth of the goal node and the
average branching factor. We can thus estimate the complexity
of searching for solutions in MCEC given a representation of
successive state transitions in a tree form [7]. The results of
this study, during which approximately 23 x 10° states were
explored, are reported in Table I. As we can see from the values
in Table I, finding a solution in MCEC involves searching a
game-tree with approximately 88.4%3-% (or 246) nodes.*

III. COLLABORATIVE AI FOR MCEC

In this section we detail the proposed Al module for the
MCEC game and its components.

A. Al Module Requirements

We recall that the main objective of the work reported
in this paper was the construction of an Al module capable
of controlling the game actions and informing the overall
behavior of a robotic tutor playing the game of MCEC with
two human subjects sharing the same physical space. We
therefore created our AT module for MCEC revolving around
four main objectives:

1)  Contribute to a sustainable city by performing plays
that best fit the game’s current situation;

2)  Interact with the human subjects in a timely manner,
providing the required useful information to other
control modules in real-time.

3)  Influence the decisions of the human players by
providing useful information about attention-needing
aspects of the city, information on why a certain
action was played or possible alternatives for actions
made by the players;

3The experimental study conditions for the “robotic tutor” scenario de-
scribed here state that the human subjects playing MCEC are explicitly in-
formed of the “common goal” behind the game, i.e., end-up with a sustainable
city, and that the tutor is performing his actions accordingly.
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4Notably, on average, a subject playing the role of Economist has a larger
set of available actions in each turn, despite all players having the same amount
of structures to build. This is due to the greater amount of updates available
for economy-related structures, that only the Economist can perform.
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4)  Adjust the tutor’s game strategy in a social manner
throughout the game to be able to follow group
preferences;

From the enumeration above we can derive a series of
requirements that the Al module for MCEC must meet to
provide significant results. The first and most obvious one is
that the module must be able to provide the robot controller
with game actions that contribute to the “common goal”
given any state of the game (Obj. 1). Moreover, because the
interaction scenario does not impose any specific game role
to the robotic tutor, the Al module must be able to generate
actions for all roles.

Another requirement is that of real-time interaction
(Obj. 2), as discussed earlier—the robotic tutor must interact
with the human subjects in a “natural” manner, playing the
game “‘just like a human player would do”, and also providing
useful and accurate information about the city’s status in terms
of sustainability in a timely manner. Specifically, we defined
a time limit of 5 seconds for the Al module to provide all the
required information at each turn, including the turns in which
the tutor is not performing a game action (e.g., it may still
provide suggestions about possible plays or alert for specific
aspects of the city’s health).

A major aspect of the robotic tutor’s behavior within the
interaction scenario being developed is that of pedagogy—the
role of the tutor is not only to explain the game rules and
be able to “play the game well”, but also pump discussion
about relevant aspects of the task, e.g., raise the subject’s
environmental awareness about energy consumption, and cre-
ate interesting learning situations, e.g., make a “bad” game
move on purpose to point something interesting about the
effects of unsustainable structure building (Obj. 3). As such,
the ability to explain the status of the city’s health and each
of the decisions made by the tutor is an important requirement
of the Al module. The robot must also adjust its game-play
decisions to best fit the “group strategy” being played by the
human subjects during the game (Obj. 4), e.g., detecting that
the subjects and employing an “environment-aware” strategy
focusing on actions that raise the environment score.

B. Al Module Architecture

The architecture for the Al Module proposed in this paper
is depicted in Fig. 3, where we include the connection between
the module and the other components involved. As we can
see, a game-playing component is responsible for informing
the robotic tutor’s decision-making mechanism of predicted
game values and game actions calculated according to the
current game context. In turn, this controller uses the pro-
vided information to express interactive content in the form
verbal, e.g., say something related to the game to the human
subjects, and non-verbal, e.g., perform some animation while
speaking, point in the direction of the game table, behaviors.’
It also communicates with the MCEC game engine to perform
game actions. From the game engine, the AI Module collects
information on the several game values, i.e., scores, resources,
etc., and the players’ game moves in order to keep its internal
information on the city’s status and player strategies up-to-date.
The module comprises also a social component modeling the

SMore details on this component can be found in [5].
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Fig. 3. The architecture of the Al module and overview of communication
with the robotic tutor’s decision making module and the MCEC game engine.

strategies being played by the human subjects, adjusting the
tutor’s strategy accordingly.

Before detailing each of the AI Module’s components,
we present a central concept of our approach that is used
throughout our solution by almost all sub-components, that
of game strategy. As explained earlier, in MCEC there is no
numerical value translating a player’s goal. Therefore it is hard
to define a player’s strategy in the game as one maximizing
a given quantity. Instead, reaching the desired terminal state
of the game, i.e., a sustainable city, involves the interplay of
multiple aspects that are influenced by each kind of action
available. Furthermore, given the requirements associated with
the robotic tutor in our scenario, one cannot strictly define a
single strategy per existing role, as the robot’s strategy gen-
erally depends on the game context and pedagogical factors.
Another objective of the scenario is that the tutor is able to
follow the strategy of the human players during the game so
that the robotic agent is perceived as acting in an empathic
and social manner [8]. All these factors make it hard to define
a finite set of possible strategies beforehand.

Given such restrictions, in this paper we model a strategy
in MCEC as a fendency to act upon the several aspects of the
city. Formally, we define a strategy as a vector © given by:

0= [907gevewaemagpaaoaehaeu]a (1)

where 0, 0., 0., 0., 0p, 0, 05, and 0, are respectively the
weights associated with the environment score, economy score,
well-being score, money level, power level, oil level, population
(homes) level and score uniformity. Each weight component 6;
indicates the importance that the player’s strategy © attributes
to the corresponding game component. For example, a game
strategy of ©.,, = [1,0,0,0,0,0,0,0] means that a player is
only concerned about the environment’s score and will there-
fore chose actions that maximize the health of the environment.
Also, a weight-vector ©,.,4 = [0,0,0,0,0,0,0,0] represents
random strategy in which none of the components is important
to make decisions in the game. Game uniformity, as the name
suggests, indicates the player’s preference in having an equal
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value in all the scores, or, in other words, a state in which the
variance in the game’s scores is low. A strategy can therefore
be seen as a set of preferences for a player to deal with the
several aspects related to the city’s health. In our approach, we
consider strategies such that 6; € [—1.0,1.0] and ||O|; = 1,
i.e., vectors with a normalized absolute sum. In this manner,
we define a continuous space for the game strategies, thus
providing us the aforementioned flexibility in modeling player
decisions in MCEC.

C. Game-playing Components

1) Game Simulator: The main purpose of this component
is to manage the tutor’s game-play in MCEC and inform the
robot’s controller of interesting aspects occurring within the
game. As depicted in Fig. 3, this component includes three
sub-components. As its name suggests, the Game Simulator
is responsible to simulate the effect of executing all possible
game actions given a certain state of the game. Therefore,
we implemented a fully-functional game engine for MCEC
according to the game rules mentioned earlier.® The simulator
is mainly used by the action planner to generate successor
states and thus simulate the value of all the game components.
In addition, it is used to keep an up-to-date state of all
structures, updates and policies currently implemented in the
city according to the actions performed by the human players
and the robotic tutor in the game.

2) Action Planner: The Action Planner is responsible
of determining suitable game actions in order to achieve
a desirable situation for the city. The planning procedure
mechanism is a function of some strategy indicating a player’s
preference towards a future state of the game and the current
values of all game components—henceforth referred to as the
game values, as indicated in Fig. 3. The planner therefore
maximizes the gain induced by the execution of an action
given some state and a strategy being employed. Let us denote
by ar € Aj an action performed by a player playing role k,
where A4}, is the space of all possible game moves for that role
in MCEC. For the purposes of planning, we consider as state
a vector s € S given by:

5= [SvaSe7sw7smu8p7Sovshvsu]a (2)

where we used the same indexing notation as in (1) to refer
to the several game values. S is the space of all possible
states of the game values. As we can see, a state contains only
information about game values, thus ignoring which particular
structures are built and their position in the city, as well as the
specific upgrades performed and policies implemented.” The
value of the score uniformity component, s,, is given by the
negative coefficient of variation between the game’s scores:

Av k\Sk
Su = J ( ) ),Ske{Se,Sv,Sw}.

B StdDeuvy (s

As stated earlier, the planner can generate suitable actions
for any given role in any game state according to some strategy.
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depth 1

depth 2

depth 3

Fig. 4. Depiction of the tree-search procedure within the action planner. Nodes
represent game value states, arrows represent state transitions caused by the
execution of some action. Bold nodes and arrows represent maximal gain
state transitions, while gray nodes and arrows slashed by a red line represent
forward prunning performed during planning. See text for details.

In terms of the planning procedure, and given the analysis in
Sec. II-D on the complexity of searching for optimal solutions
in MCEC, we opted to perform a heuristic-based search.
Let T'(s,a) — S be the deterministic transition or successor
function providing the values of the game state resulting of
executing action a given state s. The gain of executing a in s
given strategy © is then a scalar given by:

’Y(Sta @, CL) = NO’I“TTL(T(S, Cl) - S)Tea (3)

where Norm(s) — [~1,1]7 is a function normalizing each
component of a game values state, s; € s, according to:
B s; — Avg(si)

StdDev(s;) + (Maz(s;) — Min(s;))/4’
where the statistics Avg(s;), StdDeuv(s;), Max(s;) and

Min(s;) are calculated using all values simulated for com-
ponent s; during the game session.’

Sq

“

The resulting planning procedure is similar to that of MIN-
MAX [7] in a non-adversarial game, with forward pruning of
nodes at each planning step. The planner searches for the
optimal game action, denoted by aj, for a player playing
role k& € {eco,env,may}. It takes as input the current
game values state, s, a set of strategies for all players,
O = {Occo, Ocnv; Omay}. the maximum depth that planning
can reach, denoted by 0,4, and the maximum time available
to perform planning, denoted by 7T,,4.. Let NextRole(k) be
a function returning the player role following k according
to some predefined playing order, and TimePassed(T) be a
function returning the time passed since time instant 7.

The planning algorithm proposed for MCEC is presented
in Algorithm 1 and a tree-form depiction of the planning
procedure is presented in Fig. 4. We refer to top player the
player for which we are calculating the optimal game move,
ay. As we can see, the procedure starts by getting the /-depth
look-ahead gain for each of the top player’s available actions
(steps 2-4).° The gains are then sorted in descending order—

6We opted to implement the simulation engine from scratch as the original
game engine for MCEC was tightly implemented within its graphical engine,
preventing its practical use for planning purposes.

7We recall that the terminal conditions for MCEC only refer to values of
the game components, i.e., scores, population and oil level, independently of
the particular actions performed to reach such state.
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8This function captures the quality of each game value in terms of being
positive or negative compared to what the expected value for that component
is. We take advantage of simulated values to calculate the statistics for each
game value component.

91f a certain action is not executable in some state, e.g., building a level-3
structure while in game level 1, that action is discarded from the set.
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Algorithm 1 Planning procedure for player k

Input: state s, strat. set ®, max. depth §,,4,, max. time 7,4,
Output: a, € Ay

1:7=0

2: for a; in Aj do

3: I(ar) = (s, O, ar) > Get gains for top player

actions
4: end for
5. SortDesc(T") > Sort action gains in descending order
6: aj =0, 7" =—o0
7: for a; in Aj do
8 j=k s;=s,0=0 > Reset variables
9 while 6 < 6,00 AT < Tinaz do
10: j = NextRole(j)
11: for a; in A; do
12: Fj(aj) :’y(ST,@j,CL]’),@j €O
13: end for
14: a; = argmax, I';(a;) > Update state
15: s; =T1(s;,aj)
16: v+ = Norm(s, —s)7©; > Get top player gain
17: if v, > ~* then > Verify max gain
18: 'V* =T
19: ay = ay
20: end if
21 0=6+1 > Update depth and time
22: 7 =171+ TimePassed(T)
23: end while
24: end for

25: Return aj,

the idea is that if planning time runs out, we expand what seem
to be most promising branches in the search-tree first. Then,
for each top player action, ay, we expand search by simulating
game-playing turns until the maximum number of turns, 9,4,
is reached, or we run out of time to plan (steps 7-24). In each
turn, we calculate the /-depth look-ahead gains of all possible
actions a; of player j, according to the given strategy O;
(steps 11-13). The procedure then performs forward pruning
in the search tree by expanding only the branch of the action
with the highest gain, a, in the perspective of the turn’s
player (steps 14-15). We also calculate the 7-depth look-ahead
gain, denoted by ~y,, in the perspective of the top player (step
16). The procedure then verifies whether such gain is more
advantageous, in which case aj, is updated (steps 17-20). When
planning is finished, the planner returns the action providing
the overall maximum expected gain, aj.

3) Strategy Adjuster: This sub-component is responsible
for adjusting online the strategy of the player for which
an action is going to be planned, as depicted in Fig. 3.
It functions like a hormonal-like mechanism inspired in the
way neurohormones modulate behavioral outputs in biological
systems according to changes perceived in the environment
[9]. With that in mind, we defined a series of adjustment func-
tions, denoted by o;(s;,;), each modulating some component
0; € O of a player’s strategy ©. For example, if the power level
of the city is perceived as being low, the respective adjustment
function will raise the power component of a player’s strategy
so that the planning procedure chooses actions leading to states
with a higher power level. Each function receives as input the
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TABLEII.  ADJUSTMENT FUNCTIONS FOR STRATEGIES IN MCEC.
Component Adjustment Function

Oil 00(S0,S0) = So°°

Power op(sp,sp) =

Money Um(8m7 m) = gmsm

Scores 0r(Skyss) = 0.26°% sg € {se, Su, Sw }
Population on(snysn) = 1— g, 5h/200
Environment Oe(8p,6e) = 0.2¢.%

Base strateqy ~ Strateqgy adjustment paramsters
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e
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Fig. 5. The tool used to refine the strategy adjustment parameters.

respective game value, 6;, while ; is an adjustment parameter
influencing function’s o; output. The set of all adjustment
parameters is fixed during the game and predefined for each
player, indicating his predisposition in dealing with attention-
focusing events from the game. This component thus functions
like a self-regulatory mechanism dynamically adjusting the
player’s strategy at each turn. We present the proposed func-
tions used in our studies in Table II. The “Scores” function, crf,
adjusts the respective score component related to each role k,
e.g., for the Mayor player it adjusts the well-being component,
0.,- The presence of function o, means that all players get their
strategies’ environment component, 6,,, adjusted—this is due to
the fact almost all build actions in MCEC negatively impact
the environment’s score, and therefore this is a component
requiring a higher degree of attention for any player role.
After being adjusted, a strategy O is normalized to ensure that
|©]|1 = 1. We created a tool that helps refining the adjustment
parameters and observe the modulation effect. A screenshot of
the tool is presented in Fig 5.

4) Alert System: The purpose of this component is to
inform the robotic tutor’s decision-making of possibly inter-
esting game situations so that he may intervene during the
interaction with the human subjects, as indicated in Fig. 3.
One of such information provided by the alert system is the
predicted game values, calculated by averaging all simulated
s, during the planning procedure described in the section
above. The idea is to provide a “glimpse” of what the game
values may be in the game’s near future and act upon them
when certain thresholds for each component are reached—for
example, if the probability of reaching a low energy level
is high, the robot may refer to “energy saving strategies”
or suggest the construction of an energy-related structure.
The component also provides information about the no-action
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probability, i.e., the probability of reaching a state where
players have no option other than skip turn in the near future.
This probability is again calculated using information collected
during planning, by averaging the number of times players
only had a skip-turn action in some simulated turn. Finally,
the system also alerts about the no-space probability in the
game, i.e., the probability of reaching a state where no player
has an available cell on which to build a new structure. This
value is calculated according to the ration between the current
number of empty cells in the city and the standard number
of available cells in each level. These two probabilities may
be used by the tutor e.g., to inform the human subjects of the
urgency in building residential structures in the city in order
to pass the game level and thus obtain more available space.

D. Social Component

The main purpose of this component is to understand the
game-related behavior of the human subjects playing MCEC
with the robotic tutor.

1) Player Modeling: This sub-component is responsible
for modeling the game strategies of the human players. To
achieve that, and for reasons of simplicity, we consider that
each human subject is trying to maximize the /-step look-
ahead gain when playing a specific action in some game
turn, ie., we assume that players are trying to maximize
the immediate gains of their actions. As depicted in Fig. 3,
whenever some player k£ makes a game action, ay, this sub-
component registers the normalized difference, denoted by As,
in the game values resulting from such state transition, i.e.,

As = Norm(T(s,ay) — s),

where each game values component is normalized according to
(4). Then, it updates its current estimate of player k’s strategy,
Oy, according to:

O, = 0 + a.As, (5)

where « is a learning rate, ensuring a smooth variation after
each play. Each player’s strategy is learned online, i.e., while
the human subjects are playing a game session. They are
used by the game planner to predict the decisions of the
human subjects during planning, resulting in a theory-of-mind
(TOM) reasoning performed according to observed data from
the several game plays. Initially, each strategy is set according
to some “expected” behavior according to the player’s role,
e.g., one may expect that a player playing the role of Economist
to value more the economy score and the money level.

2) Social Adaptation: Another purpose of the social com-
ponent is to adapt the game-play strategy of the robotic tutor
in a social manner, i.e., according to the strategies estimated
for the human players, thereby adhering to the perceived
group strategy. Because the game of MCEC is inherently
collaborative, we also assume that the human players are
adjusting their strategies to one another.'® Therefore, after a
human player performs some game action, this sub-component

10By observing the interactions between the human subjects during the game
sessions, we verified that indeed they often discuss their game strategies and
ways to collaborate in the game, e.g., by “following” a money-saving strategy.
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“approximates” the other human player’s estimated strategy
and the tutor’s strategy according to:

Or = O + A(©; — Oy), (6)

where ©, is the player whose strategy is being adjusted, ©; is
the player that performed the game action, and A is an imitation
factor regulating the strategy approximation.

IV. DISCUSSION AND CONCLUSIONS
A. Application within EMOTE

In this paper we presented an AI module for MCEC, a mul-
tiplayer collaborative game about environmental awareness, in
the context of project EMOTE, in which an emphatic robotic
tutor interacts with human players in a social and pedagogical
manner. Within this context, we created an Al module that
endows the tutor of not only explaining his own actions but
also raising discussion on important topics related with the
game. We have been performing studies with human subjects
interacting and playing with our robotic tutor in MCEC and
we have received a very positive feedback.

To achieve such rich behavior on the robot’s part, our
proposed Al module includes two main components with
distinct functionality. The game-playing component is able to
simulate and keep updated information about the game, e.g., on
the resources, game scores, etc. It is capable of planning
actions for any game role according to predefined criteria,
i.e., the game strategy. In the context of EMOTE, this enables
us to personalize the robotic tutor’s behavior according to some
pedagogical objective, e.g., we may define a condition in which
the tutor plays as “energy saver”, raising awareness on build-
ing low energy-consumption structures, and another condition
in which he plays a “spare-no-expenses” strategy to create
interesting pedagogical situations. Also, the alert mechanism
has allowed us to define thresholds for some components,
that when reached give the tutor the opportunity to focus the
human subjects’ attention into solving the problem at hand.
Moreover, this Al component is being used to justify the tutor’s
choices in the game, e.g., by looking at the components of the
strategy used, comparing the alternative actions resulting from
planning and explaining why the best was chosen. Overall, our
action planner supports the conjunction of predefined profiles
or predispositions—static elements, with online imitation and
a hormonal-like, attention focusing system—both dynamic
components. The preliminary results of our studies suggest
that indeed this component allows the robotic tutor to be
perceived as more “intelligent” and “alive” by the human
subjects, by being aware of events occurring within the game
and responding accordingly.

Our proposed Al module also includes a social component
that is able to perceive and inform on the intentions and
strategies of the human players. This endows our robotic
tutor of a TOM component that uses the predicted strategies
for the planning of the human subjects’ simulated game-play
turns. In the context of our studies in EMOTE, such social
component has allowed the tutor of commenting on players’
choices and proposing alternative actions, e.g., by planning in
the perspective of a human subject according to his estimated
strategy, and then comparing the planned action against the
one that was executed by the human player. This component
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TABLE III. RESULTS OF THE “SELF-PLAY” EXPERIMENTS.
Group Data Collected
Strategy [ ¢ sy So Sm  Sp Sy Se  Sw U
Balanced 4 33 209 14.6 95 6.5 3.5 85 11.0 4

Life-qual. 4 36 203 117.0 122 7.5 2.5 125 205 7
Score-grd. 3 45 124 —67.0 104 0.5 50.5 11.0 33.0 7

Spender 3 27 142 —30.0 98 33.0 —26.5 22.5 7.5 0

includes also a social imitation mechanism that makes the
tutor follow the perceived group action tendency. This makes
our robotic tutor to be perceived as more “socially aware”,
even when not performing “optimally” in the game. Le., it is
preferable for the tutor to follow the common group strategy
than to always perform the optimal action leading the game
faster to its termination. According to the feedback given
by the human subjects, this has to do with the tutor being
perceived as more social and making less unexpected actions
that deviate from the group strategy being followed.

B. Empirical Study

Apart from the studies performed with human subjects in
the context of EMOTE, we also performed more empirical
studies on the proposed Al module. The objective was to test
its planning, personalization and strategy imitation capabilities.
We devised a self-playing tool in which the AI module
autonomously controlled the actions of all three players. We
then run several game sessions using this tool and set distinct
strategy profiles for each group of players. Specifically, we
designed four different profiles: a balanced strategy, as its
name suggests, tries to balance all game values; a life-quality
strategy results in a preference for environmentally-aware
actions; a score-greedy strategy makes each player to try gather
as much of its own score as possible and a spender strategy
is directed at advancing in the game’s levels as quickly as
possible disregarding the cost associated with the actions. We
note that in the case of the spender test, the players strategies
were taken from the values estimated by the player modeling
sub-component, during a game session with human subjects
deliberately instructed to follow a “spending” behavior. The
purpose of this experiment was to test the action planner
ability in developing different kinds of cities, resulting from
the actions played by groups of players playing according to
distinct strategy profiles. The results of this experimental study
can be found in Table III, where we present the data collected
at the end of the simulations.!! We present all components of
the game values except s,,. [ is the level reached in the game,
0 is the number of game turns played and u is the total number
of upgrade actions performed.

As we can see, both the balanced and life-quality condi-
tions lead to sustainable cities at the end of the simulations, the
main difference being that the life-quality strategies achieved
higher game values in general and more upgrades performed.
By looking at the structures built in each test we are able to
observe a much higher concern in the life-quality condition
in building environment-friendly structures and green spaces

Videos of the game sessions as well as the specific strategies and
adjustment parameters used can be found at: http://gaips.inesc-id.
pt/~psequeira/videos/enercities-ai/.
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that end up saving natural resources. In the other two tests, the
strategies employed lead to a generalized poor performance in
terms of the city’s health. The score-greedy condition obtained,
as expected, the overall higher scores. The final structure shows
us a very diverse city in which each player tried to built as
much of their role-related structures as possible. However, this
made the players somehow ignore the game level progressing
by having too few residential structures built. Finally, the
“imitated” strategies in the spender condition obtained the
lowest number of turns in the game. This was due to the
construction of expensive and resource-wasting structures thus
disregarding oil consumption. We can also see the effect of not
performing upgrades in the game, which makes the structures
sub-optimal in terms of resource consumption.

C. Future Work

In the future, we are going to expand the AI module
presented here to be able to fully control the robotic tutor’s
behavior while interacting with the human players during the
game. We intend to use the information collected during our
Wizard-of-Oz studies, in which a human expert controls all
the behavior (verbal and non-verbal) of the robot, and create
machine learning mechanisms within the Al module that are
able to “capture” the expert’s decision-making process. In turn,
a behavior selection mechanism will select the appropriate
behavior whenever some situation is detected, either related
with the MCEC game itself or with the social interactions
occurring externally to the game.
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