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Abstract

This paper contributes a novel framework that en-
ables a robotic agent to ef�ciently learn and synthe-
size believable handwriting motion. We situate the
framework as a foundation with the goal of allow-
ing children to observe, correct and engage with the
robot to learn themselves the handwriting skill. The
framework adapts the principle behind ensemble
methods - where improved performance is obtained
by combining the output of multiple simple algo-
rithms - in an inverse optimal control problem. This
integration addresses the challenges of rapid extrac-
tion and representation of multiple-mode motion
trajectories, with the cost forms which are trans-
ferable and interpretable in the development of the
robot compliance control. It also introduces the in-
corporation of a human movement inspired feature,
which provides intuitive motion modulation to gen-
eralize the synthesis with poor robotic written sam-
ples for children to identify and correct. We present
the results on the success of synthesizing a variety
of natural-looking motion samples based upon the
learned cost functions. The framework is validated
by a user study, where the synthesized dynamical
motion is shown to be hard to distinguish from the
real human handwriting.

1 Introduction
We consider a human-robot interaction scenario where a
robotic agent closely interacts with children to help develop-
ing their handwriting skills. Practising handwriting skills is a
time-consuming task for children, and the inclusion of robots
as tools can have bene�ts in the long run. One of the bene�ts
stems from the �exible roles that the robot could possibly play
in comparison with human teachers. Besides demonstrating
how to write a character correctly, the robot can serve as a fa-
cilitator or even as a learner, by presenting poor handwriting
samples - whose error types can be customized with respect
to a speci�c child - and gradually improving the robot per-
formance under the help of children. These immersive sce-
narios allow for children to inspect, correct and engage with
the robot, and as such teach themselves what is good hand-
writing and how to do it. This so-calledlearning-by-teaching
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Figure 1: Pipelines of the proposed framework: a robotic
agent learns from human demonstrations and then synthe-
sizes handwriting motion by sampling in the kinematics fea-
ture space. The samples could be presented in the interaction
for children to imitate or correct.

paradigm is believed as an effective approach to motivate and
engage children learners in education activities[Rohrbecket
al., 2003].

The challenge of realizing such a system lies in the en-
dowment of proper task representations to the robot. First,
the robot needs to learn a representation that encodes human-
like handwriting, as well as the desired information for the
derivation of a compliant motion controller to regulate the
contact force. Secondly, the representation requires handwrit-
ing movement features that are straightforward to evaluate,
interpret, and as such intuitive to generalize to the encode-
ment of speci�c types of poor handwriting. For instance, the
feature linking to the movement scale can be modulated by
the robot or humans to generate or correct characters with
inproportional components. Last but not the least, it is de-
sirable to ensure rapid motion learning and synthesis, whose
ef�ciency is of great importance in the practical human-robot
interaction.

Inverse optimal control (IOC) provides a principle way for
robots to achieve task learning from demonstrations (LfD), by



extracting implicit cost representations which are transferable
for robots to develop control commands in various contexts
[Nikolaidis et al., 2015][Byravanet al., 2015]. In this pa-
per, we presents a set of algorithms that ef�ciently learn from
human data and generate rich and believable robotic writing
motion, in order to support the interaction that facilitates chil-
dren handwriting acquisition in a robotic companion project
(Figure 1). The main contributions are summarized as:

� We integrate the ef�ciency of local IOC with quadratic
cost functions and the modeling power of ensemble
methods, which are prevalent in general machine learn-
ing but less explored in the �eld of implicit LfD. The
resulting algorithms feature rapid handwriting learning
and compliant motion control synthesis, both of which
are desired for the real interaction with children.

� We extend the proposed model with human-inspired cur-
vature features to support diverse online handwriting
synthesis. Remarkably, the features are explicitly asso-
ciated with human understandable geometry properties.
Thus they allow for generating not only legible charac-
ters for children to imitate, but also poorly written ones
with believable andcontrollabledeformities for exploit-
ing the learning-by-teaching paradigm.

The paper begins by situating our work amongst related
literatures in Section 2. The proposed approaches are then
developed in detail in Section 3. We discuss the learning and
synthesis results in Section 4, and in particular a Turing-like
test to validate the human-likeness of generated motion in
Section 5. Finally, Section 6 concludes the paper by sum-
marizing the contributions and outlooking the future work.

2 Related Work
Learning with a continuous IOC formulation has widely been
addressed with various techniques, such as Laplacian approx-
imation [Levine and Koltun, 2012] or trajectory sampling
[Kalakrishnanet al., 2013], to evaluate the gradient approxi-
mately. The presented work avoids those expensive steps by
solving a set of naive IOC problems on locally consistent data
and then augmenting the results. This shares certain similar-
ities with [Nikolaidis et al., 2015] and [Cobo et al., 2012]
which cluster or segment demonstrated trajectories. Compar-
ing with those, we motivate the presented work from the per-
spective of computing ef�ciency on continuous motion data
which is natural for the robot control synthesis in our target-
ing practice.

The handwriting learning and synthesis have been inves-
tigated with various computing methods and models. In
[Hoodet al., 2015], the PCA-based method was used to ex-
tract Gaussian distributed latent variables for letter synthe-
sis. The framework of dynamic movement primitives was
adopted in[Kulvicius et al., 2012], with the aim of model-
ing the writing movement as well as the letter transition. Our
work extends these models by relaxing the restriction on lo-
cally consistent demonstrations thus allows to learn multiple
modes of writing a same letter. Such multi-modalities can
also be captured by advanced probabilistic models such as
factorial-HMM [Williams, 2009], recurrent density network
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Figure 2: Single and multiple modalities of trajectory distri-
butions. 2(a) is a poor model to encapsulate the diversity of
style and moving direction in writing ”D”. Actually, the av-
eraged trajectory is not legible, and should be assigned with
low probability (high cost value) as 2(b).

[Graves, 2014] and probabilistic programming with proper
priors [Lake et al., 2015]. Our work is distinct as it learns
with embedded features that are related to human movement
characteristics. To this end, we can possibly bias the synthesis
in a predictable way, which is advantageous in our interaction
task to generate desired letter deformities.

3 Framework
Our problem consists of learning and synthesizing the robotic
handwriting motion from a set of planar character trajectories
D = f &�

i g. The central problem is to infer a parameter� of
a cost functionJ , with respect to which, the demonstrated
trajectoriesD are supposed to be the (sub)optimal solutions.

From a probabilistic perspective, the human motion trajec-
toriesf &i g can be cast as the instances sampled from a prob-
abilistic distribution, which is parameterized by� as Equa-
tion (1). This statistical model implies that the trajectories
with low cost are more likely to be observed[Dvijotham and
Todorov, 2010][Ziebartet al., 2008].

P(&j� ) =
exp(�J (&;� ))R

&0 exp(�J (&0; � ))
(1)

Thus � can be estimated by minimizing the negative loga-
rithm likelihood of the observations. A simple parameteriza-
tion strategy to capture the optimality of demonstrations is a
quadratic function form:

J (&;� ) = ( &� � &)T � &
� 1(&� � &) (2)

where� = f � &; � &g encodes the reference motion and the
desirability for a robotic agent to track with the end-effector.
This can lead to a closed-form estimation of the partition
function thus can ensure an ef�cient evaluation of the like-
lihood and the associated gradient. Moreover, the estimating
parameters are closely related to the optimal control signalu :

u = � R � 1B
@J
@x

(3)

wherex denotes the state of trajectory&, andB andR repre-
sent the control gain and penalty matrices which are chosen
based on the dynamic model of the agent that carries out the
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Figure 3: An ensemble of cost functions over partitioned
dataset through random feature bagging.

execution. It is trivial to reveal that the control gain is propor-
tional to the diagonal blocks of� & and the regulation point
is along the mean trajectory� � . Thus the estimation of the
quadratic parameters actually synthesizes an impedance con-
troller which allows the robot to accommodate the contact
force, as is shown in[Yin et al., 2014].

The limit of the quadratic form lies in that it assumes a
globally optimal mono-mode of the trajectory distribution,
whilst it is common to observe locally optimal demonstra-
tions. This can be exempli�ed in human handwriting by the
multiple modes of demonstrating one speci�c letter, see Fig-
ure 2(a) and 2(b).

3.1 An Ensemble IOC Approach
The proposed approach to address above challenges is to
combine the simplicity of local quadratic cost learning with
the scheme of ensemble methods. One possible way to
achieve this is to apply the maximum-entropy (MaxEnt)
model (1) on a fraction of dataset to constructK local model
learned based on a subset of demonstrationsDk = f &�

1:N k
gk ,

for k = 1 ; :::; K . The local data can be constructed with
clustering techniques, if the number of clusters or a simi-
larity metric is properly de�ned or tuned. Here we adopt a
recursive random embedding scheme for the sake of compu-
tational ef�ciency. The idea is, at each step, the dataset is
partitioned according to the criterion of decreasing the data
entropy under the MaxEnt models. For instance, theN tra-
jectories ofD are divided into two subsetsD1 and D2 ac-
cording to some featurex j 2 &, making the entropy reduc-
tion is maximized by the partition ofD1 = f & : x j � � j g
andD2 = f & : x j < � j g. In general, such structure can be
constructed ef�ciently through random and greedy searching
[Criminisi et al., 2012]. The problem with such scheme is
that the local cost function learning is sensitive to the random
partition. To address this, we can introduce an ensemble of
aggregated models[Breiman, 1996][Criminisi et al., 2012] to
obtain the estimation with a reduced variance. Figure 3 illus-
trates the idea of constructing the complete ensemble models.

Evaluating this ensemble model involves making decisions

Algorithm 1 RandomSubSpace - Partitioning dataset
through feature bagging

Require: D, Nd, N min
D

Ensure: Dm
k=1: K m

Dm
k=1: K m

 SPLIT(D; Nx ; N min
D )

function SPLIT(D in , Nx , N min
D )

f x i gi =1: N d  RandomSelect(f x t gt =0: T )
j; � �

j  argmax
i;� i

H (D in ; � i )

if jD
x j > � �

j
in j > N min

D andjD
x j <� �

j
in j > N min

D then re-

turn Concatenate(SPLIT(D
x j > � �

j
in ), SPLIT(D

x j <� �
j

in ))
else returnD in . Discard this split
end if

end function

from the bagged local models. One of the options is to take
a weighted average over the distributions that are parameter-
ized with the learned cost functions, as shown in Equation
(4).

P(&j� ) =
1

M

MX

m =1

K mX

k=1

jD m
k j

jDj
exp(�J m

k (&;� m
k ))R

&0 exp(�J m
k (&0; � m

k ))
(4)

where operatorj � j denotes the cardinality of the set of data.
Note that, the proposed approach is different from[Niko-

laidis et al., 2015], because it is not learning local models on
perfectly clustered demonstrations through methods like K-
means or mixture of Gaussians. HereK m is a natural result
from the recursive suboptimal random embedding. By doing
this, we avoid specifying the explicit number of clusters (e.g.,
how many types are there for a legible handwritten character
”D”), which is unknown to the robot agent. By taking the neg-
ative logarithm of (4), the aggregated cost evaluation can be
viewed as asoft version of pointwise minimumof a collection
of cost functions. The pseudo code of the random embed-
ding is given as Algorithm 1, whereNd andN min

D trade-off
the modeling power and the computational cost by control-
ling the size of candidate features and subset of data. A few
remarks are given to highlight the advantage of the proposed
approach over the previous ones:

� The model indicated by (4) allows the robot to encode
complex multi-modal motion patterns, while it still can
be ef�ciently learned because of the closed-form parti-
tion function for each local IOC model.

� The random embedding can be ef�ciently performed
with off-shelf packages such as[Pedregosaet al., 2011].
Other partitioning or clustering techniques[Criminisi et
al., 2012][Leeet al., 2007] can also be seamlessly com-
bined with the local cost function learning.

� Synthesis by sampling from the learned model (4) is
straightforward as it resembles a mixture of Gaussians.

3.2 Human-inspired Kinematics Features
We motivate the enforcement of an informative feature by
having an intuitive representation of the handwriting motion,
and as such a human or the agent itself can modulate and bias
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Figure 4: Modeling handwriting motion with curvature and
lognormal velocity pro�le: the trajectory section is parame-
terized with a bell-shaped velocity magnitude and a constant
curvature[O'Reilly and Plamondon, 2009].

the synthesis in order to generate motion with speci�c types
of deformities.

We exploit the log-normal model[O'Reilly and Plamon-
don, 2009] which suggests encoding the velocity magnitude
of natural human motion as an asymmetric bell-shaped log-
normal pro�le. Moreover the path of motion stroke is con-
strained with a constant curvature, see Figure 4.

Here the model is adopted with slight changes on the de-
pendent variable:

&(z) =
NX

j =1

jv(z)j
�
cos(� j (z))
sin(� j (z))

�
t = T z (5)

jv(z)j =
NX

j =1

A jp
2�� j (z � zj

o)
exp(�

(ln( z � zj
0) � � j )2

2� 2
j

)

(6)

� j (z) = � j
s +

� j
e � � j

s

2
(1 + erf(

ln(z � zj
0) � � j

2� j
)) (7)

whereA, z0, � and� are the parameters that regulate the ve-
locity pro�le jvj. The curvature is parameterized by a pair of
start and end angular positions� s and� e, with erf(�) denot-
ing a Gaussian error function. The introduction of the phase
variablez allows to evaluate the trajectory on a uniform in-
terval z 2 [0; 1]. The parameterT encodes the stroke time
length, which is modeled according to the partitioned data.

It is easy to see that certain feature parameters shape the re-
sulting motion in an explainable way. For instance,A affects
the velocity magnitude;� s and � e impact the stroke align-
ment and straightness. Thus we can convert the vanilla repre-
sentation� k = f � k

&; � k
&g by extracting the statistics of kine-

matics featuresf Ak ; zk
0 ; � k ; � k ; � k

s ; � k
eg. This is achieved

through theRXZEROestimation[O'Reilly and Plamondon,
2009] which estimates the parameters for the mean trajectory.
Furthermore, the local variability of the kinematics parame-
ters can be captured by

� k
f

� 1
= ( Gk

� &
)T � k

&
� 1

Gk
� &

(8)

whereGk
� &

is the Jacobian matrix that locally embeds posi-
tion features into the kinematics parameter space. Algorithm
2 shows the learning routine together with the feature em-
bedding steps.M denotes the number of aggregated models.
Increasing this parameter reduces the model variance and it

is chosen empirically in our experiments. Motion synthesis
from this new feature space is still ef�cient as the agent only
needs to evaluate closed-form formulas (5), (6) and (7).

Algorithm 2 Learning - Learning cost ensembles with
curvature-based features
Require: D = f &i g, M , Nd, N min

D

Ensure: Dm
k=1: K m

, �̂
m
k = f � f

m
k ; � f

m
k ; � T

m
k ; � T

m
k g, k =

1; :::; K m , m = 1 ; :::; M
for all m in 1:M do

Dm
k=1: K m

 RandomSubSpace(D; Nx ; N min
D ) .

Partitioning datasetD through random subspace
for all k in 1:K m do

� m
k = f � &

m
k ; � &

m
k g  argmax

�

jD m
k jP

i =1
logP(&�

i j� )

� f
m
k  RXZERO(� &

m
k ), � f

m
k  Equation (8)

end for
end for

4 Results of Motion Learning and Synthesis
This section applies the proposed methods on adult handwrit-
ing motion learning and synthesis, with the aim of �rst evalu-
ating the entire system on adult data before deploying it with
children experiments. We will demonstrate the richness of the
represented motion patterns and the computational ef�ciency
comparing with alternative IOC methods.

4.1 Learning Handwriting from Human Data

The dataset employed was the UJI Pen Characters reposi-
tory [Llorenset al., 2008], which contains online handwriting
samples collected from 60 adult subjects. We focused on al-
phabetical instances with either single or multiple strokes, for
which each stroke was assumed to be independent. Yet this is
by no means true as the strokes are correlated temporally and
is possible to be captured by introducing extra conditional
models[Lake et al., 2015]. We adopted this independence
assumption here to focus on the ensemble method itself, and
such simpli�cation turned out to work well in practice to syn-
thesize reasonable motion trajectories.

The results are depicted as Figure 5(a) to 5(e). The most
obvious observation is that the learned models successfully
capture the legible shapes for either single or multiple-stroke
characters. The variabilities of the stroke heating magnitude
can be explained by the inconsistency of forming the spe-
ci�c trajectory sections. For some strokes, human behavior
tends to be comparatively consistent, such as the short straight
strokes in Figure 5(a), and 5(b) or the overall shape of ”S”
in 5(d). The variability of this consistency implies multiple
modes in writing a speci�c letter. The encodement of such
diversity can be best illustrated as Figure 5(e), which explic-
itly resembles the superimposition of two distinctive ways of
forming a legible ”y” in the Cartesian space. Note that the
number of these patterns is not explicitly enforced before-
hand but emerged from the ensemble of models which assign
cost functions on random subsets of data.



(a) ”A” (b) ”D” (c) ”e” (d) ”S” (e) ”y”

Figure 5: Illustration of the learned cost ensembles that encapsulate the patterns of character pro�le. This is demonstrated in the
Cartesian space but not the feature space for the illustrative purpose. The statistics of the curvature-based features is captured
by taking samples and convert them to the original planar Cartesian space. The heat value of a point in the Cartesian space is
evaluated by folding the learned cost function along the time horizon and counting the occurrences of the coordinates in the
trajectory samples.

Figure 6: A 7-DOFs Baxter manipulator writes a ”g” with
motion synthesized from the learned models.

4.2 Synthesis from Learned Cost Functions
With the learned model, robotic handwriting motion could be
realized through an synthesized impedance controller (Equa-
tion (3)). Figure 6 shows snapshots of an example of the con-
crete robot motion resulted from a sample of synthetic ”g”.

The diversity of encoded motion patterns can be fur-
ther demonstrated by synthesizing letter instances from the
learned models. We give a few typical sampling results, again
for either single or multiple strokes, as Figure 7. The syn-
thesis samples illustrate rich writing patterns that are diversi-
�ed in the aspects of size, orientation, and most importantly,
the style. For instance, the ”d” that is constituted by a circle
and a straight stroke, are successfully detected and encoded.
We further the validation by generating poorly written charac-
ters with perturbed lognormal features. Figure 8 shows syn-
thesized samples with an increased feature variance, which
leads to various types of deformities such as inappropriate
component proportion, misalignment or jerkiness in stroke
transition. This demonstrates the potential of the framework
to generate various good or poor handwriting motion for the
children to imitate and correct.

4.3 Comparison of Computational Cost
We compared the proposed approach with alternative state-
of-the-art IOC algorithms in terms of computational ef�-
ciency, especially for the letter synthesis as our targeting in-
teraction task demands time critical performance. The results
(Table 1) present the desired time for training 100 demon-
strations and synthesizing one motion sample on a modern
laptop. Note that training time of the proposed framework
includes the overhead of RXZERO feature extraction, which
eventually performs a non-convex optimization. The GPIRL
[Levine et al., 2011] is built upon Gaussian Process and

Table 1: Time Cost of Tested Algorithms
Algorithm Training Time Synthesis Time
GPIRL > 30h 22:2 � 5:2s
MaxEnt 3365:8 � 236:7s 5:8 � 1:2s
EnsembleIOC 381:7 � 5:7s (6:4 � 3:7)e� 4s

kernel methods. Thus it is not surprising that it does not
scale well for the size of the dataset. The MaxEnt model
with a popular RBF parameterization exploited the Lapla-
cian approximation for gradient evaluation[Ziebart et al.,
2008][Levine and Koltun, 2012], which signi�cantly miti-
gates the computing cost. However, the synthesis ef�ciency
cannot be guaranteed because of the expensive MCMC sam-
pling. Though there is de�nitely room for optimizing the im-
plementation of all competing algorithms, it still serve as a
proof-of-concept that why the presented approach is supe-
rior for the practical robot trajectory encoding and sampling,
where both modeling power and ef�ciency are concerned.

5 Evaluating the Human-likeness of the
Synthesized Motion

This section presents an online user study to examine how
humans perceive the synthesized motion, as the robot needs
to provide convince-looking handwriting motion to human
users. Due to the obscurity of ”human-likeness”, the pre-
sented study was performed in a form of Turing-like test,
where the participants were presented with a mixture of
human and arti�cial dynamic motion, without showing the
physical body of both the robot or of the human. The partici-
pants were instructed to choose among these motion samples
the one they believe was generated by the algorithm. We were
also interested in the con�dence of the humans on their deci-
sions to have a scale measurement of the �delity from the
subjective perspective.

5.1 Study Hypothesis

H1. By observing the dynamic motion of the characters, the
participants cannot distinguish between the agent syn-
thetic and human written character samples. The clas-
si�cation performance is close to a random guess. We
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Figure 7: Synthesized motion samples from the learned cost ensemble models for different characters. The diverse modes and
styles illustrate the multi-modal motion patterns encoded by the aggregation of simple cost functions
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Figure 8: Synthesized motion of poor written samples by sampling from the learned model with random perturbations. The
deformities can be intuitively controlled by modulating the local proportion, alignment and curvature of a speci�c component,
as well as the continuity between the components.

expect the samples from learned ensemble models pos-
sess believable variabilities that are consistent with nat-
ural human handwriting. Thus most sampled motion pa-
rameters should result in characters which are hard to
be identi�ed from the mix up of synthesized and hu-
man samples. Quantitatively, this hypothesis implies an
equivalence which can be numerically expressed as

kĉ � ck � � (9)

whereĉandcdenote the classi�cation performance from
the experiment estimation and the random guess respec-
tively. � is a threshold quantifying the equivalence of the
two tested values. The selection of� will be presented
in the results and analysis section.

H2. Participants will not detain high con�dence levels to-
wards their choice. This hypothesis checks the indis-
tinguishability from a subjective perspective of the hu-
mans. It is expected to see the quanti�ed con�dence
is lower than a certain level. We are also interested in
the relation between the human con�dence and concrete
performance.

5.2 Study Procedure
The Turing-like test was carried out in the form of an online
questionnaire. Concretely, the participants were instructed to
evaluate 20 characters, containing both synthesized and hu-
man handwritten ones, by accessing web pages anonymously.
They were explicitly instructed that there was only one syn-
thesized sample for each character question. They could nei-
ther skip character pages nor browse back to the past ones to
modify the previous responses. Their evaluation was based
on two questions for each character:

Q1. Which letter do you believe is written by a robot?

To answer to this question, participants were presented
with �ve dynamic handwriting motion for the character.
The animation could be intuitively resumed or stopped
by moving the cursor on or off the images. The partici-
pants were allowed to replay the motion as many times
as they wanted before they made the decisions.

Q2. How con�dent are you about your choice?

The second question could be answered in a �ve-point
type-Likert scale ranging from 1 to 5: 1-very low; 2-
low; 3-neutral; 4-high; 5-very high

The sequences of characters and answer options were ran-
domized to counter balance ordering effects. Moreover, de-
mographic information was also collected. Participants were
noti�ed not to respond the questionnaire for multiple times at
the beginning of the web page. Each individual questionnaire
took about 10 to 15 minutes to complete.

5.3 Study Analysis and Results

The participants were recruited through the mailing lists
within a university. A total of 68 participants completed the
online questionnaire. Our sample ranges from 18 to 60 years
old (M = 28.7;SD= 8.7).

In order to testH1, We chosec = 0 :2 as there were
�ve options in each character question.� was de�ned ac-
cording to the deviation of random classi�cation performance
� = � � 0:089, if the number of correct classi�cation was
subject to a Binomial distribution. Our analysis showed that
on average the participants achievedĉ = 0 :226� 0:086clas-
si�cation performance, which was close to the random guess
c = 0 :2. A further analysis showed that the null hypotheses
of H1, ĉ > c + � andĉ < c � � , were both rejected by the cor-
responding one-sided t-test (t1(67) = 6 :04; t2(67) = 11:03;
p < 0:01). Therefore, the results showed statistically sig-
ni�cant equivalence between the performance from empirical
data and a theoretical value from a random guess, thusH1
was strongly supported which suggests that participants were
not able to distinguish between the character motion (synthe-
sized versus human handwritten), wherein their choices trans-
late the same as the random guess.

For H2, the averaged con�dence level was2:71 � 0:70.
One sided t-test concluded that this value was signi�cantly
below the neutral con�dence level [t(67) = 3 :38; p < 0:01],
which also supportedH2. We also analyzed that there was
indeed a small fraction of participants who exhibited high
con�dence levels, however, such high con�dence was not



Figure 9: Classi�cation performance and con�dence levels
for the selected characters on which the participants per-
formed best and worst. The characters are sorted according
to the performance, while the con�dence levels are compara-
tively consistent. The overall performance0:226� 0:086 is
close to the random guess (p < 0:01).

necessarily related to good classi�cation performance. A se-
lection of the performance and con�dence for the most con-
trasting results regarding the selected characters are shown
in Figure 9, where it is obvious that the con�dence levels
are relatively consistent across characters and are not com-
plying the performance trend. We also examined the con-
�dence level associated to correct answers. The level turned
out to be2:71� 0:98, which is not signi�cantly different from
the overall con�dence level (considering a threshold of 0.2;
t1 = 4 :63;t2 = 3 :79;p < 0:01). A further analysis yields
a rather weak Pearson's correlation (� = 0 :126) between the
performance and con�dence level. Therefore the participants
are indeed uncertain about their answers, even for the ones
that happen to be correct.

6 Conclusions
In this paper, we demonstrate approaches that enable robotic
agents to generate human-like handwriting motion by learn-
ing from human demonstration data. The proposed ensemble
inverse optimal control approach yields highly ef�cient algo-
rithms for learning a variety of types of motion trajectories,
in contrast with the prior works that resort to expensive nu-
merical optimization. The curvature-based features extend
the representation to allow intuitive feature perturbation for
synthesizing deformed handwriting samples. A human user
study has provided a quantitative evaluation of the proposed
approaches and the developed system, showing the partic-
ipants were not able to con�dently distinguish synthesized
motion from the natural ones and their performance was close
to a random guess. These contributions have laid a foundation
to deploy a robotic agent in the real human robot interactions
which are our future targets.

It worths noting that the proposed ensemble inverse opti-
mal control framework can be easily extended to other gen-
eral robotic tasks. In our ongoing work, we are adapting the
framework to realize online robotic trajectory adaptation by
estimating the task mode with the learned cost functions. An
informative feature structure can bene�t such general tasks by

providing more compact representations and boostraping the
synthesis and adaptation. Thus it would also be interesting to
explore other task-dependent feature expressions or comput-
ing frameworks to learn these representations to parameterize
the cost functions.
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