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Abstract

This paper contributes a novel framework that en-
ables arobotic agent to ef ciently learn and synthe-

size believable handwriting motion. We situate the :

framework as a foundation with the goal of allow- ’ =

ing children to observe, correct and engage with the , CJ

robot to learn themselves the handwriting skill. The d 4 <
Lo

framework adapts the principle behind ensemble

methods - where improved performance is obtained

by combining the output of multiple simple algo-

rithms - in an inverse optimal control problem. This m&
integration addresses the challenges of rapid extrac- .
tion and representation of multiple-mode motion )
trajectories, with the cost forms which are trans-
ferable and interpretable in the development of the
robot compliance control. It also introduces the in-
corporation of a human movement inspired feature,
which provides intuitive motion modulation to gen-
eralize the synthesis with poor robotic written sam-
ples for children to identify and correct. We present
the results on the success of synthesizing a variety
of natural-looking motion samples based upon the
learned cost functions. The framework is validated
by a user study, where the synthesized dynamical

Figure 1: Pipelines of the proposed framework: a robotic
agent learns from human demonstrations and then synthe-
sizes handwriting motion by sampling in the kinematics fea-
ture space. The samples could be presented in the interaction
for children to imitate or correct.

motion is shown to be hard to distinguish from the paradigm is believed as an effective approach to motivate and
real human handwriting. engage children learners in education activifiRehrbecket
al., 2004.
1 Introducti The challenge of realizing such a system lies in the en-
niroducton dowment of proper task representations to the robot. First,

We consider a human-robot interaction scenario where #he robot needs to learn a representation that encodes human-
robotic agent closely interacts with children to help developdike handwriting, as well as the desired information for the
ing their handwriting skills. Practising handwriting skills is a derivation of a compliant motion controller to regulate the
time-consuming task for children, and the inclusion of robotscontact force. Secondly, the representation requires handwrit-
as tools can have bene ts in the long run. One of the bene tsing movement features that are straightforward to evaluate,
stems from the exible roles that the robot could possibly playinterpret, and as such intuitive to generalize to the encode-
in comparison with human teachers. Besides demonstratingient of speci c types of poor handwriting. For instance, the
how to write a character correctly, the robot can serve as a fdeature linking to the movement scale can be modulated by
cilitator or even as a learner, by presenting poor handwritinghe robot or humans to generate or correct characters with
samples - whose error types can be customized with respettproportional components. Last but not the least, it is de-
to a speci c child - and gradually improving the robot per- sirable to ensure rapid motion learning and synthesis, whose
formance under the help of children. These immersive sceef ciency is of great importance in the practical human-robot
narios allow for children to inspect, correct and engage withinteraction.

the robot, and as such teach themselves what is good hand-Inverse optimal control (IOC) provides a principle way for
writing and how to do it. This so-callddarning-by-teaching robots to achieve task learning from demonstrations (LfD), by



extracting implicit cost representations which are transferable -

for robots to develop control commands in various contexts /f 8 j 1
[Nikolaidis et al, 2014[Byravanet al, 2014. In this pa- — 3 pa
per, we presents a set of algorithms that ef ciently learn from | i 2:8)A | ’

human data and generate rich and believable robotic writing 2:0)A
motion, in order to support the interaction that facilitates chil-

dren handwriting acquisition in a robotic companion project

(Figure 1). The main contributions are summarized as:

é

We integrate the ef ciency of local IOC with quadratic
cost functions and the modeling power of ensemble (a) Monomodality (b) Multimodality

methods, which are prevalent in general machine learn-

ing but less explored in the eld of implicit LfD. The Figure 2: Single and multiple modalities of trajectory distri-
resulting algorithms feature rapid handwriting learning butions. 2(a) is a poor model to encapsulate the diversity of
and compliant motion control synthesis, both of which style and moving direction in writingD”. Actually, the av-

are desired for the real interaction with children. eraged trajectory is not legible, and should be assigned with

We extend the proposed model with human-inspired curl0W Probability (high cost value) as 2(b).

vature features to support diverse online handwriting

synthesis. Remarkably, the features are explicitly assofGraves, 2014and probabilistic programming with proper
ciated with human understandable geometry propertiespriors [Lake et al, 2015. Our work is distinct as it learns
Thus they allow for generating not only legible charac-with embedded features that are related to human movement
ters for children to imitate, but also poorly written ones characteristics. To this end, we can possibly bias the synthesis
with believable andtontrollabledeformities for exploit-  in a predictable way, which is advantageous in our interaction
ing the learning-by-teaching paradigm. task to generate desired letter deformities.

The paper begins by situating our work amongst related
literatures in Section 2. The proposed approaches are theh Framework

developed in detail in Section 3. We discuss the learning angyyr problem consists of learning and synthesizing the robotic
synthesis results in Section 4, and in particular a Turing-likenandwriting motion from a set of planar character trajectories
test to validate the human-likeness of generated motion ||D = f& g. The central problem is to infer a parameteof
Section 5. Finally, Section 6 concludes the paper by sumg cost function] , with respect to which, the demonstrated
marizing the contributions and outlooking the future work. trajectoriesD are supposed to be the (sub)optimal solutions.
From a probabilistic perspective, the human motion trajec-
2 Related Work toriesf &g can be cast as the instances sampled from a prob-
abilistic distribution, which is parameterized byas Equa-
tion (1). This statistical model implies that the trajectories
Ofith low cost are more likely to be observf@vijotham and

imation [Levine and Koltun, 201Ror trajectory sampling  todorov 201{[ Ziebartet al, 2004.

[Kalakrishnaret al, 2019, to evaluate the gradient approxi-
mately. The presented work avoids those expensive steps by P(§ )= R&P(J (&) B
solving a set of naive |OC problems on locally consistent data 2 XP(J (& )

and then augmenting the results. This shares certain similar- ) S ]

ities with [Nikolaidis et al, 2019 and[Coboet al, 2014  Thus can be estimated by minimizing the negative loga-
which cluster or segment demonstrated trajectories. Compafithm likelihood of the observations. A simple parameteriza-
ing with those, we motivate the presented work from the pertion strategy to capture the optimality of demonstrations is a
spective of computing ef ciency on continuous motion dataduadratic function form:

which is natural for the robot control synthesis in our target- Dy = T 1
ing practice. J@&)=(& o « (& 4 2)
The handwriting learning and synthesis have been inveswhere = f g; g encodes the reference motion and the

tigated with various computing methods and models. Indesirability for a robotic agent to track with the end-effector.
[Hoodet al, 2019, the PCA-based method was used to ex-This can lead to a closed-form estimation of the partition
tract Gaussian distributed latent variables for letter synthefunction thus can ensure an ef cient evaluation of the like-
sis. The framework of dynamic movement primitives waslihood and the associated gradient. Moreover, the estimating
adopted in[Kulvicius et al, 2014, with the aim of model- parameters are closely related to the optimal control signal

ing the writing movement as well as the letter transition. Our @
work extends these models by relaxing the restriction on lo- u= R B= (3)
cally consistent demonstrations thus allows to learn multiple @

modes of writing a same letter. Such multi-modalities carwherex denotes the state of trajectayandB andR repre-
also be captured by advanced probabilistic models such aent the control gain and penalty matrices which are chosen
factorial-HMM [Williams, 2009, recurrent density network based on the dynamic model of the agent that carries out the



Algorithm 1 RandomSubSpace - Partitioning dataset

5;?5;523'@ s through feature bagging
VAR Require: D, Ng, NJ"™
> > Ensure: Dyl
Y Split based onyrfando( Y lr(n:l: Km SPLIT(D; NX ’ N Bﬂn )
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function SPLIT(Din , Ny, N )

fXigi-1:n, RandomSele¢txgi=o: 1)
YD DY i ; argmaxH(Din; i)
N Fedh  Aasedhs i

if iD;/” 1j > NP andjD;! " 'j > NI then re-
turn Concatenate(@iT(D;)~ '), SPLIT(D;) = 1))
y bagged models else return Dj, . Discard this split

end if
end function

wlocal cost functions for the nth submodel

Figure 3: An ensemble of cost functions over partitioned

dataset through random feature bagging.
g 99ing from the bagged local models. One of the options is to take

a weighted average over the distributions that are parameter-
execution. Itis trivial to reveal that the control gain is propor-ized with the learned cost functions, as shown in Equation
tional to the diagonal blocks of ¢ and the regulation point (4).
is along the mean trajectory . Thus the estimation of the

quadratic parameters actually synthesizes an impedancecon-_ = 1 XK DY pexp(Jd " (&; )

troller which allows the robot to accommodate the contact P (8 )= M iDj exp(J ™(& M) )
; N =1 k=1 & k 1ok

force, as is shown ifivin et al, 2014. m

The limit of the quadratic form lies in that it assumes awhere operatoy j denotes the cardinality of the set of data.
globally optimal mono-mode of the trajectory distribution,  Note that, the proposed approach is different fridtiko-
whilst it is common to observe locally optimal demonstra-ajdis et al, 2015, because it is not learning local models on
tions. This can be exempli ed in human handwriting by the perfectly clustered demonstrations through methods like K-
multiple modes of demonstrating one speci c letter, see Figmeans or mixture of Gaussians. Hétg, is a natural result

ure 2(a) and 2(b). from the recursive suboptimal random embedding. By doing
this, we avoid specifying the explicit number of clusters (e.qg.,
3.1 AnEnsemble IOC Approach how many types are there for a legible handwritten character

The proposed approach to address above challenges is 18"), which is unknown to the robot agent. By taking the neg-
combine the simplicity of local quadratic cost learning with ative logarithm of (4), the aggregated cost evaluation can be
the scheme of ensemble methods. One possible way tgewed as &oft version of pointwise minimuafi a collection
achieve this is to apply the maximum-entropy (MaxEnt)of cost functions. The pseudo code of the random embed-
model (1) on a fraction of dataset to constrifctocal model ~ ding is given as Algorithm 1, wherdy andNg" trade-off
learned based on a subset of demonstratiyns: f &, Ok, the modeling power and the computational cost by control-
for k = 1::::K. The local data can be constructed with ling the size of candidate features and subset of data. A few
clustering techniques, if the number of clusters or a simifemarks are given to highlight the advantage of the proposed
larity metric is properly de ned or tuned. Here we adopt aapproach over the previous ones:

recursive random embedding scheme for the sake of compu-  The model indicated by (4) allows the robot to encode
tational ef ciency. The idea is, at each step, the dataset is complex multi-modal motion patterns, while it still can

partitioned according to the criterion of decreasing the data  pe ef ciently learned because of the closed-form parti-
entropy under the MaxEnt models. For instance,Xhéra- tion function for each local IOC model.

jectories ofD are divided into two subsef®; and D, ac-

cording to some featurg; 2 & making the entropy reduc-

tion is maximized by the partition db; = f&: X; ig

andD, = f&: X; < ;0. In general, such structure can be

constructed ef caentlyjtﬁroug% random and greedy searching &l 2013[Leeet al, 2007 can also be seamlessly com-

[Criminisi et al, 2014. The problem with such scheme is bined with the local cost function learning.

that the local cost function learning is sensitive to the random  Synthesis by sampling from the learned model (4) is

partition. To address this, we can introduce an ensemble of  straightforward as it resembles a mixture of Gaussians.

aggregated model8reiman, 1994 Criminisi et al,, 2014 to o ) ]

obtain the estimation with a reduced variance. Figure 3illus3-2 Human-inspired Kinematics Features

trates the idea of constructing the complete ensemble modelg/e motivate the enforcement of an informative feature by

having an intuitive representation of the handwriting motion,

Evaluating this ensemble model involves making decisiongnd as such a human or the agent itself can modulate and bias

The random embedding can be ef ciently performed
with off-shelf packages such 8RBedregosat al., 2011.
Other partitioning or clustering techniquESriminisi et



B cre GBI GV ey ot is chosen empirically in our experiments. Motion synthesis
] from this new feature space is still ef cient as the agent only
needs to evaluate closed-form formulas (5), (6) and (7).

Constant
Cmfo L

Algorithm 2 Learning - Learning cost ensembles with
G s o 15 T curvature-based features
Require: D = &g, M, Ng, NJ™
Am- m. m. m.
Figure 4. Modeling handwriting motion with curvature and EnSL.I.r.? D e K M_ Fridi ncomici v
lognormal velocity pro le: the trajectory section is parame- for all r;]" in1:M do
terized with a bell-shaped velocity magnitude and a constant m RandomSubSpaeB; Ny; NI )

' : k=1:
curvaturgl O'Reilly and Plamondon, 2049 Partltlonlng datasdDd through random subspace

forall kin 1:K,, do

the synthesis in order to generate motion with speci ¢ types m
of deformities. k
We exploit the log-normal modgD'Reilly and Plamon- (m
don, 2009 which suggests encoding the velocity magnitude end fokr
of natural human motion as an asymmetric bell-shaped log- gnd for
normal pro le. Moreover the path of motion stroke is con-
strained with a constant curvature, see Figure 4.
Here the model is adopted with slight changes on the de-
pendent variable: 4 Results of Motion Learning and Synthesis

m
k

g k=

iy

=f &' &g argmax logP(&j )
i=1

RXZERQ( &), ¢y  Equation (8)

o cos( { (2)) This section applies the proposed methods on adult handwrit-
&z)=  jv(2)] sin( !(z)) t=Tz (5)  ing motion learning and synthesis, with the aim of rst evalu-
j=1 ! ating the entire system on adult data before deploying it with
children experiments. We will demonstrate the richness of the

. X - A (In(z z{,) i)? represented motion patterns and the computational ef ciency
v(2)j = F5 i ( z exp( 2 jz ) comparing with alternative IOC methods.
j=1
. . : ® 41 Learning Handwriting from Human Data
— b 5 In(z  zp) j .
i@= s+ —5—@Q+ef———"—")) (7)) The dataset employed was the UJI Pen Characters reposi-
i

tory [Llorenset al., 200§, which contains online handwriting
whereA, zo, and are the parameters that regulate the ve-samples collected from 60 adult subjects. We focused on al-
locity pro le jvj. The curvature is parameterized by a pair of phabetical instances with either single or multiple strokes, for
start and end angular positiong and ¢, with erf( ) denot-  which each stroke was assumed to be independent. Yet this is
ing a Gaussian error function. The introduction of the phaséyy no means true as the strokes are correlated temporally and
variablez allows to evaluate the trajectory on a uniform in- is possible to be captured by introducing extra conditional
tervalz 2 [0;1]. The parameteT encodes the stroke time models[Lake et al, 2019. We adopted this independence
length, which is modeled according to the partitioned data. assumption here to focus on the ensemble method itself, and
Itis easy to see that certain feature parameters shape the rgtch simpli cation turned out to work well in practice to syn-
sulting motion in an explainable way. For instan8eaffects  thesize reasonable motion trajectories.
the velocity magnitude; s and . impact the stroke align-  The results are depicted as Figure 5(a) to 5(€). The most
ment and stralghtness Thus we can convert the vanilla reprgbvious observation is that the learned models successfully
sentation X = f ; &g by extractlng the statistics of kine- capture the legible shapes for either single or multiple-stroke
matics feature$ Ak;zk; ¥, k; K; Xg. This is achieved characters. The variabilities of the stroke heating magnitude
through theRXZEROestimation[O" Rellly and Plamondon, can be explained by the inconsistency of forming the spe-
2009 which estimates the parameters for the mean trajectongi C trajectory sections. For some strokes, human behavior
Furthermore, the local variability of the kinematics parame-tends to be comparatively consistent, such as the short straight

ters can be captured by strokes in Figure 5(a), and 5(b) or the overall shape of "S”
L L in 5(d). The variability of this consistency implies multiple
= (Gk&)T K Gk& (8)  modes in writing a speci c letter. The encodement of such

diversity can be best illustrated as Figure 5(e), which explic-
WhereGk& is the Jacobian matrix that locally embeds posi-itly resembles the superimposition of two distinctive ways of
tion features into the kinematics parameter space. Algorithniorming a legible "y” in the Cartesian space. Note that the
2 shows the learning routine together with the feature emnumber of these patterns is not explicitly enforced before-
bedding stepsM denotes the number of aggregated modelshand but emerged from the ensemble of models which assign
Increasing this parameter reduces the model variance anddbst functions on random subsets of data.
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Figure 5: lllustration of the learned cost ensembles that encapsulate the patterns of character pro le. This is demonstrated in the
Cartesian space but not the feature space for the illustrative purpose. The statistics of the curvature-based features is captured
by taking samples and convert them to the original planar Cartesian space. The heat value of a point in the Cartesian space is
evaluated by folding the learned cost function along the time horizon and counting the occurrences of the coordinates in the
trajectory samples.

E Table 1: Time Cost of Tested Algorithms
>y g Algorithm Training Time Synthesis Time

GPIRL > 30h 222 52s
MaxEnt 33658 2367s 58 12s
EnsemblelOC 3817 57s (614 3:7)e ‘s

Figure 6: A 7-DOFs Baxter manipulator writes a "g” with
motion synthesized from the learned models.

kernel methods. Thus it is not surprising that it does not
4.2 Synthesis from Learned Cost Functions scale well for the size of the dataset. The MaxEnt model

. . " . with a popular RBF parameterization exploited the Lapla-
With the learned model, robotic handwriting motion could be 5 approximation for gradient evaluati¢giebart et al.

r_ealized th_rough an synthesized impedance controller (EquaEOOS[Levine and Koltun, 2012 which signi cantly miti-
tion (3)). Figure 6 shows snapshots of an example of the COnates the computing cost. However, the synthesis ef ciency
crete robot motion resulted from a sample of synthetic "9”.cannot be guaranteed because of the expensive MCMC sam-
_ _ _ pling. Though there is de nitely room for optimizing the im-
The diversity of encoded motion patterns can be fur-plementation of all competing algorithms, it still serve as a
ther demonstrated by_ synthesmn_g letter instances from th roof-of-concept that why the presented approach is supe-
learned models. We give a few typical sampling results, agaiior for the practical robot trajectory encoding and sampling,

for either single or multiple strokes, as Figure 7. The synyhere both modeling power and ef ciency are concerned.
thesis samples illustrate rich writing patterns that are diversi-

ed in the aspects of size, orientation, and most importantly, ) )

the style. For instance, the "d” that is constituted by a circied ~Evaluating the Human-likeness of the

and a straight stroke, are successfully detected and encoded. Synthesized Motion

We further the validation by generating poorly written charac-__ . . . .

ters with perturbed lognormal features. Figure 8 shows syn] NiS Section presents an online user study to examine how
thesized samples with an increased feature variance, whidimans perceive the synthesized motion, as the robot needs
leads to various types of deformities such as inappropriatt? Provide convince-looking handwriting motion to human
component proportion, misalignment or jerkiness in stroke!Sers. Due to the obscurity of "human-likeness”, the pre-
transition. This demonstrates the potential of the frameworieented study was performed in a form of Turing-like test,
to generate various good or poor handwriting motion for theVnere the participants were presented with a mixture of

children to imitate and correct. human and arti cial dynamic motion, without showing the
physical body of both the robot or of the human. The partici-
4.3 Comparison of Computational Cost pants were instructed to choose among these motion samples

. . the one they believe was generated by the algorithm. We were
We compared the proposed approach with alternative St"’r['%flso interested in the con dence of the humans on their deci-

of—the-art loc algorithms in terms of.computauonallef—. sions to have a scale measurement of the delity from the
ciency, especially for the letter synthesis as our targeting 'n'subjective perspective
teraction task demands time critical performance. The results '
(Table 1) present the desired time for training 100 demony .
strations and synthesizing one motion sample on a moder%'l Study Hypothesis

laptop. Note that training time of the proposed frameworkH1. By observing the dynamic motion of the characters, the
includes the overhead of RXZERO feature extraction, which participants cannot distinguish between the agent syn-
eventually performs a non-convex optimization. The GPIRL thetic and human written character sampléghe clas-

[Levine et al, 2011 is built upon Gaussian Process and si cation performance is close to a random guesie
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Figure 7: Synthesized motion samples from the learned cost ensemble models for different characters. The diverse modes and
styles illustrate the multi-modal motion patterns encoded by the aggregation of simple cost functions

3F ¢ % 9 5§ < ¢ K

Figure 8: Synthesized motion of poor written samples by sampling from the learned model with random perturbations. The
deformities can be intuitively controlled by modulating the local proportion, alignment and curvature of a speci ¢ component,
as well as the continuity between the components.

expect the samples from learned ensemble models po§2. How con dent are you about your choiee

sess believable variabilities that are consistent with nat-

rameters should result in characters which are hard to  type-Likert scale ranging from 1 to 5: 1-very low; 2-

be identi ed from the mix up of synthesized and hu- low; 3-neutral; 4-high; 5-very high

man samples. Quantitatively, this hypothesis implies an

equivalence which can be numerically expressed as  The sequences of characters and answer options were ran-

domized to counter balance ordering effects. Moreover, de-

ke ck (9)  mographic information was also collected. Participants were

wheret andc denote the classi cation performance from noti ed not to respond the questionnaire for multiple times at

the experiment estimation and the random guess respeEje beginning of the wgb page. Each individual questionnaire
tively. is athreshold quantifying the equivalence of the ook about 10 to 15 minutes to complete.

two tested values. The selection ofvill be presented
in the results and analysis section.

H2. Participants will not detain high con dence levels to- The participants were recruited through the mailing lists
wards their choice This hypothesis checks the indis- Within a university. A total of 68 participants completed the
tinguishability from a subjective perspective of the hu- online questionnaire. Our sample ranges from 18 to 60 years
mans. It is expected to see the quanti ed con denceld (M =28.7;SD=8.7).
is lower than a certain level. We are also interested in In order to testH1, We chosec = 0:2 as there were
the relation between the human con dence and concrete/€ 0Options in each character question. was de ned ac-

5.3 Study Analysis and Results

performance. cording to the deviation of random classi cation performance
= 0:089, if the number of correct classi cation was
5.2 Study Procedure subject to a Binomial distribution. Our analysis showed that

on average the participants achieved 0:226 0:086clas-

gi cation performance, which was close to the random guess
= 0:2. A further analysis showed that the null hypotheses
Hi1,¢>c+ and¢<c ,werebothrejected by the cor-
'sponding one-sided t-tes§ (67) = 6:04; t,(67) = 11:03;

< 0:01). Therefore, the results showed statistically sig-

The Turing-like test was carried out in the form of an online
guestionnaire. Concretely, the participants were instructed t
evaluate 20 characters, containing both synthesized and hf-
man handwritten ones, by accessing web pages anonymous

They were explicitly instructed that there was only one syn-

thesized sample for each character question. They could nel- . >
ther skip character pages nor browse back to the past ones cant equivalence between the performance from empirical

modify the previous responses. Their evaluation was basefet@ and a theoretical value from a random guess, ifus
on two questions for each character: was strongly supported which suggests that participants were

not able to distinguish between the character motion (synthe-
Q1. Which letter do you believe is written by a roBot sized versus human handwritten), wherein their choices trans-
late the same as the random guess.
To answer to this question, participants were presented For H2, the averaged con dence level w&as/1  0:70.
with ve dynamic handwriting motion for the character. One sided t-test concluded that this value was signi cantly
The animation could be intuitively resumed or stoppedbelow the neutral con dence level(p7) = 3:38; p < 0:01],
by moving the cursor on or off the images. The partici- which also supporteti2. We also analyzed that there was
pants were allowed to replay the motion as many timesndeed a small fraction of participants who exhibited high
as they wanted before they made the decisions. con dence levels, however, such high con dence was not



providing more compact representations and boostraping the
synthesis and adaptation. Thus it would also be interesting to
explore other task-dependent feature expressions or comput-
ing frameworks to learn these representations to parameterize
the cost functions.
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