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Studying dynamical phenomena in finite populations often involves Markov processes of significant
mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing
population size or an increasing number of individual configuration states. Here, we develop a framework
that allows us to define a hierarchy of approximations to the stationary distribution of general systems that
can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a
large number of states. This results in an efficient method for studying social and biological communities in
the presence of stochastic effects—such as mutations in evolutionary dynamics and a random exploration
of choices in social systems—including situations where the dynamics encompasses the existence of stable
polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is
shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
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Many complex time-dependent processes, from the evo-
lution of cooperation [1] to genetic drift and evolution of
ecosystems [2], flocking behavior [3], voter dynamics [4],
disease spread [5], diffusion of innovations [6], consensus
formation [7], and peer influence [8], have been modeled by
stochastic Markov processes. The nonlinear nature of the
dynamics often precludes a full analysis, even under con-
tinuous approximations, in which case (quasi)stationary
distributions of the Markov chain still provide insightful
information [9–11]. However, with an increasing number of
states, determining these distributions leads to chains of a
prohibitive size (see below). As a result, the so-called small
mutation approximation (SMA) was introduced, defining a
minimal (embedded)Markov chainwhose solution estimates
the limiting stationary distribution of the population [9].
To reveal the savings obtained under the SMA, let us

consider a population of size Z where each individual
adopts one of S different strategies (states), σ1; σ2;…; σS.
The (mean-field) population configurations are character-
ized by the number of individuals adopting each strategy,
with fi1; i2;…; iSg adding up to jsj ¼ ðZþS−1

S−1 Þ possible
configurations, requiring us to solve a Markov chain of that
size. The complexity obtained for large finite S turns the
complete analysis unfeasible, even for a small Z. In the
absence of mutations, this stochastic process has S absorb-
ing states, the so-called monomorphic [9,12,13] configu-
rations, in which all individuals play the same strategy.
Starting at a given monomorphic configuration, the pop-
ulation will remain there until a mutation happens that flips
the state of one individual. This new behavior either
spreads, leading to another monomorphic configuration,
or goes extinct, leading to the starting configuration. If
mutations are rare, the time scales of selection (fast) and

mutation (slow) become separated. This allows us to define
an embedded Markov chain consisting only of S mono-
morphic configurations. The transition matrix is given by
the fixation probability of a single mutant in a homo-
geneous population of resident individuals [14]. Thus,
under the SMA the (embedded) configuration space has
a size S and all transitions are computed through processes
involving only two states at a time.
The SMA has been employed with success in different

areas of research [10,12,15], its validity requiring the
mutation probability μ to be small [16], depending on
the population size and the underlying dynamics of the
system. Thus, many time-dependent processes of interest
cannot be described in the SMA [15,17].
Here, we develop a new framework leading to a hierarchy

of approximations to the stationary distribution of a general
population Markov process. At each level, our framework
involves implementing the following process: (1) Choose an
(ideally) small set of configurations of interest (COIs), thus
separating the set of all possible configurations s¼
fs1;s2;…;sjsjg into two disjoint sets—A¼fa1;a2;…;ajAjg,
the COIs, and B ¼ fb1; b2;…; bjBjg, the neglected configu-
rations (NCs)—such that jsj ¼ jAj þ jBj and jAj ≪ jBj. The
goal is to infer the full dynamics considering only the COIs.
The stable fixed points constitute ideal choices to include in
the COIs. If they cannot be determined analytically or
numerically, one may use a sample of the state space. Both
cases are illustrated below. The hierarchical nature of the
approximation stems from the locationof theCOIs in the state
space (the simplex):Hn corresponds towhen all points in the
COIs belong to hyperfaces of dimension at most n. In this
case, the approximation is of the order n in the exploration
parameter, μ (typically, mutation), restricting the phase space
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to those configurations accessible through n cumulative
transitions in μ, starting at the vertices. (2) Calculate the
transition probabilities among the COIs, ρai→aj , from the
known one-step transitions between the states si and sj, Tsisj .
The probability of reaching aCOI,aj, starting fromone of the
NCs, bn, can be computed through an absorbing Markov
chain and reads Pbnaj ¼

P
fbmgTbnbmPbmaj þ Tbnaj . Thus,

for nonadjacent COIs, ρaiaj ¼
P

fbngTaibnPbnaj , allowing the
computation of an unnormalized stationary distribution, p,
over the COIs through p ¼ ρTp. (3) p reflects the relative
time spent in each COI, yet it ignores the prevalence in the
COIs relative to the NCs. Thus, a renormalization is in
order to allocate the right strength to each point in the
COIs. We write the distribution over the whole phase space

as PðxÞ ∝ PjAj
i¼1 pðaiÞfiðxÞ=fiðaiÞ, where fi represents

locally defined distributions that characterize PðxÞ around
eachCOI. Thisway,we associatewith eachCOI themoments
of the distribution around it, reflecting its shape around these
configurations. This can be achieved by using local informa-
tion and/or the remaining COIs.
Whenever analytical approaches are not available, the

complexity of Hn is dominated by the computation of ρ,
involving the inversion of a matrix of size ≈Zn=n!,
still much smaller than the original Markov chain for
any n < s − 1 (see the original chain size above). Below,
we provide an efficient alternative for H1.
Let us illustrate the method with some examples. We

consider a one-dimensional system (S ¼ 2) to motivate our
first-order approximation (H1) and the limitations of the
SMA (H0). Specifically, consider the evolutionary dynamics
of a population of size Z where individuals are eitherC orD
and they interact with all others via a two-person game that
posits a social dilemma of cooperation, with the associated
payoff matrix

C

D

C D
�

1 f

1þ g 0

�
;

with ff;gg∈½−1;1� [18]. The states si are defined by the
number i of C individuals (Z − i are D individuals). Time
evolution proceeds via a discrete-time birth-death process
[19], characterized by the probabilities that, in each time step,
the number of individuals adopting strategy C changes by
�1 or 0.We employ a stochastic imitation process inspired in
the Fermi distribution of statistical physics [20], allowing the
analytical computation of the transition probabilities: T�

i ≡
Tði→i�1Þ¼ð1−μÞ½iðZ−iÞ=ZðZ−1Þ�f1=½1þe∓β½fCðiÞ−fDðiÞ��gþ
μf½ðZ−iÞ=Z�δð1;�1Þþði=ZÞδð−1;�1Þg; where fC (fD) is the
average payoff of aC (D), and the inverse temperature,β ≥ 0,
mimics the intensity of natural selection [19], to which we
added a mutation probability μ that accounts for the pos-
sibility of (unanticipated) randomexplorationof strategies, an
important process in social and cultural evolution [21].

Naturally, different assumptions regarding the time evolution
of the population will result in different expressions for the
transition probabilities, but the method remains valid for any
population Markov chain.
In Fig. 1(a) we show results for a coexistence game,

known as the snowdrift game in physics and economics
[22], the hawk-dove game in evolutionary biology [23], and
the chicken game in other contexts [24]. The full stationary
distribution is depicted by the blue histogram bars. There
are two monomorphic states, associated with configura-
tions in which all individuals are either D (i ¼ 0) or C
(i ¼ Z). The existence of a probability attractor at i� ¼
0.7Z ¼ 35 reflects the coexistence dynamics. H0 (SMA)
leads to the dashed gray bar in Fig. 1(a). The solid line
represents the so-called gradient of selection, given by
GðiÞ ¼ Tþ

i − T−
i . Clearly, SMA leads to a distribution that

differs substantially from the full distribution. Indeed,
Fig. 2(a) shows that the existence of an interior attractor
means that, to get a good agreement between the SMA and
the full distribution, μmust be less that 10−13—leading to μ
values unreasonably small, both in biological and social
contexts. Importantly, as μ increases, the SMA quickly fails
to account for the changes introduced in the stationary
distribution by nonzero mutations.
Figure 1(b), in turn, shows the result of employing H1.

The first step consists of adding the attractor i� to the COIs
already including i ¼ 0 and i ¼ Z. This additional point is
trivial to find [19]. The second step implies calculation of the
probabilities ρai→aj within the COIs, merely requiring a
repartition of the terms already computed inH0, bringing no
additional overhead to the computation. Indeed, an ordering
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FIG. 1. Stationary distributions associated with a coexistence
game (f ¼ 0.7, g ¼ 0.3). The gradient of selection is represented
by the black curves, whereas the exact stationary distribution,
computed for μ ¼ 10−10, is depicted by the solid (blue) bars. Two
levels of approximation are considered: (i) zeroth order, H0 or
SMA (the dashed gray bars) and (ii) first order, H1 (the crossed
red bars). In (a), we compare the exact solution with H0 (SMA).
In H0, the COIs include only the configurations i ¼ 0 and i ¼ Z,
and the most probable transitions between the COIs—indicated
by the red arrows—suggest why the full strength is concentrated
at i ¼ Z. Clearly, μ ¼ 10−10 in a population of size Z ¼ 50 is not
small enough to bring the exact result into the SMA domain of
validity. In (b), the crossed red bars represent the stationary
distribution yielded by H1, where i� was added to the COIs. The
other parameters are Z ¼ 50, β ¼ 10.
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can be defined over configurations in A such that transition
probabilities from ai to aði�1Þ are written as ρ�ai ≡ ρai→aði�1Þ .
These correspond to the probability of having a one-step
transition in the direction of aði�1Þ and then being absorbed

by it, resulting in ρ�ai¼T�
ai ½1þ

Pai�1∓1
j¼ai�1

Qj
k¼ai�1ðT∓

k =T
�
k Þ�−1

[see the Supplemental Material (SM) [25] for additional
details].
With ρ�ai , the unnormalized stationary distribution

over configurations in A, pðaiÞ, is calculated through an
eigenvector search [26]. The histogram shown with crossed
red bars in Fig. 1(b) results from a proper renormalization
of pðaiÞ via the implementation of step 3 above. Indeed, as
a2 is a probability attractor, it should carry an associated
strength that mimics the weight of the full stationary
distribution (the solid blue bars) in its vicinity. The natural
choice (and the one we propose and adopt throughout) is to
derive this renormalization factor from a normal distribu-
tion whose expected value is equal to (the value of the
process at) a2 and whose variance can be calculated from
the Kramers-Moyal expansion of the associated master
equation [19]. We may therefore write the distribution as

PðiÞ ≈ α−1½pða1Þδia1 þ Z
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
pða2Þδia2 þ pða3Þδia3 �;

where α ¼ pða1Þ þ Z
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
pða2Þ þ pða3Þ, and σ2 can be

derived from the transition probabilities Tþ
x and T−

x around
a2=Z as σ2 ¼ F=jJj, with J¼dðTþ

x −T−
x Þ=dxjx¼a2 and F ¼

ðTþ
a2 þ T−

a2Þ=ð2ZÞ. In the SM [25] we prove these results
and discuss the validity and accuracy of these estimates.
Whenever the game at stake is not one of coexistence

but, instead, one of coordination [22,27]—thus character-
ized by the occurrence of a probability repeller instead of an

attractor—our approach remains unchanged, as detailed in
the SM [25].
The choice of theCOIs (and hierarchy order n) dictates the

complexity and accuracy of the whole procedure, as the
problem is reduced from solving a chain of size∼Zs−1 to one
of size∼Zn, n < s. Any choice of COIs optimizing the trade-
off between complexity and accuracy will depend on the
specifics of each model, such as the characteristic mutation
rate, number, and position of fixed points and their basins of
attraction. In general, choosing as COIs the stable fixed
points of the gradient of selection provides the most natural
choice to minimize the size of the embedded chain that leads
to an accurate approximation. These fixed points are often
easy to find by resorting to numerical methods whose
complexity scales linearly with jsj ∼ Zn [28].
Nonetheless, our framework can still be applied when-

ever the fixed points are unknown. In Fig. 2(b) we provide
results analogous to Fig. 2(a) by defining the COIs in the
simplest possible way: a homogeneous grid including one,
three, or five intermediate configurations. Clearly, depend-
ing on the problem, other methods (such as importance
sampling) may be employed to improve the choice of COIs.
In terms of accuracy,H0 (SMA) leads to the smallest COI

set, accurate for μ → 0. At H1, one enlarges the set A,
including in the COIs points located along the edges of the
simplex. A comparison of Figs. 2(a) and 2(b) shows that
including the fixed points in the COIsminimizes its size for a
given order. Whenever an increase in the order leads to a
mismatch between the results, we identify the region of
validity of the previous orders. This mismatch occurs
whenever a stable fixed point is present at the newly included
dimension and exploration rates allow the system to reach
them. In turn, this means that, if there are no internal fixed
points above a givenordern, this orderwill suffice todescribe
the system for any exploration rates. Indeed, orderHnwill be
exact to the extent that the probability of reaching dimension
m > n from n ð∝ μðm−nÞÞ is much lower than the probability
of goingback (model dependent).Aswe increaseμ, retaining
accuracy will require increasing the hierarchy level.
It is worth pointing out at this stage that, already at H1,

one is able to study explicitly the role of mutations, whose
occurrence is ubiquitous in, e.g., (noisy) social systems
[29]. Indeed, whereas in the SMA (H0) mutation is a tool to
enforce that the embedded Markov chain is irreducible, in
our case nothing prevents mutations from occurring at par
with the selection process.
Consider now a population in which Z individuals may

adopt (be in) one of three possible strategies (states) (σk,
k ¼ 1, 2, 3). This higher dimension problem may call for
higher order approximations, as we discuss next. Each
configuration si ¼ ði1; i2Þ is one in which i1 (i2) individuals
have the strategy σ1 (σ2) (and Z − i1 − i2 have the strategy
σ3). BothG and the stationary distribution can be represented
using the two-dimensional simplex portrayed in Fig. 3. We
consider the evolutionary dynamics of a three-strategy game
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FIG. 2. Same system as Fig. 1. (a) We compare the results of
H0 and H1 with the exact solution. (b) We add one, three, and
five homogeneously distributed points to the H0 COIs, assuming
a flat distribution around each COI. With five equidistant points,
we reproduce the full distribution, disregarding any information
about the dynamics and its fixed points. The vertical line indicates
the value of μ employed in Fig. 1.
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(see the caption to Fig. 3), characterized by an interior saddle
point, while exhibiting both coexistence and coordination
dynamics along the edges of the simplex, a problem
reminiscent of the evolutionary dynamics of multiple
myeloma cancer cells [30,31]. Under H0 (SMA), the
COIs include the three monomorphic configurations [verti-
ces of the triangles and the red solid circles in Fig. 3(a)],
confining the evolutionary trajectories to the edges of the
simplex. Under H1, the COIs now include additional
configurations along the edges, as illustrated by the blue

open circles in Fig. 3(b). Importantly, the criteria adopted in
choosing these COIs follow straightforwardly from the one-
dimensional cases already discussed, given the constraints
that apply to the trajectories at this level of approximation.
At level H2, we add to the COIs one configuration in the

interior of the simplex (in which three strategies are
present), identified by the (interior) solid orange triangle
in Fig. 3(c). The results obtained are shown in Fig. 4, where
we compare the exact solution (the black open circles) with
the results provided by successive orders of approximation,
for a wide range of mutation values. As expected, H0

(SMA) is unable to provide an overall accurate description
of the stationary distribution. As μ increases, the stable
fixed points move away from the vertices, first along the
edges, a feature which is nicely captured at the level of H1,
and subsequently to the interior of the simplex, requiring
one to move to H2.
Notably, bothH1 andH2 provide accurate results for the

average distribution. This, for a large μ, is an artifact of
averaging, as the variance of the distribution will be differ-
ent. Indeed, H1 imposes a dynamics along the edges,
whereasH2 allows exploration of the interior of the simplex.
In summary, as is well known in many areas of science, a

judicious choice of COIs proves instrumental in minimiz-
ing the workload necessary to reach a good description of a
system. In this Letter we show how this concept applies to
nonlinear population dynamics where individuals may be
equipped with complex physical, biological, or social
repertoires. In dealing with population Markov chains, we
establish an approximation order associated with the dimen-
sionality of the simplex points to be included as COIs, an
approach that allows the explicit inclusion ofmutations in the
dynamics, leading to, among other features, an explicit

(a) (b) (c)

H0 H1 H213

2

13

2

13

2

FIG. 3. COIs at different levels of the hierarchical approximation. The arrows represent themost likely direction of evolutionof the system
(the gradient of selection, G, with warm colors representing larger magnitudes), whereas the background gray shading represents the
stationary distribution (darker areas correspond to states with higher probability). As mutation increases, the population explores
configurations deviating gradually from the vertices. For the dynamics and parameters specified below, this trend starts (a) at μ ¼ 10−4,
exploration of the phase space extending mostly along the edges (b) up to μ ¼ 10−2, to finally explore the interior of the simplex for
higher values of μ [μ ¼ 10−1 in (c)]. The probabilities of updates from strategies σi to σj are given by Tðσi→σjÞ ¼
½Z=ðZ − 1Þ�xixjð1 − μÞð1þ eðΔfðσiσjÞÞÞ−1 þ xiðμ=dÞ, withΔfσiσj ¼ βijxðx1 − x�1Þ þ βijyðx2 − x�2Þ, with xi being the frequency of strategy
σj and d the number of accessible strategies, given the restriction of the phase space considered. The parameters are Z ¼ 50, β12x ¼ 2,
β12y ¼ β13x ¼ 10, β23y ¼ −10, β13y ¼ β23x ¼ 0, x�1 ¼ 2=10, and x�2 ¼ 3=10.

A
A
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M

FIG. 4. We plot the average of the stationary distributions as a
function of mutation probability for the system depicted in Fig. 3,
and at different levels of the hierarchical approximation. At the
H0 level (SMA), accurate average values are obtained whenever
μ < 10−5. As mutation increases, the polymorphic configurations
attract higher probabilities, requiring the inclusion of COIs along
the edges of the simplex (H1) and in its interior (H2)—see the
text for details.
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dependence of the weight and location of the fixed points on
μ. Although reminiscent of the approach of Freidlin and
Wentzell [32], these features of our framework make it
different and especially well suited to treat not so large
deviations, mostly when mutations induce deviations with
time scales comparable to those of the dynamical process,
having a direct impact on G, as well as on higher moments.
By dramatically reducing the complexity of the multidimen-
sional Markov processes we aim to describe, the present
framework allows one to retain analytical and/or numerical
tractability, being general in scope, and thus of a potential
applicability in a wide variety of problems that transcend
pure physics applications.
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