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I. INTRODUCTION

In this short paper, we exploit robotics domain knowledge,
be it acquired from humans or self-organization, to alleviate
learning and control challenges from directly dealing with
raw demonstrations or sparse reward signals. We take a
unified latent variable perspective in incorporating domain
constraints. The latent variables are regarded as task param-
eters or representations, which rationalize task observations
with a generative model. The constraints can thus be specified
with structured latent variables. Different from many related
works, we explore latent structures that are computationally
feasible and robotics-oriented to facilitate both task learning
and control synthesis. The paper will briefly discuss adopted
structures ranging from parameter dependency, modality and
dynamical associativity, extending imitation learning such as
inverse optimal control and deep generative models. The
framework is shown to be effective in a range of manipulation
tasks, including 1) learning variable impedance controllers in
robotic handwriting; 2) boosting motion synthesis for writing
novel symbols; 3) reasoning an internal model to score a ball-
target under malfunctioning visual input.

II. RELATED WORK

Embedding domain constraints has been explored in various
forms. [13] embeds a locally-linear dynamical system for
learning a pixel-based inverted pendulum task. In [5], a similar
system improves the training error propagation, filtering latent
variables correlated to the pendulum angular velocity. [1] pro-
poses to parameterize tasks with representations from different
reference frames, demonstrating improved generalization in
novel task configurations. The equivalence between discrete
Bellman iterations and convolution-pooling operations is em-
ployed in [11]. The model architecture achieves notably better
adaptation in pixel-based navigation tasks. Besides crafting
the model architecture, researchers also look into auxiliary
constraints and objectives. [6] enforces parameter constraints
inspired from the Lypunov criterion to learn reaching motion
with assured stability. [4] optimizes local smoothness to extract
the tangential space of a skill manifold for generalization
based on geodesic distance. Recently, research efforts have
also been made on acquiring domain priors from the data.
In [10], human demonstrations are used to estimate time-
invariant dynamical systems, which in turn initialize and
shape the motion refinement. More formal treatments under
a transfer learning framework also showcase successes by

learning simulation-based tasks [14][12] or a flexible policy
initialization [3].

In this paper, we focus on imposing structures to an explicit
representation of latent variables. This is realized by designing
factored parameter distribution and general auxiliary objectives
with a minor additional training cost. Moreover, unlike the
transfer learning works, priors are usually not encoded as
target policies but intermediate models such as cost functions,
feature and modality transformations.

III. APPROACH AND CURRENT RESULTS

We assume there exists an abstract latent representation z
which conditions the generation of x which denotes the obser-
vations of interests, e.g., motion or visual frames, formulating
the likelihood p(x) and its variational lower bound as:

p(x) =

∫
p(x|z)p0(z)dz

log p(x) ≥ −Eq(z|x)(log p(x|z))− KL(q(z|x)‖p0(z))
(1)

where p0(z) and q(z|x) denote the prior and approximate pos-
terior distributions. The generative model p(x|z) is instanced
as an energy-based model p(x|z) ∝ e−J (x,z) [17].

Here z can be cast as the task parameter of J (·). In light
of q(z|x), another way is to view z as a latent feature which
maps raw x to a low-dimensional space. We discuss imposed
constraints on z and obtained results in robot applications.

A. Parameter Dependency
We consider a quadratic J (x) = (x − µ)TΛ(x − µ)

with z = {µ,Λ}. The objective in effect encodes motion
trajectories x with a reference µ and tracking desirability Λ.
Meanwhile, Λ can be regarded as a force control proxy be-
cause of the popular heuristics correlating trajectory variance
and compliance design [2][8]. Here, we adopt a description of
Λ which depends on µ, resulting a factored p0:

p0(z) = p0(Λ|µ)p0(µ) (2)

This can facilitate a sampling-based inverse optimal control
to efficiently optimize the likelihood (1), avoiding dealing
with ill-posed parameter constraints [15]. Moreover, the de-
pendency implies representing orthogonal control components
in a local frame along the trajectory. This is known to be an
important and intuitive task space decomposition in classic
robotics, such as hybrid force control [9]. In a robotic hand-
writing domain, a variable impedance controller is developed
and the writing motion on a moving surface (Figure 1).
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Fig. 1: Enforcing a dependency between task parameters to
constrain the impedance representation: the arm-hand system
performs compliant cursive handwriting, regulating the contact
with a surface, whose orientation varies during the process.

B. Identical Modal Representation
We consider task examples x of different modalities, e.g.,

joint trajectory xm and camera pixels xv that form handwriting
letters. The redundant description is similar to observing the
pose of an object from different perspectives. This inspires
an identical representation of z to abstract both xm and xv .
We enforce this domain constraint by adding a symmetrical
KL-divergence to the variational objective in (1):

qm(z|xm) = qv(z|xv)

⇒Diff(qm, qv) = KL(qm‖qv) + KL(qv‖qm)
(3)

This yields associative variational auto-encoders [16] when we
parameterize posterior q and generative models p(xm|z) and
p(xv|z) with neural models as the ones in [7]. The association
can be exploited in control synthesis:

x∗m = argmin
xm

‖Img(xm)− xv‖2 + λKL[q(z|xm)‖p0]

xInit
m ∼ p(xm|xv) =

∫
p(xm|z)q(z|xv)dz

(4)

where the shared prior p0 and posterior q(z|xm) provide
informative initialization and bias in adapting motion xm to
match a novel letter image xv , with Img(·) and ‖ · ‖ denoting
the obtained image and an Euclidean norm. The KL term
encourages to search in alignment with the manifold and is
weighted by λ. As is shown in Figure 2, these constraints help
to establish a rapid and stable convergence with less exploring
trajectory samples.

C. Latent Dynamics
We consider task examples that can be temporally factored

x = x0:T . This motivates to embed a latent dynamics con-
straint over z = z0:T if zt is taken as a belief representation
of the observation history x0:t. Following the case of bridging
modalities in (3), we capture the temporal relation by matching
its estimation of the posterior and prior latent dynamics:

q(zt|zt−1,xt) = p0(zt|zt−1)⇒ KL(q‖p0) (5)

Similar to the auto-encoder settings, high-dimensional patterns
can be reconstructed by reasoning about the latent dynamics.
The dynamics learning also enables a model-based control
when sensory input is not available (Figure 3).
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Fig. 2: Using learned associative constraints in warm-starting
the trajectory optimization: the associative encoders (Assoc-
VAE Full/Latent) provide an informed initialization and low-
dimensional manifolds (AssocVAE Latent) to explore the arm
joint motion for writing novel non-alphabetical symbols, out-
performing the baselines based on GMMs with less sampling
trajectories (numbers in parentheses after the legend names).
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Fig. 3: Embedding a dynamical relation with zt as an abstract
representation of frames x0:t (upper). The retained feature
transformation and dynamics are exploited to learn a model-
based control in the latent space (lower left): after accessing
initial frames, a robot arm anticipates the rolling ball move-
ment and score a goal without visual input (lower right).

IV. FUTURE PLAN

We envision future research steps of utilizing domain con-
straints in different aspects, including learning, control and
data modality. To begin with, a linear latent dynamics may
allow to analyze and introduce a stability regulation criterion,
with the potential of characterizing more robust goal-directed
behaviors. Secondly, we plan to explore auxiliary tasks, as
well as associated learned representation and constraints like
III-B and III-C, to examine their impacts on the performance
of addressing general motor control such as non-prehensile
manipulation. Last but not the least, it would be interesting to
investigate how rich data of other modalities, such as images
or texts, can be leveraged by robots to reason about entity
relations as well as the external world, so as to develop motor
task skills from limited experience.
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