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Abstract: Due to their predictability, controllability, and
simple social abilities, robots are starting to be used in
diverse ways to assist individuals with Autism Spectrum
Disorder (ASD). In this work, we investigate an alterna-
tive and novel research direction for using robots in re-
lation to ASD, through programming a humanoid robot
to exhibit behaviors similar to those observed in children
with ASD. We designed 16 ‘autism-like’ behaviors of dif-
ferent severities on a NAO robot, based on ADOS-2, the
gold standard for ASD diagnosis. Our behaviors span four
dimensions, verbal and non-verbal, and correspond to a
spectrum of typical ASD responses to 3 different stimulus
families inspired by standard diagnostic tasks. We inte-
grated these behaviors in an autonomous agent running
on the robot, with which humans can continuously inter-
act through predefined stimuli. Through user-controllable
features, we allow for 256 unique customizations of the
robot’s behavioral profile. We evaluated the validity of our
interactive robot both in video-based and ‘in situ’ studies
with 3 therapists. We also present subjective evaluations
on the potential benefits of such robots to complement ex-
isting therapist training, as well as to enable novel tasks
for ASD therapy.
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1 Introduction

1.1 Background and scope

Autism Spectrum Disorder (ASD) is a developmental con-
dition that affects individuals’ communication and social
abilities, as well as possibly motor and cognitive skills.
The behavioral profiles of individuals with ASD span an
extremely diverse spectrum, resulting in a large variabil-
ity and individuality of resulting behavioral profiles [1].
Even though ASD is being studied from very different per-
spectives, including developmental, neurophysiological
[2], and genetic ones [3, 4], its diagnosis primarily relies
on behavioral observation in controlled settings.

As a result, available diagnostic tools for ASD used
by therapists provide us with behavioral models for ASD.
More specifically, these tools link a taxonomy of typically
observed behaviors to values on a set of features that have
been identified to be relevant to characterizing the con-
dition in its diverse forms. In particular, the Autism Di-
agnosis Observation Schedule (ADOS-2) [5] is a state-of-
the-art tool for diagnosis through interaction and obser-
vation of a child’s behaviors in a semi-controlled environ-
ment. The therapists go through a series of 10 tasks with
the child using standardized objects and procedures, then
code the behaviors they observed throughout the session
in the form of discrete values on a set of features spanning
several behavioral dimensions. A typical ADOS-2 session
takes 40–60 minutes to administer. Different modules are
available depending on the child’s age or language abil-
ity. In this work, we focus on Module 2, suitable for chil-
dren with phrase speech abilities, which provides us with
a richer set of behaviors as compared to the other exist-
ing modules. Figure 1 shows a sample ADOS-2 feature and
task.

This work builds and expands on our previous re-
search [6], whose goal is to apply the ADOS-2 model to
control the behaviors of a humanoid NAO robot, enabling
it to exhibit behaviors similar to those of children with
varying severities of ASD. Autonomous robots and agents
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Figure 1: A simplified example of a feature (left) and task (right)
from Module 2 of the ADOS-2. Coding schemes on different features
possess variable levels of subjectivity (the one shown being highly
objective). Hierarchies of presses are traversed sequentially until
the desired child behavior is observed. (Figure adapted from [5],
©WPS.)

are commonly and informally described as ‘autistic’ [7, 8]
in some of the literature (referring to their lack of social
intelligence). However, the belief that behaviors in indi-
viduals with ASD are less complex versions of behaviors
in typically developing individuals isn’t always true. In
fact, ASDmay introduce interesting and rich subtleties, id-
iosyncrasies, and proactive behaviors not seen in typically
developing individuals. On a more global note, calling
robots or agents ‘autistic’ may be dangerous because it re-
inforces erroneous assumptions on how the autistic mind
functions [9]. In this work we use the term ‘autism-like’ to
refermerely to the robot behaviors themselves. These visu-
ally resemble human behaviors typically observed in chil-
dren with ASD. They are modeled purely at the behavioral
level, not considering any simulation of lower-level cogni-
tive processes that individuals with ASD may possess.

Because of the great diversity of behavioral profiles
possible on the robot, we introduce a way for the user to
customize the model parameters in order to allow for dif-
ferent severities of ASD along 4 behavioral features, both
verbal and non-verbal. We start by designing ‘autism-like’
behaviors of varying severities along those features, on
a NAO robot, based on the ADOS-2 model. Those behav-
iors correspond to a range of possible responses to three
different stimulus families, inspired by the ADOS-2 tasks.
In a second step, we integrate those behaviors in an au-
tonomous agent running on the robot. The result is a cus-
tomizable interactive robot with ‘autism-like’ behaviors,
capable of continuous interaction with a human in re-
sponse to a set of predefined stimuli. Through the specifi-
cation of user-controllable features, the robot can be cus-
tomized in one of 256 unique ways. We evaluated the va-
lidity of the resulting interactions both in video-based and
‘in situ’ studies with certified autism therapists.

To summarize, themain contributions of this work are
the following:
• A method for controlling the behavioral responses of

a NAO humanoid robot with ‘autism-like’ behavioral
characteristics, based on the ADOS-2 diagnostic tool,

• A set of 16 robot behaviors, spanning different
ADOS-2 features and different severities, which in-
clude speech, gaze andgestures, in response to verbal,
sound, and touch stimuli,

• An architecture for integrating these behaviors in a
costumizable interactive agent running on the robot,
and

• An evaluation, through video-based and ‘in situ’ stud-
ies, of the validity and potential benefits of our ap-
proach for complementing therapist training, as well
as helping with novel ASD tasks.

In thenext subsection,wediscuss in greater detail the rele-
vance andpotential impact of thesedifferent contributions

1.2 Why robots with ‘autism-like’
behaviors?

Most existing research on the use of robots for autism
has focused on assisting individuals with ASD directly,
mainly in therapeutic settings [10, 11]. The rationale is that
the predictability, controllability, and simplicity of robots’
social skills can benefit such a population by engaging
them into simplified social interactions that would hope-
fully generalize to real-world interactions. In this work, we
propose an alternative way of using robots in relation to
ASD, through enabling robots themselves to emulate typi-
cal ASD behaviors. We foresee several real-world applica-
tions that motivate the use of robots with ‘autism-like’ be-
haviors, including complementing therapist training and
enabling new types of autism therapy tasks. We will now
motivate each of those applications separately.

1.2.1 Therapist training

Current therapist training for ASD diagnosis procedures²
heavily relies on videos and theoretical material, as well
as observing a real diagnosis session run by a trained ex-
pert. Even though it exposes the therapists in training to
a wide range of examples of behaviors and stresses on the
rigorousness of the coding schemes and task procedures,

2 https://www.wpspublish.com/store/c/343
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it largely ignores the interactive and embodied component
required for a successful administration of the tool. In fact,
this component represents a crucial part of the adminis-
tration process. Given that therapists are expected to fol-
low very specific sets of instructions (e.g., Figure 1), while
paying attention to behaviors, taking notes, and possibly
adapting the order of tasks in real-time, a poor mastering
of these interactive skillsmay result inmistakes in task ad-
ministration as well as feature coding. A lowered reliabil-
ity, especially in the coding of some features with already
low agreement scores [5] defeats the purpose of using a
standardized tool in the first place. On the other hand, uti-
lizing robots capable of exhibiting ‘autism-like’ behaviors
way may possibly help to complement the existing train-
ingbyproviding an interactive simulation environment for
therapists to train on before moving on to real scenarios.

The paradigm of using simulated environments or in-
teractions for expert training [12, 13] has already been ap-
plied to a wide range of fields, including aviation [14],
medicine and healthcare [15, 16], the military [17], emer-
gency response [18], and education [19, 20], among oth-
ers, showing improvement in the performance of trainees
inmost cases. Simulated environments have also been ap-
plied to social settings and interactions [21–23], as well as
procedural tasks [24]. The largemajority of these solutions
rely on computer simulations and virtual/mixed reality,
while very little work has been done on the introduction
of embodied agents in these simulated environments. The
only work we found that used some sort of physical feed-
back or embodied communication was for welding [25]
and surgical procedures [15]. To the best of our knowledge,
the use of social robots in the context of professional ther-
apist training has not been yet investigated.

An interactive robot capable of emulating ‘autism-like’
behaviors has the following advantages:
• Interactivity: Unlike existing therapist training, a

robot is capable of emulating, to a limited extent, the
structured interactions of an ADOS-2 session.

• Customizability: In the real world, the experience ther-
apists gather depends on the patients they receive,
which is not controllable. The customizable aspect of
our robot allows to generate arbitrary behavioral pro-
files, greatly increasing the number and diversity of
feature combinations the therapists can be exposed
to.

• Repeatability: Real-life interactionshappenonly once,
and if we attempt to repeat them, there will always
be some inevitable differences. Even though videos
showing behaviors or interactions may be repeated
to be better studied, the use of an interactive robot
allows the interaction itself to be repeated in a con-

trolled way, and allows for reiterating previous inter-
actions in the event of procedural errors, or lack of ob-
servational attention.

Furthermore, research on human perception has shown
that people tend to assign human-like traits to technolog-
ical artifacts, including robots, perceiving them as social
beings [26]. This aspect of our cognition motivates the use
of humanoid robots that do not necessarily have to repro-
duce the physical appearance or size of a child with high
fidelity. In fact, the humanoid NAO robot used in this work
is much smaller than a human being, but possesses basic
features that make it expressive and able to exhibit engag-
ing social behaviors.

1.2.2 Autism therapy

While therapist training is the main focus of the stud-
ies presented in this work, we believe that ASD therapy
may also benefit from having a robot capable of exhibit-
ing ‘autism-like’ behaviors. Specifically, these robots may
unlock newpossibilities in robot-assisted therapy tasks in-
volving imitation, as well as learning-by-teaching scenar-
ios, as discussed next.

Imitation tasks hold a special place in ASD therapy
[27], because imitation ability is often impaired in chil-
dren with ASD [28]. As a result, we believe that an au-
tonomous, customizable, and adaptive robot that is able to
match its behavior to that of the child, demonstrate a de-
sirable behavior for the child to imitate, or, in the context
of long-term interaction, evolve towards less severe behav-
iors along with the child, may hold promise in the context
of ASD therapy.

On the other hand, such a robot may be used in the
context of learning-by-teaching scenarios [29], where a
child refines his/her own skills through teaching the robot
already acquired skills. For example, the robot could be
programmed to have slightly lower skills than the child
(i.e., higher severity on a given a feature), inwhich case the
child teaches the robot to incorporate modalities that the
robot doesn’t have. For instance, if the child knows how to
make good use of pointing, he/she could teach a robot that
uses only eye gaze to also include pointing in its behav-
ior. However, it is to be noted that a learning-by-teaching
approach might be challenging with some children on the
higher end of the autism spectrum, andwould require em-
pirical investigation.

Themotivating thoughts of this section do not provide
empirical evidence for the usefulness of these applica-
tions in the associated contexts, but rather are meant to
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provide a basis for the conception of future robot-assisted
scenarios in the autism domain.

In the existing literature, customizable social robots
have been mainly developed to account for user differ-
ences and preferences [31–33], although personalization
for individuals with ASD [34] has not yet been thoroughly
investigated. In relation to emulation of typical ASD be-
haviors by robots, some work has been done on real-time
motion imitation of children with ASD [35]. Additionally,
some research looked at using robots as a platform to test
theories related low-level cognitive and sensorimotor pro-
cesses related to ASD, in relation to specific aspects of be-
havior such as sensory integration and movement [36] or
joint attention [37]. However, to the best of our knowledge,
enabling humanoid robots to exhibit ‘autism-like’ behav-
iors along severity scales, based on standardized behav-
ioral models such as the ADOS-2, has never been looked at
before.

The rest of this article is organized as follows. Section 2
describes our approach to designing customizable and au-
tonomous robots with ‘autism-like’ behaviors, as well as
the video-based and ‘in situ’ evaluation studies we con-
ducted. Section 3 presents and discusses the results of our
two studies, and section 4 concludes and presents some
future work directions.

2 Methods
Wefirst describe ourmethods for designing an interactive,
autonomous and customizable robotwith ‘autism-like’ be-
haviors. We then present two studies (video-based and ‘in
situ’) to validate our behavior design, evaluate interactiv-
ity, and assess potential real-world benefits of our solu-
tion.

2.1 Designing a customizable interactive
robot with ‘autism-like’ behaviors

Based on the ADOS-2 model, we designed 16 behaviors
on a NAO robot and integrated them into an autonomous
agent architecture that can be customized according user-
specified feature values. The robot is able to automatically
detect some interaction parameters, such as verbal and
non-verbal stimuli, as well as sound location, to allow for
more natural interactions.

2.1.1 Robot behaviors based on the ADOS-2 model

We selected 4 features from the ADOS-2 Module 2 to in-
form our design of robotic behaviors that emulate those
of children with varying ASD severities. The features are:
‘Response to name’, ‘Response to joint attention’, ‘Over-
all level of non-echoed speech’, and ‘Pointing’. As with
a child, those features can characterize the responses of
our robot to different stimuli. We consider three hierarchi-
cal stimulus families, namely: calling attention by call-
ing the name (N), calling attention towards an object (JA),
and asking for snack preference (S), each of which con-
tains a set of stimuli with the same intention or purpose.
Those stimuli, inspired by the hierarchical ‘presses’ of the
ADOS-2 tasks, are summarized in Figure 2.

The 4 features we selected can each take on discrete
values between 0 and 3, corresponding to ASD severities
along the corresponding feature (in other words, higher
values are associated with more autistically severe be-
haviors). The ADOS-2 manual provides a detailed descrip-
tion of the sets of behaviors that correspond to each fea-
ture severity, and we utilize those descriptions to design
16 robot behaviors, consisting of, for each separate fea-
ture severity, one selected behavior that was easily repro-
ducible on a robot. A robot behavior consists of an anima-
tion of the robot’s joints as well as possibly speech, and is
triggered by a subset of the stimuli we defined. Some of our
behaviors are parametrized (e.g., gaze behavior takes as a
parameter a 3D location to look at). Table 1 presents a sum-
mary of our designed behaviors, in response to the three
stimulus familiesN, JA, andS. In thepresence ofmore than
one relevant feature for a stimulus family (e.g., S), behav-
iors are blended, meaning they are run simultaneously.

2.1.2 Integration into an autonomous agent architecture

Our designed behaviors were integrated as part of an au-
tonomous agent capable of having continuous interac-
tions with one or more humans, according to the prede-
fined stimuli it recognizes.More importantly, the agent can
be customized by specifying an arbitrary severity for each
feature, resulting in 256 unique customizations. The ar-
chitecture of the autonomous agent, including a percep-
tion module with speech recognition, touch recognition,
and sound localization to modulate the robot behaviors,
is summarized in Figure 3. We implemented this architec-
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Figure 2: Example of stimulus families considered in this work, inspired by the ‘presses’ of the ADOS-2 tool. Shown pictures are for the
‘Calling name’ family. For the ‘Calling for joint attention’ family, the stimuli are: Verbal stimulus: ‘Look!’ - Verbal stimulus: ‘Look at THAT!’ -
Activating the object. For the ‘Asking for snack preference’ family, the only stimulus is the verbal stimulus: ‘Which snack do you like?’.

Table 1: Summary of the designed ‘autism-like’ robot behaviors of varying severities.

Stimulus
family

Relevant
feature(s)

Responses
Severity 0 Severity 1 Severity 2 Severity 3

Calling
name (N)

Response to
name (rN)

Looks at human
within second name
calling attempt with
coordinated utterance
‘’Yes?” (rN0)

Same as rN0 but only
responds to ‘familiar’
human while ignoring
‘non-familiar’ one (rN1)

Looks in general di-
rection (without eye
contact or utterances)
of ‘familiar’ human
only while ignoring
‘non-familiar’ one
(rN2)

Only responds to
touch on head by ex-
hibiting succession of
random gaze shifts;
ignores all other
stimuli in N (rN3)

Calling for
joint atten-
tion (JA)

Response to
joint attention
(rJA)

Immediately looks at
object, then human,
then back at object
(rJA0)

Ignores first stimulus;
looks at object only at
second stimulus “Look
at THAT!” (rJA1)

Ignores first two
stimuli; only looks at
object when activated
and emitting sound
(rJA2)

Same as rJA2 but with
slight gaze shift to-
wards object without
actually looking at ob-
ject (rJA3)

Asking for
snack
prefer-
ence
(S)

Overall level
of non-echoed
speech (rlS)

Says: “I like this snack
of all the snacks in the
world.” (rlS0)

Says: “This one.” (rlS1) Says: “This.” (rlS2)
Echoes: “Snack...
Snack... Snack...
Like... Like...” (rlS3)

Pointing (rpS)

Clearly points at one
of the snacks with
coordinated eye gaze
(rpS0)

Clearly points at one of
the snacks with slight
gaze shift not in direc-
tion of pointing (rpS1)

Looks at one of the
snack but without
pointing (rpS2)

Slightly shifts gaze
downwards with no
pointing (rpS3)

ture on theNAO robot using theNAOqi PythonAPI through
the Choregraphe suite³.

Because of perceptual limitations of the robot, some
parameters needed to be hardcoded or estimated simplis-
tically, while others are easier to detect completely au-
tonomously. Below are some more details on the param-
eters automatically estimated vs. hardcoded, for each be-
havior, following the abbreviations of Table 1:
• rN0 through rN3: Voice location is estimated using

NAO’smicrophone array and used tomodulate the eye
gaze of the robot. The ‘familiar’ and ‘unfamiliar’ hu-

3 Code available at https://github.com/kobotics/autistic_nao

mans are distinguished simplistically, based on the lo-
cation of the voice. It is assumed that the ‘familiar’ per-
sonwould always be on one side of the robot (e.g., left)
and the ‘unfamiliar’ always on the other (e.g., right).
The touch sensor on NAO’s head is used for rN3.

• rJA0 through rJA3: Because of the robot’s perceptual
limitations, the location of the object used for call-
ing joint attention is hardcoded in rJA0 and rJA1. For
rJA2 and rJA3, it is estimated using sound localization,
since the activated object emits a sound. For motion
stability purposes (robot loosing balance at times), the
location of the human in the joint attention task is
hardcoded.

https://github.com/kobotics/autistic_nao
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Figure 3: Architecture of our customizable autonomous agent; stimuli are recognized and trigger different behaviors, according to the cus-
tomizable feature vector characterizing the robot.

• rpS0 through rpS3: Two snacks were put on the table,
whose positions are hardcoded. The preferred snack
position is used to parametrize the eye gaze and point-
ing directions of the robot.

• rlS0 through rlS3: These behaviors consist of speech
only, and are not parametrized.

Note that, for all behaviors, the speech recognizer is used
to detect all verbal stimuli, which triggers the correspond-
ing responses,whenapplicable.When idle, the robot is an-
imated through a subtle ‘Breathing’ behavior in which the
robot slightly shifts its weight from one foot to the other.
A video showing sample human interactions with our au-
tonomous NAO robot in ‘low severity’ vs. ‘high severity’
modes is available for online viewing⁴.

2.2 Evaluating the designed behaviors
(video-based study)

In order to evaluate the validity of our designed interac-
tive behaviors with respect to the formalism of the ADOS-
2, we ran a first video-based evaluation study with trained
ASD therapists. The aim of the study was to investigate: (1)

4 Video available at https://bit.ly/2tE2nOD

whether the therapists would assign to the features char-
acterizing the designed behaviors the same values as the
ones onwhich their designwas based, and (2) whether the
therapistswould agreewith each other in their evaluation,
and how this agreement would differ across the different
behavioral responses of the robot.

2.2.1 Survey structure

The study consisted of a video-based survey showing short
videos⁵ of the isolated designed behaviors in the con-
text of an interaction with a human (or two for the be-
haviors requiring more than one person). Based on what
they saw in the video, the participants provided a sever-
ity value between 0 and 3 on the relevant feature(s) of
each video, according to the description for each sever-
ity level in the ADOS-2 manual. Detailed instructions were
given in relation to feature coding, background on robot’s
capabilities, and simplifying assumptions. In particular,
the participants were instructed to ‘diagnose’ the robot
the same way they usually do it with children, by coding
the feature value they thought best characterized the re-
sponse they observed in the video. They had the possibil-

5 Survey videos available at https://bit.ly/2MqRdDK

https://bit.ly/2tE2nOD
https://bit.ly/2MqRdDK
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ity to watch the video as many times as needed. Also, they
were instructed to use information from the current video
only, and after the first stimulus was started (even though
some of the features usually require several samples to
form a good judgment). Finally, they were asked to ignore
any expression unrelated to motion or speech, including
non-verbal cues acknowledging the detection of speech,
namely beeps and color changes of the NAO’s eyes. These
cues, part of the default behavior of the speech recognizer,
were kept in our interaction because they were designed
to facilitate speech synchronization and the debugging of
the state of the robot in case of a recognition failure.

The videos were organized into three tasks (N, JA,
and S), corresponding to the stimulus families discussed
in section 2.1. Because behaviors were blended in task S,
and to avoid overwhelming the participants with a very
large number of videos, we chose to set the feature val-
ues to be identical, in all videos for that task, for both lan-
guage and pointing features (i.e., rlS0,rpS0 - rlS1,rpS1 - ...).
The total number of videos was hence 12, four for each of
the three tasks. The order of the three tasks in the survey
was randomized, as well as the order of the videos within
each task.Whenapplicable, the progression of stimuliwas
performed in the hierarchical order used in the ADOS-2
presses until a response was seen on the robot. The sur-
vey also included snapshots of the corresponding ADOS-2
manual to help the trained experts code the severity on
each feature based on their observations.

2.2.2 Methodology

We first ran a small pilot with one trained therapist to get
an idea of the expected results, as well as gather feedback
on the clarity of the survey, and potential points for im-
provement. When the survey was finalized, we gathered
the online responses of three other therapists from the
Child Development Center at the Hospital Garcia de Orta
in Almada, Portugal. The therapists who participated in
this study are all womenwho received a training in admin-
istering ADOS-2. Informed consent and permission to use
media was obtained at the beginning of the survey.

2.3 Assessing therapist-robot interaction
and potential benefits (‘in situ’ study)

The aim of this second study was to test our robot un-
der different configurations in a real interactive setting
with autism therapists, as well as assessing the potential
benefits of this interactive robotic tool. This study there-

fore relied on, first, coding of robot behaviors according to
the ADOS-2 specifications and, second, answering a ques-
tionnaire we devised to assess the potential benefits of
our robot in real-world applications. This study was per-
formed with the same three participants from the video-
based study, 11 months later.

2.3.1 Methodology

In the main part of this study, the participants interacted
with the robot through the set of stimulus families we de-
fined, observing and subsequently coding the robot’s re-
sponses according to the ADOS-2 specifications, as was
done in the previous study (described in section 2.2). The
robot configurations were similar as well (matching sever-
ities on language and pointing features), and we exposed
the participants to the same 12 robot responses. However,
there were some differences as compared to the video-
based study:
• In the video-based study, we consecutively showed

different robot responses for the same stimuli to allow
for better comparison of behaviors, as the focus was
solely on validating the behaviors themselves. In this
study, we are interested in a more naturalistic evalua-
tion of the interaction as awhole that goes beyond iso-
lated behaviors. As a result, we had the participants
go through each task once, then repeat the process,
with 4 different robot customizations randomly per-
muted while ensuring that each robot behavior ap-
peared once. This way, participants could get a sense
of an entire interaction with 4 ‘different’ robots that
they would have to diagnose, similar to a real ADOS-2
session.

• As participants were allowed to replay the videos in
the previous study, in this study, they were allowed to
repeat the task asmany times as needed for coding the
behaviors.

• Within the constraints imposed by our robot, we tried
to replicate as much as possible the physical setting
that the therapists are used to. For example, we used
objects from the ADOS-2 kit, such as one of the acti-
vatable toys from ADOS-2, one savory and one sweet
snack, which differed slightly from the ones used the
videos.

In addition to coding behaviors, we also asked partici-
pants to provide answers to a questionnaire, separated
into two parts. The aim of this questionnaire was to com-
pare the ratings of existing training solutionswith our pro-
posed solution, as well as to evaluate the potential bene-
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fits of robots with ‘autism-like’ behaviors in our foreseen
applications.

The first part of the questionnaire, presented before
the interaction with the robot, first gathered background
information about the participant’s diagnostic training. It
then asked the participants to assess that training along
three dimensions, namely:
1. Behavior accuracy, i.e., comparing behaviors encoun-

tered in training vs. encountered in real sessions;
2. Interactivity, i.e., to what extent it involves an interac-

tion in real or virtual scenarios;
3. Diversity of behavioral profiles, i.e., diversity of combi-

nations of severities on the ADOS-2 features.

Finally, it asked for how much they believed robots with
‘autism-like’ behaviors could benefit the our foreseen ap-
plications, namely: complementing existing ADOS-2 train-
ing of therapists, and enabling new types of scenarios for
autism therapy (e.g., imitation tasks). In addition, we in-
cluded as a third potential application educating and sen-
sitizing the general population about the behavioral differ-
ences in children with ASD (e.g., classrooms, museums,
workplace,...).

The second part of the questionnaire, presented after
the interaction with the robot, repeated the same ques-
tions as the first part, but this time assessing specifically
our robotic tool. The questionnaire structure is summa-
rized inFigure 4.Apart from the ‘Trainingbackground’ sec-
tion, which was multiple choice, all responses were in the
form of a 5-point Likert scale. The questionnaire was in the
participants’ native (Portuguese) language.

2.3.2 Procedure

After signing an informed consent, the participants filled
the first part of the questionnaire. The examiner then took
them into the robot experiment room and provided them
with instructions on the tasks they were going to perform
on the robot, aswell as the structure of the rest of the study.
Sheets with all needed information were made available
to them, including the list of valid stimuli for each task,
relevant snapshots from the ADOS-2, and space to use for
coding. In addition to notes mentioned in the video-based
study, the examiner also stressed that it was important
that they spoke clearly and loudly, and that the robot only
responds to voice and touch but not visual cues such as
gaze direction of pointing. As in the video-based survey,
the examiner reminded theparticipants to only consider in
their coding the robot’s behavior after the first stimulus of

Figure 4: Questionnaire structure. An English version of the full
questionnaire is available at https://bit.ly/2KhqnRV.

a given task was started. We also asked them to ignore any
robot expressions that are unrelated to motion or speech.

Once any doubts they had was clarified, they ‘diag-
nosed’ the robotwith thefirst customization going through
the three tasks sequentially N - JA - S, observing the robot’s
responses and reporting their codes on the sheet. Once
the three tasks were over, the examiner announced that
he was going to reprogram the robot, and asked the par-
ticipant to treat it as a ‘new robot’. The process was re-
peated until all 4 pre-randomized robot customizations
were shown. Figure 5 shows some snapshots of these in-
teractions.

Because of technical limitations of the robot, there
were moments where the examiner had to briefly inter-
vene, saying things like “the robot didn’t understandwhat
you said, please repeat”. The examiner, although present
in case of doubt from the participant’s part, tried to be as
non-invasive as possible tomaintain thenaturalness of the
interaction.

https://bit.ly/2KhqnRV
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Figure 5: Autism therapist interacting with the robot and coding its
responses according to the ADOS-2 specifications.

3 Results and discussion
We first analyzed, across the two studies, the accuracy of
responses and the agreement between the participants,
summarized in Tables 2 and 3. In our accuracy analysis, we
only discriminated between correctly and incorrectly clas-
sified responses (with respect to the expected response).
In the agreement analysis, we also treated the variables as
ordinal in one of our metrics, and compared some of the
results with reference values from real ADOS-2 scenarios.
Weadditionally investigated order effects in the responses.
Finally, we analyzed the results of the questionnaire and
compiled additional qualitative observations.

3.1 Accuracy results

The participants achieved an overall accuracy of 76.04%
across the two studies. The accuracy was considerably
higher for the video-based study (83.33%), as compared
to the ‘in situ’ study (68.75%), with close to statistical sig-
nificance using a McNemar’s mid-p test on the overall bi-
nary categorical data (p = 0.057), and actual statistical
significance only for expert 1 (p = 0.031). The same test
showed no statistical significant difference in accuracy be-
tween all pairs of raters (p ≥ 0.125 for all pairs), regardless
of the type of interaction (video/real). There also seems to
be a relationship between the level of experience and the
accuracy of the participants. The accuracy results are sum-
marized in Table 2 and the left side of Table 3.

Looking at individual features, the joint attention fea-
ture (rJA) had the highest accuracy (91.67%), and the

pointing feature (rpS) the lowest (54.17%), which was ex-
pected because the latter was the most complex one to
code, and was paired with speech behavior within the
same task, possibly resulting in some interaction effects.
However, the hypothesis that blending behaviors from
supposedly independent features may involve interaction
effects in the coding of individual features needs to be in-
vestigated more carefully with a larger sample. Moreover,
we expected the language feature (rlS) to have the high-
est accuracy as it was the least subjective feature to code,
which wasn’t the case. We hypothesize that it may have
also been subject to the interaction effect discussed above,
as well as the fact that it was the only feature that differed
considerably betweenModule 2 andModule 1 of theADOS-
2, the latter being the one that the participants were most
used to in their professional practice.

To understandbetter the sources ofmisclassifications,
we report more granular accuracy results in Figure 6, for
each robot behavior. We can see that 11 out of 16 behav-
iors had an overall accuracy superior to 80%. Note that
the joint attention feature (rJA) showed relatively high ac-
curacy for all behaviors. On the other hand, the two behav-
iors which had the lowest accuracies were rpS1 and rpS2.
In some cases, it seemed that the participants thought it
would be appropriate to code the gaze behavior as part
of the pointing behavior, which shouldn’t have happened
given that eye gaze is typically coded in a separate fea-
ture (not included in these studies). In other cases, on the
contrary, participants seemed to have completely denied
the importance of gaze for the pointing feature, which is
justifiable. Behavior rpS1, containing a clear pointing, de-
spite anuncoordinated eye gaze,wasmisclassified as rpS0
83.33% of the time,whichmay suggest that this particular
behavior would have to be redesigned and made clearer.
For rpS2, the results were much more spread, and we hy-
pothesize that the source of misclassifications is a combi-
nation of lack of rigorousness on the participants’ part as
well as low legibility of gaze on the robot’s part.

The misclassifications for rN0 came from the same ex-
pert, whichmay suggest that in this case the source of con-
fusion was not from the robot, but from her low experi-
ence level with ADOS-2. The low accuracy of rN2 is most
probably due to the difficulty in assessing the gaze direc-
tion of the robot, as it seemed to be easily confused with
rN1, whose main difference is the direction and duration
of gaze. For the language feature (rlS), it seems like rlS3
(echolalia,which is easily identifiable)was theonlybehav-
ior that was immune to misclassifications, while the other
three behaviors seem to have been somehow affected by
the factors discussed above.
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Table 2: Accuracy results per participant across the two studies.

Expert Total Accuracy (%) ADOS-2
training

Real-world
experienceVideo Real Both

1 95 63 78 Non-oflcial Low
2 88 75 81 Oflcial High
3 69 69 69 Oflcial Very Low

Table 3: Accuracy and agreement results per feature, including comparison with percent agreement values from the ADOS-2 literature with
children in ideal (Lord et al. [5]) and naturalistic settings (Zanger et al. [38]).

Features
Accuracy (%) Agreement (%)

Spearman’s rho Percent agreement
Video Real Both Video Real Both Video Children (naturalistic) [38] Children (ideal) [5]

rN 75 75 75 91 85 80 50 76 84
rJA 100 83 92 100 76 86 100 78 96
rlS 92 75 82 97 91 92 83 80 96
rpS 67 42 54 93 59 76 58 60 85

Combined 83 69 76 92 76 83 73 74 90

Figure 6: Average accuracies for each robot behavior across the two
studies. 11 out of 16 behaviors have an accuracy above 80%.

3.2 Agreement results

Asour inter-rater agreementmeasure,weusedboth the av-
erage Spearman’s correlation coefficient to account for the
ordinal nature of the data, and the percent agreement for
comparison with reference values from studies run with
children [5, 38].

Starting with the average Spearman’s correlation, we
obtained a relatively high agreement value for both stud-
ies combined (ρ = 0.83). We computed p-values for each
pair of raters against the alternative hypothesis that the
correlation is greater than zero, using the exact permu-
tation distributions, yielding p ≤ 1.09e−7 for all pairs
of raters, hence indicating general strong agreement be-
tween the experts, as expected. Similar to the accuracy re-
sults, agreement results differed considerably across the
two studies (ρ = 0.92 for ‘video’ vs. ρ = 0.76 for ‘real’). For
both accuracy and agreement results, it is unclear if these
differencesweremainly due to the embodiment factor, or if
the different grouping of behaviors (blocks with the same
task versus blocks with the same robot customization)
played a role. Looking at individual features, the feature
with the highest agreement was the language feature (rlS)
(ρ = 0.92), which is expected given its high-objectivity
coding scheme. The lowest agreementwas for the pointing
feature (rpS) (ρ = 0.76), which also showed a surprisingly
large difference in agreement between the video and real
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scenarios. We attribute this difference to the same reasons
that may have affected accuracy.

The percentage agreement yielded lower or equal val-
ues as compared to the previousmetric, as expected, since
it considers all mismatches have the same weight, achiev-
ing an overall value of 72.75%. In the last two columns
of Table 3, we report, for comparison, the same metric
values from two different sources of the ADOS-2 literature
with children. The last column reports values from the
ADOS-2 Module 2 manual by Lord et al. [5], obtained from
‘research-reliable’ ADOS-2 therapists under ideal condi-
tions. The penultimate column reports values obtained in
a more naturalistic setting by Zander et al., from clini-
cally trained ADOS-2 users pertaining to 13 different clini-
cal sites [38]. We achieve an agreement similar to the natu-
ralistic setting case as reported by Zander et al. (PA = 73%
vs. PA = 74%), while the ideal setting case [5] showsmuch
larger values (PA = 90%). This result suggests that the
sources of disagreement in our solution may be largely
due to the common problem of rater subjectivity for non
research-reliable ADOS-2 users, hence supporting the ob-
jectivity of the ADOS-2 instrument for evaluating robot be-
havior.

3.3 Order effects

An additional hypothesis on misclassifications is that the
participants may have gotten fatigued as the studies pro-
gressed. If this were the case, we would expect a posi-
tive correlation between the presence of errors and the in-
dex at which the behaviors appeared in the study, given
the fact that counterbalancing was used. To test this hy-
pothesis, we computed the Spearman’s correlation coef-
ficient between those two variables with a single-tailed t-
test for statistical significance. We found a statistically sig-
nificant positive correlation (ρ = 0.33, p = 0.011) in the
video-based study, which suggests that participants were
getting fatigued as the survey progressed, making them
prone to less sharp judgment. However, interestingly, this
effect was not observed with the real robot (ρ = 0.06,
p = 0.336), which we may attribute to the fact that the
interaction was more engaging than answering an online
survey. Also, the physical presence of the examiner and
the learning effects may have contributed to that differ-
ence.

3.4 Questionnaire results

We now report the results on the Likert-scale responses
from our questionnaire, summarized in Figure 7. Since
each item only had three responses, statistical tests will
not be used in our analysis, however comparing the mean
responses on different items may be indicative of expert
opinion and is useful for directing future research endeav-
ors in this space.

Overall, the participants provided high ratings for all
three applications we suggested. It is interesting to see
that, even though they had previously seen videos of our
robot in the first study, their ratings on suitability for ther-
apist training as well as therapy, increased after they had
actually interacted with our robot.

In the particular application of therapist training, on
average, our solution was rated higher than existing ther-
apist trainingmethods along the dimensions investigated.
As expected, our solutionwas rated asmuchmore interac-
tive than existing solutions. It was also rated as similar in
terms of profile diversity and lower in terms of behavior di-
versity, which is expected since our current prototype only
considered three tasks and a single behavior for each fea-
ture severity, when in realitymanydifferent behaviorsmay
fall under the same category.

Figure 7: Summary of mean responses to questionnaire items.

3.5 Qualitative observations

Even though at first we felt some skepticism from our par-
ticipants towards our idea of ‘simulating’ children with
ASD, after both studies, they seemed to be pleasantly
surprised by how useful this robotic tool could be, em-
phasizing features of the robot that they hadn’t foreseen.
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They understood that what wewere trying to replicate was
not complex underlying cognitivemechanisms of children
with ASD, still poorly understood by scientists, but rather
high-level behaviors that are clearly laid out and catego-
rized in available diagnostic tools.

After the video-based survey, expert 2 said she was
surprised that the interactions shown in the videos felt
“just like ADOS-2 tasks with real kids.” After the ‘in situ’
study, she stressed that what she found very interesting
and useful was that she could repeat the same stimu-
lus and observe the same response as many times as she
wanted, which she thought made the system particularly
useful for therapists in training.

Expert 1 mentioned that she was having trouble keep-
ing up with the interaction, especially when it came to as-
sessing the gaze direction of the robot. This difficulty may
explain that she had the lowest accuracy in the ‘in situ’
study, but is unclear if it was because of the robot or be-
cause her level of experience was low (she had actually
never performeda real entire sessionwith a child). This ob-
servationmotivates the importance of the interactive com-
ponent needed for training, which our solution attempts
to address.

3.6 Additional remarks

Perhaps the strongest limitation of our methodology was
the small sample size, as well as the lack of ADOS-2
research-certified (as opposed clinically-certified) partic-
ipants, which we expect would be have increased the re-
liability of our results. Unfortunately ADOS-2 research-
certified professionals are scarce, and finding such indi-
viduals to physically interact with our robot was a major
challenge. Additionally and from a technological point of
view, our robot, being autonomous, showed somevariabil-
ity in some behaviors, whichmay have injected additional
noise in our data. Depending on the intendeduse, the level
of autonomymayneed tobe adjusteddependingon the ad-
vantages it provides. Finally, in a real world setting, it may
be desirable to sample the combination of feature sever-
ities to match the statistical distribution of real ADOS-2
data. In our previous work [39], we devised a data-driven
method for sampling such features, which could be inter-
faced with the robotic solution presented in this paper.

4 Conclusions
We demonstrated our approach on enabling a humanoid
robot to exhibit model-based ‘autism-like’ behaviors of
varying severities. We designed 16 behaviors for a NAO
robot, following the standardized categorization of the
ADOS-2, the gold standard of autismdiagnosis. Our behav-
iors spanned different levels of severity along 4 selected
features from the ADOS-2 model. We integrated those be-
haviors into an autonomous agent running on the robot,
hence enabling flexible and continuous interactions with
humans. Finally, we evaluated our designed behaviors by
running a video-based and an ‘in situ’ study with three
trained ASD therapists.

Our results generally show satisfactory levels of accu-
racy and agreement formost behaviors, although somebe-
haviors may have to be redesigned to reduce the level of
subjectivity in coding some robot motions and poses. In
particular, estimating gaze direction appeared to be a chal-
lenging component of the robot’s behaviors. Despite the
systematic coding structure of ADOS-2, we observed con-
siderable levels of subjectivity in coding for some features.
This subjectivity is a known problem in behavior-based
diagnostic procedures in general [40]. Moreover, as com-
pared to the video-based study, both accuracy and agree-
ment dropped in the real interaction, even though the
behaviors of the robot were largely identical. This seems
to suggest that the cognitive load of embodied interac-
tion affects the performance of the therapists. These ob-
servations therefore motivate the potential use of our so-
lution for complementing therapist training, which cur-
rently heavily relies on watching videos. Because current
robots can onlymimic human behavior in a shallow, exag-
gerated and simplistic way, an interactive robot capable of
simulating simplified versions of a real ADOS-2 interaction
may specifically focus on procedural training, as opposed
to coding training, for which videos are more adequate.

Our questionnaire results suggest that autism experts
are willing to use robotic tools in their professional fields,
and holds promise for the use of robots to assist them in
their training and practice. The applications we foresee
and which were looked at in this research were: comple-
menting therapist training, unlocking novel autism tasks
involving robots, and providing interactive tools to edu-
cate and sensitize the general population about the diver-
sity of the behavioral aspects of ASD.

Interactive robots exhibiting ‘autism-like’ behaviors
with different severities open the door to a number of ex-
citing applications to train, treat or educate a wide range
of individuals dealing with ASD. In future work, we plan
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to expand the existing prototype, as well as gather more
evidence for the intended uses of our robotic tool. We also
plan to apply the same methodology in domains outside
of autism, where systematic procedures andmodels of hu-
man behaviors are being utilized to characterize patients,
users, clients, or students. We believe that robots that em-
ulate a scale of human behavioral characteristics may un-
lock many possibilities to create simulated environments
as a preparation for critical real-world tasks.
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