
Noname manuscript No.
(will be inserted by the editor)

Ad Hoc Teamwork by Learning Teammates’ Task

Francisco S. Melo · Alberto Sardinha

Received: date / Accepted: date

Abstract This paper addresses the problem of ad hoc teamwork, where a
learning agent engages in a cooperative task with other (unknown) agents.
The agent must effectively coordinate with the other agents towards comple-
tion of the intended task, not relying on any pre-defined coordination strategy.
We contribute a new perspective on the ad hoc teamwork problem and propose
that, in general, the learning agent should not only identify (and coordinate
with) the teammates’ strategy but also identify the task to be completed. In
our approach to the ad hoc teamwork problem, we represent tasks as fully co-
operative matrix games. Relying exclusively on observations of the behavior of
the teammates, the learning agent must identify the task at hand (namely, the
corresponding payoff function) from a set of possible tasks, and adapt to the
teammates’ behavior. Teammates are assumed to follow a bounded-rationality
best-response model, and thus also adapt their behavior to that of the learn-
ing agent. We formalize the ad hoc teamwork problem as a sequential decision
problem, and propose two novel approaches to address it. In particular, we
propose (i) the use of an online learning approach that considers the different
tasks according to their ability to predict the behavior of the teammate, and
acts accordingly; and (ii) a decision-theoretic approach that models the ad hoc
teamwork problem as a partially observable Markov decision problem. We pro-

This work was supported by national funds through FCT – Fundação para a Ciência e a
Tecnologia, under project PEst-OE/EEI/LA0021/2013.

Francisco S. Melo
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa
IST Taguspark, Av. Prof. Dr. Cavaco Silva, Office 2N7.15, 2744-016 Porto Salvo, Portugal
Tel.: +351-210-407-002
E-mail: fmelo@inesc-id.pt

Alberto Sardinha
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa
IST Taguspark, Av. Prof. Dr. Cavaco Silva, Office 2N9.13, 2744-016 Porto Salvo, Portugal
Tel.: +351-214-233-291
E-mail: jose.alberto.sardinha@tecnico.ulisboa.pt

2 F.S. Melo and A. Sardinha

vide theoretical bounds of the performance of both approaches and evaluate
their performance in several domains of different complexity.

Keywords ad hoc teamwork · online learning · POMDP

1 Introduction

Recent years have witnessed a generalization of “smart systems”, i.e., systems
relying on some form of intelligent agent technology, which are able to au-
tonomously collect information and act upon it. Examples include smart grids
that autonomously gather information and act upon it to improve the efficiency
and reliability of electricity production and distribution [50], and personal as-
sistants in smartphones that are able to keep track of users’ calendars and
preferences in order to make recommendations and assist the users on several
tasks [?].

As technology evolves, so will the autonomy and perceptual/actuation ca-
pabilities of such agents, prompting the need for truly autonomous agents that
are able to co-exist with other (different) agents and eventually engage in some
form of teamwork towards the completion of some common task. However, due
to the differences between the agents in terms of origin, access to information,
and perceptual and actuation capabilities, such teamwork must take place
without any prior coordination protocol or even, in some cases, any form of
explicit communication. The challenge of developing autonomous agents that
are capable of cooperatively engaging with other (unknown) agents in a joint
common task is known as the ad hoc teamwork problem [60]. It is a new and
exciting research area, recently introduced in the pioneer work of Stone et al
[60], and is closely related with other areas within the autonomous agents and
multiagent systems literature (see [60] for a detailed discussion).

In this paper, we break down the ad hoc teamwork problem into different
challenges that an agent must address when deployed within an ad hoc team.
We claim that the agent may not always know beforehand the task that it is
expected to complete. Therefore, it must both identify the target task as well
as the strategy adopted by the teammates in order to tackle it.

Consider, for example, an e-commerce scenario where two autonomous
agents cooperate to procure and assemble the components necessary to put
together a personal computer (PC) package, namely an LCD monitor and a
desktop computer. Both agents are able to procure any of the necessary com-
ponents needed for the PC package, although one agent has been optimized to
assemble the LCD monitor (for which it must procure an LCD panel), while
the other has been optimized to assemble the desktop computer (for which it
must procure the motherboard). In order to maximize the profit, it is desir-
able that the agents coordinate in their purchase of the corresponding parts,
so that both parts come from the same supplier and the shipping costs are
optimized. Failure of any of the two agents will be costly, since it significantly
impacts the production rate.

Ad Hoc Teamwork by Learning Teammates’ Task 3

In the above scenario, an “ad hoc agent” could automatically replace any of
the two agents in case of a detected failure.1 However, when deployed, the ad
hoc agent may not know exactly the target task (i.e., whether it must replace
the agent optimized for desktop PC production or replace the agent optimized
for LCD monitor production). Additionally, once it determines its target task
by observing (and co-acting with) the teammate agent, it must coordinate its
action selection with that of the teammate to ensure, for example, that both
are purchasing the corresponding items from the same supplier.

A similar situation can also arise in other domains [60]. For example, Bowl-
ing and McCracken [11] provide an early example of ad hoc teamwork in robot
soccer. This work introduces the notion of impromptu team, where an agent
(referred as a pickup player) is teamed up with a group of unknown agents with
which it must coordinate play execution. This early work already looked into
some of the challenges central to what is now referred as the ad hoc teamwork
problem, namely inferring the unknown strategy adopted by the teammates
from the actions of the latter. This work, much as most existing work in ad
hoc teamwork, assumes that agents are aware of the target task [2, 13, 61], and
does not consider the problem of identifying it from the teammate’s behavior.

The key contributions of this work are thus fourfold. First, we present in
Section 2 a new perspective on the ad hoc teamwork problem. Specifically, we
propose that, when addressing ad hoc teamwork, one should explicitly reason
in terms of task identification, teammate identification and planning.

Second, we formalize the ad hoc teamwork problem as a sequential deci-
sion problem, in which the ad hoc agent does not know in advance the task
to be performed or how its teammates act towards performing it. In our for-
malization, we represent tasks as fully cooperative matrix games; hence, the
ad hoc agent must identify the task at hand (namely, the corresponding pay-
off function) from a set of possible tasks. Teammates are assumed to follow
a bounded-rationality best-response model, and thus adapt their behavior to
that of the learning agent.

Third, we propose two novel approaches to the ad hoc teamwork problem.
In particular, we propose (i) the use of an online learning approach that is
capable of detecting the task being performed by the teammates and acting
accordingly; and (ii) a decision-theoretic approach that models the ad hoc
teamwork problem as a partially observable Markov decision problem. We
present theoretical bounds concerning the performance of both approaches
and discuss the implications.

Finally, we illustrate the application of our approaches in three different
sets of experiments. The first experiment evaluates the performance of both
approaches in a small e-commerce scenario, which is also used as a running
example throughout the paper. The second experiment evaluates the perfor-
mance of both approaches in random domains of increasing complexity. The
third experiment evaluates the performance of our ad hoc agents in a bench-

1 In order to facilitate the presentation, we adopt a commonly used abuse of language in
the ad hoc teamwork literature and refer to an “ad hoc agent” as being an agent that is able
to engage in ad hoc teamwork.

4 F.S. Melo and A. Sardinha

mark domain from the literature [59] and compares some of our results with
related works in the ad hoc teamwork literature.

2 The Ad Hoc Teamwork Problem

The ad hoc teamwork setting [60] is a research problem in which an au-
tonomous agent must efficiently and robustly collaborate with previously un-
known teammates on a common task. Therefore, agent developers cannot de-
sign an a priori coordination strategy for the team of agents. Such an agent
must be designed with interaction capabilities that can adjust to different
types of teammates.

In this section, we introduce a running example that motivates a novel per-
spective on the ad hoc teamwork problem. We identify the different challenges
that an agent must address in order to be deployed witin an ad hoc team.
Finally, we discuss the existing literature on ad hoc teamwork and related
topics, framing our contributions in the context of the current research.

2.1 A Novel Perspective on Ad Hoc Teamwork

Before discussing the ad hoc teamwork problem as introduced by Stone et al
[60], we introduce the following example, which is an expanded version of the
scenario discussed in the introduction.

Example 1 Consider an e-commerce company in which two autonomous
agents are responsible for assembling PC desktop packages. Each pack-
age is composed of an LCD monitor and a desktop computer.

To assemble the LCD monitor, an LCD panel must be purchased.
Similarly, the assembly of the desktop computer requires a motherboard
that must be purchased. Both agents are able to assemble any of the
package elements; however, each agent is optimized to assemble one of
the two and will be less efficient in assembling the other.

In order to maximize the profit, it is desirable that:
– The agents coordinate the purchasing process, so that both parts

are procured from the same supplier in order to minimize shipping
costs.

– The agents coordinate the purchasing process, so that each agent
purchases the part required for the component that it has been
optimized to assemble.
Recently, the company has experienced increasing delays in produc-

tion, since the agents have started to fail, and agent failure requires
a costly and time-consuming restart procedure. The company is not
willing to discard the existing agents, as re-engineering the complete
production system would be a costly operation. Therefore, to minimize

Ad Hoc Teamwork by Learning Teammates’ Task 5

Task Identification

Teammate Identification

Planning Fig. 1 Challenges in establishing ad hoc
teamwork.

the impact of agent failure, the company adopted an automated system
that automatically deploys a general purpose agent whenever an agent
failure is detected. �

Let us consider the requirements that the general purpose agent from Ex-
ample 1 must meet. First of all, it must quickly determine which of the legacy
agents it has to replace. Then, once its task is identified, it must determine
exactly how the other agent (the teammate) is addressing that task, so that
it can coordinate its actions with those of the teammate. These three require-
ments (identifying the task, analyze the teammate behavior and plan its own
behavior) are common to any autonomous agent that is expected to be de-
ployed in a given domain and effectively coordinate with existing agents in a
common task.2

The aforementioned requirements and their interdependence, depicted in
Fig. 1 as task identification, teammate identification and planning, are the
fundamental axes around which the ad hoc teamwork problem should be for-
mulated. Although most existing work on ad hoc teamwork has not considered
the task identification problem, we defend that this is an important challenge
that should not be overlooked, and is already implicit in the original descrip-
tion of the ad hoc teamwork problem [60].

Considering the ad hoc teamwork problem from the 3-axis perspective
above, one can identify several closely related problems in the literature that
address each of the challenges in Fig. 1 separately. For example, it is possible to
identify task identification with the literature on plan recognition [37], inverse
reinforcement learning [1] and related topics, where an agent must identify a
target task from the observed behavior of other agent(s). Similarly, it is possi-
ble to identify teammate identification with the large body of work on learning
in games [20] and opponent modeling [21, 48], where an agent must predict
the behavior of other agents from observing their actions. Finally, planning
is clearly related with the growing body of work on decentralized/distributed
planning [27, 52]. We refer to the work of Stone et al [60] for a detailed dis-
cussion on the relation between ad hoc teamwork and other related areas of
research.

2 In the nomenclature of Fig. 1, we take planning in its broadest acception, which includes
any offline and/or online reasoning about which actions to take towards the agent’s goal,
and is a process tightly coupled with acting.

6 F.S. Melo and A. Sardinha

We conclude by noting that, in many actual problems, it may be difficult
to draw a clear separation between the three challenges identified above, or
address them independently. In fact, it is possible that in many scenarios, these
challenges are actually tackled simultaneously. For example, task identification
will typically require some sort of model for the teammates (from the teammate
identification step) that enables the ad hoc agent to make sense of their actions
in terms of the task.

2.2 Related Work

To the best of our knowledge, most research on ad hoc teamwork is focused
on the planning step, relying on different assumptions that simplify the other
challenges associated with it. For instance, Stone and Kraus [58] propose one
of the first algorithms for ad hoc teamwork. The authors formulate the ad hoc
teamwork problem using the formalism of multi-armed bandits, in order to
maximize the expected sum of payoffs. The work considers a scenario with two
agents (a teacher and a learner agent) that have a task of collecting discarded
aluminum cans from three ocean beaches for recycling. This precursor work
shares with our own approach the use of an online learning approach for action
selection. The main difference of our approach is the explicit reasoning about
task identification and the consideration of an adaptive teammate model.

In a different work, Stone et al [61] describe an algorithm for an ad hoc
agent to lead a best response agent to perform actions that yield optimal
joint utility. Agmon and Stone [2] extend the work of Stone et al [61] to the
more general problem of leading N -agent teams, adopting a game-theoretic
analysis; however, instead of leading the team to the optimal joint utility, the
ad hoc agent leads the team to the optimal reachable joint action. Genter
et al [23] are concerned with how ad hoc agents can lead a flock of agents to a
desired orientation, and propose an initial theoretical and empirical analysis of
the problem. In our work, we also assume teammates to behave according to a
bounded-rationality best-response model. However, these works focus on tasks
where the ad hoc agent must lead the other agents, and are thus concerned
with the planning step of the ad hoc problem. Our work introduces the notion
of task identification and teammate identification as important steps, so that
the planning step can select the action of the ad hoc agent accordingly.

Barrett and Stone [5] present a framework for analyzing ad hoc team prob-
lems, by defining three dimensions along which to conduct such analysis. First,
team knowledge is related to the knowledge that the ad hoc agent has about his
teammates’ behaviors. Second, environment knowledge is another dimension
of how much knowledge does the ad hoc agent have of its environment. Lastly,
reactivity of teammates is concerned with how much its teammates actions can
affect the ad hoc agent’s decision. This vision is closely aligned with our own
perspective depicted in Fig. 1. In fact, lack of team knowledge results in the
need for team identification; task identification can be cast as lack of environ-
ment knowledge. Moreover, our paper considers teammates whose behavior

Ad Hoc Teamwork by Learning Teammates’ Task 7

adapts (in a best-response sense) to the behavior of the ad hoc agent, which is
closely related with agent reactivity. Our paper goes beyond this analysis and
proposes two novel approaches to address the ad hoc teamwork problem.

Genter et al [22] propose a role-based approach for ad hoc teams, where an
agent must identify a role, within a set of possible roles, that yields optimal
utility for the team. The work also shows that the approach has a predictive
nature, whereby the method can be trained for a task and used successfully
for another task. In a related work, Liemhetcharat and Veloso [41] introduce
the notion of weighted synergy graph for role assignment that enables a set of
agents (represented as vertices in the graph) to reason about team formation.
Given a set of agents and a task for which different roles are necessary, the
synergy graph is used to approximate the optimal role assignment for the team.
One key difference between the two aforementioned works and our own lies
on the fact that the former assume that the task is known a priori, while our
work assumes that the agent does not know the task beforehand. Interestingly,
it is possible to look at the problem of team formation of Liemhetcharat and
Veloso [41] as preceding the ad hoc teamwork problem addressed in our paper:
while the former focuses on selecting the teammates with which to work, the
latter focuses on actually working with those teammates.

Chakraborty and Stone [13] present a learning algorithm for ad hoc agents
and a theoretical analysis of the planning step that yields optimal coopera-
tion when the teammate is assumed to be Markovian. A teammate behavior
is assumed to be Markovian when the policy is a function of a set of features,
where each feature is a statistic computed from the joint action history, and
the dynamics of the interaction can be modeled as a Markov Decision Pro-
cess (MDP). Like the aforementioned work, we also rely on a specific type of
Markovian teammate model (i.e., a history-based best-response model).

In order to empirically evaluate ad hoc teams, Barrett and Stone [4] present
a study of several ad hoc teamwork strategies in a more open and complex
teamwork domain, the pursuit domain, which has been frequently used in the
multiagent systems literature [59]. In a subsequent work [7], the same authors
extend the previous ad hoc teamwork strategies to make use of a library of
learned teammates’ models and uses it for the planning step. This approach is
closely related to our online learning approach although, as with other works,
the authors address only the teammate identification and planning steps, as-
suming knowledge of the target task.

Game theory provides a strong theoretical framework to analyze multia-
gent interaction [40], and results from iterated play in normal form games have
been adapted to address ad hoc teamwork. For instance, Wu et al [66] propose
an online planning algorithm, where the planning problem is approximated
by solving a series of stage games. Albrecht and Ramamoorthy [3] formulate
the coordination problem in ad hoc teams as a stochastic Bayesian game and
derive a best response rule. Our work is also based on a game-theoretic frame-
work: tasks are modeled as K -player fully cooperative games, and teammate

8 F.S. Melo and A. Sardinha

identification is performed using fictitious play.3 Additionally, the theoretical
analysis of our decision-theoretic approach parallels existing work on Bayesian
learning in games [20].

Summarizing, ad hoc teamwork is a new and exciting research area already
featuring a rich body of literature, although most existing work has focused on
relevant subproblems of the more general formulation summarized in Fig. 1.
In particular, most existing approaches assume that the target task is known
in advance, and focus either on teammate identification or planning. In this
paper, the target task is assumed unknown, and the ad hoc agent must identify
the target task among a set of possible tasks, besides coordinating with the
teammates towards completion of the target task. To this purpose, we rely
on a bounded-memory best-response model for the teammates, so that the
teammates’ actions can be interpreted in terms of possible target tasks. We
propose two novel approaches to the ad hoc teamwork problem, the first of
which uses an online learning approach and the second of which relies on
a decision-theoretic formulation. We provide theoretical guarantees for the
performance of both methods and discuss the underlying assumptions and
implications.

3 Tackling the Ad Hoc Teamwork Problem

This section sets up the notation used throughout the paper, formalizes the
problem and introduces the main technical contributions of the paper.

3.1 Notation and Nomenclature

We henceforth represent a K-player fully cooperative matrix game as a tuple
Γ = (K, (Ak), U), where Ak, k = 1, . . . ,K, denotes the set of pure strategies
available to player k, and U denotes the payoff matrix associated with the
game. U(a) thus denotes the payoff received by all agents for executing the
pure strategy a ∈ A, where A = ×Kk=1Ak.

In spite of the game-theoretic framework, we follow the nomenclature of
Stone et al [60] and refer to players as agents and to pure strategies as actions.
Ak thus represents the action-space of agent k, i.e., the set of individual actions
available to agent k at each time-step. Similarly, A is the set of joint actions,
and we write a = 〈a1, . . . , aK〉 to explicitly indicate that the joint action a
results from the individual actions a1, . . . , aK .

We refer to a mapping πk : Ak → [0, 1] such that
∑
ak∈Ak πk(ak) = 1 as

an individual policy for agent k. Intuitively, πk(ak) represents the probability
of agent k executing its individual action ak. A joint policy π can be obtained

3 Fictitious play is a common approach used for learning in games [20]. In the classical
fictitious play setting, agents play best response strategies against fixed strategy opponents.

Ad Hoc Teamwork by Learning Teammates’ Task 9

from individual policies π1, . . . , πK as

π(a) =

K∏
k=1

πk(ak)

where, as before, a = 〈a1, . . . , aK〉. As with actions, we write π = 〈π1, . . . , πK〉
to explicitly indicate that the joint policy π results from the individual policies
π1, . . . , πK . We denote by a−k and π−k a reduced joint action and a reduced
joint policy, respectively, defined as

a−k = 〈a1, . . . , ak−1, ak+1, . . . , aK〉 ,
π−k = 〈π1, . . . , πk−1, πk+1, . . . , πK〉 .

3.2 Problem Formulation

Consider a known set of tasks, T , each described as a fully cooperative matrix
game Γτ = (K, (Ak), Uτ), τ ∈ T . In each instance of the ad hoc teamwork
problem, a target task T ∗ ∈ T is selected randomly according to some known
probability distribution p0, with

p0(τ) = P [T ∗ = τ] , τ ∈ T .

All agents repeatedly engage in the corresponding game, ΓT∗ selecting, at each
time-step n, an action Ak(n) ∈ Ak according to some individual policy πk.
The individual actions are selected simultaneously and without communication,
implying that each agent does not know beforehand the actions that the other
agents will select.

In general, the individual action selected by an agent k may depend, at
each time-step n + 1, on the history up to that time-step, denoted as the
random variable (r.v.) H(n):

H(n) = {A(t), t = 1, . . . , n}

where A(t) is the r.v. corresponding to the joint action of all agents at time-
step t. Formally, if h1:n denotes a particular instance of H(n), we have

πk(h1:n, ak) , P [Ak(n+ 1) = ak | H(n) = h1:n] .

The ad hoc teamwork problem can now be formalized as a sequential deci-
sion problem in which one agent (the ad hoc agent) is paired with a team of
K − 1 other agents to cooperatively perform the target task, T ∗. To simplify
our presentation, we henceforth refer to the ad hoc agent as agent α, and in-
terpret the remaining K − 1 agents as a single “meta-agent”, denoted as agent
−α, that is aware of the target task, T ∗. Agent α does not know in advance
the task to be performed or how its teammates act towards performing it and
must, therefore,

10 F.S. Melo and A. Sardinha

– Determine, by observing the actions of the other agents, which is the task
to be performed (task identification in Fig. 1);

– Determine, again by observing the actions of the other agents, what is the
strategy of its teammates (teammate identification in Fig. 1)

– Act accordingly (planning in Fig. 1).

It is worth emphasizing that although the tasks in T are represented as
fully cooperative matrix games, this representation is internal to the ad hoc
agent. In particular, the teammate agents do not necessarily have the same
internal representation of the task—or any explicit representation at all. The
particular process by which the teammates select their action is unknown to
the ad hoc agent and this lack of knowledge is the core of the ad hoc teamwork
problem. It follows that the agents do not receive any actual payoff from the
environment, and payoff information cannot be used by the ad hoc agent for
the purpose of learning.

To some extent, our setting is close to that of inverse reinforcement learning
(IRL), where an agent must identify a target task from the observation of the
actions of another agent (the expert) [45]. In IRL, the learning agent is provided
with a set of reward functions that represent potential tasks, and the agent
must then determine which reward function better explains the behavior of the
expert, without receiving any additional feedback (such as reward) from the
environment. The main difference from IRL and the ad hoc setting considered
herein is that, in our case, the learning agent is “co-acting” with the expert
(the teammate), and the actions of the latter depend on the actions of the
former, in light of the dependence of π−α on the history.

In this sense, our work is also closely related with reinforcement learning
(RL) where an agent must learn an optimal line of action by interacting with
its environment and other existing agents [42, 62]. However, unlike the stan-
dard RL setting, the ad hoc agent α receives no evaluative feedback from the
environment.

We now revisit Example 1, and illustrate how the e-commerce scenario can
be modeled using the above formalism.

Example 1 (cont.) To formulate the e-commerce scenario as an ad hoc
teamwork problem, we consider that both parts used to assemble the
PC package can be purchased from one of two suppliers: Supplier A and
Supplier B. The price of each part and the shipping costs are different
for each supplier and are summarized in Table 1. For every purchase,
each agent must pay the shipping costs, except if both agents order
from the same suppliers, in which case shipping costs are charged only
once. Recall that, although both agents are able to assemble any of the
two elements, one agent is optimized to build LCD monitors, while the
other is optimized to build the desktop computer. This optimization
translates in savings of $2.

We can now use the information above to construct the payoff ma-
trix for each of the two tasks, namely “Replace the legacy agent opti-
mized to build LCD Monitors” and “Replace the legacy agent optimized

Ad Hoc Teamwork by Learning Teammates’ Task 11

Table 1 Price and shipping cost of different parts

LCD Panel Price Motherboard Price Shipping cost

Supplier A $10 $7 $2
Supplier B $7 $7 $5

to build desktop computers”. The former task can be represented by the
payoff matrix in Fig. 2, while the latter can be represented by the pay-
off matrix in Fig. 3. Each element of the payoff matrices represents the
marginal profit of the company in a single production cycle.

A, LCD B, LCD A, Motherboard B, Motherboard
A, LCD −22 −24 6 1
B, LCD −24 −19 4 6

A, Motherboard 4 2 −16 −21
B, Motherboard −1 4 −21 −19

Fig. 2 Payoff matrix for the task “Replace the agent optimized to build LCD Monitors”.

A, LCD B, LCD A, Motherboard B, Motherboard
A, LCD −22 −24 4 −1
B, LCD −24 −19 2 4

A, Motherboard 6 4 −16 −21
B, Motherboard 1 6 −21 −19

Fig. 3 Payoff matrix for the task “Replace the agent optimized to build desktop computers”.

In order to understand the values in the payoff matrices, let us con-
sider some of the entries in Fig. 2. We start with the situation where the
legacy agent (corresponding to the column player) procures a mother-
board from supplier A and the ad hoc agent (corresponding to the row
player) procures an LCD panel from supplier A. This situation corre-
sponds to the shaded cell in the first row of the matrix. The total cost
of the parts will be $10 + $7 = $17. Since both agents procured the
parts from the same supplier, the shipping costs ($2) are only charged
once. The PC package is sold for $25, which corresponds to a profit of
$25− $17− $2 = $6.

Suppose now that the legacy agent procures an LCD panel from
supplier A and the ad hoc agent procures an LCD panel from supplier B.
This situation corresponds to the shaded cell in the second row of Fig. 2.
In this case, the total cost of the parts will again be $10 + $7 = $17,
but both agents must now pay shipping costs ($2+$5 = $7), since they
procured the parts from different suppliers. Thus, the total amount

12 F.S. Melo and A. Sardinha

paid is $17 + $7 = $24; however, since a computer package cannot
be assembled from two LCD monitors, the agents do not receive any
income and hence the payoff is −$24.

Finally, if the legacy agent procures an LCD panel from supplier B
and the ad hoc procures a motherboard from the same supplier (cor-
responding to the shaded cell in the last row of Fig. 2), the cost of the
parts will be $14 and the corresponding shipping costs will be $5. Since
the legacy agent is optimized to build desktop computers and not LCD
monitors, this translates into an additional production cost of $2, and
the final payoff yields $25− $14− $5− $2 = $4.

Note that both payoff matrices yield the same equilibria. In other
words, if we fix the action of one agent, the best response of the other
agent is the same in both tasks. This particular feature of the payoff
matrices plays an important role in understanding the differences in
behavior between the two approaches proposed herein. �

In our approaches, we do not address the ad hoc teamwork problem in its
full generality, and instead consider the following simplifying assumption. Al-
though with different teammate models, similar assumptions were considered
in previous works [2, 61].

Assumption 1 (Bounded Rationality) Let h1:n = {a(1), . . . , a(n)} denote
a specific instance of H(n), n ≥ N , and let

V̂ (h1:n, a−α) =
1

N

N−1∑
t=0

UT∗(〈aα(n− t), a−α〉).

Then π−α(h1:n, a∗−α) > 0 only if a∗−α ∈ argmaxa−α V̂ (h1:n, a−α).4

Assumption 1 states that the teammate agent uses, at most, the N past
observations to select its individual action5, i.e.,

π−α(h1:n, a
∗
−α) = P [Ak(n+ 1) = ak | a(n), . . . , a(n−N + 1)] .

Additionally, it does so by selecting a best response to the actions of agent
α, computing the expected payoff of each of its individual actions given the
history, V̂ (h1:n, a−α), and selecting an individual action among those that
maximize V̂ (h1:n, a−α). In this sense, the teammate agent follows a fictitious
play policy [20]. Assumption 1, to some extent, reduces the space of possible
teammate models considered by the ad hoc agent. However, this does not
liberate the ad hoc agent from conducting teammate identification—in general,

4 For 0 < n < N , we define

V̂ (h1:n, a−α) =
1

n

n∑
t=1

UT∗ (〈aα(t), a−α〉).

For n = 0 and for all a−α ∈ A−α, we define V̂ (h1:n, a−α) = V̂ (h0, a−α) = 0.
5 These teammates are also known as memory-bounded best response agents.

Ad Hoc Teamwork by Learning Teammates’ Task 13

the teammate agents will have multiple best response actions available, and
the ad hoc agent must identify exactly how the teammates select their action
from this set of best response actions.

Finally, Assumption 1 explicits the inductive bias of the learning process
taking place in the ad hoc agent, as it establishes that the actions of the
teammate agents implicitly provide information on the target task.

3.3 Online Learning Approach to Ad Hoc Teamwork

In a first approach to the ad hoc teamwork problem formulated in Section 3.2,
we require the ad hoc agent, at each time-step n, to predict the action of its
teammate, A−α(n), using the bounded rationality model specified in Assump-
tion 1. To better understand the rationale behind this approach, we note that
the ability of the ad hoc agent to predict the action of its teammate is a good
indicator of whether the ad hoc agent has successfully identified both the tar-
get task and the teammates’ strategy. An ad hoc agent that is able to perfectly
predict the actions of its teammate will generally be able to perform well—or,
at least, no other agent can be expected to perform better without additional
knowledge of the target task.

To this purpose, at each time-step n the ad hoc agent α selects an action
Â(n) = 〈Aα(n), Â−α(n)〉 and incurs a loss given by

`(Â(n), A−α(n)) = 1− δ(Â−α(n), A−α(n)), (1)

where δ denotes the Kroneker delta function, taking the value 1 if its two
arguments are equal, and 0 otherwise. The loss in (1) thus penalizes wrong
predictions regarding the actions of the teammate.

With the loss defined in (1), it is possible to recast the ad hoc teamwork
problem as a simple online learning problem, for which a rich body of work
exists [12]. The remainder of this subsection details the construction of such
online learning problem, and the corresponding application of a standard pre-
diction algorithm, providing some general performance guarantees.

Define, for each τ ∈ T and n ≥ N ,

V̂ kτ (h1:n, ak) =
1

N

N−1∑
t=0

Uτ (〈ak, a−k(n− t)〉), k = α,−α.6 (2)

For each task τ ∈ T , V̂ kτ (h1:n, ak) represents the estimated value of each
individual action of agent k considering the history of past actions of all other
agents. We can also define the associated set of maximizing actions as

Âkτ (h1:n) = argmax
ak∈Ak

V̂ kτ (h1:n).

6 For n < N , we extend the definition as in footnote 4.

14 F.S. Melo and A. Sardinha

Associated with each task τ ∈ T we define an expert as a mapping Eτ :
H×A → [0, 1] such that

Eτ (h1:n, a) = Eατ (h1:n, aα)E
−α
τ (h1:n, a−α),

where H is the set of all finite histories and

Ekτ (h1:n, ak) =

{
1

|Âkτ (h1:n)| if ak ∈ Âkτ (h1:n)

0 otherwise
, k = α,−α. (3)

Intuitively, expert Eτ can be interpreted as providing, at the same time, (i) a
(probabilistic) prediction on the behavior of the teammate agent based on the
history and on the fact that the target task may be τ ; and (ii) a (probabilistic)
suggestion of the best action to make if the target task is τ , based on the recent
history of actions of the teammate.

More generally, we define a predictor as any mapping P : H × A → [0, 1]
such that, for any history h1:n,∑

a∈A
P (h1:n, a) = 1.

The value P (h1:n, a) can thus be seen as an estimate of the probability that
A(n+ 1) is action a ∈ A given that H(n) = h1:n, and essentially corresponds
to a generalization of the notion of expert previously introduced.

If, at time-step n+ 1, the teammate agent plays action a−α, we represent
the expected loss of expert Eτ given history h1:n as

`τ (h1:n, a−α) = EEτ (h1:n)

[
`(Â, a−α)

]
,
∑
a′∈A

Eτ (h1:n, a
′)`(a′, a−α), (4)

and the expected loss of predictor P given history h1:n as

`P (h1:n, a−α) ,
∑
a′∈A

P (h1:n, a
′)`(a′, a−α), (5)

The cumulative loss of expert Eτ at time-step n given the history h1:n is now:

Lτ (h1:n) ,
n−1∑
t=0

`τ (h1:t, a−α(t+ 1)),

where a−α(t) represents the teammate action played at time-step t according
to history h1:n. Similarly, the cumulative loss of predictor P is given by

LP (h1:n) =

n−1∑
t=0

`P (h1:t, a−α(t+ 1)).

Solving the ad hoc teamwork problem, in this context, consists in deter-
mining a predictor P that minimizes the expected regret, given by

Rn(P, E) = E [LP (h1:n)− Lτ (h1:n)] , (6)

Ad Hoc Teamwork by Learning Teammates’ Task 15

Algorithm 1 Exponentially weighted forecaster for the ad hoc teamwork
problem.

1: Initialize w(0)
τ = 1, h = ∅, t = 0.

2: for all t do
3: Let t← t+ 1
4: Let

P (h, a) =

∑
τ∈T w

(t)
τ Eτ (h, a)∑

τ ′∈T w
(t)
τ ′

5: Select action Â(t) = argmaxa∈A P (h, a)
6: Observe action A−α(t)
7: Compute loss `τ (h,A−α(t)) as in (4), τ ∈ T
8: Update

w(t)
τ ← w(t−1)

τ · e−γt`τ (h,A−α(t))

9: end for

where E = {Eτ , τ ∈ T }. We consider the well-known exponentially weighted
average predictor [12], given by

P (h1:n, â) ,

∑
τ∈T e

−γnLτ (h1:n)Eτ (h1:n, â)∑
τ∈T e

−γnLτ (h1:n)
, (7)

where γn is a positive parameter. The exponentially weighted average predictor
predicts the probability of observing each action â ∈ A by weighting the
predictions of each of the experts Eτ , τ ∈ T . The online learning approach is
summarized in Algorithm 1.

The following result follows from well-established properties of the expo-
nentially weighted average predictor [12].

Theorem 1 If γt =
√
2 ln |E| /t1/2 for all t > 0 then, for any finite history

h1:n ∈ H,

Rn(P, E) ≤
√
n

2
ln |E|. (8)

Proof See Appendix A.1. ut

Theorem 1 prompts several important observations. First of all, we note
that the bound above provides a minor improvement over previous existing
bounds [12, Theorem 2.3] and matches the optimal bound for this class of
prediction problems [12]. This result does not depend on the particular setting
considered in this paper and is of independent interest per se.

A second remark concerns the interpretation of the bound in light of the
ad hoc teamwork problem. Theorem 1 states that, in the worst-case, the loss
sustained by our agent P scales logarithmically with the number of possible
tasks that the ad hoc agent may consider, meaning that the performance of
the agent does not deteriorate significantly as the number of tasks considered

16 F.S. Melo and A. Sardinha

increases. However, the fact that the bound in (8) is a worst-case bound implies
that the performance of the algorithm will often be significantly superior.

Thirdly, it follows from Theorem 1 that our exponentially weighted average
forecaster is a no-regret algorithm, since

lim
n→∞

1

n
Rn(P, E) = 0.

However, in the online learning approach just described (and in the corre-
sponding analysis), we have overlooked a key issue in our ad hoc teamwork
problem formulation. In particular, we have not considered the impact that
the actions of agent α have on the action selection of agent −α. In other words,
the bound in Theorem 1 measures the predictive ability of the ad hoc agent
against that of the “experts” Eτ , τ ∈ T , for any possible but fixed history hn.
In this sense, the bound in Theorem 1 may be somewhat misleading, and an
approach closer to that of de Farias and Megiddo [15] would be more suited.

In the next section, we propose a more evolved approach to overcome the
limitations just identified. In the remainder of this section, we revisit the Ex-
ample 1, and illustrate the application of the online learning approach.

Example 1 (cont.) To illustrate the online learning approach, we con-
sider the possible tasks defined by the payoff matrices in Figures 2
and 3. We refer to the task “Replace the agent optimized to build LCD
Monitors” as task τ1 and the task “Replace the agent optimized to build
desktop computers” as task τ2.

For concreteness, we henceforth consider that T ∗ = τ2 (i.e., the
target task is to “Replace the agent optimized to build desktop com-
puters”), and that the ad hoc agent has a uniform prior over which is
the target task. Using the notation from Section 3.2, we have

Aα = A−α = {(A, LCD), (B, LCD), (A, MB), (B, MB)} , (9)

and p0(τ1) = p0(τ2) = 0.5. In (9), we used a short hand notation to
represent the actions, where (Z,W) indicates the action of purchasing
part W from supplier Z.

Upon deployment, no production cycle has taken place, so the ad
hoc agent’s action choice is done over the empty history, h0 = {}. Using
(2),

V̂ ατ1(h0, (A, LCD)) = V̂ ατ1(h0, (B, LCD)) = 0,

V̂ ατ1(h0, (A, MB)) = V̂ ατ1(h0, (B, MB)) = 0,

V̂ ατ2(h0, (A, LCD)) = V̂ ατ2(h0, (B, LCD)) = 0,

V̂ ατ2(h0, (A, MB)) = V̂ ατ2(h0, (B, MB)) = 0.

Ad Hoc Teamwork by Learning Teammates’ Task 17

Since all actions are equally valued, the ad hoc agent will randomly
select an action from Aα. Similarly,

V̂ −ατ1 (h0, (A, LCD)) = V̂ −ατ1 (h0, (B, LCD)) = 0,

V̂ −ατ1 (h0, (A, MB)) = V̂ −ατ1 (h0, (B, MB)) = 0,

V̂ −ατ2 (h0, (A, LCD)) = V̂ −ατ2 (h0, (B, LCD)) = 0,

V̂ −ατ2 (h0, (A, MB)) = V̂ −ατ2 (h0, (B, MB)) = 0,

and the ad hoc agent will predict an action uniformly at random from
A−α.

For concreteness, let us suppose that the ad hoc agent choses action
A1(1) = (B, LCD), its prediction regarding the legacy agent’s action
is Â2(1) = (A, MB), and the legacy agent actually selects the action
A2(1) = (A, LCD). The history after this first production cycle is now
h1 = {〈(B, LCD), (A, LCD)〉}. Moreover, from (4) and (5),

Lτ1(h1) = 1, Lτ2(h1) = 0.5, LP (h1) = 0.75

and R0(P, E) = 0.25.
Moving into the second step, we have:

V̂ ατ1(h1, (A, LCD)) = −22, V̂ ατ1(h1, (B, LCD)) = −24,
V̂ ατ1(h1, (A, MB)) = 4, V̂ ατ1(h1, (B, MB)) = −1,
V̂ ατ2(h1, (A, LCD)) = −22, V̂ ατ2(h1, (B, LCD)) = −24,
V̂ ατ2(h1, (A, MB)) = 6, V̂ ατ2(h1, (B, MB)) = 1,

and the ad hoc agent will select the action A1(2) = (A, MB). Similarly,

V̂ −ατ1 (h1, (A, LCD)) = −24, V̂ −ατ1 (h1, (B, LCD)) = −19,
V̂ −ατ1 (h1, (A, MB)) = 4, V̂ −ατ1 (h1, (B, MB)) = 6,

V̂ −ατ2 (h1, (A, LCD)) = −24, V̂ −ατ2 (h1, (B, LCD)) = −19,
V̂ −ατ2 (h1, (A, MB)) = 2, V̂ −ατ2 (h1, (B, MB)) = 4.

Therefore, the ad hoc agent will predict that its teammate will play (B,
MB). Since T ∗ = τ2, Â2(2) = (B, MB), and we have

Lτ1(h2) = 1, Lτ2(h2) = 0.5, LP (h2) = 0.75,

and R1(P, E) = 0.25. Continuing this process, we can empirically esti-
mate the regret of the exponentially weighted average forecaster.

Figure 4 depicts the average cumulative regret suffered by our pro-
posed predictor during 100 time-steps, comparing it with the theoretical
bound in Theorem 1. It is clearly observable that the regret against the
best expert remains constant after a couple time-steps, indicating that,
indeed, the exponentially weighted average forecaster used in this exam-
ple is able to identify the strategy of the teammate after only a couple

18 F.S. Melo and A. Sardinha

0 20 40 60 80 100
−1

0.4

1.8

3.2

4.6

6
Average regret

Time−step

R
eg

re
t

Actual
Theoretical

Fig. 4 Average cumulative regret of the exponentially weighted average predictor in the e-
commerce scenario. This result corresponds the average of 1, 000 independent Monte-Carlo
trials.

iterations. We also observe that, as expected, the theoretical bound
largely overestimates the regret, since in this case the tasks considered
have a well-defined set of optimal actions, which leads to a significant
improvement over the worst-case performance. Finally, although coor-
dination is quickly attained, the structure of the payoff matrices does
not enable the ad hoc agent to unambiguously identify the target task.

�

3.4 Decision-theoretic approach to ad hoc teamwork

In this section, we improve on the online learning approach described in Sec-
tion 3.3, considering two additional elements available to the ad hoc agent:

(i) The prior knowledge about the target task, encoded in the distribution
p0;

(ii) The impact of the actions of agent α on those of the teammate agent.

The two elements, (i) and (ii), impact our approach in distinct ways. The
consideration of the prior p0, alluded to in (i), suggests a Bayesian approach
to the ad hoc teamwork problem, possibly along the lines of the seminal work
of Gittins [26] or the more recent works of Kauffman et al [35, 36].

As for (ii), as briefly discussed in Section 3.3, it impacts the way in which
regret is defined. In particular, the performance of our predictor should not
be measured against that of the best expert given the observed history, but
against that of the best expert for the history that would be observed, had our
prediction followed that expert from the start. Previous works that consider
the effect of the predictor P on the experts include that of de Farias and
Megiddo [15] and generalizations thereof [12].

Ad Hoc Teamwork by Learning Teammates’ Task 19

We model our ad hoc agent using a decision-theoretic framework, where
the goal of the agent is to minimize the expected loss (w.r.t. its ability to
predict the action of the teammate agent), while simultaneously maximizing
the payoff in the target task.7 In this formulation, the target task, T ∗, is
considered an unobserved random variable. The ad hoc agent will then keep,
at each time-step n, a distribution pn over the space of possible tasks, where

pn(τ) = P [T ∗ = τ | H(n− 1)] , (10)

for all τ ∈ T . We refer to pn(τ) as the belief of agent α at time-step n about
which is the target task, and will guide the process of action selection of the
ad hoc agent.

In the continuation, we describe the decision-theoretic framework of par-
tially observable Markov decision problems (POMDP) in full generality, before
instantiating this particular framework to the ad hoc teamwork problem.

Partially Observable Markov Decision Problems

Partially observable Markov decision problems (POMDPs) provide a general
framework to model sequential decision problems in the face of uncertainty
[33]. At each time step, and depending on its perception of the environment,
the agent in a POMDPmust select an action from its action repertoire, in order
to maximize a numerical reward signal. Actions determine how the state of
the environment evolves through time and, depending on such state, different
actions apport a different reward for the agent.

The state of the environment is the set of all features of the environment
that are relevant for the agent to choose its actions optimally. Ideally, the agent
should be able to unambiguously perceive all such features. In a POMDP, how-
ever, the agent has limited sensing capabilities and is not able to completely
determine the current state of the system.

A POMDP can thus be represented as a tuple M = (X ,A,Z,P,O, r, γ),
where:

– X is the state-space. The state of the environment at time-step n is a r.v.
X(n) taking values in X .

– A is the action-space. At each time-step, the agent must select an action
from A. We denote the action at time-step n as a r.v. A(n) taking values
in A.

– Z is the observation-space. The observation made by the agent at time-step
n is represented as the r.v. Z(n) taking values in Z. Since this observation
depends on the state X(n) of the environment, the agent can use Z(n) to
track the underlying state X(n).

7 These are two distinct goals, and both must be reflected in the POMDP formulation.
While the former seeks to identify the target task, the latter seeks to play that task as well
as possible.

20 F.S. Melo and A. Sardinha

– P represents the transition probabilities that encode how the state X(n)
evolves as a function of the agent’s actions. In particular,

P(x′ | x, a) , P [X(n+ 1) = x′ | X(n) = x,A(n) = a] .

– O represents the observation probabilities that encode how the observations
Z(n) depend on the state X(n) and on the agent’s actions. In particular,

O(z | x, a) , P [Z(n+ 1) = z | X(n+ 1) = x,A(n) = a] .

– Finally, the function r : X ×A → R is the reward function that implicitly
encodes the goal of the agent. The value r(x, a) represents the immediate
reward for performing action a in state x.

The goal of the agent in a POMDP is to select its actions so as to maximize
the total reward received throughout its lifetime. Formally, this corresponds
to selecting the actions that maximize the value

J = E

[∞∑
n=0

γnr(X(n), A(n))

]
,

where γ is a constant known as the discount factor and is such that 0 ≤ γ < 1.
Standard approaches to solving POMDPs involve tracking the underlying

state X(n) using the history of observations. Let pn be a probability distribu-
tion over X , where pn(x) represents the belief of the agent that X(n) = x, x ∈
X , i.e.,

pn(x) = P [X(n) = x | H(n)] ,

where
H(n) = {a(0), z(1), a(1), . . . , a(n− 1), z(n)} .

Given that the action at time-step n was A(n) = a, and the subsequent ob-
servation was Z(n + 1) = z, the updated belief pn+1 can be computed, com-
ponentwise, as a function of pn, a and z as

pn+1(x
′) = B(pn, z, a)x′ , ξ

∑
x∈X

pn(x)P(x
′ | x, a)O(z | x′, a), (11)

where ξ is a normalization constant. It is now possible to define an optimal
decision rule that maps, at each time-step n, the belief pn to an action in A
[33]. This rule is time-invariant and simply selects, at each time-step n, an
action A(n) verifying

A(n) ∈ argmax
a∈A

∑
x

pn(x)

r(x, a) + γ
∑
x′,z

P(x′ | x, a)O(z | x′, a)V ∗(B(pn, z, a))

 ,
where V ∗ is the solution to the recursive relation

V ∗(pn) = max
a∈A

∑
x

pn(x)

r(x, a) + γ
∑
x′,z

P(x′ | x, a)O(z | x′, a)V ∗(B(pn, z, a))

 .

Ad Hoc Teamwork by Learning Teammates’ Task 21

Unfortunately, partially observable Markov decision problems are generally
undecidable [43], and V ∗ cannot be computed exactly. Instead, a wide-range
of approximate methods are available in the literature, the most popular of
which are, perhaps, point-based methods [46]. In this paper, we adopt the
popular Perseus point-based algorithm [56].

POMDP formulation of the ad hoc teamwork problem

In order to apply the Perseus algorithm to the ad hoc teamwork problem,
we start by formulating the latter as a POMDPM = (X ,A,Z,P,O, c, γ). Let
HN (n) denote the last N actions in the history H(n), i.e.,

HN (n) = {A(n−N + 1), . . . , A(n)} ,

and let HN denote the set of all such sub-histories. We have, then,
– The state, at time-step n, is the r.v. X(n) = (HN (n−1), T ∗) taking values

in the state-space X = HN × T .
– The action-space is A = Aα × A−α. As in Section 3.3, the ad hoc agent

must select, at each time-step n, an action Â(n) = 〈Aα(n), Â−α(n)〉, where
Aα(n) is its individual action, and Â−α is its prediction of the action of
the teammate agent.

– The observation-space is Z = A−α. After selecting an action Â(n) at time-
step n, agent α makes an observation Z(n+1) corresponding to the action
A−α(n) just selected by its teammate agent. The component XH(n) of the
state is, therefore, fully observable, i.e., it is unambiguously perceived by
agent α.

– The transition probabilities that encode how the state X(n) evolves as a
function of the agent’s actions can be factored in two components. One
component describes the dynamics of the target task, XT (n), which re-
mains unchanged, since the target task does not change. Formally, this
corresponds to

PT (τ
′ | τ, a) , P [XT (n+ 1) = τ ′ | XT (n) = τ,A(n) = a]

= δ(τ, τ ′)

where, as before, δ denotes the Kronecker delta function. On the other
hand, the component of X(n) corresponding to the history, XH(n), is up-
dated to include the latest action of both agents. Formally, if we consider
two histories h′, h ∈ HN such that h′1:N−1 = h2:N , let a′(N) denote the
most recent action in h′, where a′(N) =

〈
a′α(N), a′−α(N)

〉
. Then, for any

a ∈ A,

PH(h
′ | h, τ, a) , P [XH(n+ 1) = h′ | XH(n) = h,XT (n) = τ,A(n) = a]

= E−ατ (h, a′−α(N))δ(aα, a
′
α(N)),

where E−ατ is defined in (3). Finally,

P(h′, τ ′ | h, τ, a) = PT (τ
′ | τ, a)PH(h′ | h, τ, a).

22 F.S. Melo and A. Sardinha

– The observation probabilities that encode the dependence of the observa-
tion Z(n+ 1) on the state X(n+ 1) and the agent’s action can be written
as

O(a′−α | h, τ, a) , P
[
Z(n+ 1) = a′−α | X(n+ 1) = (h, τ), A(n) = a

]
= δ(a′−α, a−α(N)),

where a(N) is the most recent action in h and a(N) = 〈aα(N), a−α(N)〉.
– The reward function r is given by

r(h, τ, a) =

(
1−

∑
â∈A

Eτ (h, â)`(â, a)

)(∑
â∈A

Eτ (h, â)Uτ (aα, â−α)

)
−
∑
â∈A

Eτ (h, â)`(â, a)max
a
|Uτ (a)| ,

(12)

where the loss ` is defined in (1). Note that the reward function accounts
for each of the action components.

The reward function includes two components. The first component weights
the payoff received from the interaction by the loss, implying that large losses
reduce the payoff. The second component is used to avoid pathological policies
that reduce the impact of negative payoffs by artificially augmenting the loss.

With the above definitions, we have modeled the ad hoc teamwork problem
as a partially observable Markov decision problem and are in position to apply
the Perseus algorithm. Perseus provides a decision rule P that maps beliefs
over the POMDP’s state-space, XH ×XT , to actions.

We note, however, that the history component of the state is fully observ-
able, so the agent needs only to keep a belief over the component XT (n) of
the state. As can easily be seen from the definitions above, the belief update
in (11) reduces to an update of the belief over the target task, given by:

pn+1(τ) , P [T ∗ = τ | H(n)]

= ξP [A−α(n+ 1) = a−α | T ∗ = τ,H(n) = h1:n]P [T ∗ = τ | H(n) = h1:n)]

= ξE−ατ (h1:n, a−α)pn(τ), (13)

where ξ is a normalization constant, and E−ατ is defined in (3). The deci-
sion rule P obtained from Perseus thus maps, at each time-step n, a pair
(HN (n), pn) to an action P (HN (n), pn) ∈ A, where pn denotes the belief over
T defined in (10).

Example 1 (cont.) To apply the POMDP approach to the e-commerce
scenario, we simply map the problem elements to the different POMDP
components. We have:
– X = HN × {τ1, τ2};
– A = Aα ×A−α where, as before,

Aα = A−α = {(A, LCD), (B, LCD), (A, MB), (B, MB)} .

Ad Hoc Teamwork by Learning Teammates’ Task 23

0 20 40 60 80 100
0

16

32

48

64

80
Average POMDP loss for different reward functions

Time−step

Lo
ss

Payoff + loss
Loss only
Payoff only

(a) Average loss.

0 20 40 60 80 100
0

120

240

360

480

600
Average POMDP payoff for different reward functions

Time−step

Pa
yo

ff

Payoff + loss
Loss only
Payoff only

(b) Average payoff.

Fig. 5 POMDP performance in the e-commerce scenario, for different reward functions.

– Z = A−α = {(A, LCD), (B, LCD), (A, MB), (B, MB)}.
Applying Perseus to the POMDP, we can now evaluate the per-

formance of this approach in the e-commerce scenario. We rely on the
simplicity of this scenario to investigate the impact of each reward com-
ponent on the general performance of the POMDP.

Figure 5 illustrates the performance of the POMDP approach, where
the results correspond to averages over 1, 000 independent Monte-Carlo
trials. As expected, if the reward function is defined only as a function
of the loss,

r(h, τ, a) =

(
1−

∑
â∈A

Eτ (h, â)`(â, a)

)
,

the “POMDP agent” predicts the teammate’s actions and selects its
own actions so as to maximize its predictive capability, ignoring the
impact on payoff. On the other hand, if only payoff is considered, the
reward becomes

r(h, τ, a) =
∑
â∈A

Eτ (h, â)Uτ (aα, â−α),

and the agent will essentially make random predictions, incurring in
a significant loss but improving the performance in terms of reward.
Combining the two, as in (12), the POMDP agent is able to attain the
best performance in terms of both criteria. �

To assess the performance of the obtained decision-rule P , we compare
it with that of the best expert, in terms of the corresponding total expected
reward. In particular, if T ∗ = τ∗, we define cumulative value of expert Eτ up
to time-step n as

Jτ (n, τ
∗) = Eτ

[
n∑
t=0

r(X(t), A(t))

]

24 F.S. Melo and A. Sardinha

and the cumulative value of the decision-rule P up to time-step n as

JP (n, τ
∗) = EP

[
n∑
t=0

r(X(t), A(t))

]
.

From these, the expected regret of our algorithm is defined as

Rn(P, E) = Jτ∗(n, τ
∗)− JP (n, τ∗). (14)

We have the following result.

Theorem 2 The POMDP-based approach to the ad hoc teamwork problem is
a no-regret approach, i.e.,

lim
n→∞

1

n
Rn(P, E) = 0. (15)

Proof The proof proceeds by deriving an upper bound for Rn(P, E) of the
general form

Rn(P, E) ≤ DKL (Pn‖Qn) + log
n

2
, (16)

for some adequately defined distributions Pn and Qn over the set of n-length
histories, Hn, where we write DKL (p‖q) to denote the Kullback-Liebler diver-
gence between distributions p and q.

The first term on the right-hand side of (16) measures how the possible
histories experienced by the agent are affected by the fact that the ad hoc agent
does not know the target task, while the second term bounds the deviations
between the “average history” and the “nominal history” actually experienced
by the ad hoc agent. The result follows from the fact that DKL (Pn‖Qn) ∈ o(n).

We refer to Appendix A.2 for details of the proof. ut

We conclude this section with several observations concerning the result
in Theorem 2. First of all, unlike the online learning approach featured in
Section 3.3, Theorem 2 does not provide an explicit bound on the regret. This
is due to the added complexity arising from the two issues that the decision-
theoretic approach seeks to address: the use of a Bayesian formalism to the
identification of the target task, and the consideration of the impact of the
actions of the ad hoc agent on those of the teammate agent.

Nevertheless, previous work has provided explicit bounds for the quan-
tity DKL (Pn‖Qn) in different settings, and under specific conditions (see, for
example, the work of Clarke and Barron [14]). Although the aforementioned
results do not directly apply to our settings, we conjecture that it may be
possible to extend such analysis to our case, leading to a general bound on
the regret that is O(log n). Such result would also match (up to constants) the
lower bound provided in the precursor work of Lai and Robbins [39] (see also
[35]), establishing our POMDP approach as near-optimal.

A second remark concerns the close relation between Theorem 2 and a rich
body of work from both the game-theoretic community on Bayesian learning

Ad Hoc Teamwork by Learning Teammates’ Task 25

in games [9, 18, 19, 31, 32, 34, 44] and the information-theoretic community
on convergence of Bayesian estimation [8, 14, 17, 24, 25, 28, 29, 54, 63].

Finally, it is worth noting that the potential benefits in terms of perfor-
mance arising from the POMDP approach come at a cost in complexity. In
fact, even if an approximate solver such as Perseus is used, POMDPs are
inherently hard to solve. Moreover, as the length of the history considered in
the component XH of the state increases, so does the POMDP state-space
and the corresponding planning complexity. Therefore, the two approaches
proposed herein offer a careful tradeoff between performance and complexity
that should be taken into consideration upon adopting either.

In the next section, we evaluate both proposed approaches in several test
scenarios, providing a clearer perspective on the applicability and trade-offs
involved in using each of the two proposed approaches in practical settings.

4 Empirical Evaluation

This section describes several experiments conducted to empirically validate
the properties of the two proposed approaches discussed in previous section.
For ease of presentation, we henceforth refer to an ad hoc agent running the
online learning approach of Section 3.3 as an OL agent, and an ad hoc agent
running the POMDP-based approach of Section 3.4 as a POMDP agent.

4.1 Methodology

To empirically investigate the performance of the OL and POMDP agents,
we conduct three sets of experiments, each discussed in a specific section. In
particular,

Section 4.2 discusses the performance of both proposed approaches in the
e-commerce scenario used as a running example throughout the document.
This first set of experiments illustrates the relative merits of the two pro-
posed approaches, taking advantage of the fact that the e-commerce sce-
nario is amenable to an intuitive interpretation of the results due to its
structure and simplicity. Additionally, as will become apparent, the e-
commerce scenario is also particularly adequate to assess the ability of
each of the two proposed approaches to identify and influence the strategy
of the teammate agent.

Section 4.3 extends the empirical evaluation to scenarios with no particular
structure. We analyze the scalability of both proposed approaches in terms
of (i) the number of tasks; (ii) the number of agents involved in the inter-
action; (iii) the number of actions available to each agent. To this purpose,
we evaluate the performance of the OL and the POMDP agents in random
scenarios of increasing complexity.

26 F.S. Melo and A. Sardinha

Table 2 Summary of all agents used for comparison. The last line reports the performance
indicators (loss, payoff, or both) used to evaluate the different agents.

Agent OL POMDP OL (k.t.) RL MDP

Knows T ∗ No No Yes No Yes
Preplans No Yes No No Yes
Learns online Yes No No Yes No
Has state No Yes No Yes Yes
Performance Both Both Loss-only Payoff-only Payoff-only

Section 4.4 investigates the general applicability of our approach in a bench-
mark scenario from the multi-agent literature, the pursuit domain [6, 7].
In this benchmark scenario, we conduct a qualitative comparison with a
related approach from the ad hoc teamwork literature [7].

All experiments follow a similar methodology. One ad hoc agent interacts
with one or more “legacy agents” that (i) know the target task; and (ii) are
“programmed” to adapt their actions to those of the ad hoc agent (as seen in
Section 3). From the interaction with the other agents, the ad hoc agent must
both infer the target task (corresponding to the Task Identification block of
Fig. 1) and coordinate its actions with those of the teammates (Teammate
Identification and Planning blocks in Fig. 1).

The performance of the ad hoc agents is evaluated both in terms of loss
and payoff. The loss measures the ability of the ad hoc agent to predict the
actions of the teammate agents while the payoff quantifies the overall perfor-
mance of all agents as a team. All results reported correspond to averages over
1, 000 independent Monte Carlo trials, where each trial consists of a run of 100
learning steps.

The set of tasks from which the ad hoc agent must single out the target
task is specific for each scenario and is described in the corresponding section.
In all experiments, the ad hoc agent is provided with a uniform prior over the
set of possible tasks, i.e., the agent believes that no one task is more likely to
be the target task than the others.

Agents

In the experiments reported in Sections 4.2 and 4.3, we include the performance
of several different agents that provide a baseline for comparison. The agents
reported in the experiments are summarized in Table 2. Besides the OL and
POMDP agents described in Section 3, we also evaluate the performance of

An OL Agent with known target task. [OL (k.t.)] This ad hoc agent cor-
responds to a version of the OL agent that knows the target task. It needs
only to coordinate its actions with those of the teammates, predicting the
actions of the teammate according to the correct expert, ET∗ . Setting this
agent to share the history of the OL agent enables an empirical estimate

Ad Hoc Teamwork by Learning Teammates’ Task 27

of the regret of the OL agent which, in turn, enables a comparison be-
tween the empirical performance of the latter with the theoretical bounds
reported in Theorem 1. The OL agent with a known task is evaluated in
terms of loss only.

An MDP agent. [MDP] This ad hoc agent corresponds to a version of the
POMDP agent that knows the target task. Referring back to Section 3.4,
the target task is the only component of the POMDP state that is not
observable to the ad hoc agent. As such, an agent that knows the target
task does not suffer from partial observability and can be modeled using a
simple Markov decision process (MDP).
MDPs are a subclass of POMDPs where the agent is able to unambiguously
perceive the underlying state. As such, it is not necessary to explicitly rep-
resent or reason about the observation space or observation probabilities.
Computing the optimal policy is also much simpler in MDPs than in their
partially observable counterpart. In terms of our experiments, we use the
MDP agent as an indication of the optimal performance, since the MDP
agent has access to all information necessary to make an optimal decision.
The MDP agent is evaluated in terms of payoff only.

An RL agent [RL] The RL agent is a standard reinforcement learning agent
(RL) running the well-known Q-learning algorithm [65].8 This agent has no
prior knowledge about the target task or the teammate behavior, and must
learn both the task and the coordination policy by a process of trial-and-
error. Unlike the other agents, the RL agent actually receives the payoff
associated with the target task after every joint action is performed. The
payoff observed, as well as the joint actions observed in the past, allow the
RL agent to adapt its action choice so as to maximize the expected payoff.
The RL agent is evaluated in terms of payoff only.

We conclude by remarking that, in the POMDP and MDP agent, we set
γ = 0.95.9 The γ parameter is required since all tasks are formalized as infinite
horizon tasks. As will soon become apparent, the particular value of γ selected
facilitates the analysis of our results particularly in the early steps of the
experiments.

4.2 Ad hoc teamwork for e-commerce

In the first set of experiments, we evaluate the performance of the different
agents in the e-commerce scenario. We replicate and discuss in greater detail
some of the results already portrayed in previous sections.

8 In our implementation, the RL agent runs the standard Q-learning algorithm with a
fixed learning rate of α = 0.2. The value for α was empirically selected so as to maximize
the learning performance of the agent. Additionally, exploration is ensured using a greedy
policy combined with optimistic initialization of the Q-values, as discussed in the classical
book of Sutton and Barto [62].

9 We recall that low values of γ indicate the MDP agent that payoffs arriving sooner are
more valuable than payoffs arriving later.

28 F.S. Melo and A. Sardinha

Table 3 Performance of the different approaches in the e-commerce scenario, for different
horizon lengths. The results are averages over 1, 000 independent Monte Carlo runs.

Agent H = 1 H = 2 H = 3

Loss POMDP 1.468 ± 1.403 1.365 ± 1.181 1.255 ± 1.060
OL 1.500 ± 1.565 1.389 ± 1.269 1.294 ± 1.026
OL (known task) 1.510 ± 1.399 1.395 ± 1.173 1.298 ± 0.946

Payoff

POMDP 571.0 ± 36.2 571.0 ± 31.3 572.0 ± 32.0
OL 505.7 ± 112.0 503.6 ± 111.8 497.9 ± 114.2
MDP (known task) 522.8 ± 82.7 531.0 ± 83.00 541.1 ± 79.7
RL 426.6 ± 116.4 273.2 ± 185.6 −113.1 ± 364.2

The e-commerce scenario is a relatively simple scenario, where an ad hoc
agent and a “legacy” agent are responsible for assembling desktop computers
packages for sale. Each agent is responsible for assembling one of the package
elements (either the desktop computer or the LCD monitor), for which it must
procure the necessary part. The parts can be procured from one of two possible
suppliers, and if both agents procure the corresponding parts from the same
supplier, they incur smaller shipping costs.

This initial set of experiments serves two main purposes. First, together
with the illustrative examples along the text, it provides a roadmap to the
application of the online learning and POMDP approaches in a specific prob-
lem, detailing each of the steps involved. Second, the particular structure of
the problem—where the action choices of the teammate agents do not provide
significant information concerning the underlying task—implies that the main
challenge that the ad hoc agent faces is one of coordination. As such, the e-
commerce scenario is ideal to assess the impact of history in the performance
of both approaches.

Table 3 summarizes the overall performance of the analyzed approaches,
both in terms of loss and payoff, forH = 1, 2, 3.10 From the results in Table 3, it
becomes apparent that the POMDP agent outperforms the OL agent, both in
terms of loss and in terms of payoff. The difference is particularly noticeable in
terms of payoff, since the POMDP agent plans ahead to optimize both criteria,
while the OL agent simply selects the apparently best action.

Let us consider the observed difference between the OL and POMDP agents
in greater detail. Going back to the payoff matrices in Figures 2 and 3, we note
that both tasks present the same set of equilibria, i.e., joint actions from which
no agent has any interest in deviating unilaterally. In other words, if we fix
the action played by one agent, the best-response action for the other agent
is the same in both tasks. This has an immediate consequence—if an ad hoc
agent merely seeks to coordinate its action choice with that of the other agent,
they may converge to a suboptimal equilibrium (i.e., one with a payoff of 4)

10 We recall that, except for the RL agent, the results presented merely quantify the payoff
that the agents would obtain from their action choices. At runtime no payoff is granted to
the agents, i.e., payoff information is not available for learning.

Ad Hoc Teamwork by Learning Teammates’ Task 29

instead of the optimal equilibrium, with a payoff of 6. Taking this fact into
consideration, it is now possible to further interpret the results of Table 3:

– Due to the structure of the exponentially weighted average predictor, the
behaviour of the OL agent is tightly coupled with its ability to predict the
actions of the teammate agent (see Section 3.3). However, in this particular
scenario, the OL agent is able to perfectly predict the teammate’s action
and coordinate, independently of the task. Therefore, predicting ability is
insufficient to identify the target task, and the OL agent is equally likely
to converge either to an optimal equilibrium (with a payoff of 6) or a
suboptimal one (with a payoff of 4). This explains the average total payoff
of ∼ 500 obtained (corresponding to a 100-step run).

– Conversely, the POMDP agent selects its actions taking into account their
future impact in the total payoff. Therefore, in the early plays, it both
seeks to determine the target task and drive the teammate agent to play the
corresponding optimal equilibrium. This is visible by observing the obtained
average payoff close to 600 (corresponding to a 100-step run).

Another interesting observation is concerned with the dependence of the
performance of the agents on the history length. The results suggest that
the performance of the POMDP agent slightly improves as we increase the
horizon length from H = 1 to H = 3. Interestingly, such difference occurs only
in terms of loss. The OL agent, on the other hand seems to always improve
its performance in terms of loss, as the history increases. This improvement
is not observed in the payoff for the reason already discussed. The impact of
the horizon length is greatest in the performance of the RL agent, which can
easily be explained by the fact that a larger horizon implies a larger state-space
(i.e., the number of possible situations that the agent must reason about) and
longer learning times.

It is also interesting to consider the reward obtained by the MDP agent.
Due to the discount factor considered, the MDP agent prefers payoffs that
occur earlier than payoffs occurring later in the run. Therefore, the potential
loss incurred by initially “driving” the teammate agent towards the optimal
equilibrium does not compensate for the extra payoff received later on. The
advantages of this behaviour are illustrated in Fig. 6, which depicts the learning
curve of all agents in terms of total discounted payoff attained. In the plot,
the impact of the discount is clearly visible, and the optimality of the MDP
agent becomes apparent. However, if no discount is taken into account, the
performance of the MDP agent actually remains below that of the POMDP
agent, indicating that the latter is indeed able to drive the teammate to an
optimal joint action.

Let us now consider the learning curves of all agents, both in terms of
loss incurred and (undiscounted) payoff attained, as depicted in Figures 7
and 8. It is once again visible that the POMDP agent outperforms the OL
agent, confirming the outcome already observed in Table 3. The learning curves
illustrate two additional aspects that are worth noting. First, the loss incurred
by both the POMDP and the OL agents is concentrated in the early learning

30 F.S. Melo and A. Sardinha

0 20 40 60 80 100
−150

−90

−30

30

90

150
Total discounted reward

Time−step

Re
wa

rd

POMDP
OL
RL
MDP (known task)

Fig. 6 Average discounted payoff of the different approaches in the e-commerce scenario,
for a horizon H = 3. The results are averages over 1, 000 independent Monte Carlo runs.

0 20 40 60 80 100
0.7

0.88

1.06

1.24

1.42

1.6
Average loss

Time−step

Lo
ss

POMDP
OL
OL (known task)

(a) H = 1.

0 20 40 60 80 100
0.7

0.84

0.98

1.12

1.26

1.4
Average loss

Time−step

Lo
ss

POMDP
OL
OL (known task)

(b) H = 3.

Fig. 7 Average loss of the different approaches in the e-commerce scenarios, for different
horizon lengths. The results are averages over 1, 000 independent Monte Carlo runs.

steps. After about 10 steps, both ad hoc agents are able to perfectly predict
the actions of the teammate. The plots also illustrate that a larger history
enables this predictive ability to emerge earlier, leading to smaller loss when
H = 3 when compared to the situation where H = 1.

Second, comparing the slope of the total payoff curve for the POMDP
agent against that of the OL agent in Fig. 8, one can observe that the POMDP
agent is more effective in terms of payoff. In fact, the difference in slope of both
curves clearly shows that, as time progresses, the difference in payoff between
the two approaches will keep increasing. This is also in accordance with the
results observed in Table 3.

Ad Hoc Teamwork by Learning Teammates’ Task 31

0 20 40 60 80 100
−100

40

180

320

460

600
Total reward

Time−step

Re
wa

rd

POMDP
OL
RL
MDP (known task)

(a) H = 1.

0 20 40 60 80 100
−300

−120

60

240

420

600
Total reward

Time−step

Re
wa

rd

POMDP
OL
RL
MDP (known task)

(b) H = 3.

Fig. 8 Average payoff of the different approaches in the e-commerce scenario, for different
horizon lengths. The results are averages over 1, 000 independent Monte Carlo runs.

0 20 40 60 80 100
−1

0.4

1.8

3.2

4.6

6
Average regret

Time−step

R
eg

re
t

Actual
Theoretical

Fig. 9 Comparison between theoretical regret and actual (estimated) regret of the online
learning approach in the e-commerce scenario.

Finally, the curves for the RL and the MDP agents also confirm the conclu-
sions drawn from Table 3: the performance of the RL agent decreases with the
horizon, since it takes longer to learn the optimal policy;11 the performance of
the MDP agent, on the other hand, eventually falls below that of the POMDP,
since it seeks coordination from the beginning and, in this process, sometimes
fails to drive the teammate towards the optimal equilibria.

We can also analyze the plots in Fig. 7 in light of the theoretical results
presented in Section 3. In particular, we can use the difference in performance
(in terms of loss) between the OL agent and the agent that knows the target
task as an estimate for the regret of the OL approach, and compare it with
the theoretical bound derived in Theorem 1. The comparison is featured in
Fig. 9 for the case where H = 1 (it is similar for other horizon lengths). The

11 The learning time can be observed in the plots in Fig. 8. It corresponds (roughly) to
the number of time steps it takes the slope of the learning curve to stabilize. For H = 1, the
learning time is ∼ 16 time steps, while for H = 3 the learning time is ∼ 90.

32 F.S. Melo and A. Sardinha

theoretical bound in Theorem 1, being a worst-case bound, is over-pessimistic,
as can be observed in the plot.

We conclude by noting that the superior performance of the POMDP agent
comes at a cost in complexity, since the POMDP state-space increases expo-
nentially with the length of the history. In particular,

|HN | = |A|N .

We postpone to the next section a more detailed discussion of the computa-
tional complexity involved in each of the proposed methods.

4.3 Scalability of ad hoc teamwork

The main goal of the second set of experiments is to investigate how the per-
formance of our proposed approaches scales with the dimension of the problem
considered. We analyze the dependence of the OL and POMDP agents on the
number of agents involved in the interaction, the number of actions available
to each agent, and the number of possible tasks from which the target task
must be identified.

As before, the results presented in this section correspond to averages over
1, 000 independent Monte Carlo runs. We generated a total of 10 sets Ti (i =
1, . . . , 10) of random payoff matrices.12 In each run, the target task is randomly
selected from one of the sets Ti, and the ad hoc agent uses Ti as the set of
possible tasks. The set Ti used in each run is pre-selected to ensure that all
are used in exactly 100 runs.

We note that the use of random payoff matrices with no particular structure
introduces some variability in the results. However, the use of such “random do-
mains” is particularly useful to assess the general applicability of the proposed
approaches. Moreover, by changing the dimension of the payoff matrices and
the number of elements in each Ti, we can easily assess how the performance
of each approach scales with the dimension of the underlying problem.

Dependence on the number of tasks

We start our study by varying the number of payoff matrices in each set Ti. We
consider 2-agent, 2-action problems and change the number of possible tasks
in each set Ti from 5 up to 50. We use H = 2 throughout the experiments.
The results are depicted in Fig. 10.

Let us consider the two plots in Fig. 10 separately. Figure 10(a) depicts
the normalized payoff obtained by the different approaches. The depicted pay-
off is normalized against the best observed performance. The payoff results
prompt three important observations. First, there is some variability in the
performance as we change the number of possible tasks. This variability is ex-
plained, in part, by the use of random payoff matrices, but is also aggravated
12 The generation of the payoff matrices was done by generating each entry uniformly at
random in the range [−300; 500].

Ad Hoc Teamwork by Learning Teammates’ Task 33

5 10 50
0.7

0.77

0.84

0.91

0.98

1.05
Normalized average payoff

N. tasks

Av
er

ag
e

pa
yo

ff

POMDP
OL
RL
MDP (known task)

(a)

5 10 50
0.5

1.2

1.9

2.6

3.3

4
POMDP computation time

N. tasks

C
om

pu
ta

tio
n

tim
e

(s
ec

.)

(b)

Fig. 10 (a) Performance of the different approaches in randomly generated scenarios, as a
function of the number of possible tasks. (b) POMDP computation time as a function of
the number of tasks.

by the increasing number of tasks in the sets Ti. As this number increases, the
differences in the tasks included in Ti become more noticeable.

Second, in spite of the observed variability, there is no clear trend that can
be observed. This lack of a clear trend suggests that the number of tasks in Ti
does not greatly impact the ability of the two approaches to identify the target
task and coordinate with the teammates. This result is also in accordance with
the theoretical results in Section 3 (as seen, for example, in Theorem 1).

Finally, as already observed in the e-commerce domain, the POMDP agent
seems to slightly outperform the OL agent. The superior performance of the
POMDP approach is also expected, in light of its ability to take into consider-
ation the future impact of its actions on its overall performance. Both ad hoc
agents outperform the RL agent.

We conclude by considering the plot in Fig. 10(b), which illustrates the
dependence of the POMDP planning time on the number of tasks in Ti.13 As
can be seen from the plot, the POMDP planning time does not grow abruptly
with the number of tasks. This modest growth is expected, since the number of
tasks impacts linearly the dimension of the POMDP’s state-space, and point-
based methods have a computational complexity that is polynomial on the
latter [53].

Dependence on the number of actions

In a second experiment, we change the dimension of the action-space of each
agent. We consider 2-agent problems where |Ti| = 5, and change the number
of possible actions available to each agent between 2 and 50. We use H = 2

13 We emphasize that the reported times are offline planning times. The online learning
approach requires no offline planning and hence no time is reported for that approach. All
times were obtained in a computer equipped with a 3.0GHz dual core processor and 16Gb
of RAM.

34 F.S. Melo and A. Sardinha

2 10 50
0.1

0.3

0.5

0.7

0.9

1.1
Normalized average payoff

N. actions/agent

Av
er

ag
e

pa
yo

ff

POMDP
OL
RL
MDP (known task)

(a)

2 10 50
0

60

120

180

240

300
POMDP computation time

N. actions/agent

C
om

pu
ta

tio
n

tim
e

(s
ec

.)

(b)

Fig. 11 (a) Performance of the different approaches in randomly generated scenarios, as a
function of the number of actions per agent. (b) POMDP computation time as a function
of the number of actions per agent.

throughout the experiments. The number of actions available per agent defines
the dimension of the payoff matrices. The results are depicted in Fig. 11.

Again, Fig. 11(a) depicts the normalized payoff obtained by the different
agents. Unlike the results observed in Fig. 10(a), the variability of the observed
results is relatively small. In fact, the performance of the ad hoc agents depends
on their ability to identify the target task and, once the target task is identified,
coordinate with the teammates. Therefore, the differences in performance will
arise mostly from the ability to identify the target task—in which case the
number of actions available per agent has little impact (also as supported by
the theoretical results).

On the other hand, as the number of actions increases, coordination po-
tentially becomes more challenging. The few POMDP results available suggest
that the relative performance of the latter does improve with the number of
actions, which may indicate that the POMDP approach is, in fact, able to
more effectively deal with coordination. The MDP results also indicate that,
as the number of actions available increases, the impact of early coordination
already observed in the results of Table 3 becomes more noticeable. As for the
RL agent, the number of steps required to learn the correct policy increases
with the number of states that the agent must deal with, which in turn grows
with the number of actions per agent. Such growth explains the decreasing
performance of the RL agent.

Finally, the POMDP planning time quickly grows unmanageable with the
number of actions available per agent, as depicted in Fig. 11(b). This growth
prevented the comparative analysis between the OL agent and the POMDP
agent to be conducted for problems with more than 4 actions. It is worth
noting that, although the dependence of the POMDP solver on the POMDP
action-space is also linear, in our setup the number of actions per agent (which

Ad Hoc Teamwork by Learning Teammates’ Task 35

2 10 20
0.7

0.77

0.84

0.91

0.98

1.05
Normalized average payoff

N. agents

Av
er

ag
e

pa
yo

ff

POMDP
OL
RL
MDP (known task)

(a)

2 10 20
0

140

280

420

560

700
POMDP computation time

N. agents

C
om

pu
ta

tio
n

tim
e

(s
ec

.)

(b)

Fig. 12 (a) Performance of the different approaches in randomly generated scenarios, as
a function of the number of agents. (b) POMDP computation time as a function of the
number of agents.

takes the value |Aα|) also affects (i) the state space, since |HN | = |Aα|K·H ;
and (ii) the observation space, since Z = A−α.

Dependence on the number of agents

Finally, we change the number of agents involved in the interaction. We con-
sider that each agent has available 2-actions and that |Ti| = 5, and change
the number of agents between 2 and 20. We use H = 2 throughout the ex-
periments. Since we treat all teammate agents as a meta-agent, increasing
the number of agents has the sole effect of increasing the number of actions
available to the teammates. Therefore, the results are very similar to those
observed in the experiment that changes the number of actions of each agent
(previous subsection). The results are depicted in Fig. 12.

As expected, the results are essentially similar to those observed as we
change the number of actions per agent. As before, the planning time quickly
grows unmanageable with the number of agents, which prevented the compar-
ative analysis between the OL agent and the POMDP and MDP agents to be
conducted for problems with more than 5 agents. The Q-function learned by
the RL agent also grows exponentially with the number of agents, rendering
this approach also memory-intensive and impractical for domains with many
agents.14

In terms of payoff, however, we note that the increase in the number of
agents translates to an increase in the number of actions available to the
teammates, but not to the ad hoc agent. Therefore, coordination is actually
simpler in this setting than in the previous experiment, since the teammates
automatically adopt a coordinated strategy. This justifies the smaller difference

14 With 2-action agents and H = 2, the total number of states is 220.

36 F.S. Melo and A. Sardinha

in performance observed between the POMDP agent and other agents (namely,
the RL and MDP agents).

♦

The above results indicate that, in general, the performance of both ap-
proaches does not degrade meaningfully as the dimension of the problem in-
creases. However, as expected, the computational cost involved in the POMDP
planning rapidly becomes impractical as either the number of actions available
to each agent or the number of agents increases.

Nevertheless, the POMDP approach offers several important advantages.
First, the POMDP approach adopts a Bayesian perspective to the problem of
identifying the target task. Second, by definition, the POMDP policy provides
the optimal tradeoff between gathering information (both concerning the tar-
get task and the behavior of the teammate) and exploiting the information
already available. In a sense, a similar perspective is behind POMDP-based
approaches to Bayesian reinforcement learning that optimally tradeoff explo-
ration and exploitation [16, 47]. In practical terms, this tradeoff translates
in the superior performance of the POMDP agent observed in the different
experiments. Finally, we note that the POMDP planning takes place offline.
As such, for application scenarios that are performance-critical, the improved
performance of the POMDP approach may still prove a useful alternative.

In general, such improved performance comes at a significant computa-
tional cost and, from a practical standpoint, our results show that the online
learning approach is able to attain a comparable performance without the
need for the expensive planning that the POMDP approach must go through.
Therefore, in many scenarios, the online learning approach offers an appealing
compromise between performance and computational cost.

4.4 Ad hoc teamwork in the pursuit domain

To conclude the experimental section, we evaluate the performance of our
OL agent in the pursuit domain, a domain often used as a benchmark in the
multiagent literature.

In the classical formulation, four predators must capture a moving prey.
The prey is captured if surrounded in all four sides by the predators, as il-
lustrated in Fig. 13(a). Both predators and prey can move in any of the four
directions, up, down, left and right, in a toroidal grid world environment.15
Whenever an agent tries to move to a cell occupied by another agent, the
movement fails.
15 A toroidal grid world consists of a finite grid such that, if an agent “exits” one of the
edges of the grid, it “re-enters” in the opposite edge. For example, if the agent moves right
in the right edge of the environment, it will re-enter in the left edge of the environment, as
seen in the diagram below:

Ad Hoc Teamwork by Learning Teammates’ Task 37

(a) (b)

Fig. 13 Capture configurations (a) in the classical pursuit domain; (b) in the modified
pursuit domain.

In order to apply our approach to the pursuit domain, we introduce a simple
modification to the original pursuit domain that enables defining, in the same
environment, a set of four possible different tasks among which the target task
is selected. In our modified pursuit domain, we consider only two predators
that must also capture the moving prey. The prey is captured when the two
predators are positioned in a pre-specified configuration with the prey between
them. There are four possible configurations where the predators are positioned
with the prey between them (one of which is illustrated in Fig. 13(b)) but only
one is the actual capture configuration. Each of the four possible configurations
thus corresponds to a possible task, among which the ad hoc agent must
identify the target.

The prey (and the predators) can move in any of the four directions in a
toroidal 5 × 5 grid world environment. Note that, unlike the original version,
the version considered herein does not enable the predators to “surround” the
prey, making the capture more difficult than in the original game. The ad hoc
agent must not only figure out which is the correct capture configuration, but
also coordinate with the other predator in order to capture the prey.

We model each task as an MDP. Recall that an MDP is a particular case
of a POMDP where Z = X and for every z ∈ Z there is x ∈ X such that

P [Z(t) = z | X(t) = x] = 1.

As such, an MDP can be represented as a tuple M = (X ,A,P, r, γ), as it
is not necessary to explicitly represent the observation space and observation
probabilities. In our pursuit domain, the state space X corresponds to the
position of all agents (the prey and two predators) in the environment, and
the action space A is the set of joint actions available to both predators.
Whenever an agent (predator) takes an action, it will move deterministically
to the adjacent position in the corresponding direction, except if that position
is currently occupied. The prey, at each step, moves to one of the contiguous
cells selected uniformly at random.

In the MDP used to model the problem, we associate a positive reward with
each capture. Since there are four possible capture configurations, there are
four possible reward functions, each corresponding to a different MDPMτ , τ ∈

38 F.S. Melo and A. Sardinha

T . We solve each MDP using any of the standard methods available in the
literature [49]. In our case, since the dimension of the problem is manageable,
it can be solved exactly using value iteration. For larger problems (where a
larger grid is considered, for example), more powerful methods are required,
such as Monte Carlo tree search [38].

For each task τ ∈ T , it is now possible to associate with each state-action
pair (x, a) a value, denoted Qτ (x, a). Qτ (x, a) represents the total MDP reward
that the agent expects to receive upon selecting action a in x and following
the optimal policy for task τ afterwards. The importance of such Q-values is
that they define, at each state, a matrix game Γ xτ = (2, (Ak)k=1,2, U

x
τ), where

the payoff associated with an action a ∈ A is given by Uxτ (a) = Qτ (x, a).16

The teammate selects its actions according to the matrix game Γ xT∗ and
following Assumption 1, thus maximizing the associated Q-value, given the
history of previous joint actions. Treating the decision at each state as a matrix
game also enables the direct application of the online learning approach to the
pursuit domain.

For comparison purposes, we also evaluate the performance of a related
ad hoc approach from the literature [7] and henceforth referred as BSKR (for
the author names). In its core, and as pointed out in Section 2, BSKR is very
similar to our online learning approach. BSKR uses a library of agent models,
built from previous interactions with other agents, in order to plan its course
of action using Monte Carlo tree search. The probability of each teammate
model is updated at each time-step based on its ability to predict the actions
of the teammates. In this process, the target task is assumed to be known,
and the agent model is used for planning.

Our online learning approach, in virtue of our bounded rationality assump-
tion, relies on simpler models for the teammate agents, and the “probability” of
each model is implicitly encoded in the bounded-memory fictitious-play pro-
cess used. Another important distinction is that, since we do not know the
task beforehand, our planning includes the teammate agent, since the team-
mate behavior will provide the required information for the task identification.
If the BSKR approach is used with a bounded-memory fictitious-play process,
then it is equivalent to an agent that knows the target task and is focused
only on coordination—much like the one used for comparison in the previous
experiments.

Finally, as a baseline for comparison, we also evaluate the performance of
a simple RL agent similar to the one used in the previous sections. Figure 14
depicts the comparative performance of all approaches. The BSKR approach
only addresses issues of coordination, since it knows the target task. Therefore,
as expected, it outperforms the other approaches. In fact, since the difference
between the possible tasks is only in the capture configuration, there is a sig-
nificant number of actions of the teammate (where the teammate approaches
the prey, for example) that do not provide information that enables the ad

16 Such games are often referred in the multiagent learning literature as state games. See,
for example, [10, 64].

Ad Hoc Teamwork by Learning Teammates’ Task 39

0 20 40 60 80 100
0

8

16

24

32

40
Total reward

Time−step

Pa
yo

ff

OL
BSKR (known task)
RL

(a) Total average payoff.

OL BSKR (known task) RL
0

18

36

54

72

90

Time to capture

Ti
m

e−
st

ep
s

(b) Average time to capture the prey.

Fig. 14 Comparative performance of the OL approach, the BSKR approach of Barrett
et al [7] and a standard RL agent in the pursuit domain. All results are averages over 1, 000
independent Monte Carlo runs.

hoc agent to disambiguate between the tasks. This difference in performance
is observed in terms of payoff, depicted in Fig. 14(a) (the team receives a pay-
off of 10 for each capture), and also in terms of the average time it takes the
predators to capture the prey, depicted in Fig. 14(b). Interestingly, as can be
seen in the latter figure, the difference between the capture times for both ad
hoc agents is smaller than 15 steps, and is not statistically significant. The RL
agent, on the other hand, performs significantly worse, in light of the dimension
of the problem.

♦

To conclude this section, we summarise some of the main observations
prompted by our results. First of all, we observed in the different domains
that the performance of the OL and POMDP agents is close to that of the
MDP agent, suggesting that the performance of both approaches may, indeed,
be close to optimal in several of the domains considered.

Additionally, our results illustrate the superior performance of the POMDP
agent against that of the OL agent, although such improved performance comes
at a cost in computational effort. Finally, our results also show that the pro-
posed approaches are able to outperform a “pure learning” approach based on
standard RL algorithm.

Finally, our experiments also support and illustrate some of the theoretical
results discussed in Section 3.

5 Conclusions

This paper presents a novel decision theoretic approach for the problem of ad
hoc teamwork, where an agent is teamed up with a set of unknown teammates
to cooperatively perform an unknown target task. The “ad hoc agent” must

40 F.S. Melo and A. Sardinha

infer the target task from the actions of its teammates and then identify the
teammate’s strategy in order to collaborate and act accordingly.

The key contributions of our paper are the following. First, a novel perspec-
tive regarding the ad hoc teamwork problem is presented, where task identifi-
cation and teammate identification are key steps that influence the planning
of the agent, especially when the agent has to deal with the aforementioned
challenge. Second, we formalize the ad hoc teamwork problem as a sequential
decision problem, where we assume that the ad hoc agent does not know in
advance the task to be performed or how its teammates act towards perform-
ing it. Third, we propose two novel approaches, namely an online learning
algorithm and a POMDP approach, for the problem of learning to identify
the teammates’ task (and corresponding strategy) in order to collaborate and
act accordingly. We present theoretical bounds concerning the performance
of both algorithms and discuss the implications. Lastly, we illustrate the per-
formance of the proposed approaches in a rich set of domains with different
dimension and complexity.

Our proposed approaches both rely on an assumption of bounded rational-
ity: the teammate agents have finite memory and select their actions as best
responses to the ad hoc agent’s most recent actions. In terms of the online
learning approach, this assumption is present in the experts used to construct
our predictor. In terms of the POMDP approach, the assumption is present
in the construction of the transition matrices. In both cases, we formulate our
approaches assuming that the teammate agents “make no mistakes”.17 How-
ever, the proposed approaches can trivially be extended to the case where the
teammate is allowed to select ε-best responses, i.e., actions with an expected
payoff that is ε-close to a best response, for some known ε > 0. Since the
bounds provided in Theorems 1 and 2 are expressed in terms of the regret
against the best predictor, they remain valid even if the teammate is allowed
some level of “noise” in its action selection.

While this paper presents several contributions to the ad hoc teamwork
literature, it also raises new questions for future research. For example, in our
POMDP formulation, the target task is the only element of the state that
is not observable. Therefore, if the agent were to know the target task, we
could reformulate our problem as a (fully observable) Markov decision problem
(MDP) to obtain the MDP agent investigated in the work of Chakraborty
and Stone [13] and used in Section 4 for comparison. One interesting avenue
for future work would be to combine our online learning approach with the
optimal action choice which could be computed from the aforementioned MDP,
actually using the MDP policies as predictors.

Another very interesting line of research would be to consider ad hoc team-
work with ad hoc communication. In particular, if the “legacy agents” have
some (unknown) communication protocol in place, a very interesting problem
would be that of leveraging such communication to attain more efficient team-

17 In this context, we refer to a “mistake” as an action that is not a best response to the
actions of the ad hoc agent.

Ad Hoc Teamwork by Learning Teammates’ Task 41

work. This is certainly a challenging problem, since it would require the ad hoc
agent to first acquire some sort of model of the teammates’ communication
protocol [57]. Also of interest would be the application of ad hoc teamwork
with human agents. This is closely related with recent research on symbiotic
human robot interaction, as proposed in the work of Rosenthal et al [51].

Finally, from a more technical point of view, it would be possible to improve
our online learning approach by explicitly taking into consideration the fact
that the observations of the agent provide only partial and indirect information
on the actual criterion to be optimized—namely, the payoff [12, Chapter 6].

Acknowledgements

The authors gratefully acknowledge the anonymous reviewers for the the many
useful suggestions that greatly improved the clarity of the presentation.

A Proofs

In this appendix we collect the proofs of the different statements introduced in the main
text.

A.1 Proof of Theorem 1

In our proof we use the following auxiliary result, a simple extension of Lemma 2.3 in [12].

Lemma 1 For all N ≥ 2, for all β ≥ α ≥ 0 and for all d1, . . . , dN ≥ 0 such that

N∑
i=1

e−βdi ≥ 1,

let

qi =
e−βdi∑N
j=1 e

−βdj
.

Then, for all x1, . . . , xN ,

ln

∑N
i=1 e

−αdi+xi∑N
j=1 e

−βdi
≤
β − α
β

lnN + E [X] ,

where X is a r.v. taking values in {x1, . . . , xN} and such that P [X = xi] = qi.

Proof We have

ln

∑N
i=1 e

−αdi+xi∑N
j=1 e

−βdi
= ln

∑N
i=1 e

−βdie−(α−β)di+xi∑N
j=1 e

−βdi

= lnE
[
e−(α−β)D+X

]
≤ (β − α)E [D] + E [X] , (17)

42 F.S. Melo and A. Sardinha

where D is a r.v. taking values in {d1, . . . , dN} such that P [D = di] = qi, and the last
inequality follows from Jensen’s inequality. Since D takes at most N values, we have that

H(D) ≤ −
N∑
i=1

1

N
ln

1

N
= lnN,

where H(D) is the entropy of the r.v. D, and hence

lnN ≥ H(D)

=

N∑
i=1

qi

βdi + ln

N∑
j=1

e−βdi

= βE [D] + ln

N∑
j=1

e−βdi

≥ βE [D] . (18)

Finally, since β ≥ α, we can replace (18) in (17) to get

ln

∑N
i=1 e

−αdi+xi∑N
j=1 e

−βdi
≤
β − α
β

lnN + E [X] .

ut

We are now in position to prove Theorem 1. Let h1:n be a fixed history. Define γ0 = 0
and, for t ≥ 0, let

wt(τ) = e−γtLτ (h1:t), Wt =
∑
τ∈T

wt(τ), Qt(τ) =
wt(τ)

Wt
.

Using the notation above, we have that

P (hn, a) =
∑
τ∈T

wn(τ)

Wn
Eτ (h1:n, a)

= Eτ∼Qn [Eτ (h1:n, a)] .

Our proof closely follows the proof of Theorem 2.2 of [12]. We establish our result by deriving
upper and lower bounds for the quantity ln(Wn/W0).

On one hand,

ln
Wn

W0
= ln

∑
τ∈T

wn(τ)

− ln |E| .

Since wt(τ) > 0 for all t, then for any τ ∈ T ,

ln
Wn

W0
≥ lnwn(τ)− ln |E| = −γnLτ (h1:n)− ln |E| . (19)

On the other hand, for t > 1,

ln
Wt

Wt−1
= ln

(∑
τ e
−γtLτ (h1:t)∑

τ e
−γt−1Lτ (h1:t−1)

)

= ln

(∑
τ

e−γtLτ (h1:t−1)−γt`τ (h1:t)∑
τ e
−γt−1Lτ (h1:t−1)

)
.

Ad Hoc Teamwork by Learning Teammates’ Task 43

Using Lemma 1, we can write

ln
Wt

Wt−1
≤
γt−1 − γt
γt−1

ln |E| − γtEτ∼Qt−1
[`τ (h1:t)]

=
γt−1 − γt
γt−1

ln |E| − γt`P (h1:t),

where the last equality follows from the definition of P . Noting that

ln
W1

W0
≤ −γt`P (h1),

we can upper bound ln(Wn/W0) as follows:

ln
Wn

W0
≤

n∑
t=1

ln
Wt

Wt−1

=

n∑
t=2

γt−1 − γt
γt−1

ln |E| −
n∑
t=1

γt`P (h1:t),

The fact that γt+1 < γt for all t ≥ 1 further implies

ln
Wn

W0
≤

n∑
t=2

γt−1 − γt
γt−1

ln |E| − γn
n∑
t=1

`P (h1:t)

=

n∑
t=2

γt−1 − γt
γt−1

ln |E| − γnLP (h1:n)

≤
1

γn

n∑
t=2

(γt−1 − γt) ln |E| − γnLP (h1:n)

=
γ1 − γn
γn

ln |E| − γnLP (h1:n)

=

(
γ1

γn
− 1

)
ln |E| − γnLP (h1:n).

Replacing the definition of γn in the first term, we get

ln
Wn

W0
≤ (4
√
n− 1) ln |E| − γnLP (h1:n) (20)

Finally, putting together (19) and (20), yields

−γnLτ (h1:n)− ln |E| ≤ (4
√
n− 1) ln |E| − γnLP (h1:n)

or, equivalently,

LP (h1:n)− Lτ (h1:n) ≤
4
√
n

γn
ln |E| =

√
n

2
ln |E|.

Since the above inequality holds for all τ ,

Rn(P, E) ≤
√
n

2
ln |E|.

ut

44 F.S. Melo and A. Sardinha

A.2 Proof of Theorem 2

Our proof will take place in three steps:

– In a first step, we show that, asymptotically, the ability of the ad hoc to predict future
plays given its initial belief over the target task converges to that of an agent knowing
the target task.

– In a second step we derive an upper bound for the regret that depends linearly on the
relative entropy between the probability distribution over trajectories conditioned on
knowing the target task and the probability distribution over trajectories conditioned
on the prior over tasks.

– Finally, in the third step we use an information-theoretic argument to derive an upper
bound to the aforementioned relative entropy, using the fact that the ad hoc agent is
asymptotically able to predict future plays as well as if it knew the target task.

The proof is somewhat long and requires some notation and a number of auxiliary
results, that are introduced in the continuation.

A.2.1 Preliminary results and notation

In this section we introduce several preliminary results that will be of use in the proof.
We start with a simple lemma due to Hoeffding [30] that provides a useful bound for the
moment generating function of a bounded r.v. X.

Lemma 2 Let X be a r.v. such that E [X] = 0 and a ≤ X ≤ b almost surely. Then, for
any λ > 0,

E
[
e−λX

]
≤ e

λ2(b−a)2
8 .

The following is a classical result from P. Levy [55, Theorem VII.3]. This result plays a
fundamental role in establishing that the beliefs of the ad hoc agent asymptotically concen-
trate around the target task.

Lemma 3 Let (Ω,F ,P) be a probability space, and let {Fn, n = 1, . . .} be a non-decreasing
family of σ-algebras, F1 ⊆ F2 ⊆ . . . ⊆ F . Let X be a r.v. with E [|X|] < ∞ and let F∞
denote the smallest σ-algebra such that

⋃
n Fn ⊆ F∞. Then,

E [X | Fn]→ E [X | F∞]

with probability 1.

We conclude this initial subsection by establishing several simple results. We write Ep [·]
to denote the expectation with respect to the distribution p and DKL (p‖q) to denote the
Kullback-Liebler divergence (or relative entropy) between distributions p and q, defined as

DKL (p‖q) = Ep
[
log

p(X)

q(X)

]
.

It is a well-known information-theoretic result (known as theGibbs inequality) thatDKL (p‖q) ≥
0.

Lemma 4 Let X be a r.v. taking values in a discrete set X , and let p and q denote two
distributions over X . Then, for any function f : X → R,

Eq [f(X)] ≤ DKL (q‖p) + logEp
[
ef(X)

]
.

Ad Hoc Teamwork by Learning Teammates’ Task 45

Proof Define, for x ∈ X ,

v(x) =
ef(x)p(x)

Ep
[
ef(X)

] .
Clearly, v(x) ≥ 0 and

∑
x v(x) = 1, so v is a distribution over X . We have

DKL (q‖v) = Eq [log q(X)]− Eq [log v(X)]

= Eq [log q(X)]− Eq [f(X)]− Eq [log p(X)] + logEp
[
ef(X)

]
= DKL (q‖p)− Eq [f(X)] + lnEp

[
ef(X)

]
Since DKL (q‖v) ≥ 0,

DKL (q‖p)− Eq [f(X)] + logEp
[
ef(X)

]
≥ 0,

and the result follows.

Lemma 5 (Adapted from [28]) Let {an} be a bounded sequence of non-negative num-
bers. Then, limn an = 0 if and only if

lim
n

1

n

n∑
k=1

ak = 0.

Proof Let A = supn an and, given ε > 0, define the set

Mε = {n ∈ N : an > ε} ,

By definition, limn an = 0 if and only if |Mε| < ∞, for any ε. Let Mn
ε = Mε ∩ {1, . . . , n}.

We have that

1

n

n∑
k=1

an =
1

n

∑
k∈Mn

ε

ak +
1

n

∑
k/∈Mn

ε

ak

≤
A

n
|Mn

ε |+ ε.

The conclusion follows.

A.2.2 Convergence of predictive distributions

We are now in position to take the first step in establishing the result in Theorem 2. In
particular, we show that, asymptotically, the ability of the ad hoc agent to predict future
actions of the teammate player converges to that of an agent that knows the target task.

We start by noting that, given the POMDP policy computed by Perseus and the initial
belief for the ad hoc agent, it is possible to determine the probability of occurrence of any
particular history of (joint) actions h ∈ H. In particular, we write

µ̃(h1:n) , P [H(n) = h1:n | p0]

and
µ(h1:n) , P [H(n) = h1:n | δτ∗]

to denote the distribution over histories induced by the POMDP policy when the initial
belief over tasks is, respectively, p0 and δτ∗ . We write δτ to denote the belief over tasks that

46 F.S. Melo and A. Sardinha

is concentrated in a single task τ . Note that, for a particular history h1:n = {a(1), . . . , a(n)},
we can write

µ̃(h1:n) =

n∏
t=1

P [A(t) = a(t) | H(t− 1) = h1:t−1, p0]

=

n∏
t=1

P (HN (t), B(h1:t−1, p0)),

where B(h1:t−1, p0) denotes the belief pt−1 over tasks computed from the initial belief p0
and the history h1:t−1. Let Fn denote the σ-algebra generated by the history up to time-
step n, i.e., the smallest σ-algebra that renders H(n) measurable.18 The assertion we seek
to establish is formalized as the following result.

Proposition 1 Suppose that p0(T ∗) > 0, i.e., the initial belief of the agent over tasks does
not exclude the target task. Then, with probability 1 (w.p.1), for every ε > 0 there is N > 0
such that, for every m ≥ n ≥ N ,

1− ε ≤
µ(H(m) | Fn)
µ̃(H(m) | Fn)

≤ 1 + ε.

Proof Given a history h′ of length n, let H|h′ denote the subset of H that is compatible
with h′, i.e., the set of histories h ∈ H such that h1:n = h′. Our proof goes along the lines
of [34]. We start by noticing that, since p0(T ∗) > 0, it holds that

µ(h) > 0⇒ µ̃(h) > 0,

i.e., µ� µ̃ (µ is absolutely continuous w.r.t. µ̃). We can thus define, for every finite history
h, a function d : H → R as

d(h) =
µ(h)

µ̃(h)
,

with d(h) = 0 if µ(h) = 0. From Lemma 3,

Eµ̃ [d(H) | Fn]→ Eµ̃ [d(H) | F∞] , (21)

which is an F∞-measurable and strictly positive random variable. On the other hand, by
definition, we have that

Eµ̃ [d(H) | Fn] = Eµ̃ [d(H) | H(n)]

=
∑
h∈H

d(h)µ̃(h | H(n))

=
1

µ̃(H(n))

∑
h∈H|H(n)

d(h)µ̃(h)

=
1

µ̃(H(n))

∑
h∈H|H(n)

µ(h)

=
µ(H(n))

µ̃(H(n))
.

We now note that, for m ≥ n, µ(H(m) | H(n)) is a r.v. such that

µ(H(m) | H(n)) =

{
µ(H(n))
µ(H(m))

if H(m) ∈ Hm | H(n)

1 otherwise,
(22)

18 Note that, by construction, the family {Fn, n = 1, . . .} is a non-increasing family of
σ-algebras.

Ad Hoc Teamwork by Learning Teammates’ Task 47

with a similar relation holding for µ̃(H(m) | H(n)). From (21), Eµ̃ [d(H(m)) | Fn] converges
w.p.1 to a strictly positive r.v. Then, for any ε > 0 there is N(ε) > 0 such that, for
m ≥ n ≥ N ,

1− ε <
Eµ̃ [d(H) | Fm]

Eµ̃ [d(H) | Fn]
< 1 + ε. (23)

Combining (22) with (23), we finally get that, for any ε > 0, there is N(ε) > 0 such that,
for m ≥ n ≥ N , w.p.1,

1− ε <
µ(H(m) | H(n))

µ̃(H(m) | H(n))
< 1 + ε,

and the proof is complete.

A.2.3 Initial upper bound

We now proceed by deriving an upper bound to the regret of any POMDP policy that
depends on the relative entropy between the distributions µ and µ̃ defined in Appendix A.2.2.
This bound will later be improved to finally yield the desired result.

Proposition 2 Suppose that p0(T ∗) > 0, i.e., the initial belief of the agent over tasks does
not exclude the target task. Then

Jτ∗ (n, τ
∗)− JP (n, τ∗) ≤ DKL (µ(H(n))‖µ̃(H(n))) + log

n

2
(24)

Proof The expected reward received by following the POMDP policy from the initial belief
δτ∗ is given by

Jτ∗ (n, τ
∗) = Eµ

[
n∑
t=1

r(A(t)) | τ∗
]
.

Similarly, for the initial belief p0, we have

JP (n, τ
∗) = Eµ̃

[
n∑
t=1

r(A(t)) | τ∗
]
.

Using Lemma 4,

Eµ

[
n∑
t=1

r(A(t)) | τ∗
]
≤ DKL (µ(H(n))‖µ̃(H(n))) + logEµ̃

[
e
∑n
t=1 r(A(t)) | τ∗

]
.

Simple computations yield

Eµ

[
n∑
t=1

r(A(t)) | τ∗
]
≤ DKL (µ(H(n))‖µ̃(H(n)))

+ logEµ̃
[
e
∑n
t=1 r(A(t))−Eµ̃[r(A(t))|τ∗] | τ∗

]
+ Eµ̃

[
n∑
t=1

r(A(t)) | τ∗
]
.

Since the exponential is a convex function, we can write

Eµ

[
n∑
t=1

r(A(t)) | τ∗
]
≤ DKL (µ(H(n))‖µ̃(H(n)))

+ log

n∑
t=1

Eµ̃
[
er(A(t))−Eµ̃[r(A(t))|τ∗] | τ∗

]

+ Eµ̃

[
n∑
t=1

r(A(t)) | τ∗
]
.

48 F.S. Melo and A. Sardinha

Applying Lemma 2 to the second term on the right-hand side and replacing the definitions
of JP and Jτ∗ yields

Jτ∗ (n, τ
∗) ≤ DKL (µ(H(n))‖µ̃(H(n))) + log

n

2
+ JP (n, τ

∗),

and the proof is complete.

A.2.4 Refined upper bound

We are now in position to establish the result in Theorem 2. We use Lemma 5 and Proposi-
tion 1 to derive an upper bound for the term DKL (µ(H(n))‖µ̃(H(n))) appearing in Propo-
sition 2. The conclusion of Theorem 2 immediately follows.

Proposition 3 Suppose that p0(T ∗) > 0, i.e., the initial belief of the agent over tasks does
not exclude the target task. Then, the sequence {dn} defined, for each n, as

dn = DKL (µ(H(n))‖µ̃(H(n)))

is o(n).

Proof We start by noting that

µ(H(n))

µ̃(H(n))
=

n∏
k=1

µ(H(k) | H(k − 1))

µ̃(H(k) | H(k − 1)))
,

which implies that

DKL (µ(H(n))‖µ̃(H(n))) = Eµ

[
n∑
k=1

log
µ(H(k) | H(k − 1))

µ̃(H(k) | H(k − 1)))

]
.

For each n ∈ N, define the sequences {an} , {bn} and {cn} as

an = max

{
0, log

µ(H(k) | H(k − 1))

µ̃(H(k) | H(k − 1)))

}
,

bn = max

{
0, log

µ̃(H(k) | H(k − 1))

µ(H(k) | H(k − 1)))

}
,

cn = an − bn.

By construction, we have an > 0 and bn > 0 for all n ∈ N. Also, from Proposition 1,

lim
n
an = lim

n
bn = 0

w.p.1, implying that limn cn = 0 w.p.1. By Lemma 5, we have that, w.p.1,

lim
n

1

n

n∑
k=1

cn = 0

which finally yields that

lim
n

1

n
DKL (µ(H(n))‖µ̃(H(n))) = 0

and the proof is complete.

Ad Hoc Teamwork by Learning Teammates’ Task 49

References

1. Abbeel P (2008) Apprenticeship learning and reinforcement learning with application
to robotic control. PhD thesis, Stanford University

2. Agmon N, Stone P (2012) Leading ad hoc agents in joint action settings with multiple
teammates. In: Proc. 11th Int. Conf. Autonomous Agents and Multiagent Systems, pp
341–348

3. Albrecht S, Ramamoorthy S (2013) A game-theoretic model and best-response learn-
ing method for ad hoc coordination in multiagent systems. In: Proc. 2013 Int. Conf.
Autonomous Agents and Multiagent Systems, pp 1155–1156

4. Barrett S, Stone P (2011) Ad hoc teamwork modeled with multi-armed bandits: An
extension to discounted infinite rewards. In: Proc. 2011 AAMAS Workshop on Adaptive
and Learning Agents, pp 9–14

5. Barrett S, Stone P (2012) An analysis framework for ad hoc teamwork tasks. In: Proc.
11th Int. Conf. Autonomous Agents and Multiagent Systems, pp 357–364

6. Barrett S, Stone P, Kraus S (2011) Empirical evaluation of ad hoc teamwork in the
pursuit domain. In: Proc. 10th Int. Conf. Autonomous Agents and Multiagent Systems,
pp 567–574

7. Barrett S, Stone P, Kraus S, Rosenfeld A (2013) Teamwork with limited knowledge of
reammates. In: Proc. 27th AAAI Conf. Artificial Intelligence

8. Barron A (1988) The exponential convergence of posterior probabilities with implica-
tions for Bayes estimators of density functions. Tech. Rep. 7, Univ. Illinois at Urbana-
Champaign

9. Blackwell D, Dubbins L (1962) Merging of opinions with increasing information. The
Annals of Mathematical Statistics 33(3):882–886

10. Boutilier C (1996) Planning, learning and coordination in multiagent decision processes.
In: Proc. 6th Conf. Theoretical Aspects of Rationality and Knowledge, pp 195–210

11. Bowling M, McCracken P (2005) Coordination and adaptation in impromptu teams.
In: Proc. 20th AAAI Conf. Artificial Intelligence, pp 53–58

12. Cesa-Bianchi N, Lugosi G (2006) Prediction, Learning and Games. Cambridge Univer-
sity Press

13. Chakraborty D, Stone P (2013) Cooperating with a Markovian ad hoc teammate. In:
Proc. 12th Int. Conf. Autonomous Agents and Multiagent Systems, pp 1085–1092

14. Clarke B, Barron A (1990) Information-theoretic asymptotics of Bayes methods. IEEE
Trans Information Theory 36(3):453–371

15. de Farias D, Megiddo N (2006) Combining expert advice in reactive environments. J
ACM 53(5):762–799

16. Duff M (2002) Optimal learning: Computational procedures for Bayes-adaptive Markov
decision processes. PhD thesis, University of Massassachusetts Amherst

17. Fu J, Kass R (1988) The exponential rates of convergence of posterior distributions.
Annals of the Institute of Statistical Mathematics 40(4):683–691

18. Fudenberg D, Levine D (1989) Reputation and equilibrium selection in games with a
patient player. Econometrica 57(4):759–778

19. Fudenberg D, Levine D (1993) Steady state learning and Nash equilibrium. Economet-
rica 61(3):547–573

20. Fudenberg D, Levine D (1998) The Theory of Learning in Games. MIT Press
21. Ganzfried S, Sandholm T (2011) Game theory-based opponent modeling in large

imperfect-information games. In: Proc. 10th Int. Conf. Autonomous Agents and Multi-
agent Systems, pp 533–540

22. Genter K, Agmon N, Stone P (2011) Role-based ad hoc teamwork. In: Proc. 25th AAAI
Conf. Artificial Intelligence, pp 1782–1783

23. Genter K, Agmon N, Stone P (2013) Ad hoc teamwork for leading a flock. In: Proc.
12th Int. Conf. Autonomous Agents and Multiagent Systems, pp 531–538

24. Ghosal S, van der Vaart A (2007) Convergence rates of posterior distributions for non
IID observations. The Annals of Statistics 35(1):192–223

25. Ghosal S, Ghosh J, van der Vaart A (2000) Convergence rates of posterior distributions.
The Annals of Statistics 28(2):500–531

50 F.S. Melo and A. Sardinha

26. Gittins J (1979) Bandit processes and dynamic allocation indices. J R Statistical Society
B 41(2):148–177

27. Gmytrasiewicz P, Doshi P (2005) A framework for sequential planning in multiagent
settings. J Artificial Intelligence Res 24:49–79

28. Gossner O, Tomala T (2008) Entropy bounds on Bayesian learning. J Mathematical
Economics 44:24–32

29. Haussler D, Opper M (1997) Mutual information, metric entropy and cumulative en-
tropy risk. Annals of Statistics 25(6):2451–2492

30. Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J
American Statistical Association 58:13–30

31. Jordan J (1991) Bayesian learning in normal form games. Games and Economic Behavior
3(60-81)

32. Jordan J (1992) The exponential convergence of Bayesian learning in normal form
games. Games and Economic Behavior 4(2):202–217

33. Kaelbling L, Littman M, Cassandra A (1998) Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101:99–134

34. Kalai E, Lehrer E (1993) Rational learning leads to Nash equilibrium. Econometrica
61(5):1019–1045

35. Kauffman E, Cappé O, Garivier A (2012) On Bayesian upper confidence bounds for
bandit problems. In: Proc. 15th Int. Conf. Artificial Intelligence and Statistics, pp 592–
600

36. Kauffman E, Korda N, Munos R (2012) Thompson sampling: An asymptotically optimal
finite-time analysis. In: Proc. 23rd Int. Conf. Algorithmic Learning Theory, pp 199–213

37. Kautz H, Pelavin R, Tenenberg J, Kaufmann M (1991) A formal theory of plan recogni-
tion and its implementation. In: Reasoning about Plans, Morgan Kaufmann, pp 69–125

38. Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning. In: Proc. 17th Eur.
Conf. Machine Learning, pp 282–293

39. Lai T, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Adv Applied
Mathematics 6(1):4–22

40. Leyton-Brown K, Shoham Y (2008) Essential of Game Theory: A Concise, Multidisci-
plinary Introduction. Morgan & Claypool Publishers

41. Liemhetcharat S, Veloso M (2014) Weighted synergy graphs for effective team formation
with heterogeneous ad hoc agents. Artificial Intelligence 208:41–65

42. Littman M (2001) Value-function reinforcement learning in Markov games. J Cognitive
Systems Res 2(1):55–66

43. Madani O, Hanks S, Condon A (1999) On the undecidability of probabilistic planning
and infinite-horizon partially observable Markov decision problems. In: Proc. 16th AAAI
Conf. Artificial Intelligence, pp 541–548

44. Nachbar J (1997) Prediction, optimization and learning in repeated games. Economet-
rica 65(2):275–309

45. Ng A, Russel S (2000) Algorithms for inverse reinforcement learning. In: Proc. 17th Int.
Conf. Machine Learning, pp 663–670

46. Pineau J, Gordon G, Thrun S (2006) Anytime point-based approximations for large
POMDPs. J Artificial Intelligence Res 27:335–380

47. Poupart P, Vlassis N, Hoey J, Regan K (2006) An analytic solution to discrete Bayesian
reinforcement learning. In: Proc. 23rd Int. Conf. Machine Learning, pp 697–704

48. Pourmehr S, Dadkhah C (2012) An overview on opponent modeling in RoboCup soccer
simulation 2D. In: Robot Soccer World Cup XV, pp 402–414

49. Puterman M (2005) Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley

50. Ramchurn S, Osborne M, Parson O, Rahwan T, Maleki S, Reece S, Huynh T, Alam M,
Fischer J, Rodden T, Moreau L, Roberts S (2013) AgentSwitch: Towards smart energy
tariff selection. In: Proc. 12th Int. Conf. Autonomous Agents and Multiagent Systems,
pp 981–988

51. Rosenthal S, Biswas J, Veloso M (2010) An effective personal mobile robot agent through
symbiotic human-robot interaction. In: Proc. 9th Int. Conf. Autonomous Agents and
Multiagent Systems, pp 915–922

Ad Hoc Teamwork by Learning Teammates’ Task 51

52. S Seuken SZ (2008) Formal models and algorithms for decentralized decision making
under uncertainty. J Autonomous Agents and Multiagent Systems 17(2):190–250

53. Shani G, Pineau J, Kaplow R (2013) A survey of point-based POMDP solvers. J Au-
tonomous Agents and Multiagent Systems 27(1):1–51

54. Shen X, Wasserman L (2001) Rates of convergence of posterior distributions. The Annals
of Statistics 29(3):687–714

55. Shiryaev A (1996) Probability. Springer
56. Spaan M, Vlassis N (2005) Perseus: Randomized point-based value iteration for

POMDPs. J Artificial Intelligence Res 24:195–220
57. Spaan M, Gordon G, Vlassis N (2006) Decentralized planning under uncertainty for

teams of communicating agents. In: Proc. 5th Int. Conf. Autonomous Agents and Multi
Agent Systems, pp 249–256

58. Stone P, Kraus S (2010) To teach or not to teach?: Decision-making under uncertainty
in ad hoc teams. In: Proc. 9th Int. Conf. Autonomous Agents and Multiagent Systems,
pp 117–124

59. Stone P, Veloso M (2000) Multiagent systems: A survey from a machine learning per-
spective. Autonomous Robots 8(3):345–383

60. Stone P, Kaminka G, Kraus S, Rosenschein J (2010) Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In: Proc. 24th AAAI Conf. Artificial Intelli-
gence, pp 1504–1509

61. Stone P, Kaminka G, Rosenschein J (2010) Leading a best-response teammate in an ad
hoc team. In: Agent-Mediated Electronic Commerce. Designing Trading Strategies and
Mechanisms for Electronic Markets, Lecture Notes in Business Information Processing,
vol 59, Springer Berlin Heidelberg, pp 132–146

62. Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. MIT Press
63. Walker S, Lijoi A, Prünster I (2007) On rates of convergence for posterior distributions

in infinite-dimensional models. The Annals of Statistics 35(2):738–746
64. Wang X, Sandholm T (2002) Reinforcement learning to play an optimal Nash equilib-

rium in team Markov games. In: Adv. Neural Information Proc. Systems, vol 15, pp
1571–1578

65. Watkins C (1989) Learning from delayed rewards. PhD thesis, King’s College, Cam-
bridge Univ.

66. Wu F, Zilberstein S, Chen X (2011) Online planning for ad hoc autonomous agent
teams. In: Proc. 22nd Int. Joint Conf. Artificial Intelligence, pp 439–445

