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Abstract—In this paper, we propose a feature-based model to
recognize emotions via touching patterns of individuals playing
a game on a typical tablet. In this work, novel features, such
as Angular Velocity/Acceleration, Angle, Curl, Area and number
of strokes within a time window, are introduced and the gold-
standard of the data is determined automatically via subjects’
facial expressions. The results show that the approach is promis-
ing and the model is able to recognize all the six basic emotions,
with a performance of 71.92%±0.51. In addition, the recognition
of valence and arousal reaches correlation coefficients equal to
0.76 and 0.78 respectively.

Index Terms—Touch, Stroke, Emotion, Arousal, Valence, Au-
tomatic Recognition

I. INTRODUCTION

There is a growing body of literature that recognizes the
importance of automatic emotion recognition [1]. With this
aim, researchers have investigated a variety of approaches
using different information modalities from different sources.
For instance, from facial expressions (for an early review see
[2]), via speech [3], or physiological cues [4] (e.g. from heart
rate variability [5], skin conductance [6], EEG [7]), or using
vision-based to infer emotions from gestures and posture (for
a survey see [8]). Finally, the advent of wearable technology
made emotion recognition easier, for instance by analyzing
bio-physiological signals [9], or gestures [10].

Another source of information which gives clues about
our emotions, as a subset of our bodily movements, is
the way we interact with touch-screens [11]. In comparison
with previous methods, this channel is cheap (no need for
peripheral sensors), and is totally non-intrusive (comparing
with physiological-based approaches [12]). Additionally, this
channel is robust and is present in any tablet [11]. Moreover,
it requires a lower computation cost (comparing to facial
expression recognition). It is more applicable than a speech-
based approach, since there is no need to force the users to talk.
Also, comparing with vision-based approaches, users’ privacy
remains intact.

These advantages motivated several researchers to investi-
gate the relationship between emotion and touch. Though to

date, the research on affective touch has tended to mostly focus
on haptic devices [13], few studies have investigated recogniz-
ing emotional states using strokes on touchscreens. Yet, these
few attempts are still in the early stage and further studies are
required to improve their effectiveness. This motivated us to
further investigate emotion recognition using tactile features.

One challenge is providing the ground truth or the gold stan-
dard of data. In so doing, the most straightforward approach
is using a questionnaire. However, by definition, emotion
is volatile [14], hence memorizing it may not be precise,
especially during long periods of time. Also, the subjects may
label the whole duration with a single label (the ongoing or the
recently perceived emotion). However, emotions may change
in a course of few seconds, hence they might not be fixed
over the whole duration. Hence, using a single questionnaire at
the end of an interaction is not sufficient to capture emotional
variances for the whole period. A solution might be frequently
applying questionnaires; but, this would be highly intrusive.
On the other hand, emotions are highly subjective [15], hence
annotations might not be reliable in general [16], neither self-
annotation, as human emotion is a cognitive concept and is
hard to recognize the exact emotion and its intensity [14].

In this work, we apply a recent automatic method of emo-
tion recognition, using Facial Expressions, to infer the ground
truth, to overcome the difficulties of using questionnaires. It is
showed that facial expression achieves high accuracy in real
time emotion recognition [17]. For instance, FaceReader is
capable of recognition with 88% accuracy, while the human
emotions recognition rate for the same datasets was 85%.
Hence, FaceReader is as good as human coders at recognizing
emotions [18]. We believe that using automatic labeling of
emotions resolves the implication of using self-reports. First,
it does not interrupt the task and secondly, it works in a real-
time manner, hence emotions will not be forgotten, and more
interestingly, every single instant could be labeled. Although
putting a camera to record facial expressions might be intrusive
and violates the privacy, the intrusion level is lower than
frequent questionnaires. One possible drawback could be not
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achieving 100% accuracy, but we argue that this is true for any
other technique, even the self-reports. Also, Facial Expression
Recognition tools have been validated using either human
coders or self reports, hence these tools may suffer the same
source of uncertainty. In the worst case, the performance of our
tool is bounded by the performance of the automated emotion
recognition tool for the ground truth.

Additionally, here we focus on “Basic emotions” [19]. Basic
emotions are universal and this fact gives us the advantage
to use the same tool on different ethnicity. One may argue
that not all the basic emotions, such as disgust, might be
observable during gameplay. Also, emotion is related to the
context, hence using a limited set of emotions may lead to a
higher classification rate within that specific context. However,
here we focus mostly on the universality of the work by
considering basic emotions. Although this selection may lead
to potential noise of unseen data in modeling, we compensate
this by providing a more reliable source of ground truth in
form of a tested automatic recognition system.

II. RELATED WORK

As with any multidisciplinary field, this work can be placed
in different categories. Here, we only focus on recent lit-
erature which attempts to recognize emotions using tactile
behavior. For instance, an early work [11], aimed to recognize
four affective states: ‘irritation, annoyance, reflectiveness and
neutral’ from 825 data-points. A feature vector composed of
15 selected features among 220, gained 70.12% performance
discriminating the four emotions (the highest accuracy attained
92.7 for irritation, and the least achieved 43.3 for recogni-
tion of reflectiveness). The features carry information about
Cartesian coordinates, and z as the applied pressure. In a
similar vein, another study [17] with 50 users from different
cultures, proposed a model that recognizes four classes of
emotion (neutral, fright, sadness, nervousness). The average
performance gained 76.0% (the min classification rate gained
55.3 regarding nervousness, and the maximum reached 90.0
for fright). Comparing to the previous study, this model seems
more reliable having been trained and tested on a larger
population.

In the work closest to our study [13], 15 people participated
in an experiment and played 20 levels of a modified version
of Fruit Ninja game on an iPhone. To gather the ground
truth, the participants were asked to fill in a questionnaire and
then relabel their emotions by watching the video recorded
their faces during the gameplay. The self-report contained four
affective states: delighted, excited, annoyed and frustrated. The
responses were mapped to valence-arousal emotional space
[20], and the corresponding values for arousal and valence
were extracted. A feature-set containing 16 features, including
the number of strokes in each session, {average, median, min
and max} of {length, speed, directionality index, pressure}
was extracted. The best trained model, gained an accuracy
of 77.0% for recognition of the four classes. The maximum
performance in arousal detection reached up to 89.7%, and for
valence detection the best rate was 86.0%.

Fig. 1. Ninja Fish Game. In this picture a normal fish scores +3.

Other similar works have investigated the link between
tactile behavior and other human factors such as effort [12]
and more recently stress [21]. Although these studies do not
directly relate to emotion recognition, the introduced features
(startTime, stopTime, x, y points, acceleration, timeE-lapsed,
distance, velocity, and relative changes in pressure) could be
a reference for tactile-based approaches.

All the mentioned models used questionnaires to provide
the ground truth; however, as discussed earlier, using a
questionnaire is not a reliable way to measure emotions.
Further, the aforementioned models could still be improved
using more sophisticated features carrying more information
about the dynamics of the performed stroke. Nevertheless, all
together, these studies indicate that touching patterns consist
of promising information for emotion recognition.

III. DATA COLLECTION

We sent an email to a random selection of the students
including 320 people, stating that we will run a video-taped
experiment for less than 10 minutes of playing a specific game
on a tablet. No more information was added and we did not
inform the subjects about the study goal. 25 people (16 male
and 9 female) participated in the test voluntarily after filling
the consent form. Participants’ ages ranged between 19 and 45
(25.3±6.1) years old. We ran the experiment during 4 days in
an isolated room to prevent any distraction. We had to remove
5 cases from the dataset due to different sensor failures.

Preliminary results of our pilot studies with “Fruit Ninja”
revealed that lots of people are excited during playing. Hence,
we decided to ask the participants to play a game they never
played and that entice a broad spectrum of emotions during
gameplay. To choose the game, we looked at stroke-based
games on GooglePlay, ranked by few people. We selected
a game called “Ninja Fish” which takes at least 80 seconds
(Figure 1). However, due to different events in the game, the
duration might be different. We asked the subjects to play one
level of the game, without telling them the game’s rules to
provide the opportunity to make them feel negative emotions
such as boredom, anger, etc. There are three types of fishes in
this game: slicing Friendly fishes has negative points, Normal
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TABLE I
DISTRIBUTION OF STROKES REGARDING THE SIX BASIC EMOTIONS.

Emotion Happy Sad Angry Surprised Scared Disgusted

Count 654 369 126 33 20 155

fishes with normal score, and Special fishes which carry bonus
points or freeze the time, giving the subject more time to
catch more fishes. We expect to gather the basic emotions
during the gameplay. For example, the first time a subject
slices a friendly fish, s/he might get surprised or even angry by
receiving unexpected negative points. Moreover, we may face
a bored user who fails to remember the categories. Also, the
more negative points might lead the player to lower arousal,
or to experience more negative emotions, such as sadness.
During the game, the user needs to remember the type of
fishes and once s/he touches a friendly fish by mistake s/he
might get disappointed, or sad, or even angry. Although one
might argue that these factors are influenced by personality and
game habits, but still the possibility to get negative emotions
is high. Also, cutting a fish by fingers might be disgusting to
some sensitive users, especially the ones with high level of
imagination. The first explosion of fishes might arise scared
emotion. Finally, normal fishes may make the player to be
happy, also might lead to experiencing higher arousal.

The participants were asked to play on an 8-inch tablet. We
fixed the tablet on the table to prevent potential movement
noise. All the touch events were recorded using the ADB
(Android Debugging Bridge). The subjects’ interaction were
videotaped by three cameras: one located on top of the table to
record game events, one small LifeCam located in front of the
user to record the subjects’ facial expressions. Furthermore,
another camera was placed next to the tablet to record the
finger touching the screen for further analysis if necessary.
To retrieve the gold-standard, we use FaceReader 6.0 which
reports the intensity of emotions (happy, sad, angry, surprised,
scared, disgusted) from 0 to 1, and extracts levels of valence
(between -1 and 1) and arousal (between 0 to 1).

Each subject, performed different numbers of strokes on the
tablet. A total number of 1357 strokes were recorded. Table I
lists the distribution of the collected data in each emotion cate-
gory. During each single stroke, the participant may show any
of the 6 basic emotions in his/her face. To label each stroke,
we use the most dominant emotion during the corresponding
stroke interval. To be more specific, if the participant showed
all the six emotions, the winner emotion is the one which
had the highest intensity on the average. Similarly, we use the
average of valence and arousal values recorded during that
stroke as the ground truth for the corresponding models.

IV. METHOD

As discussed earlier, we argue that individuals experiencing
different emotional states, show different patterns while work-
ing with a touchscreen. The justification behind this idea is
that our motor behavior is highly influenced by the ongoing
affective state [22]. Hence, the way we perform strokes

carries information about our affective states. What follows
is a description of our methodology to emotion recognition
from touching patterns, more specifically dynamics of the
performed strokes. The discriminative features we propose,
which highlight the way the finger of the subject has moved on
the screen, are categorized in 14 different categories as listed in
Table II. In this table, X corresponds to the X coordination
on the screen, Y corresponds to the Y coordination on the
screen, P the pressure recorded, and T timestamp of the
preceding recorded values. Note that the recorded pressure
is the measurement reported by ADB which does not reflect
the actual applied force, but rather an estimation based on
the capacitance values obtained from the touchscreen sensor.
To represent this continuous record, we define each stroke as
follows: ({x1, y1, p1, t1}, {x2, x2, p2, t2}, . . . , {xi, yi, pi, ti},
. . . , {xn, yn, pn, tn}).

The major part of the selected features are in common
with the recent literature. Other categories, i.e. Angular Ve-
locity, Angular Acceleration, Angle, Curl, Area and number
of strokes within a time window, are novel features introduced
here. These new features are chosen to support the analysis
of the dynamics of the touch movement. For instance, the
4th category, Positional Change (PC), examines the explicit
changes in the position of the finger on the screen from
three different metrics: 1. length, or Pythagorean Proposition,
refers to the length of the traversed path considering backward
moves (see Figure 2 (a)). 2. spanX/Y, refers to the maximum
spanned path in direction of X/Y (See Figure 2(b)). 3. distance,
considers only starting and the ending point (See Figure 2 (a)).
To better examine such dynamics, we also considered the first
and the second derivation of PCs in 5th and 6th category.

Other feature dealing with dynamics of movement are
Velocity and Acceleration. To measure velocity, we divide the
total displacement by duration of the stroke. Further, since
the movement could be performed in non-straight line, we
inspect the stroke by measuring its angular velocity and curl.
Moreover, we calculate the first derivation of the curl to
have an idea of the angular movement. To better examine the
effectiveness of interval features (location and pressure), we
consider descriptive statistics of each category (mean, mini-
mum, maximum) as a single feature. Also, to better examine
the number of performed strokes, we consider different sizes
for a time window, i.e. 1, 3, 5 and 10 seconds long. These sizes
were specified by multiple trial and error attempts. Regarding
directional features, such as Positional Changes, we consider
these numbers in the direction of the Cartesian axis (x and
y), as well as the overall value. The amount of pressure that
is applied can be influenced by affect; therefore, we expect
to observe different level of pressure in higher intensities of
anger comparing to less level of anger or even other emotions.

Additionally, we consider features that are contextual in
terms of the actual gameplay. For instance, as the game reaches
the end, the participant might be more aroused. Also, in this
game, when a fish is getting out of the screen the chance
to catching it decreases; hence the corner coordinates play a
more tricky roles in games. The final feature set in Table II,
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TABLE II
INITIAL FEATURE VECTOR CATEGORIZED IN 14 MAIN CATEGORIES.

Category # Abbreviation Description

Time 1 Duration Duration of the stroke
2 Dist2prev Time elapsed since the previous stroke
3 timeElappsed Time elapsed from the start of the interaction

Location 4-8 xMin,xMax,xMean,xMedian,xSTD Min,Max,Mean,Median, StandardDeviation recorded X
9-13 yMin,yMax,yMean,yMedian,ySTD Min,Max,Mean,Median, StandardDeviation recorded Y

Pressure 14-18 pMin,pMax,pMean,pMedian,pSTD Min,Max,Mean,Median, StandardDeviation recorded Pressure

Positional Changes 19 lengthT sum of Pythagorean Propositions
(PC) 20 spanX total span in direction of X

21 spanY total span in direction of Y
22 distanceX difference of X position from start to the end
23 distanceY difference of Y position from start to the end
24 displacement total displacement

PC first derivation 25 1stDVPCx first derivation of X changes
26 1stDVPCy first derivation of Y changes
27 1stDVPP first derivation of the diameter of the Pythagorean Propositions

PC 2nd derivation 28 2ndDVPCx second derivation of X changes
29 2ndDVPCy second derivation of Y changes
30 2ndDVPP second derivation of the diameter of the Pythagorean Propositions

Velocity 31 velocity average speed

Acceleration 32 acceleration average acceleration

Angular velocity 33 wj Mean Mean Angular velocity
34 wj Min Minimum Angular velocity
35 wj Max Maximum Angular velocity

Curl 36 curlX Curve in direction of X
37 curlY Curve in direction of Y

First derivation 38 1stDVcurlx average Angular Acceleration X (based on curve)
of Curl 39 1stDVcurly average Angular Acceleration Y (based on curve)

Angle 40 angleM the angle of the middle point of the stroke
41 angle1 the angle between mid point and starting point
42 angle2 the angle between mid point and the ending point

# of strokes 43-46 numOfStrkW1,3,5,10 # strokes in 1,3,5,10s time window

Area 47 Area Area

would be large with a size of 47. So, to prevent overfitting
and enhance the classification performance, we use a Feature
Selection algorithm, to select highly correlated features with
the class label, and remove redundant and irrelevant features.
This step reduces the dimensionality of the data and allows
learning algorithms to operate faster and more effectively [23].

V. RESULTS

To analyze the data, we used Weka [24] data mining tool
to select the features, train and test the model (version 3.8
of Weka, contains 57 different classifiers by default and we
have tried all of them). We used 10-fold cross-validation
technique to evaluate the trained models. To select the most
relevant features, in case of basic emotions which constitute
a discrete set, we used InformationGain algorithm (Table III).
We select features ranked higher than 0. Regarding Valence
and Arousal, which constitute a continuous spectrum, we used
the ReleifAttributeEval algorithm to select the features. This

algorithm calculated a weight between −1 and +1 for each
feature and higher positive weights indicating more predictive
attributes. Hence, we applied this algorithm several times till
the attempt which the ranks are higher than 0.

Among all trained models, we selected the ones gaining
the highest classification accuracy together with minimum
variance and Root Mean Square Error (RMSE). In case of
emotions, a meta-classifier, AttributeSelectedClassifier with a
J48 base-classifier, performs better than other Weka’s classi-
fiers. Specifically, on average the model reaches 71.92±0.51,
and 0.27 RMSE. The average Confusion Matrix is listed in
Table V, the best classification rate corresponds to happiness
(82.42%) and the worst is scared (40%). In case of Arousal,
RandomForrest algorithm reaches a Correlation Coefficient of
0.78 ± 0.002 with 0.1 RMSE. In case of Valence, the model
gained 0.76 ± 0.003 Correlation Coefficient on the average
(RMSE 0.2).

To evaluate the model, we trained a model using Leave-One-
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Fig. 2. (a) To measure the length of the traversed path, we calculate the sum
of the Euclidean distance of each consecutive point. While ‘displacement’ (the
dashed line) considers only the starting and ending point of each stroke. (b) To
have an idea of the spanned area we considered the positional differences of
x,y recorded values. (c) 3 points were selected to measure the angle between
them in order to examine the level of rotation performed by the subject.

Subject-Out (LOSO) Cross-Validation and gained 52.16% ±
12.37. Also, to evaluate the effectiveness of the novel features,
we trained other models using only conventional features, i.e.
{mean, min, max, median} of {number of strokes, stroke
length, stroke speed, Directness Index, Pressure}. In case
of emotions (Table VI), the model reaches 46.62% ± 0.72
(RMSE 0.31). Considering Arousal levels, a model trained
using conventional features gained 0.58± 0.006 (RMSE 0.1).
Turning to Valence, the model reaches on the average for
10 runs, a Correlation Coefficient of 0.48 ± 0.007 with 0.2
RMSE. Finally, to reduce the negative effect of imbalanced
data, we trained another model ignoring the sparse classes,
i.e. Surprised and Scared. This model gains 72.77% ± 0.78
(RMSE 0.33).

VI. DISCUSSION

Our results revealed that the models perform well in general,
but when viewed by class, in some classes the performance
is less satisfactory than expected. One source of uncertainty,
could be the imbalanced data we gathered. Although we used
a meta-classifier, which is less sensitive to imbalanced data
[25], however, collecting more data especially for the unseen
classes enhances the performance.

TABLE III
FEATURES SELECTION (INFORMATIONGAIN) OUTPUT. THE FEATURES

WHICH RANKED HIGHER THAN ZERO WERE SELECTED.

Rank Feature Abbreviation Rank Feature Abbreviation

0.5196 curly 0.0271 2ndDVPCy
0.5179 curlx 0.0267 distanceY
0.2607 numOfStrkW10 0.0264 angleM
0.1731 numOfStrkW5 0.0258 spanY
0.1419 numOfStrkW3 0.0249 Duration
0.1213 timeElappsed 0.0247 ySTD
0.1115 pMean 0.0247 mSTD
0.1083 pMax 0.0216 1stDVcurly
0.0882 numOfStrkW1 0.0216 1stDVPCy
0.0746 1stDVPP 0.0204 acceleration
0.0746 2ndDVPP 0.0178 yMax
0.0746 velocity 0.0177 angle1
0.0703 distanceX 0 wj Max
0.0697 length 0 wj Min
0.0667 1stDVcurlx 0 pMedian
0.0651 Area 0 xMin
0.0623 xSTD 0 angle2
0.0617 spanX 0 pMin
0.0595 2ndDVPCx 0 yMin
0.0542 1stDVPCx 0 yMean
0.0452 displacement 0 xMedian
0.0383 dist2prev 0 xMean
0.0383 xMax 0 yMedian
0.0289 wj Mean

TABLE IV
FEATURES SELECTION (RELIEFATTRIBUTEEVAL) OUTPUT. FOR EACH

MODEL, THE FEATURES WHICH RANKED HIGHER THAN ZERO WERE
SELECTED. FEATURES RANKED LESS THAN 0.001 ARE NOT LISTED.

Arousal Valence

Rank Feature Rank Feature

0,024962 timeElappsed 0,02224 wjMean

0,016085 curlx 0,01715 timeElappsed
0,016080 curly 0,00938 numOfStrkW10
0,007266 pMean 0,0065 wjMax

0,006762 pMax 0,00498 acceleration
0,006028 Dist2prev 0,00466 numOfStrkW5
0,005236 numOfStrkW10 0,0043 curlx
0,004755 distanceY 0,00429 curly
0,004392 distanceX 0,00401 angle1
0,003909 xSTD 0,0035 numOfStrkW3
0,002673 Duration 0,0024 xMax
0,002620 2ndDVPCy 0,0022 pMax
0,002580 yMedian 0,00204 pMean
0,002580 pMedian 0,00169 numOfStrkW1
0,002384 2ndDVPCx
0,002003 numOfStrkW5

Comparing previously proposed methods with this study
is tricky, because not only the data used is different, but
also the training techniques, experiment setups, emotional
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TABLE V
EMOTION RECOGNITION CLASSIFICATION CONFUSION MATRIX

Classified as
Happy Sad Angry Surprised Scared Disgusted

Happy 539 78 14 7 3 13
Sad 103 239 16 0 0 11
Angry 41 24 52 1 2 6
Surprise 12 2 1 17 1 0
Scared 6 1 5 0 8 0
Disgusted 20 10 5 0 0 120

TABLE VI
SEMI-BALANCED CLASSIFIER CONFUSION MATRIX. THE SPARSE

CLASSES HAVE BEEN REMOVED TO REACH A MORE BALANCED DATASET.

Classified as -> Happy Sad Angry Disgusted

530 87 22 15
79 261 15 14
43 27 50 6
23 11 3 118

labels, etc. are different. Nevertheless, as seen in the result
section, the emotion recognition model trained using solely the
conventional features introduced in other literature, reached an
accuracy of 46.62± 0.72 (RMSE 0.31), while using the novel
features suggested here the accuracy reaches 71.92 ± 0.51
(RMSE 0.27). In case of modeling Arousal, a model trained
with conventional features reaches an average Correlation Co-
efficient of 0.59±0.006 (RMSE 0.1), while involving the novel
features the Correlation coefficient is increased. Regarding
valence, the model trained using conventional features reached
an average Correlation Coeficient of 0.4846 ± 0.007 (RMSE
0.19), while using the novel features enhances the accuracy up
to 0.7629±0.003. These numbers endorse the effectiveness of
the novel features introduced, i.e. timing features, acceleration
of the stroke, curl, angular velocity and acceleration, angle,
area, and time window counting strokes.

To check the impact of using contextual features that grasp
some aspects of concrete gameplay, we trained another model,
without the contextual features (i.e. elapsed time and position
in x,y). In case of Emotional labels, a model trained using
context-free features reached an accuracy of 66.23% ± 0.93
(RMSE 0.27). Regarding Arousal levels, such model reaches
an average Correlation Coefficient of 0.7411±0.0039 (RMSE
0.1) and in case of Valence, the model gained 0.6278± 0.005
(RMSE 0.2). The accuracy is a bit lower, which supports the
effectiveness of contextual features. Nevertheless, the model
without those features, hence more generic, is still promising
in recognition of Emotion, Arousal and Valence.

Also, the models perform better than baselines. Specifically,
zeroR classifier, which simply predicts the majority without
any predictability power, reaches lower rate. Considering Emo-
tions, zeroR classifiers gains 48.19% as the baseline. Regard-
ing Arousal levels, ZeroR classifier reaches the Correlation
Coefficient of -0.0912 (RMSE 0.2). In case of Valence, ZeroR

TABLE VII
EXAMINING THE EFFECTIVENESS OF THE FEATURES.

Model Novel Features Context-Free Conv. Features ZeroR

Emotions 71.92%±0.51 66.23%±0.93 46.62%±0.07 48.19%
Arousal 0.7796±0.002 0.7411±0.004 0.5894±0.006 -0.0912
Valence 0.7629±0.002 0.6278±0.005 0.4846±0.006 -0.0757

gains -0.0757 (RMSE 0.3). These results show that the models
proposed in this study, work way to far more promising than
random models. Table VII summarizes these comparisons. Yet,
a more precise comparison could be done by applying our
model on the same datasets used in other studies.

It is important to bear in mind the possible bias of imbal-
anced data in the reported results. As shown in the results
section, removing the sparse classes enhanced the accuracy of
the model. More specifically, the model could not recognize
the members of these two classes, due to fewer learned in-
stances. On the other hand, in case of Arousal and Valence, the
Correlation Coefficient decreased a little bit. These decrease in
the accuracy might be due to overfitting of the models toward
the more populated classes.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a model to recognize users’
emotional state while playing a game on a typical tablet. In
final words, we conclude that using a cheap sensor avail-
able in all tablets with low level of computation cost, the
proposed model provides the opportunity to detect emotions,
arousal and valence. This approach has the capability of being
implemented in real-time (context-free apps) and semi-real-
time (context-sensitive) applications. While our findings offer
many interesting insights into emotion recognition using tactile
features, our study has limitation that points to follow up
studies. The first and foremost step could be increasing the
game contextual features, using video-taped events happened
during gameplay, as a source of triggering emotions. Fur-
ther, applying other methods of feature selection/reduction,
such as the Principal Component Analysis or Correlation
Based techniques, may improve the performance. Also, we
plan to add more novel features, such as, kinetic energy of
strokes, angular kinetic energy, and the level of expertise that
might be another interesting features to consider. Another
step worth to follow is expanding the model to detect and
analyze strokes received from different fingers on a multi-
touch screen. Also using devices having inbuilt sensors capable
of measuring real pressure (the one used in [21]) would
provide more information about strokes. The study could be
repeated using other implicit measurements of emotions (ex.
Self Assessment Manikin) that allow for linguistic and cultural
issues or biases related to the introspective verbalisation. Also,
combing different methodologies (e.g., physiological indices,
self-report, implicit measures, facial expressions) may increase
the reliability of emotions measure. Note that the approach
might not be applicable which works merely with other sensors
such as gyroscope.
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