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Abstract. This paper describes the development of a new online competition platform to support the 
future of the Geometry Friends Cooperative Game AI competition. Geometry Friends is a cooperative 
2D physics-based platformer that presents several challenges for the AI community, in particular, to 
integrate motion and task planning. This paper presents the work developed to improve the platform 
used to run the competition. The work was based on best practices of similar platforms. The new 
platform was developed mostly from scratch, consisting of a new website and a background program 
in charge of fully handling the received submissions, and more. Virtualization was used to create a 
secure, fair and reusable evaluation environment. Different features of the new platform were tested 
by several people across three different test scenarios. The new website was concluded to have an 
above average usability, while the submission handling program worked as expected throughout the 
testing phase. 
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1 Introduction 
Videogames make one of the best testbeds for artificial intelligence. They provide inexpensive virtual 
simulations where algorithms can be tested repeatedly. They can also be viewed as good platforms 
for iterative AI testing models, with the possibility for gradual improvements over time. Geometry 
Friends (Rocha et al. 2008) is one of such games. Initially designed to be a 2D platform puzzle game 
oriented towards cooperation, it was adapted to enable the implementation of artificial agents. A 
Geometry Friends AI competition (Prada et al. 2015) exists and has been receiving submissions 
annually since 2013. Competitions allow different parties to present and compare their solutions. 
Several factors make a competition more attractive, such as: the game quality, unique challenges and 
good competition platforms. A competition platform is the system composed by several components 
such as the interfaces which the participants and even competition organizers interact with, 
participant registry, solution submission and consequent processing, community interaction, etc. 

The competition platform of the Geometry Friends Game AI competition (GFGAI) is the main focus of 
this work. Improving a competition platform not only facilitates participation, but also cuts costs of 
running and maintaining a competition. It follows that improving the Geometry Friends Game AI 
Competition platform could increase the number of submissions per competition edition, as well as 
the amount of editions that could be held in the future. This is relevant because Geometry Friends is a 
game that poses a rather unique set of challenges, which are not considered to be completely solved. 
This means that there is still room for improvement, where new algorithms and ideas can be 
explored throughout the future history of the GFGAI competition. 



 

2 Geometry Friends 
Geometry Friends is a 2D puzzle platformer where up to two playing characters - a yellow circle 
and/or a green rectangle - can move with their unique set of actions to capture purple diamonds. 
Figure 1 shows a sample level which not only includes the characters and collectibles mentioned 
above, but also the different platforms available: normal (black) impenetrable platforms, and 
coloured platforms. A player object will collide with a wall whose colour does not match its own. 

 

Fig. 1. A Geometry Friends level featuring all elements of the game: the circle and rectangle players, all 
three types of platforms and the purple diamonds. 

One of the most interesting aspects of this game is the cooperation factor in levels/maps containing 
both the player characters. It is often required that both the characters combine their efforts and 
unique abilities to complete the levels. 

2.1 Geometry Friends Competition 

The Geometry Friends Game AI competition allows participants to implement agents which control 
one of the characters, and to compete against other participants in the same levels/maps. Agent 
development can be done using a C# API, as the original game is also fully implemented in C#. Both 
the framework and sample agents can be found at the competition website1. The competition has 
been successfully held a few times at IEEE Conference on Computation Intelligence and Games. 

Participants are asked to zip their solution containing the source code developed and email it to the 
competition organizers, along with entry details, such as, a team name, intended category (circle 
only, rectangle only or cooperative) and a small technical report describing the solution. A command 
line interface and a Geometry Friends Batch Simulator is available to help participants test their 
solutions and organizers to evaluate submitted solutions.  

A competition has public and private levels, to discourage overfitting solutions. The score of each 
entry the sum of the scores it get in all levels (usually the competition presents 10 different levels). 
Each agent is run several times in each level. The final score of the level is the average score of the 
runs. The score of each run depends on the time limit, the time the agent took to solve the level and 
the number of collectibles it got. This process takes long and, at the time of the beginning of this 
work, required manual labour. In fact, many of the competition management processes require 
manual labour, which can scale up with the amount of participants. These include the initial setup of 
the competition, receiving of submissions, handling them (i.e. compiling and evaluating) and 
updating the results on the competition website. 

                                                                    
1 http://gaips.inesc-id.pt/geometryfriends 



 

3. Game AI Competitions 
Artificial Intelligence competitions are not new. They exist as a way to promote advances in the field 
by encouraging the development of AI based solutions and sharing with members of the community. 
Popular examples lie in card games like Poker (Billings et al. 1998), real-time strategy (RTS) games 
such as StarCraft (Buro et al. 2012) and turn based games, such as, Pokemon (Lee et al. 2017). 
Competitions are also common in real-word applications, such as, the Supply Chain Trading Agent 
Competition (Arunachalam 2005), transportation challenges, such as, the DARPA Grand Challenge 
(Seetharaman 2006) and human conversational intelligence, such as, the Loebner Prize (Powers 
1998). 

3.1 Good Practices 

Good practices for running AI competitions are explored and suggested by Togelius (Togelius 2014). 
The author attempts to explain the reasons why some competitions fails and then suggests guidelines 
for the success of AI competitions. As for why AI competitions fail, Togelius defends that the lack of 
continuity, stagnation and irrelevance are the main reasons. That is, competitions fail when they do 
not evolve and keep their challenges relevant to the field, and when low amount of effort is put into 
them, preventing continuity to the competition. To run a successful AI competition, Togelius suggests 
that a competition should: 

 be fully transparent in terms of rules and evaluation methods; 
 be accessible on a wide variety of platforms and programming languages; 
 be repeated to enable improvements over time; 
 have a discussion group to encourage community interaction; 
 have software that can run locally to test solutions more efficiently; 
 have a game that can be sped up, useful to train learning algorithms; 
 be easy on beginners, e.g. including sample agents and simple instructions; 
 open-source everything, including solutions, to enable sharing and prevent cheating. 

3.2 Game Competitions Platforms 

During this work, several artificial intelligence competition platforms were studied. One of them, the 
Mario AI championship, is based on the Mario AI Benchmark, which is itself based on the Infinite 
Mario Bros game developed and made open-source by Markus Persson (Karakovskiy et al. 2012), 
(Togelius et al. 2013). Active between 2009 and 2012, the competition allowed agents to be 
developed in multiple languages, provided good documentation and community interaction via a 
Google site and a Google group. Submissions were sent via email. Another platform is OpenAI's Gym, 
which is not necessarily a competition, but allows the submission, scoring and sharing of solutions 
based on reinforcement learning (Brockman 2016). A more recent platform called Universe was 
developed on top of Gym to enable agents to mimic the actions of a computer user, i.e. by simulating 
keyboard and mouse events. An interesting feature of the OpenAI Gym's framework was the ability to 
automatically upload a solution to the platform using code. 

The General Video Game AI (GVGAI) Competition, which like the OpenAI Gym promotes game 
agnostic solutions (Perez-Liebana et al. 2016), is a modern competition platform that follows many of 
the guidelines suggested in Section 3.1. It allows submissions to be uploaded through the website. Its 
framework is cross-platform and agents may be developed in multiple languages (Java and Python). 
In a paper, the authors give an insight into the back-end processes of the platform (Perez et al. 2015) 
which we summarize and illustrate in Figure 2. An automated process such as this ensures high 
repeatability and low organizational costs. 



 

 

Fig. 2. A simplified diagram which describes the back-end processes of the gvgai competition (1-player 
tracks only) 

As for the GVGAI results tables (see figure 3), they manage to act like a hub for lots of information 
regarding the submissions, such as score, participant profile and source-code download. 

 

Fig. 3. Part of a table showing the 2-player track overall results of CEC 2017, as indicated by the label 
above the table. The first row explains what each column represents. Both the usernames and the 
``Download'' are hyperlinks. From http://www.gvgai.net/gvg\_rankings\_conf\_2p.php?rg=2006  

Lastly, the Ms. Pac-Man Vs Ghost Team is a competition based on the popular arcade game Ms. Pac-
Man (Williams 2016). Its website features a thorough step-by-step image based guide and also allows 
for submission uploads through the website. On of the features that stands out, however, is the 
existence of a controller packaging script, a Bash script that compresses the participant's solution 
into a single, submission ready file. 

4. Improving the Geometry Friends Competition platform 
The Geometry Friends competition meets some of the good practices, such as, supporting the ability 
to test the game locally. However, it also had several weaknesses, in particular, the fact that a lot of 
(human) labour was needed in the organization processes, which was proportional to the amount of 
submissions per competition edition/instance. This often led to delays in the availability of 
competition related information, e.g. past submissions and technical reports, and result tables. 

There are three main groups of people that interact with the Geometry Friends competition: the 
organizers, the participants and the general public. When considering the main weaknesses 
previously presented, it is possible to present requirements that the new platform should meet for 
each of the three groups. 

Most of this work focuses on improving the processes related to the organization of the GFGAI 
competition. With the new platform, an organizer should be able to: create new competitions and 
configure parameters such as name, start and end dates, evaluation formula parameters for each 
level, etc.; easily run predefined submissions to each competition to serve as baselines for the 
participants; have all the submission evaluation processes automated for them, including the 
reception of submission files, extraction, compilation, execution, obtaining results and making them 
publicly available, etc.; and be able to update the GF game version in use when evaluating 
submissions, in case the game itself evolves in the future. 



 

On the other side of things, a participant should be able to: understand if and what competition 
editions and categories are open for submissions; access competition details and parameters such as 
levels, time limits and bonuses for each level, etc.; have rapid access to the GFGAI competition 
framework and quickly create a simple agent; upload a submission for a desired competition instance 
automatically; understand what happened to his submissions (e.g. possible errors) and what their 
results were; submit multiple times to a single competition (given that only the latest submission 
counts); and create and submit more complex submissions which may include C# dependencies and 
even platform specific dependencies. 

Lastly, any person should be able to: have access to all current and past competition details (e.g. 
levels used, formula parameters) and results/scoreboards; and have access to all submission files 
and technical reports submitted throughout the lifetime of the new platform (except for 
Competitions which have not finished yet for cheating prevention reasons). 

4.1 Overview of the New Platform 

In an attempt to meet the requirements presented above, a new platform was developed. It was 
highly inspired by the GVGAI competition. Although, with very specific differences resulting from the 
unique characteristics of the GFGAI competition. 

 

Fig. 4. Conceptualization of the two main components of the new platform. 

The new GFGAI competition platform was developed as a web application following a traditional 
LAMP model. The platform's design was split into two separate and almost independent components, 
as shown in Figure 4: the Website the component, which is meant to be interacted with, both by 
competition participants and administrators and the GFHandler the background process, which is in 
charge of the automation of the competition handling processes. They share a MariaDB database, 
which stores most of the persistent competition related data, such as user information, submission 
details, existing competitions, etc. The two components also share files in the file system, such as the 
submission files. 

5. The New Website 
The new website is one of the two main components introduced in the previous section. It is the only 
component which interacts directly with its users: organizers, participants and the general public. 

5.1 Management Interfaces 

The management interfaces are meant to be accessed and used by the organizers alone. Because of 
this, a special type of user account exists, called an administrator account, which enables the use of 
these interfaces. 



 

 

Fig. 5. Management interface to edit competition parameters. 

Organizers may create competitions and then configure them (see Figure 5) by editing, for instance, 
the number of simulations executed per level, the maximum submission size and level specific 
parameters (visibility and formula related parameters). 

Organizers are able to run presets, which can be thought of special "participants" controlled by the 
organizers, which can "submit" a predetermined submission on command. This is useful to have 
constant baselines across the different competitions. 

5.2 Participating 

A participant may pick a competition from a list of competitions and download a competition 
package containing a copy of the game, a sample agent, the XML world file describing the levels of the 
competition (only the public levels in case the competition in question is still ongoing) and two 
packaging scripts to facilitate the creation of the files to be submitted. After submitting an entry to 
the competition, participants can track their results in real time on their profile page, which shows 
both the score and state of the user's submissions. This state indicates feedback from the GFHandler 
component, such as if the submission is still being processed, or if it had errors (the system may even 
make error logs downloadable), etc. 

 
Fig. 6. Submission form to upload a ZIP solution. 

 
Fig. 7. Scoreboard with two entries. The first entry 

is expanded to show the results more details. 

Finally, users may check the current scoreboard (Figure 7) of the competition they submitted to in 
order to compare their results against other participants, as well as see their level specific scores and 
request videos of the execution of their agents. 



 

6. GFHandler - The Submission Handling Program 
The most complex component of the developed platform is a background program, which we called 
GFHandler, since it is meant to handle Geometry Friends submissions. This ended up being a very 
custom program tailored for the quirks of the Geometry Friends game and framework. 

6.1 The Main Loop of the GFHandler Program 

The main loop regularly polls the database for new (unprocessed) submission entries. These 
submissions are the ones that are uploaded using the new website, using the forms. Each submission 
entry in the database possesses all information required by the GFHandler, one of the most 
important being the path where the uploaded submission was stored to. If there is a new submission 
to handle, the GFHandler will start a submission environment in a virtual machine. This environment 
is populated with the necessary files, such as the submission (ZIP file), a fresh copy of the game and 
the levels (XML file) of the competition, which the submission was placed to. Once everything is in 
place, a series of events occur automatically, including extraction of the ZIP file, compilation of the 
source code, simulation of the compiled agent on the several levels (usually multiple times per level, 
a parameter which can be configured by an organizer using the new website) and extraction of the 
results from a game generated Results.csv file.  

6.2 Virtual Machines as Versatile, Secure and Fair Simulation Environments 

Submissions are handled in environments that encapsulate the submission handling processes in 
order to: support standardization of the mentioned processes, which may enable all submissions to 
be handled in the same way and thus simplifying the system; promote fairness, if the environment is 
guaranteed to be equal for every submission; support modularity, in the sense that the environments 
may change (e.g. by adapting to future changes of the Geometry Friends framework) without the 
need to modify the main program/loop of the GFHandler; grant isolation, whose magnitude may vary 
depending on the environment chosen, but grants a greater security for the host system in case a 
malicious submission is sent. 

Virtualization2 was chosen as a way to accomplish the desired outcome. Because with virtual 
machines, we can: run entirely different operating systems on the same machine (e.g. Windows on 
Linux) and thus avoid the problem of platform specific dependencies; have isolated environments 
with no access to the host system where even malicious submissions can be executed safely; save a 
clean state (snapshot) of a virtual machine and then restore a machine to that snapshot every time 
we handle a submission to ensure a constant and fair environment for each submission. 

6.3 Handling the Submissions Using VM Environments 

The GFHandler program runs commands remotely (via SSH) in either Bash or PowerShell, depending 
on the environment required (Linux or Windows). A status attribute of the submissions is stored in 
the DB to allow the GFHandler to see which submissions have already been processed. After 
detecting the existence of an unprocessed submission, GFHandler decides what levels the submission 
needs to be simulated on by looking at whether the respective competition has ended or not. Only 
when a competition ends will the submissions be evaluated on that competition's private levels.  

Another flag in the database indicates whether the submission should be run using Windows or 
Linux. The respective VM is restored to a clean snapshot and is booted. After a while, the GFHandler 
connects to the VMs via SSH and begins a series of steps: 

1. sends the submission ZIP to the VM via SCP; 
2. extracts the ZIP (with "unzip" in Ubuntu or "Expand-Archive" in Windows PowerShell); 

                                                                    
2 The solution developed uses VirtualBox https://www.virtualbox.org/ 



 

3. removes unwanted files from the user's submissions (e.g. the game files, in case the 
participant also sent them in their submission) to prevent cheating with altered files; 

4. sends a fresh copy of the game and an XML file containing only the levels that the 
submissions is supposed to be evaluated on; 

5. builds the solution using MSBuild3, which should generate a DLL file containing the 
submitted agent; 

6. simulates the agent on the levels, R runs per level, computing the score using equation in 
Section 2.2 by parsing the results from a game generated CSV file; 

7. powers off the VM. 
 
On step 6, the score on each level is computed and updated on the database before the agent is 
simulated on the next level, making it possible to track the progress in real time. 

Error Handling 

The GFHandler program is expecting errors at any stage of the handling process. In steps, such as, 
extraction or compilation, submissions may fail. If so, they are assigned a status message accordingly, 
like "extraction error" or "compilation error". Contrary to errors in other stages, the GFHandler does 
not stop the entire progress after encountering runtime errors during game simulation. This is to 
give a chance to agents who just crash occasionally to still get some score for the levels where they 
performed well. For both compilation and runtime errors, the GFHandler program stores the output 
of the executed commands in a single log file which can later be displayed to the participant through 
the website. This log file may contain, for example, the output of a MSBuild’s compilation, or even 
runtime error traces for each individual level the submission failed on. 

7. Evaluation 
The platform was evaluated in terms of the general usability using an SUS4 questionnaire. Three test 
scenarios were designed, one testing the organizational side of things, and the other two the 
participants side. The competition management (CM) test had testers create and edit a competition. 
It also had them create and run preset submissions and track their results. A thorough user (TU) test 
had testers act as participants by creating and logging in with a new account, downloading a 
competition package (game + sample agent + competition specific levels), creating a simple agent in 
VisualStudio or MonoDevelop, submitting it to a certain competition and tracking the results. A 
simple participant (SU) test made available two ready to upload submissions and had the testers 
create and login with a new account, submit two submissions and track their progress. Testers were 
also asked to explain what had happened to their first submission after submitting the second. 

Each person asked to evaluate the system could do only two of the scenarios, since both TU and SU 
scenarios had overlapping tasks. As such, each person could test the competition management 
scenario and one of the competition participant's scenario. People were invited to perform the tests 
using their own computers, as a way to also test the platforms across different systems and browsers.  

7.2 Results 

A total of 18 people participated in the tests, from July 20 to September 14. The number of people on 
each test can be found on Table 1, along with the SUS scores. 

 

                                                                    
3 https://msdn.microsoft.com/en-us/library/dd393574.aspx (accessed July 26, 2018) 
4 https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html 



 

Table 1. SUS results for all three test scenarios 

Scenario # tests Average SUS σ 

CM 18 76.6(6) 17.1499 

TU 9 78.3(3) 16.0078 

SU 9 84.4(4) 10.8813 

Total 36 79.027(7) 15.4605 

All but one testers were students between 18 and 25 years old, and 2 were female. Over half of the 
people tested studied IT related fields. One professor of a relevant field of study, AI for games, also 
participated.  

According to results of 500 SUS evaluations, the average SUS score is 68 and achieving over 80.3 is 
considered a very good score. This means that an above average score was obtained in all our 
scenarios, and the SU scenario obtained a very good usability score. This is not surprising as it was 
designed to be the simplest scenario. However, because the main difference between the TU test and 
the SU test is the fact that the TU test required interaction with the GF framework, the difference in 
scores may indicate that the website is more usable than the framework. 

As for the tasks of each scenario, everyone was able to complete them, and the majority was able to 
give the expected answers, meaning they were able to create a simple agent successfully (TU) and 
understand what happened to their submissions/presets (all scenarios). On the CM scenario, 
everyone created and configured a competition correctly as expected. However, a couple of people (1 
on the SU and 1 on the CM scenarios) did not give expected answers when reporting on the status of 
their submissions/presets, mostly because they did not realize that the system was evaluating their 
submissions in real time. 

The professor, who had experience using platforms such as Mooshak, complimented the new 
platform, more specifically the modern design of the website. 

8. Conclusion 
A new and functional platform for the Geometry Friends Game AI competition was developed 
successfully during this work. The usability of the website was considered above average using a 
System Usability Scale (SUS). No improvements were required on the platform’s second main 
component, the GFHandler, as it functioned exactly as intended throughout all the tests. All the 
requirements specified in Section 4.2 were successfully implemented, and most of them tested 
repeatedly on the aforementioned tests with people. Thus, we can conclude that the main goal was 
accomplished, since a new platform was indeed designed, implemented and deployed successfully. 

Moreover, considerable care was put into helpful documentation not only for the participants and 
competition organizers (extensive guides on the website), but also to whomever will be in charge of 
maintaining or continuing the development of the platform itself. The implemented solution takes a 
different approach from the current state of the art, mostly by using virtualization during submission 
evaluation processes to guarantee security against malicious foreign code, fairness and more 
freedom for the participants to develop platform specific code, if they so desire. While this provides a 
small overhead in submission evaluation times mostly due to booting up the virtual machines, this is 
still small compared to the rest of the necessary evaluation steps. 
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