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Abstract— In this work we explore implicit communication
between humans and robots—through movement—in multi-
party (or multi-user) interactions. In particular, we investigate
how a robot can move to better convey its intentions using
legible movements in multi-party interactions. Current research
on the application of legible movements has focused on single-
user interactions, causing a vacuum of knowledge regarding
the impact of such movements in multi-party interactions. We
propose a novel approach that extends the notion of legible
motion to multi-party settings, by considering that legibility
depends on all human users involved in the interaction, and
should take into consideration how each of them perceives
the robot’s movements from their respective points-of-view. We
show, through simulation and a user study, that our proposed
model of multi-user legibility leads to movements that, on
average, optimize the legibility of the motion as perceived by
the group of users. Our model creates movements that allow
each human to more quickly and confidently understand what
are the robot’s intentions, thus creating safer, clearer and more
efficient interactions and collaborations.

I. INTRODUCTION

Robots are no longer restricted to factory settings, we
can find robots in different contexts, such as assisting in
tasks of health-care [14], education [18], entertainment [4],
among others. However, to integrate robots in society, they
need to be able to correctly interact and communicate with
humans. Communication is paramount in activities that re-
quire collaboration between humans and robots to achieve a
common goal [9]; namely activities like belonging to surgery
teams during surgeries, where timely clear communication
and precise actions are required for surgery success [10] or
in furniture assembly, where incorrect communication can
lead to different actors try to simultaneously use the same
resources hindering the collaboration.

Body movements play an important role in the efficiency
and fluidity of a task, because they occur naturally and
allow humans to get cues regarding their partners motives
and intentions [17]. Legible movements are a type of body
movement designed to improve the information conveyed by
a robot, focusing on making a robot’s movements easier “to
read” by human users. Leveraging on humans assuming a
robot will move as efficiently and rationally as possible to-
wards its intended objective, Dragan et. al. [6] use principles
from animation to allow robots to convey more information
in the earlier parts of the trajectory. Legible movements have
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been shown to improve robot’s expressiveness in human-
robot interactions: Dragan et. al. [7] explore the impacts of
legible movements in comparison with other motion types
in a coffee shop scenario of a human-robot team fulfilling
orders, evaluating how quick a human can deduce the robot’s
intentions and the trust placed by humans on robots. Knepper
et. al. [11] and Mavrogiannis et. al. [13] explore applications
of legibility in robot navigation scenarios, using the notion
of legibility while moving to correctly communicate the
direction of travel and help the navigation of other humans,
reducing the need for re-planning.

Most works on legibility explore the uses and advantages
of legible movements in single-user scenarios [1–3, 11,
12], however, when integrated in society, a robot must be
expressive both in single and multi-party scenarios. Consider
the example of a robot, in a surgery scenario, that needs
to collaborate with other humans during an intervention on
a patient, the robot’s movements need to be precise and
clear for the team members to execute their respective tasks,
without requiring the robot to explicitly communicate its
current objectives.

In this work we expand on our previous exploratory
study [8], investigating how a robot’s movement should be
optimized, in multi-party interactions, to minimize confu-
sion among users regarding the intentions of the robot. To
that purpose we propose a model that extends the notion
of legibility to multiple user scenarios, dubbed multi-user
legibility (MUL). MUL extends the notion of legibility to
account for different users observing the robot’s motions
from different points-of-view and possibly interpreting the
robot’s intentions differently. Our proposal considers that the
legibility of a movement should not be taken individually for
each user but as the average of the legibilities for all users.
We show, with a user study over M-Turk, that human users,
when observing movements from different perspectives, find
movements created with MUL clearer and are able to predict
the robot’s objective faster than when observing movements
created with previous single-user definitions.

With this work we expand on the literature of legibility,
by contributing with a novel definition of legible move-
ments, applied to multi-party interaction scenarios. With
this definition, a robot’s movement can be shaped to be
simultaneously legible to all human users simultaneously
interacting with a robot. The resulting trajectories are clearer
for users observing from different points-of-view (PoVs)
than using previous definitions of legibility for single-user
scenarios, thus improving the group’s understanding of the
robot’s objectives and intentions.



II. LEGIBLE MOTION

Consider a trajectory ξ, defined in Cartesian space, as

ξ = [[x1, y1, z1], [x2, y2, z2], . . . , [xT , yT , zT ]]

where T is the number of time points in the trajectory. A
legible movement, when observed by a human, allows that
human to quickly infer the objective GR given the observed
trajectory ξ, maximizing

Legibility(ξ) =

∫
P (GR|ξS→ξ(t))f(t)dt∫

f(t)dt
. (1)

In (1) P (GR|ξS→ξ(t)) gives the likelihood of reaching ob-
jective GR with the observed trajectory between the start
point S and the current point ξ(t), denoted as ξS→ξ(t). The
function f is a weighting function, designed to give more
weight to earlier parts of the trajectory. P (GR|ξS→ξ(t)) is
modeled using a max-entropy distribution

P (GR|ξS→ξ(t)) =
1

Z
exp

{
−C(ξS→ξ(t))

}
,

where Z is a normalizing constant and C is a cost function
modeling how a human expects the robot to move. Following
[5], we use this as the cost function the sum of squared
velocities. Using the definition of legibility in (1), it is
possible to generate legible trajectories using a gradient
ascent approach that, in each iteration, improves the legibility
score of the trajectory ξ:

ξi+1 = ξi +
1

η
M−1∇Legibility(ξ), (2)

where M is used to measure the norm of a trajectory,
‖ξ‖2M = ξTMξ, and η defines the learning rate.

Legible movement as defined in [6] assumes humans have
an omniscient view of the workspace. This assumption can
lead to movements that go outside the field-of-view (FoV) of
a human, go through human blind spots or through obstructed
parts of the workspace. To solve this problem, Nikoladis et al
[16] proposed an extension to the original notion of legibility
that uses a modified cost function C̄, defined as

C̄(ξ) = C(2DT
W (ξ)),

where 2DT
W transforms ξ from world coordinates to the

human referential and then projects the trajectory into a 2D
representation in the human’s viewport. With the extension,
the legibility metric becomes dependent of the point of view
of the human user. The transformation 2DT

W to the human’s
viewpoint allows the optimization procedure to improve the
legibility, creating trajectories that are always within the
user’s FoV. We henceforth refer to this approach as single-
user legibility (SUL).

III. MULTI-USER LEGIBLE MOTION

There are several scenarios where a robot must interact
with multiple humans at the same time: in Correia et. al. [4]
a robot plays a game of cards, simultaneously interacting
with three human users; Kaplan et. al. [10] describes a
scenario in which a robot is deployed as part of a surgical

team to support the staff and Faria et. al. [8] describes a
scenario where a robot sequentially serves cups of water to
different human users. In these types of scenarios, for a robot
to be legible, it must be able to generate movements that are
simultaneously legible for all partners involved. Otherwise,
it could optimize the legibility for one partner but reduce
the legibility for the others, causing deception regarding its
intentions. The presence of multiple human partners, causes
multiple different perspectives over a movement and it to
be perceived differently from each. Thus, in a multi-party
scenario, the legibility metric should be influenced by how
legible the movement is perceived from each perspective.

Thus, we propose that the standard SUL model of Niko-
ladis et. al. should be extended to multi-party scenarios,
where the legibility metric is a combination of the perceived
legibilities for each point-of-view. We dub this extension
multi-user legibility (MUL).

To correctly capture the group’s legibility, MUL needs
to incorporate information regarding the perceived legibility
of each of the task’s users. However, the integration of the
different perceived legibilities must be such that no user is
especially favored over the other users, otherwise we could
fall back in the situation of single-user legibility where the
robot’s movement gives more information to part of the
users. Thus, MUL averages the perceived legibilities of the
users giving equal weight to all users.

Giving equal weight to all the users is motivated by
different perspectives over the workspace contributing dif-
ferently, giving better or worse information regarding the
robot’s intentions. Take the example in Figure 1: a person
in User 1’s position may have a better perspective of the
robot’s movement when compared to a person in User 2’s
perspective, because in User 1’s perspective a side movement
of the robot can be sufficient for the user to understand
the robot’s objective, while for User 2 the robot needs to
execute a more complex movement combining movements
along different axis. However not all user layouts allow to
easily understand which perspectives give better information
and, without previous knowledge of which perspectives offer
better information, attributing different weights could give
more importance to perspectives that offer worse information
and create trajectories that could decrease legibility. So,
by giving the same weight to all users we balance the
perspectives with worse view of the movement with those
with better view. Finally, giving the same importance to all
perspectives guarantees that the movement is kept in the
field-of-view of all users, keeping it always visible to all
users, by preventing each user to excessively influence the
shaping of the trajectory in one specific direction that could
go outside the view of another user.

Another option we considered for combining the per-
spectives was to consider that the movement’s legibility
was given by the user with worse legibility. Following
this approach, legible movements in multi-party interactions
would maximize the legibility of the user that, at the time,
would have more difficulty in understanding the robot’s
motion intent. However, after comparing the performance



of this approach with the user average we observed that,
first, the legibility achieved by both methods was similar
and, second, that trajectories optimized with the second
approach would occasionally result in movements that would
go outside the PoV of one user, an aspect not reflected in the
movements obtained using the user average approach. Thus,
we concluded that the user average approach was safer to
interact with since it kept the movement always within the
PoVs of the users, although in setups where users are not
equally distributed throughout the workspace the movement
can become slightly biased by taking the user average.

A. Definition of Multi-User Legibility

Under MUL, the legibility of trajectory ξ in a setting
comprising N users is defined as

LegibilityMUL(ξ) =
1

N

N∑
n=1

LegibilitySULn(ξ), (3)

where LegibilitySULn(ξ) is the single-user legibility as
perceived by user n. Plugging the legibility expression of
MUL in (2), the update step becomes

ξi+1 = ξi +
1

η
M−1∇LegibilityMUL(ξ), (4)

with

∇LegibilityMUL(ξ) =
1

N

N∑
n=1

R−1n · ∇LegibilitySULn(ξ).

R−1n is the inverse of the rotation from the coordinate space
where ξ was defined to the n-th user’s coordinate space, and
∇LegibilitySULn(ξ) is the gradient of the legibility for the
nth user, as defined by Nikoladis et al. [16]. Applying R−1n
to ∇LegibilitySULn(ξ) converts the legibility from the n-
th user coordinate system to the world coordinate system,
allowing to combine the gradients computed in the different
users’ perspectives.

B. Simulations

To guarantee that the trajectories generated by MUL
perform adequately, we compared the performance of MUL
with SUL by simulating various scenarios of collaborative
interactions. In these simulations we compared the final
group legibility of each trajectory. We chose a scenario with
three different objects organized on top of a table and three
human observers. Considering that in this scenario we had
three observers, we optimized the movement once using the
MUL model and three times using the SUL model — each
time taking into account a different observer’s PoV.

To test the resilience of the model, we optimized the
movements for each of the three objects, accounting for
changes caused from reaching for different objects. Besides
optimizing for the different objects, we tested different
configurations of the objects on the table, accounting for
different relative placements of the objects and their impact
on the resulting movements. We obtained 48 trajectories, 12
using MUL and 36 using SUL — 12 for each human PoV,
for which we computed the average group legibility.

Fig. 1: Setup of the user study. In the center a table with three
objects on it – a soda can, a rubber duck and a telephone
– and around the table three users looking towards the
objects and the robot. Each user has a different point-of-view
allowing to evaluate the perception of each user regarding the
movements of the robot.

We compared each MUL trajectory with the SUL trajecto-
ries for the same pair of configuration and target, resulting in
36 comparisons. The comparisons show that MUL achieved
a better group legibility in 69% of the trajectories (25 out
of 36). Also, several trajectories using SUL resulted in
trajectories that would go outside the FoV of one or multiple
of the human users for whom the model was not focusing.
In the case of MUL, none of the trajectories passed outside
the view of the human users, resulting in safer movements.

IV. EXPERIMENTAL EVALUATION

We conducted a study through Amazon’s M-Turk to eval-
uate the impact in human observers of using MUL against
the use of SUL in multi-party interactions. In this study, each
participant watched 3 sets of videos of movements, where the
participant would either watch movements optimized using
multi-user legibility or using single-user legibility.

A. Setup

To evaluate the impact of MUL in the perceived legibility
of a robot’s movement in a multi-party interaction, the
task setup had to be designed to have multiple different
perspectives over the same movement while minimizing
distractions from those movements.

The scenario, presented in Figure 1, features a robot
moving to grab one of three objects placed on top of a table,
while human users observe the movement and predict which
object the robot is going to grab. The three objects — a
soda can, a rubber duck and a telephone — were placed in a
single line, evenly spaced between them and with the humans
equally distant from the table. The scene also features 3
users: user 1 placed across from the robot, looking in its
direction and Users 2 and 3 are placed on each side of the
robot, facing each other. Having the users in different sides
of the table, induces differences on how each movement is
perceived, allowing to better study the impact the different
optimizations have on the communication of intent.



B. Design and Hypotheses

In this study we explore the question:

“In interactions with multiple users simultaneously, does
combining their perceived views of a robot’s movement

improve the movement’s legibility?”

To support our exploration of the problem and answering
the research question, we postulate the following working
hypotheses:
H1 Participants will consider a movement generated using

multi-user legibility clearer than when generated using
single-user legibility.

H2 Participants will understand quicker and more confi-
dently the robot’s target, when faced with a movement
generated using multi-user legibility than with one gen-
erated with single-user legibility.

The study followed a between-subjects design, with each
group being a different optimization approach — either
optimization with MUL or with SUL. Each participant
watched 3 sets of 3 videos, each set was composed of videos
with increasing length — 6, 12 and 18 seconds. All 3 sets
used either only MUL or SUL generated movements and
between each the robot’s objective was randomized between
all possible objects to prevent any bias to be created by the
participant. Between each set of videos we also randomized
the participant’s perspective to evaluate the impact of the
different perspectives on the movement’s legibility.

After each video the participant was asked to predict what
object the robot was going to grab and rate how confident
they were in their prediction. At the end of each set, the
participant would watch a 20 seconds video with the full
movement and was asked if the movement matched its
prediction. If not, the participant was asked to explain why
he predicted another object. At the end of the 3 sets of videos
the participant would rate how clear the movements were.

All videos were recorded using the WeBots simulator, an
open source simulator developed by Cyberbotics [15]. Figure
2 shows a comparison between movements of the simulated
robot towards the soda can on the table, as viewed from the
different perspectives, recorded in the WeBots software.

C. Sample

We recruited 315 participants using Amazon’s Mechanical
Turk (M-Turk), with approximately 98% from the USA and
the remaining distributed across Canada, Australia and the
UK. We restricted the participation on the questionnaire to
these four countries to reduce language barrier problems.
The participants’ age varied from 23 to 76 years old and
an average of 42 years old. An analysis of the education
level of the participants shows that 60% have a higher
education degree and 90% have finished at least high
school. Regarding the occupation of the participants, 94%
are employed and 2% are students.

D. Results and Analysis

For each participant we measured: the perceived move-
ment clearness, the average time to predict the robot’s target,

the average confidence in the prediction and the number
of correct predictions. Both the prediction time and the
prediction confidence were measured for each set of videos,
while the perceived clearness and the number of correct
predictions were measured only at the end of all 3 sets.

To measure the prediction times, first we measured the set
prediction time: for correct target predictions, we considered
the time as the earliest a participant answered correctly with-
out wrongly predicting in subsequent videos; while for wrong
predictions, we considered that the prediction time was 20
seconds, the full length of the movement. We then averaged
the set prediction times to obtain the average prediction time
for each participant. Both the perceived clearness of the
movement and prediction confidence were measured using
10 point Lickert scales. We analyzed the confidence in the
prediction by combining the scores for each 6, 12 and 18
second videos as in [16]. For the clearness of the movements,
as each participant only rated the movements at the end of
the study, we did not pre-process the data.

To compare the performance of both optimizations, we
grouped the results for each measure as being either from a
MUL or a SUL optimization, grouping all the SUL results
together. The grouping is needed because SUL optimization
focus on improving the understanding of one specific user
and depends on that user’s PoV over the task. Thus by
analyzing the results for each SUL optimization individually,
we would compare the performance of MUL with specific
instances of SUL, instead of the performance of MUL with
the performance of SUL.

Finally, we conducted a normality test that showed us
that all three measures — perceived clearness, time taken
and confidence in prediction — did not follow a normal
distribution, so all the analyses used non-parametric tests.

The analysis of the perceived clearness allows to answer
hypothesis H1. We conducted a Mann-Whitney test that
showed MUL was considered significantly clearer than SUL,
U = 7277.5, p = 0.006, with MUL achieving an average
clearness of 7.338 and SUL achieving 6.4580, thus support-
ing hypothesis H1. Figure 3 shows a boxplot comparison
between both models.

To answer hypothesis H2, we analysed the time taken
to predict the robot’s target and the confidence associated
with said prediction. For the time taken, a Mann-Whitney
test showed people took significantly less time to cor-
rectly predict the robot’s target with MUL than with SUL,
U = 75722, p = 0.037. Figure 4 shows that, on average,
participants paired with MUL took 10.234 seconds, while
participants paired with SUL took 11.331 seconds.

A follow-up analysis of the prediction time showed that
79.6% of the participants paired with MUL needed only 6
seconds to correctly predict the object against 68.5% when
paired with SUL, a 10% increase in prediction speed for
participants paired with MUL. A Chi-Square test, χ2(2) =
11.012, p = 0.004, supports the significance of the differ-
ence. In this analysis we only considered correct predictions,
since our interest was in understanding how early a partici-
pant could correctly predict the object with each model.



Fig. 2: Example of movements towards the soda can, observed from different PoVs. In blue we have the movement using
MUL, while in red, green and orange we have the movement optimized using SUL focused on User 3. On the left we have
the movements seen by User 1, in the middle User 2 and on the right User 3. By observing the images, we can see that the
SUL movement, while clearly seen by User 3, when seen from the PoVs of Users 1 and 2, goes outside their field of view
and sometimes is not as clear as the MUL movement.

Fig. 3: Boxplot comparing the results for the perceived clear-
ness of the MUL model and the aggregated SUL models. The
average for each model is marked with a dot.

Regarding the confidence in prediction, a Mann-Whitney
test showed participants are significantly more confident
in their predictions with MUL than with SUL, U =
43971.5, p < 0.001. An analysis of Figure 5 shows that
when paired with MUL, on average, participants rated their
confidence in the prediction as 6.046 out of 10, opposed to
5.163 when paired with SUL. An analysis of Figure 5 also
shows that the ratings for SUL have a bigger dispersion than
the ratings for MUL. The results for the confidence and time
to correctly predict support hypothesis H2.

Finally, regarding the number of correct predictions a
Chi-Square test, χ2(1) = 0.018, p = 0.893, showed no
statistical difference between the number of correct pre-
dictions between MUL and SUL. Participants paired with
MUL correctly predicted the robot’s target in 80.5% of the
movements, while participants paired with SUL predicted
correctly 80.1% of the movements.

E. Discussion

The results in Section IV-D show the positive impact
of using MUL to model legibility in multi-party interac-
tions. By combining the different perspectives, the resulting
movements are influenced by the perspectives of all the
users’, creating movements that were shown to improve the

Fig. 4: Average time to correctly predict the target according
to the model used, with standard deviation.

information conveyed and the human understanding of the
robot’s intentions.

The results of the user study show that when faced with
MUL generated movements, users on average take less time
to understand the robot’s intentions. The shorter time to
understand a robot’s intentions creates safer and efficient
interactions, namely during collaborations, because it gives
humans more time to adapt to the robot and also more time to
gather information regarding what the other human partners
are trying to achieve and act accordingly. The results also
show a higher prediction confidence with lower dispersion of
ratings. The consistency of high confidence ratings shows the
positive impact MUL has in multi-party interactions because
it decreases human need to control a robot’s actions, leading
to faster decision times and allowing to better focus on the
task at hand. A high prediction confidence also plays the
important role of guiding humans partners less certain in
their understanding of the robot’s intentions, who feel the
need to look to the other human partners in search of more
hints regarding a robot’s intentions.

One particular finding that shows the usefulness of the
MUL model over the SUL model is that participants showed
a 10% increase in the time needed to correctly predicting the
robot’s target. This improvement is particularly interesting
because one of the principal aspects of legibility is the



Fig. 5: Boxplot comparing the confidence in the predictions
between the MUL model and the aggregated SUL models.
The average for each model is marked with a dot.

ability to convey more information in the early portions of
the movement. Thus, a 10% increase on the number of
participants who needed the least amount of time to correctly
predict the robot’s objective shows how MUL increases the
legibility of movements in multi-party settings.

V. CONCLUSION

In this work we proposed a model for legibility - MUL
- focused on creating movements that improve the legibility
of the group instead of each user’s individually. MUL im-
proves the group’s legibility by taking each user’s perceived
legibility and combining them into a group legibility metric.

A user study, conducted through M-Turk, validated that
jointly considering the different perspectives allows for users
in multi-party interactions to infer the robot’s intentions
faster and more confidently than using the standard single-
user approaches. Although MUL may generate less indi-
vidually legible motions, by improving the group’s average
legibility MUL improves the group’s general understanding
of a robot’s intention, thus improving team efficiency and
safety in the interaction.

MUL is a promising model for applications in entertain-
ment areas such as theatre where movement is an important
communication tool and where people observe the move-
ments from different perspectives or healthcare areas like
surgery teams where a robot must communicate correctly and
clearly for the rest of the medical staff to perform adequately.
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