
Mainstream Games in the Multi-Agent Classroom

Celso de Melo
cmme@mega.ist.utl.pt

Rui Prada
rui.prada@tagus.ist.utl.pt

Guilherme Raimundo
guilherme.raimundo@tagus.ist.utl.pt

Joana Paulo Pardal
joana.paulo@l2f.inesc-id.pt

Helena Sofia Pinto
sofia@vinci.inesc-id.pt

Ana Paiva
ana.paiva@inesc-id.pt

Department of Computer Engineering, IST-Technical University of Lisbon and INESC-ID
Av. Prof. Cavaco Silva – Taguspark

2744-016 Porto Salvo
Portugal

Abstract

Computer games make learning fun and support
learning through doing. Edutainment software tries to
capitalize on this however, it has failed in reaching the
levels of motivation and engagement seen in mainstream
games. In this context, we have integrated a mainstream
first-person shooter game, Counter-Strike, into the
curriculum of our Autonomous Agents and Multi-agent
Systems course. In this paper we describe this integration
and a platform to support the creation of Counter-Strike
agents. In addition, a questionnaire was posed to our
students to assess the success of our approach. Results
show that students found the idea of applying a first-
person-shooter game motivating and the integration with
the curriculum useful for their education.

Keywords: Teaching Multi-Agent Systems;
Mainstream Games; Multi-Agent Platforms

1 Introduction

Computer games are, evermore, part of our culture.
The global market is worth billions of dollars [1]. The
average game player age is, now, around thirty years old
and both genders are spending considerable time playing
games. Why people are motivated to play games is still
subject of discussion but, commonly accepted reasons are
fantasy, challenge and curiosity [2]. The industry has
acknowledged this and is spending a lot of time and
money producing content to meet these needs. However,
besides entertainment, computer games support skill
development such as logical thinking and problem
solving skills, as well as collaborative learning [3].

This paper describes the integration of a first-person-
shooter mainstream game with the curriculum of the
Autonomous Agents and Multi-agent Systems one-

semester course in the 4th year of the Informatics and
Computer Engineering undergraduate degree at the IST-
Technical University of Lisbon. This integration relies on
a platform developed throughout the past two years,
which supports the creation of agents that sense and act
on the world, as well as, communicate with each other.
Using this platform, students were asked to explore
different architectures, cooperative behavior and one
additional topic (e.g., learning or personality). Finally, a
tournament took place to confront students’ agents.

The paper is organized as follows. Section 2 describes
relevant background. Section 3 describes the chosen first-
person-shooter game. Section 4 describes the multi-agent
platform. Section 5 describes the integration of the
platform with the course. Section 6 presents the results of
a study conducted to evaluate our approach. Finally,
section 7 draws some conclusions.

2 Background

Development of games for education, or edutainment
software, is based on two key aspects: (a) making
learning fun; (b) learning through doing. However,
edutainment has failed to reach the levels of engagement
seen in mainstream games because: (a) it tends to be too
simplistic; (b) the tasks are repetitive; (c) the target
audience becomes aware that it is being coerced into
‘learning’. Thus, mainstream games emerge as an
alternative to edutainment software. Forced by an
extremely competitive market, extensive investment is
placed on creating compelling storylines and audiovisual
experiences for these games. [4]

In this sense, this work describes the integration of a
mainstream game with a multi-agent systems course. Our
approach contrasts with several multi-agent platforms
which relate to the edutainment approach. Here, two
kinds of platforms can be discerned. In the first case, they
tend to have simplified programming languages, good

mailto:cmme@mega.ist.utl.pt
mailto:rui.prada@tagus.ist.utl.pt
mailto:guilherme.raimundo@tagus.ist.utl.pt
mailto:joana.paulo@l2f.inesc-id.pt
mailto:sofia@vinci.inesc-id.pt
mailto:ana.paiva@inesc-id.pt

documentation and libraries with predefined templates. A
representative platform is NetLogo [5] which embeds a
high-level programming language in an integrated,
interactive modeling environment. It comes with a models
library with several simulations ready to be explored,
supports collaborative exploration through a client/server
architecture and has been used in K-12, high-school and
undergraduate courses. In the second case, the platforms
define or integrate with a specific multi-agent systems
game. Representative is e-Game [6] which allows
students to explore several auctions and negotiation
protocols in an electronic market context and is based on
the Trading Agent Competition [7]. However, in general,
these educational platforms suffer from the same kind of
problems seen in edutainment software. Effectively,
simplified worlds and poor visualization capabilities fail
to motivate students in the way a mainstream game does.
Still, they are good tools to introduce multi-agent
concepts and, thus, we use NetLogo in the first weeks to
explain basic multi-agent concepts. However, for the
remainder of the semester, students apply and explore
these concepts, in the more challenging and motivating
game world.

A different set of platforms provides specialized
libraries usually for particular domains. A representative
platform is JADE [8] which is a FIPA-compliant multi-
agent framework with good support for agent mobility
and a broad library of communication protocols. Though
not originally conceived for educational purposes, these
platforms can be applied in the classroom. In concrete,
specialized libraries available with these platforms can be
integrated with the respective learning module. Thus, in
our approach, we use JADE, in the first weeks, to
introduce several communication and cooperation
protocols. However, as in education-oriented platforms,
by themselves these platforms fail to provide engaging
contexts as mainstream games do.

Closer to our approach, GameBots [9] is a multi-agent
platform which integrates with a first-person-shooter
mainstream game. The platform is based on the
client/server architecture, where a central server runs the
game and several clients – the agents – connect to it.
Sensors and actuators are provided to interact with the
world and other agents, as well as tools for visualization
and logging of simulation state. Contrasting to this work’s
education focus, GameBots tries to appeal to the artificial
intelligence community introducing the platform as a
general test-bed for several research issues. Still, the
platform seems to have been applied in educational
settings [10] but, no details are provided on integration
with course curricula which is as important as the quality
of the platform itself.

3 A First-Person-Shooter World

Our work integrates Counter-Strike (CS) [11], version
1.6, in a multi-agent systems course. CS belongs to the
first-person-shooter genre where characters confront each
other and the player assumes the character’s point of
view. Furthermore, CS is a team-based first-person-
shooter, as there are two teams – terrorists and counter-
terrorists – which confront each other in several rounds
trying to meet some objective or eliminate the opposing
team. There are several kinds of objectives, but this work
explores only bomb defusing maps where terrorists are
required to plant and detonate a bomb while counter-
terrorists try to prevent them.

Counter-Strike is appropriate for integration with a
multi-agent course for several reasons:

(1) Game play has suitable characteristics for
exploration of several multi-agent concepts. First,
cooperation is essential for success in this game, as
evidenced by the opinions of professional gamers [12]
(see Figure 1). Second, several agent architectures can be
explored in the CS dynamic, yet complex, world. Finally,
several additional topics can be explored (see section 5);

Figure 1. Teamwork is crucial in Counter-Strike. Here,
a terrorist plants the bomb while its teammates provide
cover. This snapshot is from a student’s work.

(2) It is successful in engaging and motivating players.
First, CS provides a complex world where the outcome is
influenced by several factors such as teamwork,
exploration strategies and proper use of resources.
Second, at the time of writing, CS is the most popular
online game [13]. Finally, in professional tournaments,
representative of which is Cyberathlete Professional
League [12], CS always has the best prizes and greatest
number of participants;

(3) It has a large and active developer community [14]
which continuously improves game play and engine
documentation, as well as creates new maps and game
modifications.

4 The Multi-Agent Platform

A multi-agent platform for the creation of bots, or
computer controlled players, in CS was developed. The
platform was particularly influenced by HPB bot [15] and
YapB bot [16]. Source code for both is freely available.
HPB bot solves the problem of adding bots to CS and
proposes graph-based navigation. YapB bot, which
expands on HPB bot, defines sophisticated behavior thus,
constituting a useful reference on how to interface with
the graphics engine which is still poorly documented.
However, direct application of either to our course would
have been difficult for several reasons: (a) they were not
developed with educational purposes in mind; (b) they’re
poorly documented; (c) the code is poorly organized as it
doesn’t clearly separate sensors, actuators and decision
logic. Thus, for this work, a new platform had to be built.

The platform is divided into several modules:
navigation, vision, combat, finances and communication.
The navigation module supports graph-based and free
navigation. Graph-based navigation relies on files, one
per map, which contain the following information:
locations in the map; connections between locations;
connections properties, for instance, whether a jump is
required; important locations such as camping and
objective locations. A set of primitives is available to find
paths between locations. Two path-finding algorithms are
supported: Floyd-Warshall shortest path and A* search.
Free navigation supports arbitrary motion in the world
and, though harder to control, is important, for instance,
to pickup items in the world which are not placed on top
of a predefined location. This module also supports
simple collision detection and handling. The vision
module perceives other agents within a 90º field-of-view.
The combat module supports weapon selection, aiming,
firing, reloading, bomb planting and defusing. The
finances module supports money management. Money is
given to players according to their performance in the
game and is used to upgrade weapons and armory.
Finally, the communication module supports two kinds of
communication: radio, corresponding to audible
predefined messages; chat, corresponding to string-based
communication which supports flexible communication
protocols. In both cases, besides message content,
information regarding sender and time of emission is sent.
Radio messages are broadcast to all teammates while chat
messages to teammates or to all players.

The platform supports up to 32 simultaneous players.
Players may be agents or humans. Agents interact with
the world and other agents exclusively through the
aforementioned modules. Every agent’s decision cycle is
invoked once per frame, though it is not required to
produce an action every cycle. Furthermore, every agent
executes an independent decision cycle. Thus, for
instance, some agents may execute a reactive decision

cycle while others a more deliberative one. Together with
interaction with human players, this feature supports
exploration of complex multi-agent scenarios.

The platform is fully implemented in the general-
purpose C++ programming language. A general-purpose
language is appropriate for computer engineering students
as it provides them with power and flexibility to express
their ideas. An additional benefit is that general-purpose
languages tend to have wide tool support such as
Integrated Development Environments. In our case, MS
Visual Studio 2005 was used.

Regarding debugging, the platform supports three
options. First, it supports step-by-step debugging, during
game play, using a C++ debugger. In this work the MS
Visual Studio 2005 debugger was used. Second, it
supports printing to a console which is provided by CS.
Third, it supports printing to a file which is convenient to
log large amounts of information.

Finally, the platform supports a tournament mode.
Here, two kinds of agents are confronted in batch-mode.
For instance, reactive agents could confront deliberative
agents. Tournament setup includes definition of number
of rounds, number of agents per team, and scoring policy.
The number of rounds should be even as agents assume,
in the first half, either the role of terrorists or counter-
terrorist and, in the second, the other role. Score is
affected by agent eliminations and objective completion,
which are automatically registered throughout the game.
In the end, both overall and partial results per round are
saved in textual and XML format. The latter is useful for
automatic processing of data. Tournament mode is useful
to compare different kinds of agents, as well as to obtain
concrete performance measures.

5 Integration with the Curriculum

The CS platform was integrated with the Autonomous
Agents and Multi-Agent Systems course in the Computer
Engineering undergraduate degree at Technical
University of Lisbon. The course curriculum is divided in
two blocks (see Figure 2). In the first, spanning the first
six weeks, agent architectures, communication and
cooperation are introduced. Theoretical background
follows Wooldridge's book [17] and NetLogo and JADE
are used as supporting tools. In the second block,
spanning the next eight weeks, students, in groups of
three, apply and explore the aforementioned concepts in
CS using the proposed platform. Only bomb defusing
maps are considered. Evaluation consists of the CS
project (60%) and a written exam (40%).

Figure 2. The multi-agent course curriculum.

In concrete, in the second block students are expected
to meet the following objectives:
• Explore several agent architectures including

reactive and Belief-Desire-Intention (BDI) [18]. Due
to its simplicity, the reactive architecture is a good
place to start as students need time to get acquainted
with the platform’s modules. Deliberative or hybrid
architectures should follow;

• Model communication and cooperation. Here,
students develop team-based strategies exploring
cooperation techniques and communication protocols
learnt in the previous weeks;

• Evaluate and compare agent architectures. Here,
students confront developed architectures and
determine things like which team is better within a
certain architecture or best overall;

• Explore an additional multi-agent related topic.
Here, the idea is to breed creativity. Topics explored
by students included: learning, where, for instance,
information about “successful” map locations is
learnt by agents; interaction with human players,
where cooperation with human players is explored;
personality, where agents act according to certain
personality traits such as being courageous or scared;

• Submit one agent architecture to a tournament. The
point of having a tournament is to breed competitive
spirit and motivate students. In the end, the best four
teams are given a bonus in their grades.

6 Results

In order to evaluate our approach we conducted a
questionnaire among the students. We set forth to answer
the following questions:
• Is CS appropriate for our course?
• How was CS integration with the curriculum?

• How was the CS platform perceived?

The questionnaire was posed to 79 of our students,

corresponding to 66.4% of total enrolled students.

6.1 Is CS appropriate for our course?

To understand whether CS is appropriate for our
course students were asked to classify between 1 (totally
disagree) and 4 (totally agree) whether they agreed with
the following statements: (1) I enjoyed making this
project; (2) I think CS is appropriate for this course; (3)
I’ve played CS before.

Results are shown in Table 1. As can be seen, most
students (about 83%) agree that CS is appropriate and
most students (about 80%) enjoyed the project even
though only about 48% knew the game.

Table 1. Results relating the appropriateness of CS for
our course. Rating values are 1 (totally disagree); 2
(disagree); 3 (agree); 4 (totally agree). Values represent
the number of answers. The last column shows the
number of blank answers.

 1 2 3 4 N/A
I enjoyed the project 3 9 46 18 3
I think CS is
appropriate for this
course

1 7 48 18 5

I’ve played CS before 31 9 10 26 3

6.2 How was CS integration with the
curriculum?

In order to evaluate CS's integration with the
curriculum we asked students to appreciate separately
each of the project’s components according to how useful
and enjoyable each was. First, students were asked to
classify between 1 (useless) and 4 (very useful) each of
the components according to how useful it was for their
formation in this course. Table 2 shows the results.

Table 2. Results of the multiple-choice question “How
useful was each project component”. Rating values are: 1
(useless); 2 (insufficiently useful); 3 (useful); 4 (very
useful). Values represent the number of answers. The last
column shows the number of blank answers.

 1 2 3 4 N/A
Reactive 3 5 41 28 2
BDI 0 0 26 52 1
Cooperation 1 6 31 39 2
Additional Topic 6 19 39 10 5
Tournament 17 30 23 4 5

As can be seen, all project’s components, with the
exception of the tournament, were perceived as useful for
the students’ formation.

6.3 How was the CS platform perceived?

In order to evaluate the platform itself, students were
asked to classify it, between 1 (very poor) and 4 (very
good), with respect to ease of learning, documentation
quality, ease of programming and overall appreciation.

Table 3 shows the results. As can be seen, it is clear
that the platform needs further improvements. In fact,
even thought some examples of usage are provided, 50%
of the students said that it was not easy to learn or to
program. Also, the platform's documentation can be
improved (89% of the students classified it as poor).

Table 3. Results of the platform rating question. Rating
values are: 1 (very poor); 2 (poor); 3 (good); 4 (very
good). Values represent the number of answers. The last
column shows the number of blank answers.

 1 2 3 4 N/A
Ease of learning 19 30 24 4 2
Documentation 44 24 8 0 3
Ease of programming 9 35 25 8 2
Overall appreciation 12 38 25 2 2

7 Discussion and Conclusion

Results indicate that Counter-Strike is appropriate for
our Software Agents and Multi-agent Systems course. In
fact, most students seem to have enjoyed the project even
though a significant percentage of which did not know
the game before taking the course. These results are in
line with our expectations that mainstream games engage
and motivate students. Furthermore, most students
thought the game was appropriate for this course
suggesting that mainstream games can, in fact, be used as
effective teaching tools.

Counter-Strike integration with the curriculum also
seems to have been successful. Most students believed the
project’s objectives were useful for their formation and, at
the same time, have enjoyed the project.

In contrast, the Counter-Strike platform still requires
further improvement. Indeed, on a scale of 1 (very poor)
to 4 (very good), about 65% of students graded the
platform poorly. A clear weakness is the lack of proper
documentation which should be immediately addressed.

Overall, the idea that mainstream games have a place
in the multi-agents classroom seems to apply.
Furthermore, our integration of this idea with the
curriculum seems to have been successful. However, the
realization of this integration through the Counter-Strike
platform requires further work.

8 References

[1] Entertainment Software Association (ESA), “2006
Essential Facts about the Computer and Video Game Industry”,
www.theesa.com/facts, 2006.
[2] T. Malone, “Toward a theory of intrinsically
motivating instruction.”, Cognitive Science, vol.5, no.4, pp.333-
369, 1981.
[3] A. Mitchell, C. Savill-Smith, “The use of computer
and video games for learning – a review of the literature”,
Learning and Skills Development Agency, 2004.
[4] J. Kirriemuir, A. McFarlane, “Report 8: Literature
Review in Games and Learning”, Bristol: Nesta Futurelab,
2004.
[5] S. Tisue, U. Wilensky, “NetLogo: Design and
Implementation of a Multi-Agent Modeling Environment”,
Agent2004 Conference, Chicago, IL, 2004.
[6] M. Fasli, M. Michalakopoulos, “Teaching e-markets
through simulation games” in AAMAS 2005 Teaching MAS
Workshop, 2005.
[7] TAC, “Trading Agent Competition”,
http://www.sics.se/tac, 2006.
[8] F. Bellifemine, A. Poggi, G. Rimassi, “JADE: A
White Paper”, TILAB “Exp in search of innovation” Journal,
vol.3, no.3, pp.6-18, 2003.
[9] R. Adobbati, A. Marshall, A. Scholer, S. Tejada, A.
Kaminka, S. Schaffer, C. Sollitto, “Gamebots: A 3D Virtual
World Test-Bed for Multi-Agent Research”, Proc. of the 2nd
Intl. Workshop on Infrastructure for Agents, MAS and Scalable
MAS, 2001.
[10] G. Kaminka , M. Veloso, S. Schaffer, C. Sollitto, R.
Adobbati, A. Marshal, A. Scholer, S. Tejada, “GameBots: the
ever-challenging multi-agent research test-bed”,
Communications of the ACM, Jan., 45(1), pp.43-45, 2002.
[11] Counter-Strike, “Counter-Strike Official Web Site”,
www.counter-strike.net, 2006.
[12] CPL, “Cyberathlete Professional League Homepage”,
www.thecpl.com/league/, 2006.
[13] CSports.Net, “CSports.net – Worldwide Computer
Games Rankings, Top Games”,
www.csports.net/TopGames.aspx, 2006.
[14] Valve Developer Community, “Valve Developer
Community Portal”, developer.valvesoftware.com/wiki,
2006.
[15] HPB bot, “HPB Bot Homepage”,
botman.planethalflife.gamespy.com/, 2006.
[16] YapB bot, “YapB Bot Homepage”, yapb.bots-
united.com/, 2006.
[17] M. Wooldridge, “An Introduction to Multi-Agent
Systems”, John Wiley and Sons, 2002.
[18] M. Georgeff, B. Pell, M. Pollack, M. Tambe, M.
Wooldridge, “The Belief-Desire-Intention Model of Agency”,
Proc. of the 5th Intl. Workshop on Intelligent Agents V: Agent
Theories, Architectures, and Languages (ATAL-98), LNAI
Volume 1555, pp.1-10, Berlin: Springer, 1999.

http://www.theesa.com/facts
http://www.sics.se/tac
http://www.counter-strike.net/
http://www.thecpl.com/league/
http://www.csports.net/TopGames.aspx
http://developer.valvesoftware.com/wiki
http://botman.planethalflife.gamespy.com/
http://yapb.bots-united.com/
http://yapb.bots-united.com/

	Keywords: Teaching Multi-Agent Systems; Mainstream Games; Multi-Agent Platforms
	1 Introduction
	2 Background
	3 A First-Person-Shooter World
	4 The Multi-Agent Platform
	5 Integration with the Curriculum
	6 Results
	6.1 Is CS appropriate for our course?
	6.2 How was CS integration with the curriculum?
	6.3 How was the CS platform perceived?

	7 Discussion and Conclusion
	8 References

