Best Poster Award
Pedro Sequeira, Francisco S. Melo, Rui Prada and Ana Paiva
In Proceedings of the First Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2011), Frankfurt, Germany, August 24-27, 2011, pp. 1-6
Abstract
Recently, a novel framework has been proposed for intrinsically motivated reinforcement learning (IMRL) in which a learning agent is driven by rewards that include not only information about what the agent must accomplish in order to “survive”, but also additional reward signals that drive the agent to engage in other activities, such as playing or exploring, because they are “inherently enjoyable”. In this paper, we investigate the impact of intrinsic motivation mechanisms in multiagent learning scenarios, by considering how such motivational system may drive an agent to engage in behaviors that are “socially aware”. We show that, using this approach, it is possible for agents to learn individually to acquire socially aware behaviors that trade-off individual well-fare for social acknowledgment, leading to a more successful performance of the population as a whole.