
A Reinforcement Learning Approach
for the Circle Agent of

Geometry Friends

João Quitério⇤, Rui Prada†, Francisco S. Melo‡
INESC-ID and Instituto Superior Técnico, University of Lisbon

Av. Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal
⇤
joaollquiterio@tecnico.ulisboa.pt

†
rui.prada@gaips.inesc-id.pt

‡
fmelo@inesc-id.pt

Abstract—Geometry Friends (GF) is a physics-based platform
game, used in one of the AI competitions of the IEEE CIG
Conference in 2013 and 2014. The game engages two characters,
a circle and a rectangle, in a cooperative challenge involving
collecting a set of objects in a 2D platform world. In this work,
we propose a novel learning approach to the control of the circle
character that circumvents the excessive specialization to the
public levels in the competition observed in the other existing
solutions for GF. Our approach proposes a method that partitions
solving a level of GF into three sub-tasks: solving one platform
(SP1), deciding the next platform to solve (SP2) and moving from
one platform to another (SP3). We use reinforcement learning
to solve SP1 and SP3 and a depth-first search to solve SP2.
The quality of the agent implemented was measured against the
performance of the winner of the Circle Track of the 2014 GF
Game AI Competition, CIBot. Our results show that our agent is
able to successfully overcome the over-specialization to the public
levels, showing comparatively better performance on the private
levels.

I. INTRODUCTION

Geometry Friends (GF) is a physics-based platform game
involving two “characters”: the Circle and the Rectangle. To
complete the game, the two characters must overcome several
levels, in which they must collect all the diamond-shaped
objects in the environment in the minimum amount of time.
The levels of the game can be designed to be played by a single
character or by both characters simultaneously, in a cooperative
fashion. From a single character’s point-of-view, GF imposes
challenges in the navigation within the game space, namely
in terms of fine control and adequate timing of the agent’s
actions. At the same time, it requires the agent to plan ahead
and decide what path to follow in order to solve the level. From
a cooperation point-of-view, the coordination of movements of
both characters is also a challenge to be tackled.

Due to the difficulty and variety of the challenges it
imposes, GF is an adequate platform to develop new AI
algorithms. For this reason, it has been featured in the game
AI competitions of the IEEE CIG Conference in both 2013
and 2014 editions.1 The competition includes two single agent
tracks, each containing levels to be solved by one of the two
characters, and a cooperative track, where both agents must

1For more information about the competition, we refer to the website
http://gaips.inesc-id.pt/geometryfriends/.

play cooperatively to solve a number of levels. Competitors
are asked to produce an AI system that is able to control the
corresponding character(s) towards the solution of 10 levels,
5 of which are publicly available while the submissions are
open.

Existing AI systems for GF (presented in past editions of
the competition) were able to successfully tackle the public
levels. However, their performance in the unknown levels was
significantly worse, suggesting that such systems were over-
specialized in the levels that were made available. Hence, an AI
system that is able to successfully tackle previously unknown
GF levels should be able to break down each new level in its
simplest components, and then robustly control the agent in
each of these components.

In this work, we propose a novel solution that is supported
on both search and reinforcement learning. We focus on the
Circle agent, although our proposed approach is not circle-
specific and can, therefore, be also applied to the Rectangle
character. The proposed solution was developed to overcome
the over-specialization to the public levels observed in past
solutions. It also aims at becoming a springboard on the
development of AI agents that are able to solve any possible
level configuration without previous playing on it. To evaluate
the quality of our solution, we compare our results with those
of the winner of the IEEE CIG 2014 GF AI Competition,
CIBot.

II. GEOMETRY FRIENDS

Geometry Friends is a physics-based platform game that is
set in a two-dimensional environment. There are two characters
in the game that the player can control: a yellow circle and
a green rectangle. The environment (depicted on Fig. 1) is
populated by diamond-shaped objects that can be collected
by any of the characters and with obstacles that restrict the
character’s movement . There are two types of obstacles:
black obstacles that restrict the movement of both characters;
coloured obstacles that only restrict the movement of the
character of the opposite colour. The agents must collect every
diamond available on a particular level. The game has different
levels, each one with a distinct layout for the obstacles, the
collectibles and initial position of the characters.



Fig. 1: Geometry Friends level

Fig. 2: Possible movements of both characters. Taken from
Geometry Friends AI Competition Website

Each character has a specific set of actions that it can
perform. The circle can roll both to the left and to the right,
jump and change its size. The rectangle, on the other hand,
can slide both to the left and to the right, and morph to
become wider or slimmer, while maintaining a constant area
(see Fig. 2). Both agents are affected by gravity, attrition and
collisions with obstacles and one another. Since each character
has different motor skills, there are levels that be solved by
only one character; levels that can be solved by any of the
two; and finally levels that can only be solved by both agents
acting cooperatively.

III. RELATED WORK

The use of AI to solve games is a long standing tradition,
with such outstanding showcases as DEEPBLUE in chess [1],
CHINOOK in checkers [2], and WATSON in jeopardy [3]. And
while solutions to complex games such as chess or checkers
rely heavily on search algorithms, more recent successes arise
from the combination of powerful search algorithms with an
equally powerful learning component [3], [4]. For example,
recent results on computer Go rely heavily on Monte-Carlo
tree search algorithms rooted in reinforcement learning, such
as the UCT algorithm [5]. In a closely related line of work, the
Deep-Q system combines reinforcement learning with a deep
neural network to achieve human-level play of several Atari
games [6]. Ross and Bagnell [7] use structured learning to
develop a player for the Infinite Mario game. Tsay et at apply
reinforcement leaning to an agent that plays Super Mario, and
outperforms other learning approaches but still under-performs
when compared a search-based A* approach [8].

Specifically with respect to GF, the game was first men-
tioned on [9] as an example of a cooperative game. The
position of the diamonds was calculated so as to force cooper-
ation between both characters and assumed that the game was
to be played by human-controlled agents. Carlos Fraga [10]
presented an AI solution to GF using a navigational graph. This
graph has different types of edges depending on whether the
edge is traversable by the circle alone, by the rectangle alone
or by both characters. The nodes of the graph are positioned on
both agents’ starting positions and on the diamonds’positions.
Other nodes are generated by expanding the initial nodes. Once
the graph is built, the agents run the A* algorithm to determine
the path to follow. One of the limitations of this approach is the
processing overhead caused by running the A* algorithm every
time an action has to be made. Furthermore, the complexity of
the analysis of the level needed to generate the graph, failed
to solve many different situations in the game, suggesting a
lighter approach could be used.

Yoon and Kim [11], developers of the winning agent of
the 2014 GF AI Competition circle track and Benoı̂t et al
[12], runner up in the 2014 rectangle track of the same GF
competition, use similar approaches based on path planning.
Both agents create a graph from the level layout and use
Dijkstra’s algorithm to find the shortest path through the graph.
Yoon and Kim’s agent uses the edge points of the platforms
as nodes. Whenever is possible for the circle to go from one
of those edge points to another a graph edge is created. Every
time the agent has to play, it runs Dijkstra algorithm to find
the shortest path to the closest diamond. To avoid constantly
running the Dijkstra algorithm, edge points along the path to
a diamond are stored in a queue in the order they should
be visited. With this optimization, the algorithm is only run
when the queue is empty. Benoı̂t’s agent creates a meta-graph
with special points called objective points. With this meta-
graph the agent calculates the order in which it must visit
those points using Dijkstra. Finally, the agent plans the set
of actions it has to perform to be able to follow the path
found. The main difference between those two solutions, is
the fact that Benoı̂t’s agents plan everything on an initial setup
phase whereas Yoon’s make plans while playing the level. Both
controllers use a simple rule based-system, although differing
on the type of control encoded, that move the circle, by rolling
and jumping, in a greedy way to move it closer to the target
position. Jumping strategies (i.e. the distance and velocity to
jump to a platform) are pre-computed in these rules.

Yen-Wen Lin et al. [13], developed the KUAS-IS agent that
also competed on the 2014 GF Game AI Circle Track. Their
agent uses A* and Q-Learning to solve GF. A* is used to find
the shortest among the paths that go through all the diamonds
on the level. However, A* can compute a path that leads the
agent to a pitfall, such as tight hole that is very hard to get out.
To avoid these pitfalls, their agent uses Q-Learning to bias the
A* heuristics.

In our work, we combine reinforcement learning with
search as a means to learn policies that can be generalized
across levels. Reinforcement learning (RL) algorithms enable
an agent to learn a task by trial and error, driven by a reward
signal that “encodes” the task to be learned [14]. RL methods
are designed for situations where the environment is quite
dynamic and non-deterministic, such as the GF domain.



Fig. 3: Platform division example. The obstacle O2 is divided
into platforms P2 and P3 as O1 restricts the movement of the
circle in the ground platform.

IV. SOLUTION

As discussed in Section I, we seek to overcome the over-
specialization to the public levels of GF observed in previous
AI systems. In order to achieve the necessary generalization
ability, it is crucial that the agent can identify and solve
patterns that are repeated throughout the game, instead of
focusing on level-specific situations.

In order to increase the probability of finding those repeat-
able patterns, we use a divide-and-conquer approach to the
problem of solving a GF level. In our approach, we divided
that problem in three sub-problems (SP):

SP1 Catching all the diamonds that are on a platform;

SP2 Deciding the next platform to go;

SP3 Moving to the other platform.

With this division, we are reducing the number of possible
game configurations the agent is looking for, as the agent
can only be solving one of those problems at a given time.
Therefore, the problem of GF is now solved by repeatedly
solving the series of (SP1 ! SP2 ! SP3) existent in the
level, starting from solving the platform where the character is
initially placed. We are looking for repeatable patterns on SP1
and SP3 as solving SP2 always needs to take into account the
layout of each level to decide where the character can move
next.

For the definition of those three sub-problems, we need to
divide the level into platforms to be solved. A platform is a
region of an obstacle where the character can move without
having the need to jump. In Fig. 3 we see that obstacle o2 is is
divided into two platforms (p2 and p3) as obstacle o1 restricts
the area of that obstacle that the circle character can reach.
By splitting the game obstacles into different platforms in the
agent’s world representation, we reduce even more the number
of possible configurations the agent faces without losing valid
positions for the circle character.

The diamonds available on the level are assigned to one of
those platforms. The attribution of a diamond to a platform is
made in a left to right and top to bottom order. The diamond
is always assigned to the platform that is exactly bellow him.

This diamond assignment strategy has some flows, as it can
assign a diamond to a platform from where it is impossible to
catch it. This limitation is discussed later in Section VI.

The agent has a world-model that is queried whenever the
agent needs to perform an action. In this model, the agent
stores the list of platforms of the level it is solving together
with the collectibles assigned to them. Moreover, it stores a
navigation graph that is used as a map when the agent needs to
decide which platform it should go next. The world-model also
stores the current position, speed and radius of the character.
The agent also has a knowledge-base that stores information
that it uses to solve the sub-problems. Whenever the agents
performs an action, it queries the knowledge-base for the best
action to perform on the situation the agent is facing. This
knowledge-base is updated in the end of each level with the
information the agent gathered on it. This topic is discussed
in more detail in Section IV-E,

We formulate the problem of finding the next platform
to go (SP2) as path planning problem similarly to what
other approaches to GF have done. We want to find a path,
starting on the character’s current position that goes through
all platforms with diamonds to be caught. However, in our
solution, we run a Depth First Search (DFS) instead of an A*
algorithm. This decision has to do with the fact that our search
space is very small, that we are not trying to find the optimal
path and that a DFS is efficient to be ran several times while
the agent is playing the level. More details on solving this
sub-problem follow on Section IV-B.

To solve problems SP1 and SP3 we opted to use rein-
forcement learning. We are looking to learn two policies (one
for each sub-problem) that the agent can follow to solve any
possible configuration of the GF problem.

To use reinforcement learning, we need to define feature
vectors that are used to calculate the reward of each game-state.
SP1 and SP3 need different feature vectors as the problems
differ very much from one another. To solve SP1, the agent
only needs to capture features of the platform the character
is in, whilst to solve SP3 it must take account the destination
platform and the distances between the two platforms. Sections
IV-A and IV-C discuss in detail the features used in SP1 and
SP3 respectively.

A. Solving one platform

When solving one platform we assume that the character
can catch all the diamonds assigned to it in a greedy way.
This assumption, even though doesn’t take into account that
the character can fall off the platform without solving it
completely, makes this sub-problem’s feature-vector easier to
define. With this simplification, the feature-vector only needs
to capture the position of the diamond , within that platform,
that is closer to the character. Although this may lead to sub-
optimal solutions, it speeds up learning as the same value for
this feature is repeated, regardless on where the other diamonds
are positioned on the platform. To capture the relation of
positions between the character and the diamond, the feature-
vector also stores the distance vector that goes from the
character’s current position to the position of that diamond.
The coordinates of the distance vector are measured as the

Rui Prada


Rui Prada




number of circle radii that are needed to fill the distance
between the character and the diamond.

Using only this vector to the closest diamond has the
drawback of making it harder to track the number of available
diamonds within the platform at a given time, which is an
important feature to use in the calculation of the reward for
the state. Another important feature to take into account is the
presence of any obstacle that avoids the character from falling
off the platform when it reaches the edge. If this feature is not
used, depending on the previous training, the agent can either
become careless and try to go at full speed towards a diamond
that is on the edge of the platform or become too careful and
go slowly and lose precious time. To capture such cases we
take into account this obstacles’ presence when the distance of
the closest diamond to the platform edge is less than 5 times
the circle radius (more than this distance the circle character
can still reverse its movement without falling).

Another feature used is the distance in the xx axis from
the character’s current position to the leftmost and rightmost
coordinates of the platform. The usage of this feature instead of
using the relative position of the character to the platform as to
do with the latter failing to capture the size of the platform. For
instance, on a very tiny platform, the character being at 50%
of it is not same as being on the middle of a large platform. On
the former, a single move can make the character fall from the
platform, whilst on the latter it would not fall. Nevertheless,
both situations would be perceived as the same by the agent.
This feature is also measured as the number of circle radii
needed to fill the distance.

The horizontal speed of the character is also used as a
feature. Since the speed value in the game varies from -200 to
200, we use an empiric constant of 1/20 to weight this value.
The speed value is truncated to an integer value to improve
generalization of situations.

The reward for a state on this sub-problem must take into
account the following features:

• The number of diamonds on that platform that were
collected on the end of the level (#DiamondsF inal).
This is an indication of how good was the outcome of
that platform was. The more diamonds we collected
in the end of the level, the better our platform perfor-
mance was and consequently the better the state is;

• The number of diamonds on the platform that were al-
ready collected by the time the agent was on that state
(#DiamondsState). The greater the number, the bet-
ter the state is; Together with the #DiamondsF inal
it gives the number of remaining diamonds;

• Distance to the closest diamond (Distance). The
closer the agent. the better the state is.

• Percentage of time available (T imeAvailable). The
more time the agent still has to solve the level the
better the state is.

The reward function for this sub-problem, for a certain state
s, is given by Equation 1. The distance factor has a greater
weight as it is the feature that has most importance on this

Fig. 4: Level from GF IEEE CIG 2014 AI Circle Single Track
Competition. The circle will not be able to catch any diamonds
due to the bad decision of falling to its right.

sub-problem.

reward(s) =#DiamondsF inal +#DiamondsState

+ 10⇥ 1

Distance
+ T imeAvailable

(1)

This game-state definition is only applied when the character
is on a platform which still has diamonds to be caught. When
this is not the case, the agent needs to choose which platform
the character should move to next.

B. Planing next platform

Making a good decision regarding the next platform to
move to is crucial, since in certain levels a wrong decision
can jeopardize the successful conclusion of that level, as can
be seen on Fig. 4.

To make these decisions, the agent runs a modified version
of a DFS in the navigation graph that is stored in its world-
model. In our implementation, we removed the validation if
the node was already visited from the classical DFS imple-
mentation as we may have to return a platform we already
visited to go to others. In the graph, each node represents a
platform of the level. Whenever it is possible for the character
controlled by the agent to go from one platform to the other,
there is a directional edge connecting the nodes representing
those platforms. The creation of this graph is made before the
first action on the level. In this graph, the edge stores not only
the source and destination nodes, but also the x coordinate of
the point where the edge has its start. To those specific points
we give the name of jump-points. We use the jump-points to
distinguish the edges whenever there are more than one edge
connecting a pair of nodes. Another information stored in the
edge structure is the difference in both xx and yy axis between
the jump-point and the destination platform. This distance is
calculated using the point on the destination platform that is
closer to the jump-point. An example of such graph can be
seen in Fig. 5.

The DFS returns the path (in nodes) that maximizes the
number of diamonds that can still be caught. This algorithm
assumes that for every platform, the agent can collect all the
diamonds on it. Since it is often possible to go back and forth
to another platform, the DFS can go into an infinite cycle. To



1 2 3

4

5

6
Fig. 5: The navigation graph models the level shown above.
The nodes represent the obstacles on the level and the ground.
There is one edge whenever it is possible to go from one
platform to the other. Notice the two edges from node 4 to
node 6.

avoid being caught in such a cycle, the search depth is limited
to 2⇥ (numberOfP latforms� 1).

After computing the path, the agent checks what is the
closest jump-point leading the character to the first platform of
that path. The agent commits itself in moving to next platform
through that jump-point until it leaves the platform it is in.
This can happen when the agent jumps or fell off the platform.
Once the agent lands on a platform again, and that platform
doesn’t have any diamonds to catch, it re-runs the DFS and
chooses a new jump-point to move to. In certain cases, this
new jump-point is the same as the one the agent was targeting
before. Such situation happens when the agent fails to get to
the intended platform and remains on the same platform it was
before. The agent repeats the process of choosing a new jump-
point until it reaches a platform where there are diamonds do
catch.

The usage of this DFS is efficient as the depth of the search
is always limited. This enables the agent to run the DFS every
time the agent has to make a move. Moreover, it allows a quick
recalculation of the path when a deviation from the original

one is made.

C. Moving to another platform

After deciding to where the character has to go, the agent
must produce a set of actions that makes the character it is
controlling reach that target platform. As was stated before,
this sub-problem is also modelled as a learning problem.

In this particular problem, the feature-vector has to capture
the distance between the character and the jump-point the agent
is targeting, the characteristics of the destination platform and
the distance between the current platform and the destination
platform. Moreover, these features must also capture the char-
acter’s speed. The speed can be critical to fulfil the agent’s
goal. One of the examples on why speed is important, is the
situation where the character needs to jump to a small platform.
If the agent doesn’t correctly control the speed, the character
can jump over the intended platform instead of landing on it.

When moving to another platforms, the agent looks at the
following features of the environment:

• Agent speed – integer value that ranges from -10 to
10 (uses the same 1/20 constant that was used when
solving SP1);

• Distance to jump-point – integer value that indicates
the distance in the xx axis between the character’s
current position and the jump-point position. It is
measured as the number of circle radii;

• Distance vector – two-dimensional vector that stores
the difference in the xx and yy axis between both
platforms. It uses the same metric as the distance to
jump-point feature.

• Landing platform size – the portion of the destination
platform that can be used for the character to land on
it. It is also measured as the number of circle radii.

• The edge the agent is committed to – the edge of the
graph the agent is committed to solve.

Whenever the character gets to the intended platform, the time-
stamp of that moment is stored in the edge of the graph the
character traversed. This time-stamp is used to calculate how
much time the agent took to move from one platform to the
other.

The reward function for a given state on this sub-problem
takes into account:

• The fraction of the time the agent spent moving to
the next platform. This time is measured from the first
time the agent commits to an edge until it reaches the
destination platform of that edge.

• The fraction of the time from the first time the agent
committed to the edge (initialEdgeT imeStamp), to
the time taken when the agent played was on that
state (stateT imeStamp). The closer that fraction is
to 1, the higher the reward the state gets, as it is an
indication that the agent was closer to solving the sub-
problem.

The reward function for a given state s is calculated using
Equation 2, where totalEdgeT ime and levelT imeLimit

Rui Prada


Rui Prada
time-elapsed



represent the total time the agent took to get to the destination
platform and the level time limit, respectively.

reward(s) = 100⇥
✓
1� totalEdgeT ime

levelT imeLimit

◆

⇥ stateT imeStamp� initialEdgeT imeStamp

totalEdgeT ime
(2)

After solving all sub-problems, we need to define how the
agent chooses its next action when it is called to do so.

D. Agent decision flow

When the agent is prompted for its next action, it updates
its world-model according to the latest update from its sensors.
The agent has sensors that can capture the following informa-
tion:

• The character’s current position and speed (two 2D
vectors);

• The character’s radius;

• Position of all the remaining diamonds ;

• Position and size of all the obstacles.

After finishing the update, the agent determines if there are
still diamonds to be collected in the platform the character is
in. If the platform is not solved yet, the agent will continue
trying to catch all the diamonds on it. If the platform is solved,
the agent decides which platform the character should go next
and starts solving the sub-problem of moving towards that
platform.

Regardless of the sub-problem the agent is in, it always
queries its knowledge-base for the best move for its current
state. If such state is not found, the agent will always play a
random action from the set of possible actions. If the state is
found, the agent chooses the best known action for that state
with a certain probability x. Otherwise, it will also play a
random action. In all situations, the set of possible actions are:
roll left, roll right and jump. We didn’t use the morph action
of the circle as the outcome of that action can be achieved
by a combination of jump and roll actions. In our work, the
probability x was set to two distinct values, one for training
purposes x = 40% and another for competition purposes x =
80%. This percentage is the exploitation ratio of the agent and
in the future can be set dynamically according to the number
of states the agent knows at a given moment.

There are some particularities on the random choice of
actions as the 3 actions do not have the same probability of
being chosen. We detected that, if the jump action is done
frequently, the learning process gets slower. This happens
because the jumping action takes much more time to terminate
than any other. When the agent jumps, it can only make another
action when the character lands again. When the agent plays
any other action it can choose another one as soon as it is
again prompted to do so. To avoid frequent jumps, this agent
only has a 5% probability of choosing the jump action when
choosing a random action. Table I shows the probability of the
agent choosing each action when playing randomly.

TABLE I: Actions probability when playing randomly

Action Probability

Left 0.475
Right 0.475
Jump 0.05

E. Update and store learned values

When a level finishes, the agent must update its knowledge-
base to take into account what happened during that run. The
agent stores its knowledge-base in two separate files, one for
each of the two learning sub-problems. Both files have the
same structure. For each state identifier (s) there are values
for each one of the possible actions (a). These values are real
values and start at 0. The value 0 is used to represent lack of
knowledge for the pair < s, a >.

For each action the agent performs, it stores the game-state
and the action performed.

The update of the agent’s knowledge for a given game-state
s and an action a is made with the algorithm that follows. In
the algorithm, we use !a to represent all actions different from
the action played and n to represent the current level. n � 1
is the level that was played immediately before.

if s visited for the first time then
reward(s,a) =reward(s,a,n)
reward (s,!a) = 0

else
reward(s,a) = 0.95*reward(s,a,n� 1) +

0.05*reward(s,a,n)
reward(s,!a) = reward(s,a,n� 1)

end

When the agent starts a new run, it loads all the information
contained on both learning files. All the pairs < s, a > with
value 0 are ignored.

F. Training

The agent was trained in two distinct situations: simple
levels to train specific scenarios, such as solving a small
platform with two diamonds or jumping from one platform
to another; and full levels similar to those featured in the GF
AI Competition. As examples of the training levels designed
we have the following situations:

• Solving a platform with a diamond in each edge
(tested with and without the risk of falling from the
platform);

• Solving the above situation but having the need to
jump to catch the diamonds;

• Solving a 2-platform level with a diamond on the
platform that was not the starting platform of the
agent;

• Solving a ”step” level where the circle has to con-
secutively jump from one platform to another until it
reaches the one with the diamond;



TABLE II: Summary of competition results

CIBot Agent ↵
Runs Completed 50 22

#LevelsWon 5 5
Score 4337 2411

0

TABLE III: Percentage of diamonds collected (public levels)

#Level CIBot Agent ↵
1 100% 73%
2 100% 53%
3 100% 33%
4 30% 50%
5 50% 60%

Average 76% 54%
Std. Dev 30.07% 13.08%

The agent ran a total of 19871 games, on a set of 28
training levels with 5 of them being the public levels of the
2014 AI Competition, with a exploitation ratio was of 40%.
The agent started without any prior knowledge so it always
played randomly.

V. EVALUATION AND DISCUSSION

To evaluate our agent, we put it playing the ten levels that
were featured in the 2014’s edition of the GF AI Competition.
The results were taken in an Intel i7 processor at 2.4 Ghz and
16 GB of RAM. Windows 8.1 64-bit edition was used.

We compared our results with the winner of the competi-
tion, CIBot. Table II presents the summary of the performance
of CIBot and our agent (Agent ↵) on the 2014 GF Competition.
Our agent was ran with the same rules and time constrains as if
it was also in competition. In the competition, the agents run 10
times on the same level in order to mitigate the chance factor.
In total, our agent ran 100 runs. The update of knowledge
values was disabled to avoid learning between runs on the same
level. The last 5 levels of the competition were completely
new to our agent. The row Runs Completed indicates the total
number of runs in which the agent solved the level. Its value
ranges from 0 to 100. The row #LevelsWon represents the
number of levels where the agent had the best score of the
two. The value ranges from 0 to 10. Finally, the Score row
represents the final score of the agent. This value is calculated
by averaging the score of each run. The score of a run is
obtained using Equation 3 which is the same that was used
on the GF AI Competition, where V

Completed

and V
Collect

are
the bonuses for completing the level and catching a diamond
, respectively. In our tests, to mimic what was done in the
competition, those values were set to 1000 for V

Completed

and
100 for V

Collect

. agentT ime is the time the agent took to
solve the level, maxTime is the time limit for the level being
played and N

Collect

is the number of diamonds caught.

ScoreRun = V
Completed

⇥ maxTime� agentT ime

maxTime
+ (V

Collect

⇥N
Collect

)
(3)

As can be seen on Table II, CIBot performs better overall
and would still have been the winner even if our agent had
taken part in the 2014 GF Competition. The huge difference

TABLE IV: Percentage of diamonds collected (private levels)

#Level CIBot Agent ↵
6 50% 70%
7 100% 27%
8 0% 76%
9 100% 73%

10 0% 20%
Average 50% 53%
Std. Dev 44.72% 24.42%

in the final score between both agents is mainly due to the
fact that the formula used to calculate the results favours
having more runs completed than collecting more diamonds.
To measure the performance of each agent on the public and
private levels, we also looked at the percentage of diamonds
each agent collected in each one of those level sets. Tables
III and IV show the percentage of diamonds collected on the
public and private level sets respectively. Through both tables,
it is possible to notice that CIBot is the agent that collects
the greater percentage of collectibles on the public levels,
whereas Agent ↵ is the one with a better performance in
the private levels. Moreover, by the values of the standard
deviation, we can see that Agent ↵ has a more consistent
behaviour on the levels. However, even more important
than collecting more collectibles on the private levels or
having a more stable behaviour than CIBot, is the fact
that the difference between the percentages of the public
and the private levels is very slim in our agent (only
1% difference). This difference shows that Agent ↵ didn’t
become specialized on any of the level sets.

VI. LIMITATIONS

There are some limitations that we found on our ap-
proach. One of them is due to the specificities of the game
while the others are typical limitations of the reinforcement
learning problems.

A. Jumping problems

When the agent faces levels that have small platforms
to which it needs to jump to, it often jumps over the
platform instead of landing on it. However, when the circle
manages to land, it has the correct speed and rarely slips
out of the platform. An explanation can be the lack of
training on these situations, either because there was not
enough training runs for the agent to learn how to tackle
such scenario or because levels didn’t capture well such
situation. Another minor problem found on our agent is the
fact that it is unable to correctly map the diamonds that
are between two platforms as the agent, while building
the navigation graph, assigns that diamond to the platform
immediately below it. However, if the diamond is located
in a situation similar to the one depicted in Fig. 6, the
diamond is assigned to a platform that is very far from
it. For these types of diamonds’, the catching must be
done while jumping from one platform to the other, so the
diamonds must also be able to be assigned to the edges
of the graph.



Fig. 6: Limitation of the agent. The diamond is assigned to
the ground platform but is impossible to catch it from there.

B. Finding the next state

Another limitation in our solution occurs when the
agent performs an action but its outcome generates the
same game-state. This situation creates confusion on the
reinforcement learning algorithm as the for the same pair
< state, action > two different outcomes occur. This goes
against the deterministic world assumption that is made in
[14]. This limitation only happens when is moving in a very
slow way that the new state is perceived to be the same as
the previous one. Currently, the agent only calculates the
rewards when the level ends, so the problem is mitigated
by only taking into account the reward and the outcome
of the last of the repeated states. A way of avoiding this
workaround is to increase the number of features cap-
tured by the game-state to get more detailed information.
However, by doing so, we will have many states that are
very similar. If we have a huge number of possible states,
then the learning process will be much slower.

C. Finding known states

Currently the storage of the known states is done by
using two different structures, one to store the knowledge
on how to solve a platform and another to store the
knowledge on how to go from one platform to another.
These structures are indexed by the id of the state. The
id is currently a string describing the features that are
captured so as to easy the debugging task. However, if
the knowledge-base becomes too big, both the loading
and the searching in the knowledge-base can become the
bottleneck of this approach. In the future, more intelligent
ways of storing and searching through the knowledge
have to be used in order to speed-up the decision process.

VII. CONCLUSION AND FUTURE WORK

The presented solution applies a reinforcement learn-
ing algorithm together with path planning to solve the
GF problem. Despite getting a final score much lower
than CIBot, we are pleased to know that it got a better
score in half of the levels played. This gives us confidence
that a learning approach can be used to solve GF as it
adapts better to new situations. Finally, our agent didn’t
become over-specialized to any level set, as it caught

approximately the same percentage of diamonds on both
level sets.

The same approach is going to be tested with the
rectangle agent. This agent has to have a different set
of features to match the character’s specific motor ca-
pabilities. After that test, it is important to try to play in
the cooperative track. An approach to the cooperation
problem can rely on the emergence of cooperation when
one agent sees the other as another platform on the game
space.

We believe that this approach may be able to deal with
the Human and AI Players Cooperation extension of the
game discussed in the GF website. If the agents learn how
to cooperate with another agent without knowing what
algorithm the other is using, than those agents have a
good chance of being able to cooperate with humans.

ACKNOWLEDGEMENTS

This work was supported by FCT – Fundação para a
Ciência e a Tecnologia (INESC-ID multi annual funding)
under project UID/CEC/50021/2013.

REFERENCES

[1] F. Hsu, Behind Deep Blue: Building the Computer that Defeated

the World Chess Champion. Princeton University Press, 2002.
[2] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller,

R. Lake, P. Lu, and S. Sutphen, “Checkers is solved,” Science,
vol. 317, no. 5844, pp. 1518–1522, 2007.

[3] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. Kalyanpur, A. Lally, J. Murdock, E. Nyberg, J. Prager, N. Schlae-
fer, and C. Welty, “Building WATSON: An overview of the DeepQA
project,” AI Magazine, vol. 31, no. 3, pp. 59–79, 2010.

[4] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-
up limit hold’em poker is solved,” Science, vol. 347, no. 6218, pp.
145–149, 2015.

[5] S. Gelly and D. Silver, “Achieving master level play in 9 ⇥ 9
computer Go,” in Proc. 23rd AAAI Conf. Artificial Intelligence,
2008, pp. 1537–1540.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv:1312.5602, 2013.

[7] S. Ross and J. Bagnell., “Efficient reductions for imitation learning,”
in Proc. 13th Int. Conf. Artificial Intelligence and Statistics, 2010.

[8] J.-J. Tsay, C.-C. Chen, and J.-J. Hsu, “Evolving intelligent mario
controller by reinforcement learning,” in Technologies and Appli-

cations of Artificial Intelligence (TAAI), 2011 International Confer-

ence on, Nov 2011, pp. 266–272.
[9] J. B. Rocha, S. Mascarenhas, and R. Prada, “Game mechanics for

cooperative games,” in Zon Digital Games 2008. Porto, Portugal:
Centro de Estudos de Comunicação e Sociedade, Universidade
do Minho, November 2008, pp. 72–80.

[10] C. Fraga, R. Prada, and F. Melo, “Motion control for an artificial
character teaming up with a human player in a casual game,” 2012.

[11] D.-M. Yoon and K.-J. Kim, “Cibot technical report,” http://gaips.
inesc-id.pt:8081/geometryfriends/?page id=476.

[12] D. A. Vallade Benoı̂t and T. Nakashima, “Opu-scom techni-
cal report,” http://gaips.inesc-id.pt:8081/geometryfriends/?page
id=476.

[13] L.-J. W. Yen-Wen Lin and T.-H. Chang, “Kuas-is lab techni-
cal report,” http://gaips.inesc-id.pt:8081/geometryfriends/?page
id=476.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, pp.
237–285, 1996.


