
Tree-like hierarchical associative memory structures

João Sacramento∗, Andreas Wichert

INESC-ID Lisboa and Instituto Superior Técnico,
Technical University of Lisbon,

Av. Prof. Dr. Ańıbal Cavaco Silva, 2744-016 Porto Salvo, Portugal

Abstract

In this letter we explore an alternative structural representation for Steinbuch-type binary associative mem-
ories. These networks offer very generous storage capacities (both asymptotic and finite) at the expense of
sparse coding. However, the original retrieval prescription performs a complete search on a fully-connected
network, whereas only a small fraction of units will eventually contain desired results due to the sparse
coding requirement. Instead of modelling the network as a single layer of neurons we suggest a hierarchical
organization where the information content of each memory is a successive approximation of one another.
With such a structure it is possible to enhance retrieval performance using a progressively deepening proce-
dure. To backup our intuition we provide collected experimental evidence alongside comments on eventual
biological plausibility.

Keywords: Associative memory, Steinbuch model, structural representation, hierarchical neural network,
sparse coding

1. Introduction

Recent advances on the study of binary Steinbuch-type associative memories (Steinbuch, 1961) have
shed light on the importance of their structural representation concerning achievable network performance
(Knoblauch et al., 2010). For instance, as a means to enhance storage capacity, an alternative representation
scheme based on Huffman or Goulomb coding has been proposed (Knoblauch, 2003). Instead of encoding
synaptic connectivity through its immediate weight matrix form, it has been shown that if a compressed
variant is used, the classic asymptotic upper bound on storage capacity may be increased.

In this letter, we consider a novel hierarchical approach to associative memory structural representation
with positive implications on retrieval performance. Furthermore, this procedure establishes possible links
to current neurobiology theories, complying with the low energy consumption requirements of the brain
(Laughlin, 2001; Lennie, 2003).

Whereas in conventional Steinbuch-type memories information is stored within a single neural network,
in our method it is spread across an ensemble of hierarchically arranged networks of increased resolution.
These additional networks are successive approximated (or ‘compressed’) versions of each other and allow
for early selective filtering of relevant neurons, pruning unnecessary units from the query process while
progressively reaching a final result.

Hierarchical memories are already a well-known concept in neural network architecture theory but have
been employed for different purposes. Such structures have been used by a trend of research (Kakeya &
Kindo, 1996; Hirahara et al., 2000; Štanclová & Zavoral, 2005) to store naturally correlated patterns, which
would otherwise quickly saturate the network and introduce intolerable errors in the retrieval process.

∗Corresponding author. Tel.: +351 21 423 32 31; fax: +351 21 314 48 43.
Email addresses: joao.sacramento@ist.utl.pt (João Sacramento), andreas.wichert@ist.utl.pt (Andreas Wichert)

Preprint submitted to Neural Networks September 29, 2010

2. Binary associative memories

Steinbuch-type associative memories have been object of exhaustive analyses since their inception in
the early sixties. Willshaw et al. (1969) and Palm (1980) provided a missing rigorous mathematical model
description and the first formal studies on their performance. Instead of the original electrical circuit
formulation envisioned by Steinbuch, they have presented the model as a single-layer feedforward network
of binary threshold neurons.

These memories establish a mapping between pairs of pattern vectors {(xµ 7→ yµ) : µ = 1, 2, . . . ,M)},
where we denote x ∈ {0, 1}m as the address or input vector and y ∈ {0, 1}n as the content or output
vector. When presented with a possibly noisy or incomplete input vector x̃, the network should determine
amongst the set of stored xµ the most similar one and return the corresponding yµ, according to some
established similarity measure such as the Hamming distance. This general mapping task is referred to as
hetero-association. If the set of stored vector pairs assumes the form (x, x), the network is said to perform
an auto-association task, useful when pattern completion is desired.

The set of M associations is learnt through a special non-linear rule, which forms the m × n (or n × n
for the auto-associative case) binary synaptic weight matrix W according to:

Wij = min
(

1,

M∑
µ=1

xµi y
µ
j

)
, (1)

where each column Wj corresponds to the weight vector of neuron j.
Equation 1 is a simple realization of the hypothesis due to Hebb (1949), which stated that simultaneous

pre- and post-synaptic activity would increase the efficacy of that synapse. The implemented variant of
Hebbian learning is said to be clipped as it merely registers a binary-valued state for each synapse (‘on’ or
‘off’), distributed as correlated patterns will reuse the same memory locations, and local since every neuron
can independently and in parallel update its weight vector.

After the learning phase is complete, stored associations can be recalled using a distorted input vector
x̃ as a cue. The dendritic sum sj is calculated for each neuron in a synchronous one-step fashion

sj =
∑
i

Wij x̃i ∀j, (2)

and compared with a threshold value Θ using a Heaviside transfer function:

yj = H(sj −Θ). (3)

Note that a well-chosen Θ is crucial for high-quality retrieval; too low values will result in add-errors
and too high values will result in miss-errors. We define an add-error as an additional ‘1’ component in the
output vector y which was not present in the originally learnt yµ. Similarly, a miss-error occurs when there
is a missing ‘1’ component in the output vector y.

We use the `0 zero norm of a pattern x to denote its ‘activity level’ |x|0, i.e., the number of active
elements. The classic threshold setting regime due to Willshaw et al. (1969), where Θ = |x̃|0 =

∑
i x̃i, is an

optimal solution when the input cue x̃ is possibly incomplete but not noisy. For the general case where x̃ may
contain additional or mispositioned ‘1’ components, the threshold must be chosen using an approximation
strategy with the goal value set at Θ ≈

∑
i x̃x

µ, which may or may not be easy to accomplish as it is not a
simple function of x̃ (Graham & Willshaw, 1995).

Several variations on the original retrieval process have been proposed (see Sommer & Palm (1999) for a
careful analysis) yielding greater error tolerance at the expense of additional computational costs. We will
not consider them in this work, as we aim for the lowest possible retrieval effort.

We will not deal with storage capacity and information efficiency in this work, as they have received
extensive treatment in the literature (Willshaw et al., 1969; Palm, 1980; Amari, 1989; Nadal & Toulouse,
1990; Palm & Sommer, 1996; Knoblauch et al., 2010). However, for clarity’s sake, let us refer that to
achieve optimal behaviour a Steinbuch-type memory should be loaded with associations of uncorrelated

2

sparse vectors, where their activity level is of logarithmic order of their length. If this constraint is met,
Steinbuch-type memories will display large practical information capacities up to C = ln 2 ≈ 0.69. This
value is slightly lower than those of sparse Hopfield-type networks which reach the asymptotic upper bound
of CH = 1/(2 ln 2) ≈ 0.72 (Palm & Sommer, 1992), but at the expense of synapses with non-binary weights.

These generous storage properties combined with the model’s biological relevance have ensured continu-
ous received attention. Technical applications have succeeded to develop domain-specific coding techniques
(Rehn & Sommer, 2006; Wichert, 2006) which allow for real capacities near C to be reached. Also, when
sparse coding, partial connectivity and noise-tolerant thresholding strategies are combined, Steinbuch mem-
ories become very attractive from a biological viewpoint, while maintaining high computational efficiency
(Graham & Willshaw, 1994). The latter is in part possible due to the simple and inexpensive one-step
retrieval algorithm, which allows a fast lookup even when running on conventional John von Neumann
computers, as we will discuss on section 3.

3. On the computational complexity of retrieval

Steinbuch memories naturally benefit from specialized massively parallel hardware implementations (see
for instance Palm & Palm (1991)), as each neuron may independently perform both learning and retrieval,
given that the computation is synchronous. In such a computer equipped with n processors, one for each
neuron, the retrieval process will be proportional in time to the number of ‘1’ elements of the input pattern
x̃. As the activity level |x̃|0 is close to |x|0 which is of logarithmic order O(logm) due to the sparseness
constraint, the time complexity of a parallel retrieval is also O(logm).

On a serial computer, the results of each neuron have to be calculated sequentially, for every active
element on the input vector x̃. Generally, the so-called ‘pointer representation’ format is employed, where x̃
is represented as a |x̃|0-sized vector containing the indices of its ‘1’ components (Bentz et al., 1989), avoiding
their determination every time the retrieval process occurs, which would cost m additional steps. This way,
n units must perform |x̃|0 comparisons and a threshold cut, resulting in

t = n · |x̃|0 + n ≈ n · |x̃|0 (4)

operations. Assuming the classic Willshaw threshold setting strategy is used, its computational cost may
be neglected. This yields a quasilinear time complexity of O(n logm). Notice that at first t seems to be
independent from the number of stored associations M ; however, to maintain the retrieved vector error-free,
M ought not exceed its maximal value which indeed is related to n — asymptotically we have Mmax ∼
mn/ log2 n, c.f. Palm (1980).

An immediate retrieval performance improvement on sequential computer implementations arises from
the suggestion found in Bentz et al. (1989) and Knoblauch et al. (2010), where each of the m matrix rows
are encoded in the ‘pointer representation’ format. This alternative representation avoids traversing the
entire content neuron population, restricting the dendritic potential calculation to units which react to the
excitatory inputs.

Since sparsely-coded patterns generate balanced weight matrices where the probability p1 of finding an
active synapse settles somewhere below 0.5 as M reaches Mmax, this retrieval scheme effectively reduces
the required number of computational steps on Steinbuch memories. If silent synapses are encoded, it is
also applicable to other potentiation regimes which might generate dense matrices where p1 → 1. Thus, in
average, each matrix row will have either p1 · n or (1− p1) · n pointers. Once again excluding the threshold
cuts this results in the retrieval cost of

tptr = min(1− p1, p1) · n · |x̃|0 (5)

computations.
It should be noted that the growth of n (and t or tptr) with M is sub-linear, unlike the traditional

list-based ‘brute-force’ solution. In this case, the input cue must be compared through a measure function

3

χ to every other address pattern to determine the closest match, rendering a total cost of

tlist =

M∑
µ=1

cost (χ(x̃, xµ)) ≈M · (|x|0 + |x̃|0) (6)

calculations.
Unlike Steinbuch-type memories, however, the list-based solution is a viable option when a sparse coding

prescription is not available for a given problem domain. No general solution to the sparseness constraint
has been found so far.

4. Tree-like hierarchical memories

By inspection of the Hierarchical Subspace Tree due to Wichert (2009) we were led to an interesting
question: could the properties of a tree-like structure be applied to binary associative memories in order to
improve retrieval performance and minimize energy consumption?

In pursuit of this premise we conceived a hierarchical structural representation suitable for the general
associative memory task. The simple intuition behind our method can be grasped through the analysis of
equation 4. Whenever an input cue is presented to the network, every neuron will have to perform a recall
procedure. However, as the stored patterns are sparse, only very few of them will eventually possess useful
information for a given query — most units will be left out during the threshold cut. As such, if a memory
containing approximated versions of the stored associations performs a recall first, the retrieved result may
be used as an indicator of which neurons will fire positively. Of course, the method will work especially well
if the employed approximation function does not lead to false negatives, otherwise undesired miss-errors
could be introduced.

By applying the same process as a recursion, introducing additional layers of memories which are suc-
cessive approximations of one another, a tree-like structure is built. It is not a tree of associative memories,
as there is only one memory at each level; it is rather the output of the selective lookup process at step r
which resembles the nodes at the level r of a tree.

Formally, we are dealing with an ordered set of R Steinbuch-type associative memories with a fixed
address pattern space dimension m but a variable number of neurons n1, n2, . . . , nR with nR = n. Thus,
the full m× n uncompressed associative memory can be found at depth R.

Our compression technique differs from the one found in Knoblauch (2003) as we are interested in creating
approximated versions retaining a ‘no false negatives’ property rather than solely maximizing space usage
and information efficiency. The easiest way to achieve this goal is to apply a Boolean OR based transform,
which is somehow the binary equivalent of the arithmetic mean employed in Wichert (2009).

Whenever a pair of patterns (x, y) is presented to the full memory for learning, a transformed version
(x, ζr(y)) ∀r : 1 ≤ r < R is also presented to the r-th memory. We define ζr as a family of functions
ζr : {0, 1}nr+1 −→ {0, 1}nr where the elements of z = ζr(y) are given by the equation:

zi =

i·ar∨
j=i·ar−(ar−1)

ζr+1(y)j (7)

The dimensions n1 < n2 < . . . < nR = n are inversely proportional to the aggregation window factors
a1, a2, . . . , aR, where aR = 1, and may be expressed by the recursive relation

nr =

{
nr+1/ar if 1 ≤ r < R,

n if r = R.
(8)

Notice that in practice ζr carries out a partition of x onto n/(ar · ar+1 · . . . · aR) sub-vectors and then
aggregates each of them using an ar-ary Boolean OR.

The retrieval process is performed when a distorted or incomplete pattern x̃ is presented to the memory
at r = 1, which corresponds to the smallest and most approximated version of the hierarchy. Likewise, on

4

the following memories ranging from r = 2 to r = R, x̃ is used as the recall cue. However, the dendritic sum
at level r + 1 will only have to be calculated for a subset of neurons.

Let y(r) denote the output pattern returned by the r-th memory. Note that any given ‘1’ component
j of y(r) corresponds to an index set Yj with ar elements that identify the original uncompressed units at
level r + 1:

Yj = {j · ar, j · ar − 1, . . . , j · ar − (ar − 1)}. (9)

These |y(r)|0 sets can then be merged to form the complete set Yr+1 of indices for which the dendritic
sum must be calculated at level r + 1:

Yr+1 =
⋃
j

Yj ∀j : yj(r) = 1. (10)

Hence, equation 2 is kept unchanged, but should be restricted to the members of Yr+1:

sj(r + 1) =
∑
i

Wij x̃i ∀j : j ∈ Yr+1. (11)

Moreover, the output transfer function should also be modified in order to update only the relevant
positions for which the dendritic potential has been calculated:

yj(r + 1) =

{
H(sj(r + 1)−Θ) if j ∈ Yr+1,

0 otherwise.
(12)

This retrieval process is illustrated by Figure 1, where a hetero-associative task is carried out by a
hierarchy of two memories. As a final remark we note that our retrieval prescription is equally valid for
pointer-based sequential computer implementations.

x̃

y(1)

y

x̃

Figure 1: A tree-like hierarchical associative memory structure with R = 2 and a1 = 2 during the retrieval process. The
original synaptic weight matrix at r = 2 is 8× 24, which yields a compressed 8× 24/a1 = 12 memory at r = 1. Black squares
represent ‘1’ entries.

5. Experimental results

Through a series of numerical simulations on a sequential computer we have measured the effective
retrieval costs associated to varying hierarchy dispositions. The experiments have been conducted on a
mid-sized square associative memory with m = n = 2000 neurons. Without loss of generality, the memory

5

20 40 60 80 100
a1

2000

4000

6000

8000

10 000

12 000

14 000

t

Figure 2: Thick lines indicate measured number of computation steps (excluding threshold cuts) on a two-step aggregation
(R = 2) hierarchy with a varying a1 factor. The series of points were drawn from an auto-associative mid-sized memory where
n = m = 2000 loaded with uniform random sparse patterns. The full line depicts the retrieval cost corresponding to a memory
load of M = 15000 stored patterns with fixed logarithmic activity level |xµ|0 = 8 where an incomplete cue with activity |x̃|0 = 7
was used. Dots and dashes refer to emptier memory states where M = 2000, |xµ|0 = 8 and |x̃|0 = 7 (dots), |xµ|0 = 4 and
|x̃|0 = 3 (dashes). Thin, gray lines represent analytic estimates sampled from the expressions presented on Appendix A. On
every case, a1 = 1 corresponds to the classic associative memory model retrieval process, where no aggregation is performed.
Notice how the initial costs t = 14000 and t = 6000 confirm equation 4.

performed an auto-associative task — similar results should be observed at equivalent (i.e., with a higher
number of stored associations M) capacity loads for hetero-association.

As Fig. 2 highlights, noticeable gains may be attained with a single-step hierarchy of solely one additional
memory, viz. when R = 2. Fuller memories tend to be more sensitive to aggregation factor choice, and an
incorrect selection will easily lead to uninteresting results. This phenomenon occurs due to the successively
increasing memory saturation introduced when traversing the hierarchy from r = R to r = 1 during the
learning stage. The aggregation process employed to create the smaller approximated memories will also
render a capacity overload, as the resulting number of neurons will be smaller and each one will contain
a higher number of active synapses. The aggregation factor should not, of course, be too low, as it would
deliver a sub-optimal compression, but it also should not be too high, at the expense of introducing an
undesired level of add-errors in the output patterns of the approximated memories due to excessive load.

Minimum tmeasured excluding threshold cuts

Memory R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

MA 14000 3710 3122 3024 3066 3129
MB 14000 1708 1071 973 917 931
MC 6000 465 222 177 168 168

Table 1: The impact of the hierarchy depth factor R on the retrieval cost. Notice that R = 1 corresponds to the original
Steinbuch associative memory. For each subsequent value of R the minimum measured number of comparisons (again, excluding
threshold cuts) is shown. To reach this result, numerical optimization was employed in order to determine the ideal a1, . . . , aR
aggregation factors. All memories have n = m = 2000 neurons and are listed from fuller to emptier, as MA = 15000, |xµA|0 = 8,
MB = 2000, |xµB |0 = 8, MC = 2000 and |xµC |0 = 4. In both cases, pattern completion was performed using an incomplete cue
with a missing ‘1’ component, i.e., where |x̃|0 = |xµ|0 − 1.

Applying the recursive aggregation through hierarchies with a depth factor R > 2 has also been shown
useful. Table 1 illustrates performance gains achieved when optimum aggregation factors are chosen for each
level r = 1, . . . , r = R − 1. Hierarchy heights of logarithmic order O(log n) of network size resembling the
properties of a tree (such as the Subspace Tree) appear to be beneficial to the retrieval process.

The series of measured times tmeasured presented in Table 1 discard the number of threshold cuts on
purpose; these are just a constant small fraction of the total retrieval time (as illustrated by Table 2) and

6

Minimum tmeasured including threshold cuts

Memory R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

MA 16000 4240 3568 3456 3600 3616
MB 16000 1952 1224 1112 1048 1064
MC 8000 620 296 236 224 224

Table 2: Repetition of the experiments performed for Table 1, but with tmeasured including the threshold operation count. The
values are higher than those of Table 1 for all depth factors (including the original Steinbuch model, i.e., when R = 1), but
the proportion of improvement is exactly the same. The only network which performs a full threshold check is the first one,
which is highly compressed on a hierarchical arrangement with R > 2. The subsequent memories will only have to calculate
the thresholds for the neurons in Yr+1, which for an optimal (or near-optimal) configuration represents a small fraction of the
neural population.

their impact will be near irrelevant on large memories as the asymptotic growth of the dendritic potential
operation count will outpace the threshold’s.

Our experiments were performed on n = m = 2000 mid-sized memories where we could afford to apply
numerical optimization, which would take rather too long to complete on larger networks. On these networks
the hierarchical retrieval process should benefit from higher R factors, achieving better effective costs, as the
extra threshold cuts become discardable. This fact is particularly interesting since Steinbuch-type memories
present optimal capacity relations for very large values of n and m (Palm, 1980).

6. Conclusions

Nearest neighbour determination for binary patterns is a well-known problem for which numerous ap-
proaches exist — take for instance locality-sensitive hashing (Andoni et al., 2006) as a recent method
developed within the computer science community. Neural associative memories are biologically inspired
solutions for this problem.

We have chosen to apply our hierarchical representation scheme to the classic ‘Steinbuch-Willshaw-Palm’
model due to its amenity to analysis, high information efficiency and low computational complexity. If the
threshold can be determined a priori, an associative memory of this kind is only prone to introducing add-
errors. Hence, the ‘no false negatives’ property can be exploited and the approximated memories can be
safely compressed beyond the traditional limit of p1 = 0.5. This results in large performance improvements
for any capacity setting (within the limits defined by Palm (1980)) of the uncompressed memory R. For
input cues with arbitrary noise levels, other extensions or models described in the literature remain more
apt, such as iterative retrieval techniques (Sommer & Palm, 1999) or associative memories of spiking neurons
(Knoblauch & Palm, 2001).

From a computational point of view, our model has been shown useful as a means to enhance retrieval
performance. The major contributing cost factor n·|x̃|0 in equation 4 can be substantially diminished thanks
to the tree-like hierarchical lookup procedure, spending less than twice the original space. The total number
of synapses is clearly limited for finite hierarchical memories, as we have

∑R−1
r=1 mn/2

r +mn < 2mn for the
least compressed case, i.e., when a1 = . . . = aR−1 = 2. Since the traditional measure of storage capacity is
usually normalized by the number of available synaptic contacts (Knoblauch et al., 2010), this means that
our model will exhibit at least half of the capacity of the original Steinbuch network.

Dependence of performance gains upon network configuration and memory load has also been observed,
as optimal or near-optimal results were restricted to a subset of depth and aggregation factor combinations.
Different loads will correspond to different ideal sets of parameters, and sensitivity to parameter selection
should increase with memory load.

Synaptic activity on the mammalian brain has been related to increased energy costs which may not be
sustainable by the underlying metabolic processes. How the proposed hierarchical refinement process could
be implemented biologically remains an interesting open question.

7

Acknowledgements

The authors wish to express their gratitude towards Jan Cederquist and the anonymous reviewers for
their helpful and incisive comments on early versions of this manuscript. The authors are also indebted
to Alexander Pattenden for proofreading and suggesting useful corrections to the language. This work
was supported by Fundação para a Ciência e Tecnologia (INESC-ID multiannual funding) through the
PIDDAC Program funds and through an individual doctoral grant awarded to the first author (contract
SFRH/BD/66398/2009).

Appendix A. Estimating the retrieval cost of our model

Following the analytical treatment due to Palm (1980) where the case of uniform random patterns (which
minimize pattern superposition and maximize memory capacity) is dealt with, it is possible to estimate the
computational cost thier of our hierarchical retrieval procedure.

The total retrieval cost can be defined trivially as the sum of the retrieval costs for every level r from 1
to R:

thier = t1 + t2 + . . .+ tr+1 + . . .+ tR. (A.1)

For the first memory at r = 1 where a full lookup is performed, equation 4 can be used to calculate the
exact cost, resulting in

t1 := n/(a1 · . . . · aR) · |x̃|0 (A.2)

operations if we do not take the threshold cuts into account. For the subsequent levels, however, we must
modify the original cost function as the dendritic potentials are restricted to a subset of neurons (recall
equation 11).

Note that the number of traversed neurons at level r + 1 corresponds to the cardinality of the set Yr+1;
that this set has exactly ar+1 · |y(r)|0 elements; and that the cost at that level is given by

tr+1 := ar+1 · |y(r)|0 · |x̃|0. (A.3)

In other words, the remaining question is how to determine |y(r)|0, i.e., the number of ‘1’ components in
the retrieved vector at level r. The answer to this problem lies in finding the dendritic potential probability
distribution, a classic subject of associative memory analysis (see for instance Palm (1980); Graham &
Willshaw (1995); Sommer & Palm (1999)), which has received full treatment recently in Knoblauch (2008).

The latter work derives exact formulas which calculate the neural ‘firing’ probability p for the most
relevant scenarios. We denote pr as the probability p at level r. As every approximated memory is necessarily
hetero-associative by design thanks to the horizontal aggregation, |y(r)|0 = pr · n/(ar · ar+1 · . . . · aR) can
be determined using either pPh or pWh from Knoblauch (2008). For our experimental case where k := |xµ|0
and l := |yµ|0 are fixed, we can employ directly the expression for pPh

pPh(Θ; k, l,m, n,M, z) =

=

(
z

Θ

) Θ∑
s=0

(−1)s
(

Θ

s

)(
1− l

n
(1−B(m, k, s+ z −Θ))

)M
(A.4)

in order to derive pr
pr ≈ pPh(Θ; k, l,m, n/(ar · ar+1 · . . . · aR),M, z) (A.5)

where z := |x̃|0, B(a, b, c) :=
(
a−b
c

)/(
a
c

)
and where for brevity the noise term p̃1 was suppressed. Equation

A.5 is an approximation since we assume that l remains constant across all levels thanks to the logarithmic
sparseness. This assumption can probably be refined, as the sparseness degree is actually reduced from level
to level.

8

References

Amari, S. (1989). Characteristics of sparsely encoded associative memory. Neural Networks, 2(6), 451–457.
Andoni, A., Datar, M., Immorlica, N., Indyk, P., & Mirrokni, V. (2006). Locality-sensitive hashing scheme based on p-stable

distributions. In T. Darrell, P. Indyk, & G. Shakhnarovich (Eds.), Nearest Neighbor Methods in Learning and Vision:
Theory and Practice. MIT Press.

Bentz, H. J., Hagstroem, M., & Palm, G. (1989). Information storage and effective data retrieval in sparse matrices. Neural
Networks, 2(4), 289–293.

Graham, B. & Willshaw, D. (1995). Improving recall from an associative memory. Biological Cybernetics, 72(4), 337–346.
Graham, B. & Willshaw, D. J. (1994). Capacity and information efficiency of a brain-like associative net. In G. Tesauro, D. S.

Touretzky, & T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7 (pp. 513–520).
Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. New York: Wiley.
Hirahara, M., Oka, N., & Kindo, T. (2000). A cascade associative memory model with a hierarchical memory structure. Neural

Networks, 13(1), 41–50.
Kakeya, H. & Kindo, T. (1996). Hierarchical concept formation in associative memory composed of neuro-window elements.

Neural Networks, 9(7), 1095–1098.
Knoblauch, A. (2003). Optimal matrix compression yields storage capacity 1 for binary Willshaw associative memory. In O. Kay-

nak, E. Alpaydin, E. Oja, & L. Xu (Eds.), Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP
2003 (pp. 325–332).: Springer.

Knoblauch, A. (2008). Neural associative memory and the Willshaw–Palm probability distribution. SIAM Journal on Applied
Mathematics, 69(1), 169–196.

Knoblauch, A. & Palm, G. (2001). Pattern separation and synchronization in spiking associative memories and visual areas.
Neural Networks, 14(6-7), 763–780.

Knoblauch, A., Palm, G., & Sommer, F. T. (2010). Memory capacities for synaptic and structural plasticity. Neural Compu-
tation, 22(2), 289–341.

Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory information. Current Opinion in
Neurobiology, 11(4), 475–480.

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497.
Nadal, J.-P. & Toulouse, G. (1990). Information storage in sparsely coded memory nets. Network: Computation in Neural

Systems, 1, 61–74(14).
Palm, G. (1980). On associative memory. Biological Cybernetics, 36(1), 19–31.
Palm, G. & Palm, M. (1991). Parallel Associative Networks: The PAN-system and the Bacchus-Chip. In U. Ramacher, U.

Rückert, & J. Nossek (Eds.), International Conference on Microelectronics for Neural Networks (pp. 411–416).: Kyrill &
Method.

Palm, G. & Sommer, F. (1992). Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory
states. Network: Computation in Neural Systems, 3, 177–186(10).

Palm, G. & Sommer, F. T. (1996). Associative data storage and retrieval in neural networks. In Models of Neural Networks:
Association, Generalization, and Representation (Physics of Neural Networks), volume 3 (pp. 79–118). Springer, New York.

Rehn, M. & Sommer, F. T. (2006). Storing and restoring visual input with collaborative rank coding and associative memory.
Neurocomputing, 69(10-12), 1219 – 1223. Computational Neuroscience: Trends in Research 2006.

Sommer, F. T. & Palm, G. (1999). Improved bidirectional retrieval of sparse patterns stored by Hebbian learning. Neural
Networks, 12(2), 281–297.

Steinbuch, K. (1961). Die Lernmatrix: Automat und Mensch. Springer-Verlag.
Štanclová, J. & Zavoral, F. (2005). Hierarchical associative memories: the neural network for prediction in spatial maps. In F.

Roli & S. Vitulano (Eds.), Image Analysis and Processing — ICIAP 2005 (pp. 786–793).: Springer.
Wichert, A. (2006). Cell assemblies for diagnostic problem-solving. Neurocomputing, 69, 810–824.
Wichert, A. (2009). Subspace tree. In Seventh International Workshop on Content-Based Multimedia Indexing (pp. 38–43).:

IEEE Computer Society.
Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-holographic associative memory. Nature, 222(5197),

960–962.

9

