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Abstract

In a recent communication, Sacramento & Wichert (2011) proposed a hierarchical re-
trieval prescription for Willshaw-type associative networks. Through simulation it was
shown that one could make use of low resolution descriptor patterns to decrease the total
time requirements of recalling a learnt association. However, such method introduced a
dependence on a set of new parameters which define the structure of the hierarchy. In
this work we compute the expected retrieval time for the random neural activity regime
which maximises the capacity of the Willshaw model and we study the task of finding
the optimal hierarchy parametrisation with respect to the derived temporal expectation.
Still in regard to this performance measure, we investigate some asymptotic properties
of the algorithm.
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1. Introduction

In the strictest technical sense, an associative memory model is designed to solve a
variation of the classical nearest neighbour determination problem. Instead of finding
a solution for the original labelled classification task formulation (Fix & Hodges, 1951;
Cover & Hart, 1967; Minsky & Papert, 1969), an associative memory is a system that
stores information about a finite set of M associations of the form

S := {(xµ 7→ yµ) : µ = 1, . . . ,M}, (1)

with most memory models assuming the patterns are binary vectors, i.e., x ∈ {0, 1}m
and y ∈ {0, 1}n. Given a possibly corrupt or incomplete pattern x̃ ∈ {0, 1}m, the system
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should be able to find the best-matching (or rather, the ‘nearest neighbour’) xµ with
respect to a desired similarity metric and then return a pattern ŷ ∈ {0, 1}n ideally
corresponding to the originally stored yµ. Thus, the original association (xµ 7→ yµ)
ought to be restored through a robust recall process.

Three different yet closely related tasks are usually identified with the above process:
when n = 1 and m� n the memory solves a binary classification problem over the labels
‘known’ and ‘unknown’ (learnt patterns being associated with the former) and is said to
perform familiarity discrimination (Bogacz et al., 2001; Bogacz & Brown, 2003; Greve
et al., 2009); when m = n and ∀µ : xµ = yµ an autoassociative function is carried out
and the memory is expected to perform pattern completion or correction; finally, the
case of arbitrary m,n and xµ,yµ is called heteroassociation. The latter is most easily
comparable with a standard von Neumann computer memory.

The general quality of a neural associative memory implementation can be assessed
with respect to several quantities. The most addressed in the literature is the storage
capacity (Willshaw et al., 1969; Palm, 1980; Amit et al., 1985; Gardner, 1988; Palm &
Sommer, 1992; Knoblauch et al., 2010), which is typically measured through the criti-
cal pattern capacity αc (simply given by a normalisation of the number of patterns M
over the number of content neurons n) or through the more general network capacity C,
measured in bits per synapse (bps) and defined as the maximal mutual Shannon infor-
mation (Shannon, 1948; Cover & Thomas, 2006) between stored and retrieved vectors
I(x1, . . . ,xM ; ŷ1, . . . , ŷM ) normalised over the count of synaptic contacts required by the
network. The latter is usually preferable since it takes into account both the required
resources and the information content of the patterns.

Another quantity of interest is the expected time necessary for the learning and
retrieval processes to terminate, generally presented as a count of elementary operations
and as a function of some of the parameters which define the memory task. The temporal
requirements of an associative memory model deserve attention from both the technical
and biophysical perspectives, partly determining the model’s efficiency. From a purely
algorithmic point of view, the pattern recognition community is currently facing the
challenge of solving as quickly as possible the nearest neighbour determination problem
in high dimensional space (large m,n) and for high pattern loads (large M), to cope
with the increase in size of modern data sets. When the analogy with biological neural
networks is to be taken in consideration, the temporal efficiency is equally important as it
is linked to the energetic requirements of membrane potential determination (Knoblauch
et al., 2010).

While attempting to solve the associative memory task using a neural computation
approach a lot of effort has been placed in developing and studying recurrent networks
(i.e., with feedback couplings), as for finite systems they can provide stronger error
tolerance to pattern noise through an increase in the size of the basins of attraction
(Gardner-Medwin, 1976; Hopfield, 1982; Amit et al., 1985; Derrida et al., 1987; Kosko,
1987; Gardner, 1988; Golomb et al., 1990; Palm & Sommer, 1992; Sommer & Palm,
1999), in exchange for additional iterations during the retrieval process.

If our aim is the least computational effort, it is known that under the sparse random
coding regime (Barlow, 1972; Field, 1994; Olshausen & Field, 2004) the simpler Willshaw
net achieves a high storage capacity (viz., C = log 2 ≈ 0.7 bit per synapse in the limit
of m,n → ∞) using a biologically plausible local learning rule of the Hebbian type
and a parallel ‘single-shot’ retrieval prescription (Steinbuch, 1961; Willshaw et al., 1969;

2



Palm, 1980; Amari, 1989; Nadal & Toulouse, 1990; Knoblauch et al., 2010). Besides
allowing for high storage capacities, the coding restriction on the `0 pseudo-norm of
the pattern vectors (or, equivalently, on the `1 norm since we assume the patterns are
binary) imposed by the sparseness requirement also reduces the temporal complexity of
learning and retrieval and seems to be in accordance with the signalling and maintenance
energy budget of the mammalian brain (Levy & Baxter, 1996; Lennie, 2003; Laughlin &
Sejnowski, 2003).

Due to the inherently parallel synchronous update mechanism, the temporal benefits
of the single-shot retrieval procedure employed by the Willshaw model can only be fully
exploited using specialised hardware constructs. Attempting to decrease the retrieval
time on sequential computer implementations, a recent communication suggested the use
of a hierarchical retrieval prescription in order to take advantage of the sparse structure
of the stored patterns (Sacramento & Wichert, 2011).

However, the proposed model introduced a dependence on a new set of integer param-
eters which defined the hierarchy, and were obtained through exhaustive combinatorial
search. It remained unclear whether this problem was tractable for high dimensional
pattern spaces, and whether a heuristic approach could be derived in order to avoid
the integer constrained optimisation. In this work we address these issues and compute
refined time expectations for finite memories. En passant, we also show that asymp-
totically the hierarchical refinement procedure reduces the temporal complexity of the
retrieval process when compared with the original single-layer network.

The rest of this paper is organised as follows. In section 2, we review the network
model presented in (Sacramento & Wichert, 2011) and derive exact expectations for
the time requirements of learning and retrieval. Then, in section 3, we analyse the
optimisation task of determining the hierarchical configuration which minimises the time
expectation we obtain. We show that even though the problem is difficult to solve
analytically, the solution space grows with a polynomial of the pattern space dimension
and can thus be tackled through enumeration. We also provide a heuristic method to
solve the task and verify its validity empirically for several network configurations.

2. Model characterisation

On the first part of this work we will see how associative networks of the Willshaw
type use a kind of plasticity (namely synaptic) and a local Hebbian learning rule to store
and recall memory traces. After defining the equations which govern the learning and
retrieval processes of the original single-layer model and its hierarchical variant, we will
change focus to the statistical characterisation of their temporal requirements. Following
the algorithm analysis tradition, we will adopt as our time measure a simple count of
the number of necessary operations that either a sequential computer or a specialised
hardware construct can perform in constant O(1) time. Asymptotic comparisons using
Bachmann-Landau notation can then be made, as well as finite numerical evaluations
for particular cases. This approach has found widespread use across the literature, as
it is mathematically tractable and abstract enough to establish a comparison between
different models and implementation architectures.
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2.1. Network equations for learning and retrieval

The original Willshaw model is a single-layer neural network comprising two pop-
ulations of McCulloch-Pitts binary threshold neurons (McCulloch & Pitts, 1943): an
address population of m neurons capable of establishing synaptic connections with n
neurons which form the content population. We can then interpret the silent-firing (0-1)
activity patterns of each set of neurons at a given synchronous time frame as our binary
input (address) and output (content) vectors.

During the learning phase, we assume each pair (xµ,yµ) from S is presented to
the network independently at time µ. A Hebbian-type learning rule is applied and
formation of synapses can occur as a consequence of new stimuli. Willshaw networks
employ a particular non-additive clipped Hebb rule, where the synaptic strength factor
is disregarded, i.e., we only care to check whether a synapse between any two neurons
i and j is either present or not. Thus, the entire state of a network can be represented
by a binary weight matrix W ∈ {0, 1}m×n, where Wij = 0 denotes an absent synapse
from pre-synaptic neuron i to post-synaptic neuron j and Wij = 1 a present one. After
learning the M associations of S, the entries of the synaptic connectivity matrix are then
given by

Wij = min

(
1,

M∑
µ=1

xµi y
µ
j

)
, (2)

which results in bidirectional synapses ∀i, j, Wij = Wji for the autoassociative case of
m = n and ∀µ, xµ = yµ.

Notice how this learning prescription leads to distributed storage, in the sense that
each synaptic contact Wij can store information about more than one pattern pair. It is
also the simplest possible realisation of the hypothesis of Hebb (1949), as the synaptic
update procedure is local and bounded. Note that due to the nonlinearity of the rule, S
cannot in general be recovered from W.

The retrieval process starts when the address population fires according to a certain
cue pattern x̃. The activity state ŷ of the content neuron population which will yield the
output pattern of the network must then be updated. Each unit j computes (locally) its
dendritic potential, corresponding to the sum of the incoming excitatory signals,

sj =

m∑
i=1

Wij x̃i, (3)

over which a nonlinear activation function is applied

ŷj = H[sj −Θ], (4)

where H is the Heaviside step function. Note that the parameter Θ determines the highly
nonlinear threshold operation which denoises the output and its choice will critically
influence the quality of the recovered pattern ŷ. Optimal threshold determination, i.e.,
finding the Θ which minimises a penalty function such as the expected Hamming distance
between stored and retrieved patterns dH(yµ, ŷ) =

∑n
j=1 |y

µ
j − ŷj |, cannot be solved in

general without taking statistical assumptions on S (Buckingham & Willshaw, 1993;
Graham & Willshaw, 1995). However, when the address cue x̃ is exact or its active
components are a subset of those present in the learnt xµ, the memory is said to perform
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pattern-part-retrieval, and the threshold setting strategy Θ = ||x̃||0 originally proposed
by Willshaw et al. (1969) becomes optimal. This choice not only simplifies the model’s
analytical treatment, but also has a biologically plausible implementation through feed-
forward inhibition (Knoblauch et al., 2010).

Instead of a single-layer of neurons, the model extension proposed in (Sacramento &
Wichert, 2011) is composed by R Willshaw layers which share a (fixed) address neuron
population of dimension m and are ordered by content space dimension. We can then
represent the state of the network by an ordered set of R synaptic connectivity matrices

W = (W(1), . . . ,W(r), . . . ,W(R)), (5)

where each W(r) is m × nr dimensional, with n1 < . . . < nr < . . . < nR. The entries
of the r-th synaptic matrix W(r) are of the same form of (2), except that each of the
original content patterns yµ is replaced by a transformed version ζr(y

µ):

W
(r)
ij = min

(
1,

M∑
µ=1

xµi [ζr(y
µ)]j

)
. (6)

The essential functioning scheme is that the R-th layer stores the provided set of
associations S as prescribed above, i.e., W(R) = W and nR = n, while the preceding
populations learn content patterns of increasingly lower resolution (in inverse order, i.e.,
from R−1 to 1, the latter storing the coarsest approximations). When a cue is presented
to the network, each level r produces a low-dimensional output pattern ŷ(r) which serves
as a coarse filter to reduce the set of potentially interesting content neurons which have
to perform the dendritic check operation at level r + 1.

After the pair (xµ,yµ) is associated at the R-th layer, the learning process continues
until each of the memories from r = R − 1 to r = 1 has been presented with a pair
of patterns (xµ, ζr(y

µ)). Here ζr : {0, 1}nr+1 → {0, 1}nr is a family of functions which
recursively approximate the content patterns. The recurrence is defined component-wise
from level r + 1 to level r,

[ζr(y
µ)]i =

i·ar∨
j=i·ar−(ar−1)

[ζr+1(yµ)]j , (7)

where the ‘aggregation factor’ parameter ar ∈ N relates the dimensions nr+1 and nr of
two consecutive content pattern spaces:

nr =

{
dnr+1/are if 1 ≤ r < R,

n if r = R.
(8)

Retrieval from an address cue x̃ starts at the smallest content neuron population, i.e.,
at level r = 1, where the Willshaw prescription given by (3) and (4) is applied to compute
ŷ(1). For layer r + 1 (when 1 ≤ r ≤ R − 1), the recall cue is again x̃, but hopefully by
making use of the preceding coarse output ŷ(r), only a fraction of the content neuron
population will have to perform the dendritic sum operation.

As the approximation in (7) is computed using the Boolean OR operator, a given

‘1’ component j of ŷ(r) corresponds to an index set Y
(r)
j with ar elements that can be
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used to identify the neurons at level r + 1 which possibly contain information about the
original content pattern yµ we ought to recover:

Y
(r)
j = {j · ar, j · ar − 1, . . . , j · ar − (ar − 1)}. (9)

Conversely, we have Y
(r)
j = ∅ when ŷ

(r)
j = 0. Then, the union of the ||ŷ(r)||0 non-empty

sets yields the complete set Yr+1 of indices for which the dendritic sum must be calculated
at level r + 1:

Yr+1 =
⋃

j: ŷ
(r)
j =1

Y
(r)
j . (10)

Thus, for the r + 1-th layer, the dendritic sum operation defined in (3) is kept un-
changed, but we only have to apply it to the members of Yr+1:

s
(r+1)
j =

{∑
iW

(r+1)
ij x̃i if j ∈ Yr+1,

0 otherwise,
(11)

the same holding true for the output transfer function, which we can now define as

ŷ
(r+1)
j =

{
H[s

(r+1)
j −Θ] if j ∈ Yr+1,

0 otherwise.
(12)

2.2. Time requirements of single-layer networks

In this section we briefly review the temporal requirements of the original single-layer
Willshaw model, which is remarkably straight-forward to analyse in terms of learning
and retrieval efficiency. In fact, expressions for both cases can be derived from simple
inspection of equations 2, 3 and 4.

When presented with a finite set of patterns for learning, a naive sequential computer
implementation requires m · n synaptic weight adjustments for each of the M patterns.
However, as described in (Bentz et al., 1989; Knoblauch et al., 2010), an immediate
performance gain can be achieved if the patterns are encoded in the so-called ‘pointer
format’ where a given binary vector v is represented by a ||v||0-sized vector of natu-
ral numbers containing the indices of the ‘1’ components. One should note that from
the sparseness requirement follows ||xµ||0 � m and ||yµ||0 � n for all µ = 1, . . . ,M ,
making this representation extremely convenient. Thus, the total number of sequential
computations required for learning M associations on a Willshaw net is given by:

tWlearn =

M∑
µ=1

||xµ||0 · ||yµ||0 ≈M · k · l, (13)

where k and l are the mean activity levels of the presented address and content patterns
(respectively), i.e.,

k :=
1

M

M∑
µ=1

||xµ||0, (14)

6



and

l :=
1

M

M∑
µ=1

||yµ||0. (15)

Of course, if the patterns have fixed activity levels as in the scenario analysed by
Palm (1980), then the approximation in equation 13 becomes an exact equality. For the
optimal setting where k ∼ logm and l ∼ log n and if we further consider the typical case
of m ∼ n, then asymptotically it holds that learning a single association is in Θ(log2 n).
This bound illustrates one of the strengths of the Hebbian ‘one-shot’ learning prescription
— its quickness. When k, l → 0 this procedure leads to capacities near the theoretical
maximum of C = 1 (Palm, 1992), while requiring only a single pass on each pattern.

When performing a retrieval with a given input cue x̃ with activity level z := ||x̃||0,
similar conditions apply, and the pointer format is again highly desirable. Using such an
encoding scheme, the sequential retrieval cost (in number of operations) is given by

tWretr = z · n+ n (16)

= (z + 1) · n, (17)

since n synaptic contacts (weight matrix positions) of z address neurons (weight matrix
rows) have to be checked and the entire population of n content neurons (weight matrix
columns) has to perform a final threshold cut. Once again considering the optimal setting
of z ∼ log n, we have the asymptotic tight bound tWretr = Θ(n log n).

2.3. Time requirements of the hierarchical model

Deriving an upper bound for the learning time expression thier
learn of the hierarchical

Willshaw model is straight-forward as the synaptic weight update rule is kept unchanged,
and is simply consecutively applied to every layer 1 ≤ r ≤ R. We note that the activity
level of an aggregated vector cannot be greater than that of the original vector, i.e.,
||ζr(y)||0 ≤ ||y||0. As there are R levels, we know that

thier
learn ≤ R · tWlearn. (18)

Finding an exact expression for thier
learn is more laborious and requires some knowledge

on the statistical properties of the stored patterns, as ||ζr(y)||0 depends on the positioning
of the ‘1’ components of the original vector y. We will now analyse the aggregation
process in the light of elementary probability theory, as this analysis will be helpful not
only now but also later when dealing with the retrieval process.

2.3.1. Aggregation probabilities

To make the analysis tractable we follow an assumption similar to Marr’s (Marr, 1971)
which states that the stored patterns are randomly drawn from the sets of

(
m
k

)
and

(
n
l

)
possible patterns but have activity levels with fixed mean values k (for address patterns)
and l (for content patterns). We assume that the activity level of each pattern is deter-
mined through the inspection of a binomial variable with its characteristic probability
set to k/m or l/n, respectively. Then, ||xµ||0 and ||yµ||0 become binomially distributed
random variables with a priori known expectations E(||xµ||0) = k and E(||yµ||0) = l.

This scenario is quite common in the associative memory literature and has already
been thoroughly covered (Buckingham, 1991; Buckingham & Willshaw, 1992; Sommer &
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Palm, 1999; Knoblauch, 2008), in part thanks to its mathematical tractability. Due to the
binomially distributed activity levels, the generated pattern components are independent
and have the same firing probability, i.e., for each generated pattern v we have

P(vi = 1 ∧ vj = 1) = P(vi = 1) · P(vj = 1) ∀i,j (19)

= P(vi = 1)2 ∀i,j , (20)

where P(·) denotes probability.
The described set up is also interesting because it has a reasonable biological interpre-

tation. Unlike the traditional alternative covered in the analysis of Palm (1980), where
k and l are constant, here the Hebbian cell assembly sizes (which correspond to pattern
activities) are allowed to vary, even if according to a simplified statistical model. Such a
scenario is more realistic as it seems unlikely that the formed synaptic cliques would all
have exactly the same size (Knoblauch, 2008).

Essentially, we are interested in computing the expected activity level lr := E(||ζr(yµ)||0)
of a given content pattern ζr(y

µ) which results from the application of the windowed ag-
gregation function, at a given depth r. To do so, we first solve the problem of a single-step
(i.e., from r − 1 to r) application of the aggregation function to a vector y with a given
window length of a, denoting lr simply by l; then, we can recurrently apply the rule for
the subsequent levels of the hierarchy.

We note that a window (which is an a-sized subset of contiguous components of y)
will not result in a ‘1’ after aggregation only if all of its components are set to ‘0’. The
probability of this event is simple to determine:

P(∀i ∈W : yj = 0) = P(yj = 0)a =

(
n− l
n

)a
, (21)

where W denotes the set of indices which compose the window. We have taken pattern
component independence into account on the first equality (note that |W| = a). From
this equation we can immediately derive the probability of a firing window as both events
are complementary. Multiplying by the total number of windows (which is n/a), we arrive
to the desired equation:

l(n, l, a) =
n

a

(
1−

(
n− l
n

)a)
. (22)

From this point, determining the equation for the general case of R memories is a
matter of defining a recursion, as the patterns presented for learning to the r-th memory
are successively aggregated using factors aR = 1, aR−1, ..., ar. By definition, when r = R,
no aggregation is performed, thus lR = l is the stopping condition. Hence, we have

lr =

{
l(nr+1, lr+1, ar) if r < R,

l if r = R.
(23)

2.3.2. Computing the expected retrieval time

After learning a desired number M of pattern associations, the network is ready to
perform retrieval operations. At this point it might be of interest to note that unlike
the standard single-layer Willshaw net, where retrieval time is only indirectly a function
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of the memory load1, the neuron filtering scheme depends on the outputs of each level,
which in turn can be affected by the memory load.

Before proceeding we should clearly define what is meant with ‘memory load’. One
possibility which has been used since the first analyses (Willshaw et al., 1969; Palm,
1980) to ascertain it is p := P(Wij = 1), i.e., the density of ‘1’ entries in the synaptic
matrix W. It is especially useful since for random patterns we can define an expression
related to the storage parameters m,n, k, l,M which are known a priori. As in Willshaw
et al. (1969); Palm (1980) we determine p resorting to the complementary event:

p = 1− P(Wij = 0)

= 1− P (∀(xµ,yµ)(i /∈ xµ ∧ j /∈ yµ))

= 1−
(

1− kl

mn

)M
. (24)

Similarly, we can calculate the probability pr for a given level r of the hierarchy if
instead of l we use lr and instead of n the correspondingly adjusted population size
nr = dn/

∏R−1
i=r aie, giving

pr = 1−
(

1− klr
mnr

)M
. (25)

One should note that there is a correspondence between a given set of parameters
(m,n, k, l) and the maximal values of pmax and Mmax which can be reached within the
error-free (or high fidelity) retrieval regime. Storing additional patterns beyond the
limit of Mmax affects the retrieval process, either through ‘add-errors’ or ‘miss-errors’.
Determining such operating limits of Willshaw nets has been a major concern in the
literature; for a historical perspective and a general treatment see the recent work of
Knoblauch et al. (2010).

At this point we should also note that creating an approximation of the original
memory using the windowed Boolean OR operation corresponds to storing an equal
number of patterns M with roughly the same activity lr ∼ l ∼ log n but on a much
smaller network — at level r we have only nr content neurons at our disposal instead
of n. The resulting weight matrix is obviously denser: by inspection of equation 25 it is
clear that pr > p. The aggregated matrices will easily become overloaded (i.e., with pr
beyond pmax) and will perform the recall function with errors, which have to be refined
with the progressive retrieval prescription.

Given an input pattern x̃, we would like to determine for each memory the number
of firing neurons, whose hierarchical ‘siblings’ will have to be checked on the next level.
In other words, recalling that we denote by ŷ(r) the output of the r-th memory, we
want to compute the expected output activity level E(||ŷ(r)||0). Unlike ||ζr(y)µ||0, the
probability mass function of this random variable is no longer trivial to compute, and we
can expect it to take values other than ||ζr(y)µ|| except when r = R. Ideally, we would
have on average lr firing and nr − lr silent neurons, but due to the overload factor, a
fraction of undesired (or ‘spurious’) firing units can appear.

1Note that the content neuron population size n can be seen as a function of the pattern load M ; being
able to store a desired number of associations while requiring high output quality imposes a restriction
on the minimal allowed value for n.
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The simplest approach to estimate the number of such units is to follow the well-
known synaptic independence assumption (Willshaw et al., 1969; Palm, 1980, 1992). If
we consider that the active synapses of a memory are generated independently, then the
probability that a spurious unit fires is

qr := P
(
ŷ

(r)
j = 1 | [ζr(yµ)]j = 0

)
≈ prΘ = pr

z, (26)

where we have employed the Willshaw threshold, i.e., we have set Θ to the number of
correct bits on the input cue x̃. The equality is valid for the noise-free case, when all the
provided bits are correct but possibly some are missing.

With qr at hand, we can finally derive the expected total (spurious and correct)
number of firing units on a given stage r of our hierarchy:

ur := E(||ŷ(r)||0) = qr
(
nr − lr

)
+ lr. (27)

Using ur and our knowledge of the temporal costs of retrieval on a single-layer network
(following equation 17) we are able to write the exact average time expression for the
hierarchical model:

t := thier
retr = (z + 1)

(
n1 +

R−1∑
r=1

arur

)
, (28)

where the first member of the sum represents the cost of performing a full lookup on the
memory at r = 1, while the following memories need only to refine ar ·ur neurons thanks
to the filtered dendritic sum prescription.

Of course, since we rely on equation 26 (which is an approximation) to calculate
ur, equation 28 also becomes inexact. However, it has been shown that the binomial
approximation we have used for qr is good enough under the sublinear address sparseness
regime, becoming asymptotically correct e.g. when we require that k = O(n/ log4 n) (c.f.
Knoblauch (2008); Knoblauch et al. (2010)). This fact is of particular importance since
we will need the simplest possible form of thier

retr (from now on simply referred to as t) to
carry out further analytical treatment. In any case, the exact combinatorial expressions
pPh or pWh derived in Knoblauch (2008) can be used when maximal accuracy is desirable.

3. Time-optimal hierarchical configurations

In the previous sections we have analysed a recently proposed hierarchical variant
of the Willshaw network model (Sacramento & Wichert, 2011) in the light of common
associative memory theory. We have seen that unlike standard single-layer nets, where
retrieval time is a simple function of z and n (as given by equation 16), the performance
of the hierarchical memory depends on a larger set of parameters. The majority of these
(namely m,n, z, k, l,M) describe the network structure and pattern configuration and are
a common staple in associative memory literature. However, the impact of the hierarchy
depth R and the corresponding aggregation factors a1, . . . , aR on retrieval time has still
not been fully discussed and deserves further attention.
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3.1. Mathematical programming problem formulation

The essential question we should answer now is how to optimally choose such free
parameters. Here we define optimal in terms of retrieval efficiency, i.e., the values of R
and a1, . . . , aR which lead to a minimal expected temporal cost for solving the memory
task defined by the remaining parameters m,n, z, k, l,M .

For compactness we will denote a hierarchy configuration choice by a single R-
dimensional vector a = (a1, ..., aR). We will further denote by AR the set of all valid
hierarchy configurations with dimension R. Any vector of natural numbers is a candidate
if aR is equal to 1 and the remaining ar 6=R are greater than 1. However, this definition
is loose as it allows aggregation factors combinations which are obviously uninteresting:
at the last aggregation step (when r = 1), we can choose a value for a1 larger than n2

thanks to the ceiling operator in the specification of nr, but this choice will be clearly
useless since n1 must be greater than 1. For a given depth R we can formulate this
restricted set as

AR =
{

a = (a1 > 1, . . . , ar > 1, . . . , aR = 1) :

ar ∈ N ∧ a1 ≤ n2 =
⌈

n∏R−1
r=2 ar

⌉}
. (29)

From AR we can define the full search space which comprises vectors of variable dimen-
sion:

A =

∞⋃
R=1

AR. (30)

Of course, since nr is computed from the successive division of n by the aggregation
factors aR−1, . . . , ar+1, we know that the hierarchy depth is trivially bounded, as the
lengthiest combination satisfying (29) is attained when every aggregation factor ar (with
1 < r < R) is equal to 2:

1 ≤ R ≤ dldne+ 1 =: ρ, (31)

where ldn denotes the logarithm of n to the base 2.
For a given memory task specified by the parameters (m,n, z, k, l,M), the set of

configurations A is finite and we can state our optimisation task as a set of minimisation
sub-problems. For every depth R ≤ ρ, we ought to minimise t(a) on AR:

minimise
a∈AR

t(a), (32)

which is a general integer programming problem.
Fortunately, we are able to relax the integer division constraint employed in the

definition of AR and then show that the cardinal of the solution space A is bounded
from above by a polynomial of n. At every aggregation step r, if nr+1/ar /∈ N an
additional window will appear due to the use of the floor operator in the definition of nr.
However, due to the non-linear increase in the add error probability qr with respect to∏
r ar, it is expectable that aggregation factor choices with the highest values of

∏
r ar

lead to uninteresting memory configurations. As such, we redefine AR while leaving aside
the integer division restriction:

AR =
{

a = (a1, . . . , ar > 1, . . . , aR = 1) : ar ∈ N ∧
∏
r ar ≤ n

}
. (33)
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It turns out that the determination of |A| when AR assumes this new form is a
variation of a famous problem from number theory generally referred to as the Kalmár
problem on factorisatio numerorum (Kalmár, 1931; Hille, 1936; Knopfmacher & Mays,
2005), the only difference lying on the kind of relation which in our case is an inequality
instead of a strict equality. The classical version of the problem — which has found
application in other tasks such as computational biology (Newberg & Naor, 1993) — is
concerned with finding bounds and algorithms to compute a certain counting function
H(n), defined as the number of ordered factorisations of a natural number n composed
of factors greater than or equal to 2. We note that |A| can be defined in terms of H(n):

|A| = H(n) +H(n− 1) +H(n− 2) + . . .+H(1), (34)

where H(1) is taken to be 1 by definition. Determining good approximations for H(n) is
still a challenging problem, but it is known that in the worst case (for highly factorable
numbers) the counting function grows with O(nb), with b = ζ−1(2) ≈ 1.73, ζ in this
case being the well-known Riemann zeta function (Hille, 1936; Chor et al., 2000). Our
cardinal |A| then clearly behaves as a polynomial of n.

Although a tractable problem, the search space cardinality |A| is still supralinear in n.
Computing exact solutions for the optimisation task in high-dimensional spaces could be
problematic, as solving the integer programming problem through enumeration implies
measuring the number of comparisons performed by a memory model implementation or
evaluating t for each a ∈ A. Our aim on the next section is to analyse an approximated
(simplified) version of the problem in order to further restrict the optimisation space to
a subset of A with sublinear cardinality in n, so as to reduce the time complexity of the
minimisation problem at hand.

3.2. Approximate analysis using real-valued parameters

A common procedure to gain further insight on integer programming problems is
to perform a relaxation, i.e., one lifts the integrality constraints on the optimisation
variables and then uses tools from real calculus to study the objective function. In our
case, the total synaptic activity t(a) can be regarded as a function of real variables if we
let the aggregation factors ar be real. We may then resort to differentiation to analyse
t, and proceed with numerical experimentation to investigate if the real approximation
is close enough to be useful. Unfortunately, performing an analytical minimisation of
(28) would imply finding a closed-form solution for ∂t

∂a = 0, which by itself is difficult to
accomplish and as such some approximations are in order.

We consider the case of a simplistic ideal hierarchical memory with a density p low
enough to maintain the aggregated memories capable of operating in a high fidelity
regime. That is to say that qr is small enough to allow for the approximation ur ≈ l.
This approximation also implies ∀r, lr = l, i.e., we assume that the probability of
a reduction of the number of ‘1’ entries of each content pattern yµ throughout the
aggregation process is negligible, which is a reasonable assumption for sparse uniform
random patterns. Since n1 ≥ l it is always possible to handcraft such patterns, and for
large enough M,n we expect the uniform random variable to produce indices such that
||ζr(yµ)||0 ≈ l. Therefore, rewriting (28) we obtain

t ≈ (z + 1)

(
n1 + l

R−1∑
r=1

ar

)
=: t∗. (35)
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We can now easily minimise t∗ to derive a set of ideal a∗r ∈ R+ and R∗ ∈ R+ (cf.
Appendix A):

R∗ = log
(n
l

)
,

a∗r = e = 2.71828+,∀r < R∗,
(36)

which suggest a hierarchical structure resembling a tree.
The minimising depth log(n/l) we have just computed can as well be reached without

explicitly analysing the approximation t∗. An asymptotic upper bound for R can be im-
mediately derived if we take into account the sparseness requirement of l ∼ log n. As the
content patterns are uniformly distributed across the {0, 1}n pattern space, to perform
correctly every level r must have at least lr neurons. Choosing the lengthiest combination
of factors asymptotically corresponds to letting ∀r, ar = 2 = O(1). Assuming lr ∼ l, we
can enforce the first level to have at least l neurons:

n1 ∼
n

aR−1
& l. (37)

or, in terms of R,
R = O (log (n/l)) . (38)

This bound is as tight as possible if we do not possess any knowledge on the pattern load
M .

The fact that R∗ corresponds exactly to the maximal possible (useful) value for R
is actually not surprising. We note that t∗ closely describes the expected retrieval time
when the pattern load M is low. In fact, for sufficiently large m ∼ n, we can show
that t(a) ≥ t∗(a), the equality holding if M = 1. As when M = 1 there is no synaptic
interference (only one pattern is stored in each layer), we have ∀r, qr = 0, yielding
ur = lr = l. Since qr is a monotone increasing function of M , and t is a monotone
increasing function of qr, we can state that t ≥ t∗.

Figure 1 shows the results of minimising the average retrieval time required by a
sequential computer implementation of the hierarchical model. For a sequence of network
characterisations where m = n, z = k = l = ldn and varying pattern loads given by a
simple step progression M = α ·Mmax with α ∈ {1/10, 2/10, . . . , 1}, we have measured
the retrieval time required by each hierarchy configuration drawn from A averaged over
every learnt association pair (xµ,yµ) and then registered the optimal aggregation factor
combination aopt. For every characterisation not only the (now integer-valued) optimal
depth verified Ropt ≤ dR∗e, but also each optimising aggregation factor component did
indeed observe ∀r, max(aopt

r ) = dee = 3. Thus, in every experiment we have carried
out, aopt would have been found by minimising t through enumeration in the subset of
A containing only configurations such that R ∈ {2, 3, . . . , R∗} and ar ∈ {2, 3}. Note that

the cardinal of this restricted search space is
∑R−1
i=1 2i = 2R−2 = O(n/l), where R = R∗.

However, the empirical nature of the former results should be stressed. Technically,
the derivation which led to the optimal parametrisation stated in (36) requires a pattern
load much below the theoretical maximum (which is a function Mmax(m,n) of network
size, among other parameters) achievable by the R-th network, so that the aggregated
memory layers can remain in the high-fidelity regime where qr ≈ 0. Taking ar = a∗r and
R = R∗ as in (36) implies that the first layer will have a content population dimension of
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Figure 1: The maximal observed value of aopt
r (shown in Figure 1a) and the optimal

over theoretical depth ratio Ropt/dR∗e (shown in Figure 1b), both as a function of the
relative pattern load α = M/Mmax. The minimisation task of determining the optimal
configuration aopt for each network characterisation was solved through enumeration:
for every a ∈ A, the corresponding hierarchical memory was implemented and the set
S of M random pattern associations learnt; then, the configuration a which led to the
minimal observed retrieval time (averaged over all xµ ∈ S) was chosen as aopt. This task
was carried out for a sequence of memory settings where m = n, z = k = l = ldn and
M = α·Mmax, while letting n ∈ {512, 1024, 2048, 4096, 8192} and α ∈ {1/10, 2/10, . . . , 1}.
To compute Mmax for each setting we used the formulae for finite memories derived
in section 3.2 of (Knoblauch et al., 2010). Notice how for any of the above we have
aopt
r ≤ dee = 3 and Ropt ≤ dR∗e. It is also interesting to observe how, unlike Ropt,

max(aopt
r ) does not depend on n or l (for each α, all points are overlapping), as predicted

by the approximate analysis.
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size n1 = n/elogn/l = l; considering the activity level l1 ≈ l, to maintain q1 ≈ 0 we can
then expect to be able to store only an extremely small number of patterns M (Knoblauch
et al., 2010). Fortunately, numerical optimisation across a variety of network settings
has shown that in practice the integer ar factors lie always very close to the theoretical
solution a∗r = e, while the true (integer) optimal depth Ropt slowly decreases from dR∗e
to 2 as M increases up to Mmax.

3.3. Worst-case asymptotic comparison with single-layer nets

In a similar fashion to Palm (1980) we can derive simpler expressions if we only re-
quire our results to be strictly valid when m ∼ n → ∞. Finite memories can operate
with a near-zero level of errors when M < Mmax := cmn/ ld(n)2, c < ln 2 and p < 1/2.
Numerical optimisation methods reveal approximate values for c and p for a given set of
remaining network parameters (Palm, 1980; Knoblauch et al., 2010). Unfortunately, to
our knowledge no tractable closed-form expressions have been derived until now. How-
ever, under the asymptotically optimal regime (i.e., with m = n→∞ and k = l = ldn),
it has been shown that c = ln 2 and p = 1/2. Resorting to these bounds we can try to
analyse and optimise t with respect to a for the case of maximally loaded hierarchical
memories.

We analyse the case of R = 2, which is the most tractable, even if not necessarily the
optimal. To shorten the notation we let a := a1. Expanding equation 28 we get

t = (z + 1)
(n
a

+ au1

)
(39)

= (z + 1)
[n
a

+ a
(
q1

(n
a
− l̄1

)
+ l̄1

)]
(40)

≈ z
(n
a

+ aq1
n

a

)
= zn

(
1

a
+ q1

)
, (41)

where we have discarded the threshold count and we have used the approximation u1 ≈
q1n/a. Of course, this is not strictly true but since the aggregation of the maximally
loaded memory at r = R will generate a highly erroneous memory at r = 1 (even when
a = 2) we assume that the spurious unit count is the dominating factor.

Now, employing the binomial approximation as in equation 26 we get q1 ≈ p1
z.

However, the expression for p1 of (25) is not trivial to analyse, and we would rather prefer
to compute p1 as a function of pR to take advantage of the asymptotic bound pR = 1/2.
This can be done if instead of applying the aggregation process to each content pattern
µ one by one we consider the event of aggregating each row of the original weight matrix
W. Similarly to (24), we resort to the probability of the complementary event of not
finding a ‘1’ component in the entire synaptic connectivity row:

p1 = 1− P(Wij = 0)a = 1− (1− pR)a. (42)

Inserting (42) into (41) using the approximation q1 ≈ p1
z, we reach

t ≈ zn
(

1

a
+ (1− (1− pR)a)z

)
. (43)

When m,n→∞, we obtain p1 = 1− 2−a and reevaluating the latter equation,

t ≈ zn
(

1

a
+ (1− 2−a)z

)
. (44)
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Even from (44) it is difficult to derive a closed-form expression for the optimal a
value. However, through numerical inspection, we can see that this value is (extremely)
slowly growing with n; for instance, when n = 103, the optimal choice is a = 2, but when
n = 106 we should rather choose a = 3. This rather surprising fact is related with the
likewise slowly growing c originally computed by Palm — larger memories display better
capacities.

Asymptotically, a ∼ f(n) becomes clear. Under the maximal load assumption, how
does the R = 2 hierarchical retrieval time compare with that of the original single-layer
memory? We can analyse how the ratio τ := t/tWretr behaves in the limit of n→∞:

lim
n→∞

τ = lim
n→∞

t

tWretr

≈ lim
n→∞

zn (1/a+ (1− 2−a)z)

zn

= lim
n→∞

(
1

a
+ (1− 2−a)z

)
. (45)

Choosing the optimal aggregation factor (asymptotically) corresponds to taking a value
of a such that τ → 0, which requires vanishing (1−2−a)z or, equivalently, diverging z2−a

towards ∞. Taking logarithms yields log z + log 2−a ∼ log z − a, implying a � log z.
As z ∼ log n by the sparseness requirement, we obtain an asymptotic value for a as a
function f of network size:

a ∼ f(n) = log log n. (46)

By construction, for a ∼ f(n), when n → ∞ the term (1 − 2−a)z in equation 45
vanishes, and the ratio τ becomes 1/a = 1/ log log n, implying that the hierarchical
search method is asymptotically superior in terms of retrieval time when compared to the
single-layer model even for maximally loaded memories, where the aggregation process
is highly limited, but only for an improvement margin of the order of log log n. Figure 2
illustrates the slowly decreasing τ when we optimise t for growing n.

4. Discussion

As with most associative memory models, Willshaw networks benefit from fully par-
allel (i.e., at the synapse level) or n-parallel (one processing unit per content neuron) im-
plementations in specialised hardware, where the distributed nature of the storage model
can be entirely exploited and constant O(1) or logarithmic O(log n) retrieval times can
be achieved. However, in practice such specific realisations may not be available and one
may be restrained to a sequential procedure capable of being executed on a typical von
Neumann computer.

It has been argued whether for binary sparse patterns a Willshaw-type network is
able to outperform strictly artificial nearest neighbour (NN) determination techniques
(such as locality-sensitive hashing algorithms; see e.g. the survey of Andoni & Indyk
(2008)) on sequential hardware (Palm, 1987). This debate is still interesting since many
technical applications rely on NN for pattern recognition or classification over large data
sets, and the so-called ‘curse of dimensionality’ has been undermining more sophisticated
exact algorithms when the content or address space dimensions become very large; most
methods simply degenerate into Hamming-distance lookup tables or perform even worse
(Weber et al., 1998). As strong retrieval error guarantees have been computed for finite-
sized Willshaw-type networks under various regimes (see Knoblauch et al. (2010) for an
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Figure 2: The evolution of the ratio τ = t/tWretr for increasing values of n. For each
setting (α, n), where α = M/Mmax is the relative memory load, we determined the
optimal configuration a and then used the resulting hierarchical time tmeasured to compute
τ = tmeasured/tWretr. Once again, for all points, z = k = l = ldn and m = n, and Mmax

was derived using the results of section 3.2 of (Knoblauch et al., 2010).
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up-to-date analysis), accelerating the original sequential lookup procedure could increase
the appeal of such networks as technical sparse pattern recognition devices.

In this article we have analysed in greater detail the R-layered progressive recall
extension proposed in (Sacramento & Wichert, 2011). It was shown that the method
displays some interesting properties arising from the distributed Hebbian storage rule
of the Willshaw net. In fact, due to the sparse coding requirement, the fraction of
firing content neurons l/n → 0 as n → ∞ and so does the required time of the method
relatively to the original single-layer prescription, reinforcing the fact that the (heavy)
coding restriction is indeed an advantage in terms of retrieval. This result should hold
even for the maximal load scenario analysed in section 3.3 (where aggregation might have
seemed unreasonable), albeit with a modest improvement of the order of log log n.

An interesting open path is to explore the application of a similar hierarchical retrieval
procedure to neural associative networks that are more robust (in terms of noise) and flex-
ible (in terms of the sparseness requirement). It is known that a storage capacity of 0.72
bps can be achieved in the noisy-inputs regime for sublinear, yet supralogarithmic activ-
ity levels by resorting to real-valued synapses and more elaborate learning prescriptions,
such as the optimal local linear synaptic modification rule (Sejnowski, 1977; Willshaw
& Dayan, 1990; Dayan & Willshaw, 1991; Palm & Sommer, 1996) — usually referred to
as the covariance rule — or the more general optimal local non-linear rule derived from
a Bayesian-probabilistic perspective (Knoblauch, 2011). Quite promising results have
also been achieved recently with ‘zip nets’ which lift the need for continuous synapses by
employing discrete connectivity levels (favoured from the implementation point-of-view)
controlled by a synaptic thresholding mechanism (Knoblauch, 2010). Determining ac-
tivity level orders and a threshold setting so that a hierarchy of these networks would
outperform the simpler model that we have considered here, both in terms of retrieval
time and query noise tolerance, seems an interesting future direction. For zip nets (as a
matter a fact, for Willshaw nets as well), one could even try to apply a combination of
compression schemes as described in (Knoblauch et al., 2010) with hierarchical retrieval,
to further increase the model’s efficiency.

Another approach rather different from the one followed here would be to consider a
biophysically constrained scenario where the interactions of neurons of a more realistic
kind would be studied in the light of their energetic requirements. It would be inter-
esting to investigate whether the abstract filtering mechanism resembles or is in some
sense related to a biological transmission process, as it is now believed that the balance
between raw computing performance (e.g., in the form of time or capacity) and energy
consumption has taken a major role in the development of the mammalian brain (Levy
& Baxter, 1996; Laughlin, 2001; Laughlin & Sejnowski, 2003). We leave these questions
open in the speculation realm, while hoping to address them in future work.
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Cardoso and Francisco S. Melo for their suggestions on the first version of this manuscript.
This work was supported by Fundação para a Ciência e Tecnologia (INESC-ID multian-
nual funding) through the PIDDAC Program funds and through an individual doctoral
grant awarded to the first author (contract SFRH/BD/66398/2009).

18



Appendix A. Derivation of closed-form expressions for a∗
r and R∗ under the

error-free memory approximation

According to equation 35, the approximate total synaptic activity is given by

t∗(a1, a2, . . . , aR−1) =
zn∏R−1
r=1 ar

+ zl

R−1∑
r=1

ar, (A.1)

which can be easily minimised for a given ai,

∂t∗(ai)

∂ai
= − zn

ai
∏R−1
r=1 ar

+ zl = 0, (A.2)

where ai can be any of the R− 1 aggregation factors. Rearranging (A.2) yields

ai =
n

l

1∏R−1
r=1 ar

,∀i, (A.3)

and since the product is the same for all ai, it is therefore necessary that ai = a, ∀i. As
such,

a =
n

laR−1

a =
(n
l

)1/R

⇔ R =
log (n/l)

log a
.

(A.4)

It is now necessary to find the optimal R that minimises t∗. The variable R is not, at
this point, a variable of the synaptic activity. But since all factors are equal between
them, one can redefine the function, as

t∗(a,R) = zna1−R + zl(R− 1)a, (A.5)

without loss of generality for local minima. Its derivative in terms of R will be

∂t∗(a,R)

∂R
= −zn log aa1−R + zla = 0

R =
log ((n/l) log a)

log a
,

(A.6)

and a simple comparison with the result for R given by (A.4) shows that

a∗ = e = 2.718281+,

R∗ = log
(n
l

)
.

(A.7)

We must finally show that this is, indeed, the global minimum point of t∗. Second partial
derivatives yield

∂2t∗(a,R)

∂a2

∣∣∣∣
(a∗,R∗)

=
zl

e
log
(n
l

) [
log
(n
l

)
− 1
]

∂2t∗(a,R)

∂R2

∣∣∣∣
(a∗,R∗)

= zle > 0

∂2t∗(a,R)

∂a∂R

∣∣∣∣
(a∗,R∗)

= zl
[
log
(n
l

)
− 1
]
,

(A.8)
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and the Hessian determinant is

detH(a∗, R∗) = z2l2
[
log
(n
l

)
− 1
]
> 0. (A.9)
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