ION Framework - A Simulation Environment for
Worlds with Virtual Agents

Marco Vala, Guilherme Raimundo, Pedro Sequeira, Pedro Cuba, Rui Prada,
Carlos Martinho, and Ana Paiva

INESC-ID and IST - Technical University of Lisbon
marco.vala@inesc-id.pt

Abstract. Agents cannot be decoupled from their environment. An
agent perceives and acts in a world and the model of the world influ-
ences how the agent makes decisions. Most systems with virtual embod-
ied agents simulate the environment within a specific realization engine
such as the graphics engine. As a consequence, these agents are bound
to a particular kind of environment which compromises their reusability
across different applications. We propose the ION Framework, a frame-
work for simulating virtual environments which separates the simulation
environment from the realization engine. In doing so, it facilitates the
integration and reuse of the several components of the system. The ION
Framework was used to create several 3D virtual worlds populated with
autonomous embodied agents that were tested with hundreds of users.

Key words: Virtual Environment Simulation, Agent-Based Modelling,
Embodied Agents, Guidelines

1 Introduction

A virtual agent is by definition an entity that senses, reasons and acts within
an environment. Usually, these agents have some components related to their
behaviour, referred as the agent mind, and components related to their embod-
iment in a particular environment, referred as the agent body.

The environment is often simulated by the realization engine® that keeps a
part of the simulation model while it provides a graphical representation to the
elements in the simulation, including the agents. The realization engine plays
the role of virtual space inhabited by the agents.

However, these realization engines do not provide the appropriate abstraction
level required by the agents. For this reason, the minds are generally dependent
on the environment and on a particular form of embodiment which, in turn,
leads to components which are difficult to reuse across applications.

We argue that we need a set of guidelines to make components less inter-
dependent thus fostering reusability across different applications. Our approach

! By realization engine we refer to a set of components that usually includes the
graphics engine and the physics engine.

2 Vala, Raimundo, Sequeira, Cuba, Prada, Martinho, Paiva

separates the simulation environment from the realization engine. We named
this simulation environment ION Framework?.

The remainder of the paper is organised as follows. First we look at related
work. Then, we describe the ION Framework and depict the guidelines of our
approach using a concrete example. Then we present some other case studies to
further demonstrate our results. Finally we draw some conclusions and outline
future work.

2 Related Work

Several tools exist to aid in the development of autonomous embodied agents.
Some of these tools support the development of the mind like Soar [11], JAM [7]
or JESS [5]. Researchers frequently adopt game engines like Unreal Tournament
[4], Source [16] or Ogre [14] for the embodiment.

Recent efforts from the virtual agents community lead to the SAIBA initiative
[13] which specifies a framework for creating Embodied Conversational Agents
(ECA). This framework lead to the definition of the FML (Function Markup
Language) and BML (Behaviour Markup Language), which are an effort to pro-
vide a common language between the several components that form an ECA.
There are currently systems® that use these markup languages like SmartBody
[15] or ACE (ARticulated Communicator Engine) [10].

However, for most of these tools, the simulation environment depends on
the application being developed. The components are integrated in a common
environment but become dependent on each other. A good example is the use
of game engines. The components around, like the agent’s mind, usually be-
come too dependent on how the game engine handles the embodiment and the
environment, which reduces reusability across other applications.

On the other hand, we can borrow some ideas from tools to create agent-
based simulations. Some provide conceptual frameworks and templates for the
design and implementation of agent-based models, like Swarm [12] or JADE [8].
Other provide a complete simulation environment which is suitable for rapid
development of prototype models, like NetLogo [17] or Breve [9].

3 ION Framework

Broadly speaking, a simulation using the ION Framework consists of a set of El-
ements whose state changes in a discrete manner over time when the simulation
is updated.

Furthermore, to regulate the interactions between the several elements, the
framework enforces a set guidelines which are applied to all the intervenients®

2 The ION Framework is open-source under GNU LGPL license.

3 For a complete list of tools and components within the SAIBA initiative go to
http://wiki.mindmakers.org/projects:bml:main (updated in April 2009).

4 By intervenient we mean any entity that intervenes in the simulation (either internal
or external to the simulation).

ION Framework 3

in the simulation. These guidelines are: 1) coherent access to information, 2)
mediation of conflicts, 3) active and passive gathering of information, and 4)
dynamic configuration changes.

In order to introduce the framework and the guidelines behind it, we will
present examples of FearNot! [1] which is an application aimed at reducing the
bullying phenomena in schools. Several virtual characters interact with each
other in a 3D environment throughout several episodes (Figure 1). Each episode
portraits a situation involving a conflict between a victim and a bully. The user
behaves like a friend of the victim and gives advices about the way the victim
should solve its problems.

You're so fat, you block outythe sun.

- .
> ;
»
oG

e 1

Fig. 1. FearNot!

3.1 Coherent Access to Information

Picture an example of two agents from FearNot!, John (the victim) and Luke
(the bully), that decide to move depending on the position of each other. At
each update cycle John looks at Luke and if he is too near John backs away. On
the other hand, Luke tries not to be very far from John. So he looks at John
and if he is farther than a given distance he moves closer.

Consider that John is the first to decide. John looks at Luke and since he has
not moved yet they are still at a comfortable distance. Given this, John decides
not to move. Next, Luke looks at John and he decides to move closer. Only Luke
moves.

Now consider that Luke is the first to decide. As previously, he decides to
move closer. But, when John looks at Luke, Luke is now too close because he
moved closer. Thus, John decides to move away. The final outcome is that both
agents have moved.

4 Vala, Raimundo, Sequeira, Cuba, Prada, Martinho, Paiva

Notice that although the initial simulation state was the same for the two
cases the outcome was different. The outcome depends on whom decided first
and we believe this is undesirable in some situations.

The ION Framework provides coherent access to information and guarantees
that all the intervenients get the same information if they do the same query to
the simulation at a given instant. The agents always get the information as it
was at the end of the last update cycle regardless of subsequent changes that
will be carried out in the next update.

Therefore, all modifications to the simulation state in the ION Framework are
not immediately carried out. We can schedule Requests on Elements which are
handled at a later time during a specific phase of the update cycle denominated
Process Requests Phase.

In the previous example, John and Luke were modelled with the ION Frame-
work. Thus the outcome is always the first situation (only Luke moves) regardless
of which agent decides first. This is due to the fact that even if one agent decides
to move it will in practice only schedule a Request to do so. Therefore, both
agents look at the same state of the simulation even if one of them has decided
to change it before the other.

3.2 Mediation of Conflicts

In the ION Framework, changes to the simulation state are performed syn-
chronously. As we have seen it ensures coherent access to information. But it
also implies that intervenients are seen as acting simultaneously at each update
cycle. Therefore, conflicts may arise between actions that try to modify the same
portion of the simulation state at the same time.

An example from FearNot! happens when Luke and Paul (the bully assistant)
decide to push John at the same time. We can have several outcomes: 1) John is
pushed by Luke, 2) John is pushed by Paul, 3) John is pushed by both of them
with their combined strength, etc.

The ION Framework ensures the mediation of conflicts. The previous setting
corresponds to scheduling two push Requests on the Element that represents
John in the simulation. When the Process Requests Phase takes place, a conflict
arises and a decision has to be made on how the two push Requests are executed.
The outcome will depend on the Request Handler that John has at that moment
for executing push Requests.

Requests Handlers determine how Requests in general are executed. Every
state change in the framework is performed by a Request Handler. This mecha-
nism systematizes the mediation of conflicts by transmitting possible conflicting
Requests to the same Request Handler which then acts as mediator.

3.3 Active and Passive Information Gathering

In the examples discussed so far the agents pro-actively gather information.
John, Luke and Paul check each other’s position when they need.

ION Framework 5

However, there are several circumstances in which it is preferable to be no-
tified of a change in the simulation state. For example, in FearNot! there is an
agent that manages the stories being created: the Story Facilitator. In order to
decide when to advance to the next act, the Story Facilitator needs to be aware
of certain events, such as whenever Luke goes away after bullying John. Instead
of constantly polling for such information, it can be notified when that event
happens.

The ION Framework offers both active and passive gathering of informa-
tion which is the possibility of getting information by querying the simulation
in a proactive way, or by subscribing a particular bit of information which will
be delivered later. We use the observer pattern [6] to provide an event-driven
paradigm. Hence, every time a change occurs in a particular Element, a corre-
sponding Fvent is raised.

Similarly to what happens with Requests, Events are not processed immedi-
ately. Likewise, their handling is performed by Event Handlers at a specific phase
of the update cycle denominated Process Fvents Phase. At that time all interve-
nients registered to get a particular Event are notified if that Event happened.
Figure 2 depicts the simulation update cycle with both its phases.

| Process Requests Phase_ | Process Events Phase |
I 1 1
+— Yes
Process A Process New Wait for
Update() Requests y Events No next Update

L Update Cycle |
I 1

Fig. 2. Update Cycle

It should now be evident that there is a fundamental difference between
Requests and Fvents. While Requests are the desired changes to the simulation
state, Events are the information of which changes effectively took place.

3.4 Dynamic Configuration Changes

The ION Framework allows dynamic configuration changes and it is possible to
completely change the simulation behaviour in runtime. We can add or remove
Elements to the simulation, but also change how these Elements inherently
behave by modifying their Request Handlers.

4 Case Studies

The ION Framework was used to model the virtual worlds in FearNot! [1] and
Orient [2] which were tested with hundreds of users. It is also being used in the
ongoing EU-funded project LIREC.

6 Vala, Raimundo, Sequeira, Cuba, Prada, Martinho, Paiva

One of the most interesting aspects in FearNot! (introduced in the section 3)
comes from the fact that characters are Elements of the ION Framework. These
Elements provide an abstraction layer through Requests and Fvents which act
as an interface between the mind components created in FAtiMA [3] and the
embodiment provided by Ogre 3D [14]. Thus, each component can be replaced
without having to change the rest of the environment.

A good example of how different applications can reuse components using
the ION Framework is Orient. Orient is an application to enhance intercultural
sensitivity towards people from other cultures. It has a very similar architecture
and it used most of the components developed for FearNot!. A particular example
was the interaction with users. In FearNot! the user was modelled as any other
Element of the simulation and it had a single form of interaction (text input).
Even though in Orient the user interacts with different devices (Wii, DanceMat,
Mobile Phones) it had no impact on the other components of the simulation
that still receive the same Fvents from the user Element regardless of the input
device.

In LIREC we are exploring different forms of embodiment through the no-
tion of competences. Competences represent specific abilities that the agent has
(e.g. speech or facial expression). We are modeling these competences as ION
Elements with a set of Requests and Events which are independent from a par-
ticular implementation. This way it is possible to change their implementation
and the mind will still be able to use them as before. This possibility is partic-
ularly interesting in migration scenarios where the mind roams across different
platforms which have different implementations for the same competence.

5 Conclusions

This paper introduced the ION Framework, a framework for simulating virtual
environments. It uses a set of guidelines to regulate the interactions between
the several elements, namely: 1) coherent access to information, 2) mediation
of conflicts, 3) active and passive gathering of information, and 4) dynamic
configuration changes.

Several examples depict how the ION Framework was used to address com-
mon problems in applications with multiple autonomous embodied agents.

In the future, the generic concepts we offer can be extended with patterns of
use, providing an higher-level pool of components which may suit more particular
applications or domains. We believe that it can establish a common ground that
helps the community to share their research efforts.

6 Acknowledgments

This work was partially supported by European Community (EC) and is cur-
rently funded by the LIREC project FP7-215554. Guilherme Raimundo and Pe-
dro Sequeira were supported by the Portuguese Foundation for Science and Tech-
nology (FCT), grant references SFRH/BD/25725/2005 and SFRH/BD/38681/2007.

ION Framework 7

The authors are solely responsible for the content of this publication. It does

not represent the opinion of the EC and FCT, and the EC and FCT are not
responsible for any use that might be made of data appearing therein.

References

1.

10.

11.

12.

13.

14.

15.

16.

17

R. Aylett, S. Louchart, J. Dias, A. Paiva, M. Vala, S. Woods, and L. E. Hall.
Unscripted narrative for affectively driven characters. IEEE Computer Graphics
and Applications, 26(3):42-52, 2006.

R. Aylett, A. Paiva, N. Vannini, S. Enz, and E. Andre. But that was in another
country: agents and intercultural empathy. In AAMAS, 2009.

. J. Dias and A. Paiva. Feeling and reasoning: A computational model for emotional

characters. In EPIA, pages 127-140, 2005.

Epic-Games. Unreal tournament website. (on-
line) http://www.unrealtournament.com/, last seen in April 2009, 2008.

E. Friedman-Hill. Jess in Action. Java Rule-based Systems. Manning Publications,
2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

M. J. Huber and J. Leto. Jam: A bdi-theoretic mobile agent architecture. In
Proceedings of the Third International Conference on Autonomous Agents, Seattle,
Washington, USA, 1999. ACM Press.

JADE. Java agent development framework. (online) http://jade.tilab.com/, last
seen in April 2009, 2009.

J. Klein. breve: a 3d environment for the simulation of decentralized systems and
artificial life. In ICAL 2003: Proceedings of the eighth international conference on
Artificial life, pages 329-334, Cambridge, MA, USA, 2003. MIT Press.

S. Kopp. Articulated communicator engine (ace). (online) http://www.techfak.uni-
bielefeld.de/ skopp/max.html, last seen in April 2009, 2000.

J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 1(33):1-64, 1987.

N. Minar, R. Burkhart, C. Langton, and Askenazi. The swarm simulation system,
a toolkit for building multi-agent simulations. working paper 96-06-042, 1996.
SAIBA-Initiative. Situation agent intention behavior animation. (on-
line) http://wiki.mindmakers.org/projects:saiba:main, last seen in April 2009,
20009.

S. Steve. Object-oriented graphics rendering engine (ogre). (on-
line) http://www.ogre3d.org/, last seen in April 2009, 2009.

M. Thiébaux, S. Marsella, A. N. Marshall, and M. Kallmann. Smartbody: behavior
realization for embodied conversational agents. In AAMAS, pages 151-158, 2008.
Valve. Source game engine. (online) http://source.valvesoftware.com/, last seen
in April 2009, 2004.

U. Wilensky. Netlogo, 1999.

