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Abstract

The subspace-tree is an indexing method for large multi-media databases.
The search in such a tree starts at the subspace with the lowest dimension. In
this subspace, the set of all possible similar images is determined. In the next
subspace, additional metric information corresponding to a higher dimension
is used to reduce this set. We compare theoretically and empirically data
dependent mappings into subspaces (principal component analysis) with data
independent mapping (averaging). The empirical experiments are performed
on an image collection of thirty thousand images.

1 Introduction

In Content-based image retrieval (CBIR) in image or some drawn user input serves
as a query example, and all similar images should be retrieved as results. An
image query is performed through the generation of a weighted combination of fea-
tures, and through its direct comparison with the features stored in the database.
A similarity metric (e.g. the Euclidean distance) is then used to find the near-
est neighbors of the query example in the feature vector space. In traditional
content-based image retrieval methods, features describing important properties
of the images are used, such as color, texture and shape [Flickner et al., 1995],
[Smeulders et al., 2000], [Quack et al., 2004], [Dunckley, 2003].

In our approach, we combine the color information and its spatial distribution
through simple image matching in high-dimensional space. We scale the digital
images to a fixed size and map them into a 3-band RGB (Red, Green, Blue) repre-
sentation. With this transformation, we are able to represent the images as vectors
and to compute the Euclidian distance between any pair.

So, the used features are the scaled RGB images themselves, representing the
color autocorrelogram and layout information. Two images ~x and ~y are similar if
their distance is smaller or equal to ǫ, d(~x, ~y) ≤ ǫ. The result of a range query
computed by this method is a set of images that have spatial color characteristics
that are similar to the query image.

The dimension of the resulting feature vector is extremely high, so an efficient
high dimensional indexing method is required. The recently introduced sub-space
tree [Wichert, 2008b], [Wichert, 2008a], [Wichert, 2009], [Wichert et al., 2010] does
not suffer from the curse of dimensionality.

During content-based image retrieval, the search starts in the subspace with the
lowest resolution of the images. In this subspace, the set of all possible similar

1



images is determined. In the next subspace, additional metric information corre-
sponding to a higher resolution is used to reduce this set. This procedure is repeated
until the similar images can be determined.

In this paper we compare data dependent mappings into subspaces such as
principal component analysis with data independent mappings such as orthogonal
projection (averaging). The main contribution of the paper is the theoretical proof
as well as empirical experiments which highlight the conclusion, that orthogonal
projection (averaging) with a constant is the best possible mapping. The paper is
organized as follows:

• We describe the subspace-tree.

• Mapping functions into a subspace are introduced: principal component anal-
ysis and orthogonal mapping on the bisecting line. It is proven why the
orthogonal mapping with a constant is the best possible mapping function.

• We make empirical comparison of PCA with the orthogonal mapping (aver-
aging).

• We perform experiments on an image collection of thirty thousand images.
Each image is represented by a 196608 dimensional vector.

2 Subspace-tree

In content-based multimedia indexing features describe multimedia objects. They
are mapped into points in a high-dimensional feature space, and the search is based
on points that are close to a given query point in this space. To speed up the search
in the high dimensional feature space, indexing trees were proposed. In metric tree
indexes, such as the R-trees, the d dimensional data space is recursively split by
d − 1 dimensional hyper-planes until the number of data s in a partition is below
a certain threshold. There are many more tree structures, like the SS-tree, or R∗-
trees, X-trees, TV-trees, which use different heuristics to optimize the performance
[Böhm et al., 2001]. However, the metric indexes trees operate efficiently only when
the number of dimensions is small. The growth in the number of dimensions has
negative implications in the performance of multidimensional index trees. These
negative effects are named as the “curse of dimensionality.” In high-dimensional
spaces, a partition is performed only in a few dimensions touching the boundary
of the data space in most dimensions. Because of these problems tree indexing
methods deteriorate with the dimensionality eventually reducing the search time to
sequential scanning.

The recently introduced sub-space tree [Wichert, 2008b], [Wichert, 2008a], [Wichert, 2009],
[Wichert et al., 2010] does not suffer from the curse of dimensionality. The subspace
tree divides the distances between the subspaces. These distances correspond to the
values represented by the difference of the mean distance of all the objects in one
space and a corresponding mean distance of the objects in a subspace.

V is an m-dimensional vector space and F () is a linear mapping from the vector
space V into an f -dimensional subspace U , V ⊃ U . Objects that are very dissimilar
in the subspace are expected to be very dissimilar in the original space. (see Figure
1). Generic multimedia indexing (GEMINI) [Faloutsos et al., 1994],[Faloutsos, 1999]
approach tries to find a feature extraction function that maps the high dimensional
objects into a low dimensional space.

The size of the collection in the feature space depends on ǫ and the proportion
between both spaces may reach the size of the entire database if the feature space
is not carefully chosen. The lower bounding postulate which guarantees that no
objects will be missed in the subspace space is expressed mathematically as follows
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Figure 1: F () maps the high dimensional objects from the space V into a low
dimensional subspace U . The temperature in a city measured in days is mapped
into the temperature of the first half of the year and the second half of the year.
The distance between similar objects should be smaller or equal to ǫ. This tolerance
is represented by a sphere with radius ǫ in the subspace.

Postulate 2.1 Let O1 and O2 be two objects; F (), the mapping of objects into f

dimensional subspace U should satisfy the following formula for all objects, where
d is an Euclidian distance function d = l2,in the space V and dU is an Euclidian
distance function in the subspace U :

dU (F (O1), F (O2)) ≤ d(F (O1), F (O2)) ≤ d(O1, O2). (1)

There exists a constants c for which relation

dU (F (O1), F (O2)) = c · d(F (O1), F (O2)) (2)

For the traditional GEMINI approach [Faloutsos et al., 1994] c is equal to one, and
the distance function does not need to be Euclidean.

We can define a sequence of subspaces U0, U1, U2, . . . , Un with V = U0 in which
each subspace is a subspace of another space

U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Un

and
dim(U0) > dim(U1) . . . > dim(Un).

Let DB be a database of s multimedia objects ~x(i) represented by vectors of
dimension m in which the index i is an explicit key identifying each object,

{~x(i) ∈ DB|i ∈ {1..s}}.

All s multimedia objects of DB are in space V = U0, which is represented by
V (DB) = U0(DB). The DB mapped by F0,1() from space U0 to its subspace U1

is indicated by U1(DB). A subspace Uk can be mapped from different spaces by
different functions {Fl,k()|Ul → Uk, l < k} in contrast to the universal GEMINI
approach [Faloutsos et al., 1994], in which the mapped DB only depends on the
function F (). Because of this a notation is used which does not depends on the
mapped function, but on the subspace Uk itself, {Uk(~x)(i) ∈ Uk(DB)|i ∈ {1..s}};

d[Uk(y)]n := {d(Uk(x(i)), Uk(y)) | ∀n ∈ {1..s} : d[Uk(y)]n ≤ d[Uk(y)]n+1}
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Uk(DB[y])ǫ := {Uk(x)(i)n ∈ Uk(DB) | d[Uk(y)]n = d(Uk(x)(i), Uk(y)) ≤ ǫ},

with the size Uk(σ) = |Uk(DB[y]ǫ)| and U0(σ) < U1(σ) < . . . < U(n)(σ) < s.

Corollary 2.1 Let be dim(U0) := m, the computing costs of the linear subspace
sequence method are

n
∑

i=1

Ui(σ) · dim(U(i−1)) + s · dim(Un). (3)

The computing cost corresponds to the area defined by the sigma value and
the preceding dimension Ui(σ) · dim(Ui−1). To minimize the computing costs, the
corresponding sum of areas has to be minimized using an adequate linear mapping
F () that meets all the required properties.

To estimate ǫ and its dependency on Uk(σ), we define a mean sequence d[Uk(DB)]n
which describes the characteristics of an image database of size s:

ds[Uk(DB)]n :=

s
∑

i=1

d[Uk(x(i))]n
s

. (4)

In the next section, we introduce mappings F () that meet all the required prop-
erties.

2.1 Mapping function F ()

We have to find a feature extraction function F () that satisfies the bounding pos-
tulate 2.1. The function has to capture most of the characteristics of the objects in
a low dimensional feature space. What would be a good mapping function F ()?

Given Parseval’s theorem, which states that the Discrete Fourier Transform
(DFT) preserves Euclidian distances between signals, the DTF which keeps the first
coefficients of the transform is an example of a feature function F () [Faloutsos et al., 1994],
[Faloutsos, 1999]. Accordingly, one can use any orthonormal transform like Wavelet
transform because they all preserve the distance between the original and the trans-
formed space. One can also use data dependent transforms as feature functions F (),
such as the Karhunen Loève transform and PCA. However, they have to be recal-
culated as soon as new data arrives [Faloutsos et al., 1994].

PCA was developed using simple statistical tools such as standard deviation,
covariance, eigenvector and eigenvalues. It uses these mathematical techniques to
determine the correlated variables in a data set that change together in space. By
knowing which variables are common in the data we can discard some variables
without affecting the distance between objects and only keep the variables that
make each object different and unique. Fundamentally, it analyses the data and ex-
trapolates a new coordinate system, where the data is transformed. Then according
to the variability of the data in each of the coordinates the PCA method will discard
the coordinates that are not relevant and effectively reduce the dimension of the
original data.

Usually the covariance matrix is determined that describes the variance of the
data. Then the eigenvectors (principal components) and the eigenvalues of the co-
variance matrix are calculated. The eigenvectors define the Karhunen-Loève trans-
form (KL transform). The Karhunen-Loève transform rotates the feature space
into alignment with uncorrelated features. Each principal component (eigenvec-
tor) is associated with some variance represented by the eigenvalue. The idea of the
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PCA is to retain only the significant principal components. Small eigenvalues corre-
spond to less significant principal components. When using PCA for dimensionality
reduction, it has to be decided how many eigenvectors to retain. The Kaiser cri-
terion discards the components (eigenvectors), whose eigenvalues are smaller than
one [Nadler and Smith, 1993, de Sá, 2001].

For evenly distributed data and an Euclidean distance function a good candidate
for the mapping function F ()is the orthogonal projection which corresponds to the
computation of the mean value of the projected points (projection on the bisecting
line).

Theorem 2.2 (Lower bounding) Let O1 and O2 be two vectors; if V = Rm is a
vector space and U is an f -dimensional subspace obtained by a projection and an
Euclidian distance function d = l2, then

dU (U(O1), U(O2)) ≤ d(U(O1), U(O2)) ≤ d(O1, O2). (5)

Furthermore, we can map the computed metric distance dU between objects in the f -
dimensional orthogonal subspace U into the m-dimensional space V which contains

the orthogonal subspace U by just multiplying the distance du by a constant c =
√

m
f
,

d(U(O1), U(O2)) =

√

m

f
· dU (U(O1), U(O2)). (6)

Proof. An orthogonal projection P onto U is a mapping P : Rm → U . It orders
every vector ~x ∈ Rm a vector P (~x) with the shortest distance to ~x ∈ Rm. If
(w(1), w(2), . . . , w(m)) is the orthonormalbasis of Rm, and (w(1), w(2), . . . , w(f)) is
the orthonormalbasis of U , then ~x can be represented by the unique decomposition

~x =

m
∑

i=1

< ~x, w(i) > ·w(i) =

f
∑

i=1

< ~x, w(i) > ·w(i) +

m
∑

i=f+1

< ~x, w(i) > ·w(i)

where U is a subset of Rm. The orthogonal projection of ~x onto U can be repre-
sented by

P (~x) =

f
∑

i=1

< ~x, w(i) > ·w(i)

O(~x)⊥ =

m
∑

i=f+1

< ~x, w(i) > ·w(i)

An orthogonal basis can be decomposed, for example, through the classical method
named ‘Gram-Schmidt orthogonalization’ process. According to the Pythagorean
theorem, ||~x||2 = ||P (~x)||2 + ||O(~x)⊥||2; consequently, ||~x|| ≥ ||P (~x)||, from which
the lower bound lemma results [Lang, 1970], [Jedrzejek C., 1995].

For the second part of the theorem, we indicate that such an orthogonal pro-
jection exists. It is the mean value of the projected points, or the projection on
the bisecting line. Suppose that we have a vector ~a = (a1, a2, ..ak, .., am) with
a1 = a2 = ... = ak = ... = am which represents the mean value of the projected
points in m dimensional space. The length of this vector in Euclidian space of the
dimension m is

√
m · a. The length of ~a = a1 in one dimensional space is just a.

The length of ~a = (a1, a2, .., ak, .., af) with a1 = a2 = ...ak = ... = af in dimension

f is
√

f · a, so the division of the length between the two Euclidian spaces is
√

m
f

.

If we compute several mean values (as done in the image pyramid), for example
we compute a mean value of a m dimensional vector ~y in a window of size w. We
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get a new reduced vector ~z of the dimension f with f = m
w

. The length of the
vector ~z is l = ||z||2 and the length of the projected vector in m dimensional space

is
√

w · l =
√

m
f
· l.

Theorem 2.3 (Best mapping) For evenly distributed data and an Euclidean dis-
tance function the best mapping function F ()is the orthogonal projection which cor-
responds to the computation of the mean value of the projected points (projection
on the bisecting line).

The theorem is valid because the dimension of the distance in the subspace multi-
plied with the constant c is equivalent to the dimension of the original space.

Proof. To a given vector ~x of a dimension m we determine the closest vector
~a = (a1, a2, ..ak, .., am) with a1 = a2 = ... = ak = ... = am = α according to
the Euclidian distance function. Each component is equal in vector ~a. How do we
choose the value of α? We want to minimize the distance d(~x,~a)

min
α

(

√

(x1 − α)2 + (x2 − α)2 + ... + (xm − α)2
)

0 =
∂d(~x,~a)

∂α
=

m · α − (
∑m

i=1 xi)
√

m · α2 +
∑m

i=1 x2
i − 2 · α · (

∑m

i=1 xi)

with the solution

α =

∑m

i=1 xi

m

which is the mean value of the vector ~x. The value of the constant c corresponds
to the dimension of the vectors, means c = m.

However, this assumption is only valid for evenly distributed data. For example,
this assumption is not present in sparse representation, which in turn is present in
the vector space model in information retrieval [Baeza-Yates and Ribeiro-Neto, 1999].

An example will be introduced, It is an intuitive demonstration of the rela-
tionship between the Pythagorean theorem and the orthogonal projection on the
bisecting line. The orthogonal projection of points ~x = (x1, x2) ∈ R2 on the bi-
secting line U = {(x1, x2) ∈ R2|x1 = x2} = {(x1, x1) = R1} corresponds to the
mean value of the projected points. The orthonormal basis of U is x(1) = ( 1√

2
, 1√

2
).

The point ~a = (2, 4) is mapped into P (~a) = 3, and ~b = (7, 5) into P (~b) = 6. The

distance in U is du(P (~a), P (~b)) =
√

|6 − 3|2, c =
√

2, so the distance in R2 is

d(P (~a), P (~b)) = 3 ·
√

2 ≤ d(~a,~b) =
√

26 (see Figure 2). It should be now clear,
why the distance in the subspace multiplied with the constant c is equivalent to the
dimension of the original space.

The subspace tree can be applied to multi-resolution techniques based on sub-
sampling like the Fourier transform or Wavelet transform, given the Parseval’s the-
orem that states that any orthonormal transform preserves the Euclidian distances
between the original and the transformed space. The technique is not restricted
to pixel-wise comparison between images. It can be applied for any data. The
extracted features represented as a vector space and sub-sampled.

3 Empirical Experiments

We perform empirical experiments on an image collection of thirty thousand images
based on subspace-tree. We compare two classes of feature functions F (), PCA and
the orthogonal projection. The image collection was built using images downloaded
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Figure 2: For example, the orthogonal projection of points ~x = (x1, x2) ∈ R2 on
the bisecting line U = {(x1, x2) ∈ R2|x1 = x2} = {(x1, x1) = R1} corresponds to
the mean value of the projected points. ~a = (2, 4) is mapped into P (~a) = 3, and
~b = (7, 5) into P (~b) = 6.

from flickr.com. All the downloaded images were published under a creative com-
mons license that allows for non-commercial use that include academic and research
purposes. Two images ~x and ~y are similar if their distance is smaller or equal to ǫ,
d(~x, ~y) ≤ ǫ. The result of a range query computed by this method is a set of images
that have spatial color characteristics that are similar to the query image. We scale
the images to the size 32 × 32 (in order to fit the memory requirements for PCA).
We store 3-band RGB information for each pixel, that range from 0 to 255 resulting
in 30000 vectors of size 32 × 32 × 3 = 3072.

We compare PCA with multi-resolution technique on a example of the image
pyramid. The representation of images at several resolutions corresponds to a struc-
ture which is called “image pyramid” in digital image processing [Burt and Adelson, 1983],
[Gonzales and Woods, 2001]. The base of the pyramid contains an image with a
high-resolution, its apex being the low-resolution approximation of the image.

3.1 Principal Components Analysis

The Kaiser criterion discards the components (eigenvectors), whose eigenvalues are
smaller than one. This approach does not allow us to choose the resulting number
of principal components as it is dependent on the variability of the original data.
Applying the PCA with the Kaiser criterion to the whole set does not discard any
principal components, suggesting that the data set is evenly distributed.

Because of this we use a heuristic function with different random samples of the
collection as input for the PCA. Then choose how many principal components to
keep. Table 1 shows the results and the samples that were chosen for the next step
of the tests and the number of principal components. As can be seen, a sample of
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9000 images does not lead to any reduction, a significant reduction is achieved with
one tenth of the collection, 3000 images.

Resulting
Sample size Principal Components

9000 3072
3000 2527
2000 1969
1500 1487
1000 995
500 498
100 99

Table 1: Principal Components generated for each of the sample sizes.

The KL transform is computed. The eigenvectors define the KL transform. Each
principal component (eigenvector) is associated with some variance represented by
the eigenvalue. The original space is defined by the rotation of the input space
by the KL transform and will be indicated by U0 = R3072. The first subspace is
defined by the 2527 principal components (eigenvectors) ordered by the eigenvalue
size. The second subspace is defined by the 1969 principal components out of the
2527. A a sequence of subspaces is the sequence of real vector subspaces

U0 = R3072 ⊃ U1 = R2527 ⊃ U2 = R1969 ⊃ . . . ⊃ U6 = R99

formed by the mapping from one subspace to another which always sets the dis-
carded principal components to 0.

In Figure 3, we see that the ε-value threshold can be applied to the subspace
with 995 dimensions and higher, whereas the characteristics for the lower subspaces
are below the threshold.

99

498

995

1487

1969

2527

3072

0 5000 10 000 15 000 20 000 25 000 30 000
0

2000

4000

6000

8000

Figure 3: The x-axis indicates the most similar images which are retrieved and the
y-axis the distance to the query image (Euclidian distance function). Characteristics
plot using the PCA function and ε = 3 934.79 which corresponds to 2500 retrieved
images. For the definition of characteristic see the Equation 4.

The number of images retrieved on each subspace must be below a certain thresh-
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old otherwise the use of the corresponding subspaces it will not give an advantage.
This behaviour is present on many of the possible combinations and unless we use
dimensions that are far apart we don’t significantly reduce the number of operations
necessary to process the query. Table 2 shows some of the possible ε-value that can
be used and the number of images retrieved.

ε-value Retrieved images
3225.95 200
3427.48 500
3616.26 1000
3745.73 1500
3848.21 2000
3934.79 2500

Table 2: Number of retrieved images for ε.

Consequently we can use the PCA method to reduce this collection to less than
one third of the original dimension, and while the number of operations are reduced
we still need to consider whether it is worth to use the smaller subspaces as few
images are discarded.

For the ε-values < 3745.73 the best result is achieved when we start with two
subspaces. The dimensions of the resulting subspaces are

dim(U0) = 3072 > dim(U1) = 2527 > dim(U2) = 1969.

The average number of operations (which is 69.84 millions for ε = 3225.954) is better
than when searching in the original space (30000 ∗ 3072 = 92.16, 92.16 millions).

ε list one two three four five
matching subspace subspaces subspaces subspaces subspaces

3225.95 92.16 78.37 69.84 72.86 89.32 103.61
3427.48 92.16 80.99 77.95 87.81 108.47 123.11
3616.26 92.16 84.70 88.02 104.31 127.88 142.71
3745.73 92.16 88.02 96.18 116.65 141.69 156.60
3848.21 92.16 91.11 103.24 126.78 152.76 167.70
3934.79 92.16 93.98 109.53 135.45 162.09 177.03

Table 3: Operations necessary for the query (in millions) in average for the PCA .
The best choice of subspaces is indicated by bold.

3.2 PCA versus Mean Image Pyramid

A lower resolution of an image corresponds to an orthogonal projection in rect-
angular windows, which define sub-images of an image. The image is tiled with
rectangular windows W of size j × j in which the mean value is computed (averag-
ing filter). An example of an image pyramid is shown in the Figure 4.

The arithmetic mean value computation in a window corresponds to an orthog-
onal projection of these values onto a bisecting line. The representation of images in
several resolutions corresponds to a structure which is called image pyramid in dig-
ital image processing [Burt and Adelson, 1983], [Gonzales and Woods, 2001]. The
base of the pyramid contains an image with a high resolution (32 × 32), its apex
being the low-resolution approximation of the image (4×4). The dimensions of the
resulting subspaces are

dim(U0) = 1024 × 3 > dim(U1) = 256 × 3
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Figure 4: Example of an image pyramid of an image corresponding to four different
resolutions. First row represents images of different resolution with the same size,
corresponding to the multiplication with the constant c. Second row represents
images of different resolution which are not scaled. See as well Theorem 2.3.

> dim(U2) = 64 × 3 > dim(U3) = 16 × 3.

(we multiply by factor 3 for RGB color images.)
Let ~x(i) and ~x(j) be two objects from the image database, then for k = 1, 2, 3;

dUk
(Uk(~x(i)), Uk(~x(j))) ≤ dUk−1

(Uk(~x(i)), Uk(~x(j))) ≤ dUk−1
(Uk−1(~x

(i)), Uk−1(~x
(j)))
(7)

Furthermore with ck =
√

dim(Uk−1)
dim(Uk) ,

dUk−1
(Uk(~x(i)), Uk(~x(j))) = ck · dUk

(Uk(~x(i)), Uk(~x(j))) (8)

with with ck = 2, for k = 1, 2, 3 for the image databases
The hierarchical linear subspace method is able to achieve such a better perfor-

mance because it applies for each subspace a constant that estimates the results in
the original space, allowing the characteristics to be close together and converging
to the same value, as shown in Figure 5. This allows the use of very small subspaces
that greatly reduces the calculations, for example we can use the 4x4 subspace that
has 48 dimensions, with a constant c = 23 = 8 that estimates the results in the
original space. In Table 4 we compare the number of operations of PCA and
orthogonal projection.

The results of the experiments indicate, that performing iteratively PCA on
images is much less effective as comparing low resolution images.

Using PCA the constants c for the Equation dU (F (O1), F (O2)) = c·d(F (O1), F (O2))
is one.

3.3 CBIR based on Mean Image Pyramid

In the second phase we chose the 256 × 256 pixels resolution as the standard for
which all 30000 images are scaled. The dimensions of the resulting subspaces are
now

dim(U0) = 65536× 3 > dim(U1) = 16384× 3

> dim(U2) = 4096 × 3 > dim(U3) = 3072 × 3

> dim(U3) = 256 × 3 > dim(U4) = 64 × 3 > dim(U5) = 16 × 3

10



4 x4

8 x8

16 x16

32 x32

0 5000 10 000 15 000 20 000 25 000 30 000
0

5000

10 000

15 000

Figure 5: The x-axis indicates the most similar images which are retrieved and the
y-axis the distance to the query image (Euclidian distance function). Characteristics
plot using the orthogonal projection function and ε = 3 934.79. For the definition
of characteristic see the Equation 4.

ε-value list one two orthogonal

matching subspace subspaces projectionl

3225.95 92.16 78.37 69.84 6.92
3427.48 92.16 80.99 77.95 10.51
3616.26 92.16 84.70 88.02 15.13
3745.73 92.16 88.02 96.18 18.99
3848.21 92.16 91.11 103.24 22.45
3934.79 92.16 93.98 109.53 25.64

Table 4: Number of operations necessary for the query (in millions) required in
average for the PCA and the orthogonal projection. Orthogonal projection signifi-
cantly less operations. The best choice of subspaces for PCA is indicated by bold,
for orthogonal projection always three subspaces were used.

with with ck = 2, for k = 1, 2, 3, 4, 5 for the image databases. To the 4x4 subspace
that has 48 dimensions corresponds to a constant c = 25 = 32 that estimates the
results in the original space. The characteristics are shown in the Figure 6. If we
query the collection on the original space, list matching, the application needs to
perform 256×256×3×30 000 = 5 898 240 000 pixel by pixel comparisons. Using the
hierarchical linear subspace we can dramatically reduce this number by as much as
70.78 times, depending on the ε-value. By using this threshold, the results will on
the average 200 images and require 3% of the comparisons of the original space, i.e.
if the query was performed exclusively using this space. The hierarchical subspace
method using the orthogonal projection can outperform the list matching method
70.78 times which is impressive as it can reduce queries from 3 minutes and 10
seconds to just 2.688 seconds on the average. Experiments were done on an Apple
iMac running Mac OSX 10.4.11 operating system with 2.0GHz Core2 Duo processor
and 1GB of RAM memory
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Figure 6: The x-axis indicates the most similar images which are retrieved and the
y-axis the distance to the query image (Euclidian distance function). Characteristics
plot with ε-value = 53 014.29. For the definition of characteristic see the Equation
4.

3.4 Related work

The best known content-based image retrieval system is the IBM QBIC (query
by image content) search system [Niblack et al., 1993], [Flickner et al., 1995]. IBM
QBIC uses features for color, texture and shape which are mapped into a feature vec-
tor. Similar features are used by the Oracle interMedia extender, which extends a re-
lational database, so that it can perform CBIR [Dunckley, 2003]. The VORTEX sys-
tem [Hove, 2004], on the other hand combines techniques from computer vision, with
a thesaurus for objects and shapes description. In [Mirmehdi and Periasamy, 2001]
human visual and perceptual systems are modeled. Perceptual color features and
color texture features are extracted to describe the characteristics of perceptually
derived regions in the image. Wavelet-based image indexing and searching WBIIS
[Wang et al., 1997] is an image indexing and retrieval algorithm with partial sketch
image searching capability for large image databases which is based on Wavelets.
The algorithm characterizes the color variations over the spatial extent of the image
in a manner that provides semantically meaningful image comparisons.

Known examples of CBIR systems which identify and annotate objects are
[Blei and Jordan, 2003, Chen and Wang, 2004, Li and Wang, 2003b, Wang et al., 2001].
Jean et al. proposed [Jeon et al., 2003] an automatic approach to the annotation
and retrieval of images based on a training set of images. It is assumed that regions
in an image can be described using a small vocabulary of blobs. Blobs are generated
from image features using clustering. In [Li and Wang, 2003a], categorized images
are used to train a dictionary of hundreds of statistical models each representing a
concept. Images of any given concept are regarded as instances of a stochastic pro-
cess that characterizes the concept. To measure the extent of association between
an image and the textual description of a concept, the likelihood of the occurrence
of the image based on the characterizing stochastic process is computed.

Our approach is based on shallow rather than high level image understanding
techniques. The goal of the system is not to identify objects in the image or to
extract semantic information about it. Instead, images that have similar spatial
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color characteristics to the query image, corresponding to the color autocorrelogram
and layout information are determined. Our naive features are the scaled RGB
images themselves, there is no need for weights (importance) between different
features. However, the dimension of the resulting feature vector is extremely high,
so an efficient high dimensional indexing method is required.

The extracted features of a CBIR system are mapped into points in a high-
dimensional feature space, and the search is based on points that are close to a given
query point in this space. For efficiency, these feature vectors are precomputed and
stored. To speed up the search in the high dimensional feature space, indexing trees
were proposed.

Traditional indexing trees can be described by two classes, trees derived from the
kd-tree and the trees composed by derivatives of the R-tree. Trees in the first class
divides the data space along predefined hyper-planes regardless of data distribution.
The resulting regions are mutually disjoint and most of them do not represent any
objects. In fact with the growing dimension of space we would require exponential
many objects to fill the space. The second class tries to overcome this problem by
dividing the data space according to the data distribution into overlapping regions,
as described in the second section. An example of the second class is the M-tree
[Paolo Ciaccia, 1997]. It performs exact retrieval with 10 dimensions. However its
performance deteriorates in high dimensional spaces.

A solution to this problem consists of approximate queries which allow a relative
error during retrieval. M-tree [Ciaccia and Patella, 2002] and A-tree [Sakurai et al., 2002]
with approximate queries perform retrieval in dimensions of several hundreds. A-
tree uses approximated MBR instead of a the MBR of the R-tree. Approximate
metric trees like NV-trees [Olafsson et al., 2008] work with an acceptable error up
to dimension 500.

The most successful approximate indexing method is based on hash tables. Lo-
cality sensitive hashing (LSH) [Andoni et al., 2006] works fast and stable with di-
mensions around 100. The method uses a family of locality-sensitive hash functions
to hash nearby objects in the high-dimensional space into the same bucket. To per-
form a similarity search, the indexing method hashes a query object into a bucket,
uses the data objects in the bucket as the candidate set of the results, and then ranks
the candidate objects using the distance measure of the similarity search. There
are several extensions of LSH, like for example Multi-Probe LSH [Lv et al., 2007]
for example which reduces the space requirements for hash tables.

An alternative approach maps high dimensional data (dimension 10 to 270) into
a space of dimension one. In one dimensional space, efficient tree techniques such
as B-trees can be applied. Examples of such mappings are space filling curves
[Zaniolo et al., 1997] and Pyramid Technique [Böhm et al., 2001]. Pyramid Tech-
nique divides the data space into two dimensional pyramids whose apexes lie at
the center point. In a second step, each pyramid is cut into several slices parallel
to the basis of the pyramid that form the data pages. The Pyramid Technique
associates to each high dimensional point a single value, which is the distance from
the point to the top of the pyramid, according to a specific dimension. The NB-tree
[Fonseca and Jorge, 2003] maps the d dimensional space into a hyper-cube of the
same dimension with edges of length one. In the next step the length of the corre-
sponding points is determined, so that the objects can be ordered and represented
by a simple B-tree.

3.5 Extremely high dimensional feature vector

It is important to note that testing the effectiveness of an image retrieval system
can be subjective, since different users perceive the same image differently. Usually
images are categorized, and although the categorization process may seem subjec-
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tive, the efficiency of an indexing scheme may be determined objectively. The best
feature extraction methods usually need large feature vectors to store a good rep-
resentation of the image content. In our approach, we chose the largest possible
feature vector, the image itself. We are comparing image pixel by pixel, thus being
guaranteed to return those who are at a smaller distance from the query image.
Usually one tries to reduce the size of feature vectors. This is because the large ma-
jority of indexing methods are very fast when dealing with low dimensional vectors
but when that number increases, their performance deteriorates greatly (the curse
of dimensionality [Böhm et al., 2001]). Fast multimedia queering leads to dilemma.
Either the number of features has to be reduced and the quality of the results in un-
satisfactory, or approximate queries are preformed leading to a relative error during
retrieval.

A limitation is the dimension of the data, which is limited to the order of several
hundreds. Because of this constraint neither of those techniques can be compared
with a subspace tree, simply because they do not work in such a extreme high
dimensional space (order of several thousands, 196608 dimension building an index-
ing structure for 30000 objects) performing exact queries. Because of the Parseval’s
theorem Wavelet transform on an image corresponds to a multiresolution-based de-
composition on a nested sequence of linear spaces [Gonzales and Woods, 2001], and
leads to similar results as the search on a mean value image pyramid.

4 Conclusion

Multiresolution theory is concerned with the representation and analysis of signals
at more than one resolution. A powerful but conceptually simple structure for
representation of images at more than one resolution is the image pyramid. In
database applications its properties make it easy for users to access low quality
versions of images during searches and later retrieve additional data to refine them.
We have shown that neighborhood averaging which produces a mean pyramid is the
best possible mapping into a subspace for evenly distributed data. This claim is a
consequence of theorem 2.3 and its proof. It is as well supported by empirical ex-
periments in section three. The claim is valid because the dimension of the distance
in the subspace multiplied with the constant c is equivalent to the dimension of
the original space. The principal components method performs poorly with a large
sparse collection of images. The main problem with using the PCA as a mapping
function is, that as the loss of information when reducing the dimension cannot be
compensated by a constant (c is 1).
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[Böhm et al., 2001] Böhm, C., Berchtold, S., and Kei, D., A. K. (2001). Searching
in high-dimensional spaces—index structures for improving the performance of
multimedia databases. ACM Computing Surveys, 33(3):322–373.

[Burt and Adelson, 1983] Burt, P. J. and Adelson, E. H. (1983). The laplacian
pyramidas a compact image code. IEEE Trans. Commin, COM-31(4):532–540.

[Chen and Wang, 2004] Chen, Y. and Wang, J. Z. (2004). Image categorization
by learning and reasoning with regions. Journal of Machine Learning Research,
5:913–939.

[Ciaccia and Patella, 2002] Ciaccia, P. and Patella, M. (2002). Searching in met-
ric spaces with user-defined and approximate distances. ACM Transactions on
Database Systems, 27(4).
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