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Abstract Conflict Identification in Aspect-Oriented Requirements Engineering 
(AORE) is an integral step toward resolving conflicting dependencies between 
requirements at an early stage of the software development. However, to date 
there has been no work supporting detection of conflicts in a large set of textual 
requirements without converting texts into an alternative representation (such as 
models or formal specification) or direct stakeholder involvement. Here, we 
present EA-Analyzer, an automated tool for identifying conflicts directly in 
aspect-oriented requirements specified in natural-language text. This chapter is 
centered on a case-study based discussion of the accuracy of the tool. EA-
Analyzer is applied to the Crisis Management System, a case study used as an 
established benchmark in several areas of aspect-oriented research. 

1 Introduction to Conflict Identification in Aspect-
Oriented Requirements 
 
Aspect-Oriented Requirements Engineering (AORE) [Rashid et al., 2003] aims at 
addressing the identification, representation, modularization, composition and 
subsequent analysis of crosscutting requirements. Identification and resolution of 
conflicts between concerns is often an essential part of the analysis activity. Since 
in AORE most concern inter-relationships can be defined via compositions, 
composition specifications are also a natural focus for conflict identification work. 
Thus, it is not surprising that a number of studies have been focusing on conflict 
detection and resolution via composition definitions [Brito et al., 2007; Sardinha 
et al., 2013; Weston et al., 2008].  

As discussed in previous chapters, although most requirements documents tend 
to be written in natural language, research on conflict detection in aspect-oriented 
(AO) textual requirements tends to re-format the textual artifacts before starting 
the conflict identification process. For instance, some researchers tackle the 
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conflict identification by first carrying out formalization of requirements and 
compositions [Laney et al., 2004; Mostefaoui and Vachon, 2007; Weston et al., 
2008]; others represent requirements and compositions via models, then undertake 
model-based analysis [Mehner et al., 2006; Barais et al., 2008]; and, finally, others 
involve stakeholders to help in conflict identification and resolution based on the 
priorities explicitly expressed by the stakeholders [Brito et al., 2007]. Prior to our 
work discussed below, there has been no research on text-only based conflict 
identification in AORE. 

This chapter presents EA-Analyzer, a tool for identifying conflicts in textual 
AO requirements, without needing to convert the textual artifacts into an 
alternative format, or engaging stakeholders directly. The tool operates on 
annotated natural language text and compositions defined using the RDL 
annotations [Chitchyan et al., 2007]. The annotations do not alter or reduce the 
textual requirements, but only decorate text with syntactic and semantic linguistics 
tags [Chitchyan, 2007]. A Bayesian learning method, called Naive Bayes 
[Mitchell, 1997], is utilized by EA-Analyzer to learn the nature of the composed 
concerns and to detect conflicts within the textual specifications.  

This chapter is centered on a case-study based discussion of the accuracy of the 
tool, where EA-Analyzer is applied to the Crisis Management System, a case 
study used as an established benchmark in several areas of aspect-oriented 
research. The initial evaluation of the tool suggests that this is a promising 
direction for text-based conflict identification.  

The rest of this chapter is organized as follows. Section 2 presents the related 
work and discusses the advantages and disadvantages of aspect-oriented 
approaches when compared to EA-Analyzer. Section 3 details the approach and 
the EA-Analyzer tool developed to address the problems discussed in the pervious 
section. Section 4 presents the case study demonstrating the evaluation of the tool. 
Section 5 concludes the chapter. 

2 Related Work 
 
The most popular approaches that deal with conflicts in requirements are the goal-
oriented and aspect-oriented ones; hence, Section 2.1 presents some related work 
on goal-oriented approaches and Section 2.2 discusses the related approaches of 
aspect-oriented requirements engineering, where EA-Analyzer is a novel approach 
within this research area. 

2.1 Goal-Oriented Approaches 

In the NFR framework [Chung et al., 1999], the focus is on the identification of 
conflicts of non-functional requirements — it does not explicitly deal with 
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functional concerns, but establishes a link to them. The analysis starts with 
softgoals, i.e. quality attributes of a system. The system’s softgoals may be 
security, usability, performance and availability. In the NFR framework, softgoals 
are normally decomposed and refined into more solution space model elements, 
captured by a softgoal graph structure. By analyzing the graph, interfering 
softgoals can be found, e.g. security goals interfere with usability in general. 
Resolution of such conflicts is achieved by selecting the most appropriate 
softgoals after some trade-off analysis.   

i* [Yu, 1995] was developed for modeling and reasoning about organizational 
environments and their information systems. It focuses on the concept of 
intentional actor. i* has two main modeling components: the Strategic 
Dependency (SD) model and the Strategic Rationale (SR) model. The SD model 
describes the dependency relationships among the actors in an organizational 
context. The SR model provides a more detailed level of modeling than the SD 
model, since it focuses on the modeling of intentional elements (goals, softgoals, 
tasks and resources) and relationships internal to actors. Intentional elements are 
related by means-end or decomposition links. Means-end links are used to specify 
alternative ways to achieve goals. Decomposition links are used to decompose 
tasks. Apart from these two links, there are the contribution links, which can be 
positive or negative. These are the basis for the conflict identification, which is 
specified in a similar way to the NFR framework. In both approaches, the conflict 
degree is specified and alternatives are used to solve conflicts.  

KAOS [van Lamsweerde et al., 1991] is a systematic approach for discovering 
and structuring system level requirements. In KAOS, goals can be divided into 
requirements (a type of goal to be achieved by a software agent), expectations (a 
type of goal to be achieved by an environment agent) and softgoals (e.g., quality 
attributes). In KAOS, goals can be refined into subgoals through and/or 
decompositions. There is also the possibility of identifying conflicts between non-
functional goals and represent it in the goal models. 

2.2 Aspect-Oriented Requirements Engineering Approaches 

Aspect-Oriented Requirement Engineering (AORE) approaches have enabled the 
early identification of candidate crosscutting concerns within problem domains. 
Such strategies enable requirements engineers to specify how requirements 
compose with one another to explicitly externalize their interdependencies.   

This has significant advantages for reasoning about requirements, as their 
mutual influences and tradeoffs can be identified before architecture is derived. As 
well as this, the transition to an aspect-oriented architecture can be eased by the 
explicit recognition of early aspects within the domain. 

However, this benefit also brings with it a significant challenge - namely, the 
accurate detection of conflicts between requirements. The increased modularity 
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and advanced composition mechanisms which AORE approaches tend to employ 
can complicate the task of discerning where requirements interact with one 
another and, whether a given interaction constitutes a potential conflict. This issue 
has received a great deal of research attention within the AO community when the 
conflict is expressed at the code level; but research at the requirements level is 
much less mature. In this section we discuss the existing AORE approaches that 
support conflict detection, and highlight the open issues in this area. We group the 
available AORE approaches on basis of their overall conflict identification 
strategy into the following three groups: 

Formalization-Based approaches 

Within the AO conflict detection research area, many current approaches 
require some formal specification of requirements in order to detect conflicts 
among requirements. In other words, these approaches require precise expression 
of the properties of requirements and decide whether the compositions specified 
over these requirements invalidate these properties.   

Examples of this strand of work are the AO Composition Frames [Laney et al., 
2004]; Composition Frames model the semantics of requirements (in the form of 
Problem Frames) being composed with one another.  The requirements of this 
composition - that is, the formal properties of its satisfaction - can be validated 
against the state machine expressed in the Composition Frame, and thus conflicts 
detected. Here the validity of the conflict detection depends on the sound 
construction of the Problem Frames and their compositions.   

In [Mostefaoui and Vachon, 2007], AO models are specified in Aspect-UML, 
which includes formal annotations of aspects and joinpoints. These Aspect-UML 
models are transformed into Alloy, a structural modeling language based on first-
order logic. Alloy includes an analyzer that can check the validity of assertions 
over a model, and so the Aspect-UML model of an AO system can be checked for 
aspects introducing properties to the system that render other aspect assumptions 
invalid, and thus determine conflicts. 

Similarly, the work in [Weston et al., 2008] presents a conflict detection 
technique based on transformation of textual compositions into temporal logic 
formulae based on a catalogue of formalizations of natural language operators.  
The semantics of the compositions can thus be compared with one another for 
temporal overlap and violation of system properties, which implies a conflict 
between requirements.   

The major disadvantage of these approaches is that the transformation of 
requirements into specific formal representations will require substantial time and 
effort, which may outweigh the advantages of precisely detecting conflicts. 
Moreover, the formalized representations become less accessible to broader 
audiences. For instance, in order to understand implications of the Alloy analyzer 
results, the analyst has to be familiar with the formalization framework. Moreover, 
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if there are any errors introduced in the formalization process, the detected 
conflicts may not be truly representative of those present in the requirements 
themselves. 

Model-based approaches 

A number of AORE approaches take a (design-level) model-based view on 
conflict detection; that is, they expect the requirements to be (at least initially) 
structured into specific models before conflicts can be detected.  

For instance, the work in [Mehner et al., 2006] models requirements as use 
cases in UML notation, and the crosscutting concerns are activities which refine 
the use cases.  The approach then translates these UML diagrams into type graphs, 
with activities being modeled as graph transformations.  Applying these graph 
transformations sequentially can thus reveal conflicts between requirements. A 
similar technique based on statechart weaving on UML models was proposed in 
[Shaker and Peters, 2006].  

Similarly, the work in [Barais et al., 2008] adapts the Theme/UML [Baniassad 
and Clarke, 2004] approach to formally model compositions between base and 
aspect concerns.  Certain forms of conflict based on global properties, such as 
visibility and kind, can then be discerned and automatically resolved. Another 
similar technique for class diagrams is presented in [Reddy et al., 2006].  

The disadvantages of the model-based approaches are twofold.  Firstly, the 
necessity of modeling adds an extra step to the conflict detection process, which 
may require additional time and effort. Secondly, the structuring of requirements 
into models may lose information, which means that information encoded in the 
requirements, including potential conflicts, may be omitted/lost before the 
interaction analysis commences.  Also, similar to formalization-based approaches, 
a modeling error may invalidate the results of the analysis. 

Stakeholder priority-based approaches 

Finally, the stakeholder priority-based work [Moreira et al., 2005; Brito and 
Moreira, 2003; Brito and Moreira, 2004; Rashid et al., 2003] handles conflicts via 
stakeholder involvement. If interactions can be identified using a technique such 
as ARCADE [Rashid et al., 2003], the stakeholders can then determine whether 
such compositions are positive, negative or neutral from their point of view, and 
refine the requirements accordingly [Rashid et al., 2003]. Alternatively, 
stakeholders state their preferred non-functional requirements up-front, and 
mathematical reasoning techniques (i.e., a multi-criteria decision making method 
called Analytical Hierarchy Process [Saaty, 1980; Saaty, 2008]) are then applied 
to help conflict resolution [Brito et al., 2007].  
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More recently, in the AMPLE project [AMPLE, 2011], a novel hybrid 
assessment method, HAM, was proposed and a software tool was developed. 
HAM combines the best properties of two well known multi-criteria decision 
making methods, the Analytical Hierarchy Process and the Weighted Average 
[Triantaphyllou, 2000]; this combination helped to avoid some problematic 
features of those methods [Ribeiro et al., 2011].  

The main limitations of these approaches are that: (i) each concern must be 
allocated a specific priority; (ii) conflict handling is often based on one criterion, 
the priority (except for [Brito et al., 2007], where multi-criteria analysis is 
supported); (iii) the conflict identification and resolution requires direct 
involvement of the stakeholders. 

In summary, although the above discussed AORE approaches can help in 
conflict identification for AORE, what is missing from the current state of the art 
is a tool-supported informal approach which is able to determine potential 
interactions based on compositions of the requirements themselves, without 
having to resort to the formalization / modeling or the subjective (and frequently 
arbitrary) opinions of stakeholders. Such a tool would enable conflicts to be 
detected quickly from textual specifications themselves, and thus provide a cost-
effective solution to developers. 

3 Detecting Conflicts in an Aspect-Oriented 
Specification 

 
This section presents the EA-Analyzer tool and the process utilized to identify 
conflicts between requirements in the Crisis Management System. We will start 
presenting the annotation process of the Crisis Management specification with the 
Requirements Description Language (RDL). The following sections describe the 
inner workings of the tool on the annotated specification and an empirical 
evaluation of the tool. 

3.1 Annotating Textual Requirements with RDL 

The Requirements Description Language (RDL) [Chitchyan, 2007] utilizes XML 
tags to annotate a natural language specification, in order to express dependencies 
and interactions between various groups of requirements (such as viewpoints and 
use cases). A previous chapter of this book presents a detailed description of the 
RDL and discusses the usability of the approach; hence, we refer the reader to this 
chapter for a detailed discussion regarding the RDL. 
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Figures 1 and 2 show an example of a Non-Functional Requirement (NFR) in 
the Crisis Management System that has been annotated with the RDL tags. The 
annotated RDL text is generated with the semi-automated EA-Miner [Sampaio et 
al., 2005] tool, which is based on a general purpose NLP tool, Wmatrix [Rayson, 
2010]. 
 
<Concern name="Real-time"> 
…   
<Requirement id="3"> 
      The <Subject>system</Subject> 
      <Degree type="modal" semantics="obligation" level="high">shall</Degree> 
      be able to 
      <Relationship type="Move" semantics="Transfer_Posession">retrieve</Relationship> 
      any stored 
      <Object>information</Object> 
      with a maximum  
      <Object>delay</Object> of 500 milliseconds. 
    </Requirement>   
  </Concern> 
 
Fig. 1 Example of a NFR requirement in the Crisis Management System 
 

 
Fig. 2 Visualizing the NFR requirement in EA-Analyzer 
 

In addition, the RDL tags also express dependencies and interactions between 
requirements. Hence, an analyst can define domain relationships (via RDL 
compositions) using only the natural language text. For instance, RDL 
compositions can mandate that a requirement must precede another one, such as 
the real-time requirement in Figure 1 (“The system shall be able to retrieve any 
stored information with a maximum delay of 500 milliseconds”), which should be 
satisfied before any other requirement that retrieves information. 
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An RDL composition consists of three parts, namely Constraint, Base, and 
Outcome. Each part has a semantic query that selects requirements from the 
specification with the aim of ensuring a desired interaction. For instance, Figure 3 
presents a composition that must ensure that the requirements selected by the Base 
query (e.g., “The system shall have access to detailed maps, terrain data and 
weather conditions …” in Figure 4) are constrained by the requirements selected 
by the Constraint query (i.e., “The system shall be able to retrieve any stored 
information with a maximum delay of 500 milliseconds”). 
 
 
<Composition name="Performance (Real-time)"> 
 <Constraint operator="apply">(subject="system" and relationship="retrieve" and  
                  object="information" and object="delay")</Constraint> 
 <Base operator="before">relationship="handling" or relationship="processing" or  
                  relationship="request" and relationship="access"</Base> 
                 <Outcome operator="ensure"/> 
</Composition> 
Fig. 3 Example of a Composition in the Crisis Management System 
 

 
Fig. 4 Visualizing the Composition in EA-Analyzer 

3.2 Detecting Conflicts in the Crisis Management Specification 

The main goal of EA-Analyzer is to detect conflicts within a textual specification 
that has been previously annotated with RDL tags; recall that RDL tags are added 
with the help of the EA-Miner tool. In addition, the tool has a Graphical User 
Interface (GUI) that helps to visualize the annotated specification and the 
composition, such as the examples in Figure 2 and 4. 
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In EA-Analyzer, the problem of detecting conflicts is formulated as a 
classification problem, which is a well-studied problem in machine learning 
[Mitchell, 1997]. The tool operates on RDL by using its compositions and 
annotated requirements, and utilizes composed requirements to decide whether 
they have a conflicting dependency.  

EA-Analyzer has to go through a learning process before the tool can be 
utilized for detecting conflicts. The learning process consists of the following 
steps: (i) Identifying all the sets of requirements that crosscut one or more base 
concerns, also known as Compositional Intersections (Section 3.2.1); (ii) 
Generating training examples for the learning method by labeling the 
Compositional Intersections (Section 3.2.2); and, (iii) Training the classifier based 
on the examples generated in step (ii) (Section 3.2.3). 

3.2.1 Identifying Compositional Intersections 

The first step in the learning process is concerned with the identification of the 
compositional intersections; compositional intersections are used as a basis to 
detect conflicts among composed concerns, because they explicitly represent the 
interactions of a requirement with other requirements with reference to a base 
requirement. 

A compositional intersection is the union of all the constraint requirements 
(i.e., requirements that have been selected by the constraint queries) that crosscut 
the same base requirement. For instance, the Crisis Management specification has 
a composition that selects the constraint requirement R3 of the Real-time concern 
(i.e., “The system shall be able to retrieve any stored information with a maximum 
delay of 500 milliseconds”) and the base requirement R1 of the Persistence 
concern (i.e., “The system shall provide support for storing, updating and 
accessing the following information…”). In addition, the specification has another 
composition that selects the constraint requirement R5 of the Security concern (i.e., 
“All communications in the system shall use secure channels compliant with AES-
128 standard encryption”) and the aforementioned base requirement (i.e., R1 of the 
Persistence concern). Hence, R3 of the Real-time concern and R5 of the Security 
concern are part of the compositional intersection of R1 of the Persistence concern 
as shown in Figure 5. 

 

 
Fig. 5 Visualizing the Compositional Intersections in EA-Analyzer 
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3.2.2 Generating Training Examples 

The machine learning technique utilized by EA-Analyzer requires a set of labeled 
examples to train the tool. This step enables the tool to be trained on a per-
organization basis, so that each organization can have their EA-Analyzer tool 
tailored for detecting conflicts in their requirements documents. 

Labeled examples are time-consuming to obtain since they normally require a 
human annotator to examine and label each training example. In order to reduce 
this burden, we have implemented a module in EA-Analyzer that partially 
automates this step. Figure 6 presents the user interface (UI) that helps the human 
annotator label the composition intersection that has been previously identified 
(Section 3.2.1). In the UI, the human annotator is only required to select the 
conflicting requirements from the top list and the tool automatically performs a 
brute force procedure that labels each occurrence of the conflicting dependency in 
the set of examples (i.e., the compositional intersection that have been selected to 
train the tool). Figure 6 shows also that the tool requires not only training 
examples of conflicting dependencies within a compositional intersection but also 
examples of requirements within a compositional intersection that are interacting 
harmoniously. 

 

 
Fig. 6 Generating Training Examples with EA-Analyzer 
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Figure 6 presents a well-known example of a potential conflict between an 

Encryption requirement and a Performance requirement [Sampaio et al., 2007], 
since introducing encryption into a system reduces its responsiveness. The 
Encryption requirement is R5 of the Security concern (i.e., “All communications in 
the system shall use secure channels compliant with AES-128 standard 
encryption”) and the Performance requirement is R3 of the Real-time concern (i.e., 
“The system shall be able to retrieve any stored information with a maximum 
delay of 500 milliseconds”). In this example, the human annotator has to select 
these two conflicting requirements from the top list and the tool automatically 
labels each occurrence of the conflicting dependency in the compositional 
intersections below. The labeled examples are then saved to a file so that the tool 
can train the machine learning technique. 

3.2.3 Training EA-Analyzer to Identify Conflicts 

EA-Analyzer utilizes the Naïve Bayes learning method to train the tool based on 
the training examples provided in the previous step (Section 3.2.2). The learning 
method leads to a bag of words model (BoW); the BoW is a method in Natural 
Language Processing that models text as an ordered collection of independent 
words represented in a term-frequency vector, disregarding grammar5 and even 
word order. 

For instance, one can imagine the BoW of EA-Analyzer with two bags full of 
words. The first bag is filled with words found in compositional intersections that 
have a potential conflict, such as the potential conflict presented in Section 3.2.2 
(i.e., the well-known example of a potential conflict between an Encryption 
requirement and a Performance requirement). The second bag is filled with words 
found in compositions that do not have a potential conflict. While some words can 
appear in both bags, the first bag will contain conflict-related words such as 
“encryption” and “retrieve” much more frequently. On the other hand, the second 
bag will contain more words related to the other requirements. Hence, a new 
compositional intersection that has more words that come from the first bag than 
the second bag will be classified as a conflict. 

 

                                                
5 Please note that grammar and semantics are used in RDL composition definitions, as discussed 

previously. Thus, they are indispensable in the task of collecting the required bags or words. Once such 
words are collected, in the EA-Analyzer learning phase, the grammar and semantics are not used any 
further. 
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3.2.4 Advantages and Disadvantages of the learning method of EA-Analyzer 

This learning method in EA-Analyzer presents two advantages. First, the learning 
method only requires a small amount of data to train the Naive Bayes classifier 
[Mitchell, 1997]. Second, the learning method can be easily trained on a per-
organization basis, so that each organization can have their EA-Analyzer tool 
tailored for detecting conflicts in their requirements documents. Moreover, it has 
been proven to be very powerful (and with outstanding performance) in NLP 
problems such as text classification and topic modeling. However, the main 
disadvantage of this learning method is that it only considers the distribution of 
the words and loses the relationships between them. To overcome this problem, 
search engines commonly use vocabularies consisting of combinations of words or 
expressions, and the same technique is used in EA-Analyzer. 

In EA-Analyzer, the binary classification of a compositional intersection as 
either harmony or conflict could be perceived as an over-simplification of 
requirements’ relationships. The relationship of two quality requirements could be 
considered conflicting in one system and tolerable in another by a human analyst. 
However, EA-Analyzer will always pinpoint the potential presence of such 
conflicts. It is then up to the requirements analyst to consider if a given potential 
conflict can be tolerable in a given context, and so disregard it from the set of real 
conflicts for that system. Such classifications are not directly supported by the 
conflict identification support of EA-Analyzer; we consider these to constitute the 
follow-up step of conflict resolution. 
 

4 Empirical Evaluation 
 

This section presents an empirical evaluation of the tool, where the main goal 
was to assess the ability of EA-Analyzer to detect conflicts using training data 
gathered from four different documents, each representing a different domain. The 
documents were selected based on their suitability for this evaluation, with 
selection criteria including: domain, requirement type, complexity and use in 
previous studies. In addition, three documents originate from industrial 
organizations and the fourth document is a case-study extensively used in 
academia to evaluate AO modeling techniques. Furthermore, each of these 
documents was created prior to the conception of this study by external personnel. 
The four documents selected were: 

 
• Health Watcher (HW) [Soares et al., 2006] is a web based health support 

system which the public can use to register health-related complaints and 
query disease and symptom information. 
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• Smart Home (SH) [Pohl et al., 2005] is an embedded system which 
provides functionality to control various sensors and actuators around the 
home (i.e., lights, blinds, heating, etc.). 

• CAS [Ayed and Genssler, 2009] is a customer relationship management 
application (CRM) which utilizes service mash-ups and mobility support 
in a hosted software-as-a-service environment. 

• Crisis Management System (CM) [Kienzle et al., 2010] is a crisis 
management system for emergency situations (e.g., natural disasters, 
accidents, terrorist attacks). 

 
The evaluation consists of four experiments, in which we utilized each 

requirements document (HW, SH, CAS and CM) in turn as the training set and 
evaluated the classification accuracy of the tool with the other three documents. 
Table 1 shows some characteristics of the four documents selected for this study, 
and the characteristics present two different dimensions of the requirements 
specifications: (i) the size of the documents, by showing the number of words, 
compositions and compositional intersections (CI); and (ii) the number of 
compositional intersections that have the Encryption—Performance conflict. Each 
experiment used the Encryption—Performance conflict to evaluate the 
classification accuracy of the tool, because it is the only NFR conflict type that 
occurs in all four documents. 

 
 

 HW SH CAS CM 

Words in RDL 1764 4699 1053 5961 
Num. of Compositions 17 9 5 8 
Num. of CI 89 71 16 43 
Num. of CI with Encryption 
– Performance conflict 

23 5 3 16 

Tab. 1 Results of the classification accuracy in each experiment 
 
Table 2 presents the classification accuracy of the tool with the four different 

training sets. The classification accuracy of the HW and CM documents is 
93.90%, while the experiment with SH document achieved 92.05% and the CAS 
experiment yielded a classification accuracy of 48.51%. All the results are 
compared to a baseline accuracy of 50%, as randomly assigned classes should 
yield an approximate 50% accuracy. The results that use HW, SH and CM as 
training sets yield classifications results above the baseline accuracy; however, the 
experiment with the CAS document yields a classification result below the 
baseline accuracy. This may suggest that the size of the training set (the CAS 
document has only 16 compositional intersections – see Table 1) can significantly 
influence the classification accuracy of the tool. Despite the poor result with the 
CAS document, the results with the other three document, when a larger number 
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of examples are utilized to train the tool, present very high classification results. 
This suggests that the machine learning technique in EA-Analyzer is capable of 
detecting conflicts in aspect-oriented specifications. A more extensive and detailed 
evaluation of the tool can be found in [Sardinha et al., 2013]. 
 
  Training Sets   
Validation Data HW SH CAS CM 

HW  88.64% 34.09% 100.00% 
SH 94.20%  100.00% 94.20% 
CAS 87.50% 87.50%  87.50% 
CM 100.00% 100.00% 11.43%  

Weighted Average 93.90% 92.05% 48.51% 93.90% 
Tab. 2 Results of the classification accuracy in each experiment 

 

5 Conclusions 
 

The AO approach is an effective way to modularize and compose concerns in 
requirements specifications. In addition, AORE methods help to externalize 
interactions and interdependencies between concerns by utilizing explicitly 
dedicated composition specifications. These composed concerns are an excellent 
starting point for detecting conflicts within the requirements specification. 
However, detecting conflicts in large natural language specifications can be a 
burden for a requirements engineers, due to the large number and complexity of 
the interdependencies to be considered. As discussed earlier, the approaches based 
on formal specifications, models and stakeholder priorities, developed to date in 
the AORE community, are unable to provide low effort and high precision 
techniques for conflict identification in large AO specifications. 

This chapter presents the EA-Analyzer tool, in which we demonstrate that it is 
indeed possible to automate the process of detecting conflicts within textual AO 
requirements specifications. In addition, we present an empirical evaluation of the 
tool with three industrial-strength requirements documents and a well established 
academic case-study used in the AO research community. The results show that 
conflicts within requirements specifications can be detected with a high accuracy, 
as longs as a sufficient number of examples is utilized in the training set.  

As future work, we will focus efforts on the empirical evaluation of the tool 
with other requirements documents from different domains to validate the 
generalization power of the learning method in EA-Analyzer. In addition, we will 
also test a number of other classifiers in the tool, such as SVM [Bishop, 2006] and 
nearest-neighbor methods [Bishop, 2006]. The utilization of different machine 
learning classifiers may helps us identify the best machine learning approach for 
detecting conflicts.  
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EA-Analyzer is the first tool for automated conflict identification in textual AO 
requirements and compositions, and this work demonstrates that the power of 
AORE to represent concern interrelationships knowledge can be effectively 
harvested for conflict detection within natural language specifications. Hence, we 
see this work as the stepping stone towards effort reduction in AORE conflict 
identification, and supporting application of advanced modularity and analysis in 
textual requirements. 
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