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Abstract. Classical tree search algorithms mimic the problem solving
capabilities traditionally performed by humans. In this work we pro-
pose a unitary operator, based on the principles of reversible computa-
tion, focusing on hierarchical tree search concepts for sorting purposes.
These concepts are then extended in order to build a quantum oracle
which, combined with Grover’s quantum algorithm, can be employed as
a quantum hierarchical search mechanism whilst taking advantage of a
quadratic speedup. Finally, we show how the developed model can be
extended in order to perform a N-level depth-limited search.
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1 Introduction

Tree search algorithms assume a crucial role in artificial intelligence where they
are employed to model problem solving behaviour. Typically, such problems can
be described by a tuple (Si, Sg, R) where Si represents a finite set of initial
states, R a finite set of actions and Sg a finite set of goal states. The objective
of such algorithms consists in determining a sequence of actions leading from an
initial state to a goal state. A wide range of problems has been formulated in
terms of hierarchical search procedures e.g. game playing programs and robot
control systems. Such behaviour requires the ability to determine what state is
obtained after applying an action to a given state. This process is illustrated in
Figure 1 where a set of possible actions, respectively R = {0, 1}, is applied to a
root node A producing in the process a binary tree. The cardinality of the set of
available actions is also referred to as the branching factor b. At a search depth
level d there exist a total of bd leaf nodes. Each leaf node translates into the
state reached after having applied d actions, e.g. node I is reach after applying
actions 0, 0 and 1. We will refer to set of actions leading to a leaf node as the
path taken during the tree search.

Grover’s quantum search algorithm [1] allows for a quadratic speedup to be
obtained in search procedures. The algorithm performs a generic search for n-
bit solutions amongst the 2n possible combinations by employing the quantum
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Fig. 1: The possible paths for a binary search tree of depth 3.

superposition principle alongside an oracle O in order to query many elements of
the search space simultaneously. The oracle is responsible for determining which
strings correspond to solutions and it should be able to do so in polynomial
time. This behaviour is similar to the NP class of problems whose solutions are
verifiable in polynomial time O(nk) for some constant k, where n is the size
of the input’s problem. Oracle O behaviour can be formulated as presented in
Expression 1, where |x〉 is a n-bit query register, |c〉 is a single bit answer register
where the output of g(x) is stored. Function g(x) is responsible for checking
if x is a solution to the problem, outputting value 1 if so and 0 otherwise.
Grover’s original idea only focused on developing a generic search mechanism
and did not have hierarchical search in mind. In this work we consider the impact
of incorporating classical search concepts alongside Grover’s algorithm into a
hybrid quantum search system capable of solving instances of the hierarchical
sorting problem.

O : |x〉|c〉 7→ |x〉|c⊕ g(x)〉 (1)

The remainder of this work is organized as follows: Section 2 introduces the
concepts of the hierarchical sorting problem; Section 3 presents the required
reversible circuitry for our proposition alongside an oracle mapping capable of
being integrated with Grover’s algorithm; Section 4 discusses how such an oracle
can be applied alongside Grover’s algorithm and how our proposition differs from
quantum random walks on graphs; Section 5 presents the conclusions of our work.

2 Sorting

The sorting problem may be defined in terms of the application of a problem-
specific set of actions with the objective of determining a sequence of actions that



produces a goal state. For some problems, the action set may convey an increas-
ing element order, whilst for others the final arrangement may only be expressed
through condition-action pairs. For some problems the only viable procedure
consists in performing an exhaustive examination of all possible actions until
goal states are found. E.g. suppose we wish to sort a list containing elements of
an alphabet

∑
= {a, b, c, d} and that the dimension of the list, E, is fixed to four

elements. In each computational step we can perform operation S(x, y), respon-
sible for switching the elements in position x and y. If repetitions are not allowed
then is is possible to check that a total of

(
|
∑

|
2

)
=

(
4
2

)
possible combinations

exist, where |∑ | represents alphabet length. Accordingly, we are able to define
the set of possible actions R = {S(0, 1), S(0, 2), S(0, 3), S(1, 2), S(1, 3), S(2, 3)},
and apply it an initial state, as illustrated in Figure 2.

S(0, 1)

{a, b, c, d} {c, a, b, d} {d, a, c, b} {b, c, a, d} {b, d, c, a} {b, a, d, c}

{b, a, c, d}

S(0, 2) S(0, 3) S(1, 2) S(1, 3) S(2, 3)

Fig. 2: A search of depth 1 with a branching factor b = |R| = 6 applied to an
initial state {b, a, c, d} and goal state {a, b, c, d}.

3 Oracle Development

Changes occurring to a quantum state can be described with quantum circuits
containing wires and elementary quantum gates to carry around and manipu-
late quantum information [2]. Mathematically, state evolution can be expressed
unitary operators. A matrix A is said to be unitary if A’s transpose complex

conjugate, denoted by A∗T

, or simply by A†, is also the inverse matrix of A
[3]. In this notation each matrix column describes the transformation suffered
at a specific column index, i.e. a permutation. These concepts are related to re-
versible computation theory, ergo our approach relies on developing a reversible
circuit capable of sorting the 4-length list element presented in Section 1. There-
fore, we need to represent the overall state in a binary fashion. More specifically,
⌈log2 |

∑ |⌉ = ⌈log2 4⌉ = 2 bits are required to encode the symbols of the alpha-
bet, each of which can be represented as presented in Table 1. This implies that
a total of 8 bits will be employed to represent each list. Let Table 2 represent
the encodings for the root state and the goal state associated with the sorting
example of Figure 2. Conceptually, our reversible circuit will require the ability



to: (1) determine if a state is a goal state; and (2) given a state and an action
determine the new state obtained. These two requirements will be discussed,
respectively, in Section 3.1 and Section 3.2. Section 3.3 presents the details of
the overall circuit.

b0 b1 Element
0 0 a
0 1 b
1 0 c
1 1 d

Table 1: Binary encoding for each symbol of
∑

Position 0 1 2 3
Bits b0 b1 b2 b3 b4 b5 b6 b7

{b, a, c, d} 0 1 0 0 1 0 1 1
{a, b, c, d} 0 0 0 1 1 0 1 1

Table 2: Binary encodings for the initial and goal states of Figure 2.

3.1 First Requirement

Tackling the first requirement requires developing a gate capable of receiving as
an argument a binary string representing the state and testing if it corresponds
to a goal state. This computational behaviour can be represented through an
irreversible function f , as illustrated in Expression 2. It is possible to obtain
a reversible mapping of an irreversible function f with the form presented in
Expression 3, where x represents the input and c an auxiliary control bit [4].

f(b0, b1, b2, b3, b4, b5, b6, b7
︸ ︷︷ ︸

state

) =

{
1 if state ∈ Sg

0 otherwise.
(2)

(x, c) 7→ (x, c⊕ f(x)) (3)

From Expression 3 we know that the inputs should also be part of the outputs.
The only issue is due to the result bit, which requires that a single control bit be
provided as an input. Therefore, any potential gate would require 9 input and
output bits, 8 of which are required for representing the state and 1 bit serving
as control. This gate, which we will label as the goal state unitary operator, is
illustrated in Figure 3. Table 3 showcases the gate’s behaviour for a selected
number of states, where f(b) denotes f(b0, b1, b2, b3, b4, b5, b6, b7). Notice that
when the gate determines that the input state ∈ Sg it effectively switches the
control bit, as highlighted in Table 3. Mathematically, we need to specify the



set of column permutations. Let T denote the unitary operator responsible for
implementing the behaviour of function f . T is a matrix with dimensions 29×29.
From Table 3 it should be clear that only two input states map onto other states
rather than themselves. Namely, T |54〉 → |55〉 and T |55〉 → |54〉. Accordingly,
the 54th column of T should permute to state |55〉, and the 55th column map to
state |54〉. All other remaining states would continue to map onto themselves.

Inputs Outputs
b0 b1 b2 b3 b4 b5 b6 b7 c b0 b1 b2 b3 b4 b5 b6 b7 c⊕ f(b)

0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1

0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0

0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0

1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1

Table 3: A selected number of results from the truth table of the goal state
unitary operator.

3.2 Second Requirement

The second requirement combined alongside with Expression 3 implies that the
new state should be presented alongside the original one. Additionally, we are
interested in applying a switch action if and only if the input state 6∈ Sg. As
a consequence, we can opt to develop a new function g which includes in its
definition a reference to function f . Our main concern resides in how to out-
put the new state in a reversible manner since we are interested in having 8
result bits representing the new state. Expression 3 can be extended in order to
accommodate any number of control bits, as illustrated by Expression 4 where
ci are control bits, and f(x) = (y0, y1, · · · , yn−1) with yi ∈ {0, 1}. Function g

is responsible for producing the new state by taking into account the current
state and four bits, respectively (m0,m1) and (m2,m3), representing, respec-
tively, the arguments x and y of the switching function S(x, y). Accordingly, let
g : {0, 1}12 → {0, 1}8 with g(b,m) = (y0, y1, y2, y3, y4, y5, y6, y7), where b denotes
the input state (b0, b1, b2, b3, b4, b5, b6, b7), m the positional bits (m0,m1,m2,m3)
and (y0, y1, y2, y3, y4, y5, y6, y7) the resulting state. Then, g’s behaviour has the
form presented in Expression 5. The corresponding gate therefore has (1) 8 input
and output bits for the current state; (2) 4 input and output bits describing the
switch positions; and (3) 8 control and result bits in order to account for the new



state. The reversible gate, which we will refer to as the switch element operator
M , is depicted in Figure 3. The corresponding unitary operator M is a matrix
of dimension 28+4+8 × 28+4+8 which can be built in a similar way to T .

(x, c0, c1, · · · , cn−1) 7→ (x, c0 ⊕ y0, c1 ⊕ y1, · · · , cn−1 ⊕ yn−1) (4)

g(b,m) =







(b2, b3, b0, b1, b4, b5, b6, b7) if f(b) = 0 and m = (0, 0, 0, 1)
(b4, b5, b2, b3, b0, b1, b6, b7) if f(b) = 0 and m = (0, 0, 1, 0)
(b6, b7, b2, b3, b4, b5, b0, b1) if f(b) = 0 and m = (0, 0, 1, 1)
(b0, b1, b4, b5, b2, b3, b6, b7) if f(b) = 0 and m = (0, 1, 1, 0)
(b0, b1, b6, b7, b4, b5, b2, b3) if f(b) = 0 and m = (0, 1, 1, 1)
(b0, b1, b2, b3, b6, b7, b4, b5) if f(b) = 0 and m = (1, 0, 1, 1)
(b0, b1, b2, b3, b4, b5, b6, b7) otherwise

(5)

3.3 General Circuit

By combining both the switch elements and the goal state gates we are now able
to verify if a goal state has been reached after switching two elements. The switch
elements operator M already incorporates in its design a test for determining if
the gate should be applied or not. Accordingly, we only need to check if the final
state obtained corresponds to a goal state. This process is illustrated in Figure 3
where a switch operatorM is employed alongside a goal state operator T , where
res has the value presented in Expression 6.

res = c8⊕ f(c0⊕ y0, c1⊕ y1, c2⊕ y2, c3⊕ y3, c4⊕ y4, c5⊕ y5, c6⊕ y6, c7⊕ y7) (6)

Algebraically, the overall circuit behaviour can be expressed as presented in
Expression 7, where I⊗(8+4) = I ⊗ I ⊗ · · · ⊗ I repeated 12 times, since operator
T should only take into consideration bits c0, c1, · · · , c8. The associated unitary
operator, respectively presented in Expression 7, acts on Hilbert space H =
Hb⊗Hm⊗Hc, whereHb is the Hilbert space spanned by the basis states employed
to encode the state configuration bits b = b0, b1, · · · , b7, Hm is the Hilbert space
spanned by the basis states employed to represent the set of permutations, and
Hc is the Hilbert space spanned by the auxiliary control bits.

(I⊗12 ⊗ T )M |b0, b1, · · · , b7,m0,m1,m2,m3, c0, c1, · · · , c8〉 (7)

This strategy can be extended in order to apply any number of switch oper-
ators, where the output of a switch gate is provided as input to another switch
operator. In doing so, we add a guarantee that, if possible, another element per-
mutation is applied to the input state. More specifically, in order to represent
each element of the alphabet we require e = ⌈log2 |

∑ |⌉ bits. Let E represent the
element list to be sorted, then an adequate encoding for E will require b = |E|×e
bits, where |E| denotes the list size. Additionally, specifying a list position in-
volves p = ⌈log2 |E|⌉ bits. Each switch operator M will thus require a total of
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Fig. 3: The reversible circuit responsible for performing the depth-limited search
of Figure 2.

b + p+ p + b = 2(b + p) input and output bits, and each goal state gate T will
require a total of b+1 input and output bits. How many bits will be required by
the circuit? Suppose we wish to apply m permutation, i.e. apply operator M a
total of m times. The first operatorM1 requires 2(b+p) bits. Since a part ofM1

outputs will be provided as input toM2 an additional b+2p bits will be added to
the circuit. If we extend this reasoning to m applications ofM then it is possible
to conclude that 2(b+ p) + (m− 1)(b+ 2p) bits will be required to perform the
switching operations. Since operator T requires a single control bit this implies
that the overall circuit employs a total of n = 2(b+ p)+ (m− 1)(b+2p)+1 bits.

Of these n bits c = n− (b+m× 2p) = mb+ 1 bits are control, or auxiliary,
bits. Furthermore, the sequence of bit indexes after which a switch operator M
should be applied is V = {0, b+2p, 2(b+2p), 3(b+2p), · · · , (m−1)(b+2p)}. Based
on these statements we can describe a general formulation for a sorting circuit C
employing operatorsM and T , as illustrated in Expression 8. Unitary operator
C would act on an input register |x〉 conveying information regarding the initial
state, the set of permutations and also the auxiliary control bits. Accordingly,
operator C would act upon a Hilbert space H spanned by the computational
basis states required to encode x. Notice that this approach is equivalent to



performing a depth-limited search, one whose number of switch operators T
would grow linearly with the depth.

C = (I⊗m(2p+b) ⊗ T )
∏

k∈V

(
I⊗k ⊗M

)
(8)

Expression 8 needs to be further refined in order to be in conformity with the
oracle formulation of Expression 1. which effectively means that all the original
inputs, excluding bit c, should also be part of the outputs. This means that
the circuit presented in Figure 3 should somehow undo their computation and
then store the overall conclusion in an output register, an operation which can
be performed by employing a CNOT gate. This behaviour can be obtained by
building a mirror circuit, C−1, where each component is the inverse operation
of original circuit. Then, with both circuits developed, it is just a matter of
establishing the appropriate connections, i.e. the outputs of the original circuit
are provided as inputs to the mirror. The application of these requirements to
the reversible circuit of Figure 3 is presented in Figure 4. The circuits output
is presented in Expression 9 where res has the value shown in Expression 6. If
the input register |b〉|m〉|c〉 is relabeled as |x〉 then Expression 9 is equivalent to
Expression 1.
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b3

b4
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m1

m2
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T
Goal State

Unitary Operator/Reversible Gate

T−1

Inverse Goal State
Unitary Operator/Reversible Gate

c0

c1

c2

c3

c4

c5

c6

c7

c8

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9 CNOT res

M
−1

Inverse Switch 
Elements

Unitary Operator/Reversible Gate

M

Switch Elements
Unitary Operator/Reversible Gate

Fig. 4: The oracle formulation of the depth-limited search circuit of Figure 3.

O : |b〉|m〉|c〉
︸ ︷︷ ︸

input

|c9〉
︸︷︷︸

oracle’s control bit

7→ |b〉|m〉|c〉|c9 ⊕ res〉 (9)

Alternatively, we can state this result in more general terms by employing
unitary operator C, presented in Expression 8, as showcased by Expression 10.
In both cases the Hilbert space H of the input register is augmented with the



basis states required to encode the additional auxiliary control bit, accordingly
H = Hb ⊗Hm ⊗Hc ⊗Hcmb+2

.

O = C−1(I⊗2(b+p)+(m−1)(b+2p)CNOT )C|b〉|m〉|c〉|cmb+2〉 (10)

4 Final considerations

Overall, our reversible circuit and the associated oracle O can be perceived as
employing a binary string of the form |b1b2b3b4b5b6b7b8 r1r2 · · · rN 〉, where ri
represent a sequence of permutations. Accordingly, we are now able to employ
Grover’s algorithm alongside oracle O and a superposition |ψ〉. The exact form
of |ψ〉 depends on the specific task at hand, e.g. (1) we may be interested in only
building a superposition of all possible permutations, a behaviour similar to the
depth-limited search presented in Figure 2, or (2) we may set |ψ〉 = H⊗k|0〉⊗k,
where k is the number of bits employed by the input state |b〉|m〉|c〉, effectively
allowing us to search all possible combinations of initial states and permutations
simultaneously. After Grover’s algorithm has been applied and upon measuring
the superposition state we obtain a state containing the sequence of permutations
leading up to a goal state. From a tree search perspective this process can be
viewed as a depth-limited search. Classical search strategies require O(bd) time,
where b is the branching factor and d the depth of a solution. If we only take into
consideration the dimension of the search space then such a quantum hierarchical
search strategy would allow this time to be reduced to O(

√
bd), effectively cutting

the depth factor in half. However, this is a best case scenario since it assumes that
the bit encoding strategy always produces viable paths, which is not always true
depending on the dimension of the search space or when non-constant branching
factors are employed (please refer to [5] for more details).

Finally, from a graph perspective, it is possible to establish some links be-
tween the concepts discussed and quantum random walks on graphs. Quantum
random walks are the quantum equivalents of their classical counterparts ([6]
provides an excellent introduction to the area). Quantum random walks were
initially approached in [7], [8], [9] and in one-dimensional terms, i.e. walk on a
line. These concepts were then extended to quantum random walks on graphs
in [10], [11], and [12]. Quantum random walks can also provide a probabilis-
tic speedup relatively to their classical parts, namely the hitting time for some
specific graphs, i.e. the time it takes to reach a certain vertex B starting from
a vertex A, can be shown to be exponentially smaller [13]. However, these ap-
proaches only focus on graph transversal through a simultaneous selection of
all possible edges at any given node, a procedure which is applied through the
superposition principle. In contrast, our approach focuses on a simultaneous
evaluation of all possible path up to a depth level d with a focus on (1) finding
states ∈ Sg and (2) determining the path leading up to these states.



5 Conclusions

In this work we presented a possible model for a depth-limited search with an
emphasis on sorting. The proposed model can be viewed as an hybrid between
a pure quantum search mechanism, such as the one detailed in Grover’s algo-
rithm, and a classical search system. By combining these concepts we are able to
hierarchically search through all possible combinations quadratically faster than
its classical counterparts. Our proposal placed a strong emphasis on determin-
ing the set of actions leading up to a target node, since this a crucial task for
many artificial intelligence applications. Our approach can be also perceived as
performing hierarchical search by exploiting the NP class of problems.
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