
WSN Self-address Collision Detection and Solving

Carlos Ribeiro
INESC-ID/IST

Email: Carlos.Ribeiro AT inesc-id.pt

Ivo Anastácio, André Costa, Márcia Baptista
IST

Email: {ivo.anastacio,andre.costa,marcia.baptista} AT tagus.ist.utl.pt

Abstract

The complexity and number of interconnected elements
comprising today’s networks have stressed the need for
autonomic computing techniques. This need is even bigger
in Wireless Sensor Networks, because sensor nodes should
work continuously without operator intervention, i.e. have
self-organiztaion and self-configuration algorithms. The first
action that a Wireless Sensor Network should do is to
establish the network address of each node without colli-
sions. However, this scenarios are dynamic which means
that network partitions and rejoins are common and node
addition and failure are not uncommon, which means that
the network should be able to reconfigure itself without
compromising availability.

In this paper we show a solution to detect address
collisions in dynamic scenarios wasting a minimum level of
energy (i.e. without periodic beacons or any other kind of
message), and we describe a collision solving protocol which
minimizes the impact on the already established routes,
which also minimizes energy loss because there is no need
to rerun the routing protocol.

In order to develop the present solution we have im-
plemented several preliminary solutions that revealed some
lessons about wireless communications on sensor nodes
which were useful to the optimization of the final solution.

Index Terms

WSN, Autonomic, Address assignment, Security

1. Introduction

Wireless Sensor Networks (WSN) are networks composed
by small and cheap devices with sensing abilities, which
are able to communicate with each other by radio signals,
usually running over small batteries. The combination of
sensing and radio communication abilities makes these net-
works ideal to build distributed sensing networks where each
node collaborates by sensing one or more phenomena in its
neighborhood and relaying it to a central node.

Because of their properties, WSN are specially suitable
for surveillance of critical infrastructures, e.g. gas pipelines,
power lines, water supply systems, etc. This means that have
to be reliable and be able to self-adapt to changes both in
the sensed environment and in the wireless network. On

the other hand this sensors should be in place, sensing the
environment, for long periods without human intervention
or battery exchange, which means that reliability and self-
adaptability should not be accomplished at the cost of energy
consumption.

Previously, we have proposed an address self-assignment
protocol, robust against a limited number of misbehaved sen-
sor nodes [7]. The protocol is a probabilistic self-stabilizing
protocol, which is able to assign 2-hop unique addresses to
every node with a minimum number of messages, and yet
be resilient against a limited number of misbehaved nodes
that try to prevent well behaved nodes from choosing their
addresses.

However, the protocol is not able to prevent address
collisions from happening whenever the network changes,
either because some more sensors were added or because
some communication barrier was removed (e.g. a door
opens) and some other sensors became visible.

Most address assignment protocols [1, 2, 3, 6, 5] do
not handle address collisions resulting from incrementally
deployed scenarios, others [8] solve the problem by peri-
odically running the address assignment protocol, which is
clearly inadequate for WSN because most of the time there
are no collisions and the running of the protocol is a waste
of energy. Furthermore, whenever a collision is detected
the address of some nodes change breaking any established
sessions and/or routes.

In this paper we describe two protocols: one to detect
collisions with minimum energy waste and, another to solve
them without breaking the established sessions and routes.
We have implemented both protocols in Mica Z motes
running TinyOS and show some measurements in different
environments (i.e. noisy in terms of wireless spectrum and
non-noisy).

The next section describes some previous work in address
assignment in several contexts (WSN, MANETS, etc.).
Section 3 describes briefly the RSI protocol which is the
basic address assignment protocol extended by the proposed
protocol. Section 4.1 describes the protocol to detect address
collisions and shows some experimental results. Section 4.2
describes the protocol that solves address collisions without
breaking established routes and finally in Section 5 we
conclude the paper.

2. Related work

The address assignment problem was already studied
before both for WSNs and for Mobile Ad-hoc Networks
(MANET). Because in most situations addresses do not
need to be global unique (see [7]) the address assignment
problem turns up to be the neighborhood unique naming
(NUN) problem, and is similar to the classical coloring graph
problem with conditions at distance 2.

The IETF Zeroconf working group proposed a solution
for MANETs [1] which relay on the discovering abilities of
the underlying routing protocol. In their proposal each node
independently chooses an address and then sends a routing
request packet for that address, if a route is found within
a timeout period, the address is already in use, otherwise
the address is not used and the protocol ends. This protocol
does not handle dynamic scenarios where a node may enter
in the vicinity of another that has another neighbor with the
same address.

The same problem is shared by other solutions [2, 3]
that have a different approach to the address establishment
problem but do not contemplate network changes. Both use
a probabilistic self-stabilizing algorithm that must be run by
all the nodes at the same time. The algorithm used in is
very simple [2]. Each node keeps two variables, one with
its ID and one with the ID of two colliding nodes in its
neighborhood. If there are no collisions in the neighborhood
the variable is empty. Each node starts by asking every
neighbor their ID to calculate the second variable. It than
asks its neighbors for their variables values. If any of these
values is equal to its ID the node randomly chooses another.
The algorithm was proven to self-stabilize, however no
protocol was given to implement it. In particular it is not
clear how messages from two distinct nodes with the same
ID can not be confused with a common replay of the same
message.

The approach followed in [6, 5] is different but also
probabilistic. They leverage on the wireless nodes’ ability
to detect media access collisions to know if there are other
nodes contending for an ID or not. If a node discovers that
no one else is broadcasting at the same time it takes the
ID form himself and every one else knows that that ID is
taken. If several nodes broadcast at the same time, they all
flip a coin to decide if they will participate in the next round.
On average only half of the contenders transmit in the next
round. After several rounds only one node will transmit, and
gets the ID. As before this solution does not handle dynamic
scenarios.

The solution proposed in [8] is able to handle dynamic
scenarios by periodically repeating the protocol. In this
proposal each node send a periodical message with its
address. Each node keeps a log with every message seen by
it, if it detects a duplicate address it sends a warning message
to both nodes. Upon receiving the warning message both
nodes choose another address and announce it again. With
this protocol nodes may change address several times during
the life-time of the network which may not be acceptable by

every application or routing protocol. Moreover, the periodic
broadcasting of IDs may be too energy expensive, and it
is not clear how the periodic address announcement is not
mistaken with an address collision.

The ZigBeeTMcommunication protocol uses two types
of addresses: 64 bit global unique addresses and 16 bit
network unique short addresses. The 64 bit addresses are
used at the beginning of the network to establish the 16-bit
addresses, which are used from there after. The protocol
which establishes the 16-bit addresses is similar to DR-
CP/DAAP, however instead of using two distinct steps for
assigning an address and for assigning a pool of addresses,
ZigBeeTMonly uses one; and instead of giving up half of its
address space to each children node, a node divides equally
its pool of addresses by all its neighbors. Both DRCP/DAAP
and ZigBeeTMaddress assignment protocol do not scale well
when the number of nodes is too large or the address space
is too short.

3. RSI description

The basic protocol objective is twofold; i) ensuring a
unique local identification on the WSN over a distance 2
neighborhood with an arbitrary large probability p < 1 and,
ii) minimize the energy loss by minimizing the number of
messages sent and received.

The basic protocol is very simple, each node chooses a
random address for himself and asks its neighbors if they
have chosen the same address. If at least one of them have
chosen the same address, it replies saying that there were an
address collision, otherwise each receiving node rebroadcast
the query to its own neighborhood. The second hop nodes
check the receiving packet for a collision with their own
addresses. If they find a collision they reply in much of
the same way that first hop nodes does, otherwise they do
nothing. There are no negative replies only positive ones.
This is because the probability of finding a collision in a
2-hop neighborhood is very low, thus in the usual scenario
only query messages are sent.

The first problem that the protocol overcomes is how
to distinguish the rebroadcast messages originated by the
receptor node from the ones originated by other nodes. If a
node trying to establish an address receives a query for that
same address he should answer declaring that that address
was taken, even if that action result in neither of the nodes
stick with the ID. However, if the node is earing an echo of
its own query it should do nothing. In the basic version of
the protocol, the messages sent by each node are stamped
with a collision free 64 bit node address (extended address).
This extended address can be a manufacturer unique number
when available or a random number generated whenever a
node starts. Note that extended addresses are used only in
the context of the initialization protocol. Afterwards, only
16 bit addresses area used. In fact, the protocol can be seen
as a recoloring protocol with a smaller color space.

Another similar problem happens when a rebroadcast
node needs to rebroadcast a reply back to the original query

node. The rebroadcast of the reply should be done indepen-
dently of the current node address. The node is not acting
for itself, and may also be in a process of finding its own
address. To solve this problem we have added the extended
address of the rebroadcast node to each message. Therefore,
each message is composed of one tentative address, two
extended addresses and one message type. The usage of this
extended addresses are crucial to ensure the self-stability of
the protocol [7].

4. Handling incrementally deployed scenarios

One important feature of address assignment protocols,
which is often forgotten, is its ability to handle late deployed
sensors and merging of network partitions. The deployment
of additional sensors may be necessary either to improve
the sensor coverage or to improve the network lifetime, the
sensors in place may be at the end of its battery. The merging
of network partitions may happen either because there was
an obstacle dividing nodes at the time of deployment which
is now removed, or because the addition of new nodes made
two or more networks reachable to each other.

In such scenarios address collisions may happen, because
at the time of address assignment not every node knew
about each other. Most address assignment protocols do
not consider these scenarios and the ones that do, choose
to rerun the assignment protocol in the colliding nodes
[8]. This strategy may have a negative impact on routing,
because every route established through those nodes need to
be rebuilt.

Another problem that these protocols need to handle is
how to detect the existence of colliding addresses. In [8],
address collisions are detected during the periodically neigh-
borhood query which is done for this purpose. However,
given that, the addition of new nodes, and the merging of
networks are rare, such a scheme is too energy expensive. In
[9] (a protocol designed for MANETs) each packet has an
additional 64 bit unique number which is used to detected
address collisions, but that it is not an option in WSNs given
the size of each packet.

Whenever a node is added or a barrier is lifted between
two or more network partitions it is possible that two or
more nodes with the same address became reachable by a
single node. A k-way collision happens whenever k nodes
with the same address are reachable by one node, a.k.a the
detecter.

Both 2-way and 3-way collisions are only relevant if
within a 2-hop vicinity because as stated in [7] many
protocols only require local unique addresses, e.g. direct
diffusion. The probability of a k-way collision in such
scenario is given by equation 1, where k is the number of
colliding addresses, N is the total number of nodes, n is
the number of neighbors of each node (i.e. reachable in 1-
hop) and |A| is the address space size. If k = 2 (2-way
collisions) and n = N − 1 (every node can reach every
other node) the equation degenerates in the probability of
the birthday paradox. In order to derive equation (1) we

10
-5

10
-4

10
-3

10
-2

10
-1

 0 200 400 600 800 1000

P
r
o
b
a
b
i
l
i
t
y

o
f

c
o
l
l
i
s
i
o
n

Number of nodes

Between 3 nodes

10
-5

10
-4

10
-3

10
-2

10
-1

 0 200 400 600 800 1000

P
r
o
b
a
b
i
l
i
t
y

o
f

c
o
l
l
i
s
i
o
n

Number of nodes

Between 3 nodes
Between 2 nodes

Figure 1. Collision probability between 2 nodes and be-
tween 3 nodes for a field with a density of 25 neighbors.

notice that P (k-way) = 1 − P (k-way), where P (k-way)
is the probability of not having a k-way collision, and that

P (k-way) = 1− p(k)C(k,n,N), where p(k) =
(

1
|A|

)k−1

is the probability of some set of k nodes not having all
the same address and C(k, n,N) is the number of sets
of k nodes, in radio reach of each other, that can be
formed in a field of N nodes with a n neighborhood.
C(k, n,N) = Ci(k, n) + (N − n − 1) × Co(k, n) where
Ci(k, n) =

(
n+1

k

)
is the number of sets of k nodes that

can be formed within a n node neighborhood, of a chosen
node in the center of the field, and Co(k, n) =

(
n

k−1

)
is the

number of sets of k− 1 nodes that can be formed using the
neighborhood of each of the N − n − 1 nodes not in the
original center neighborhood.

P (k-way) = 1−

(
1−

(
1
|A|

)k−1
)((n+1

k)+(N−n−1)×(n
k−1))

(1)

Figure 1 shows the probability of collision for 3-way
and 2-way collisions for several number of nodes, giving
an address space |A| = 215 (15 bit addresses, we will use
the extra bit for collision solving) and a neighborhood of
25 nodes. The collision probability is most of the time two
orders below for 3-way collisions in comparison with 2-way
collisions. Moreover, since we are considering only the
nodes that are deployed after address assignment, because
during address assignment the collision solving protocol is
not used, what is used is the RSI protocol, the probability
of detecting and having to solve a 3-way collision is even
lower.

Given the above results we make the hypothesis that
k-way collisions with k > 2 are extremely unlikely and
we are going to focus our efforts in detecting and solving
2-way collisions.

 215

 220

 225

 230

 235

 240

 245

 250

S
i
g
n
a
l

S
t
r
e
n
g
t
h

Time

Figure 2. Signal strength of messages received by the
same node over time.

4.1. Detecting address collisions

Our approach to detect address collisions is motivated by
the way that people distinguish two voices in an crowd. If
one of the voices is loud and the other is soft then there
are probably, two persons talking. If the heard sentences
do not make sense because they seem garbled, then it is
possible that they are produced by more than one person.
Neither of these heuristics give a precise information about
the existence of colliding addresses but they may be used as
triggers for a collision solving protocol.

The former solution is independent on the transport pro-
tocol while the latter is not. In order to detect out-of-order
messages the transport protocol must have the notion of
order which is not the case for many transport protocols
in WSNs, this is why we have chosen the former solution.

Given the hypothesis that only 2-way collisions may
happen whenever the network changes only two scenarios
are possible:
• The address of the added node is the same of one of

the nodes already in the network and both are reachable
by a third node (merge of partitions).

• The address of two of the nodes in the network are the
same and they are reachable by the new node (node
addition).

The first scenario is simpler than the second, although,
as we will see, they will be handled the same way. If the
nodes in the network knew each other they are able to know
the signal strength (SS) average and standard deviation of
messages sent by each other. If one of the nodes detects a
message with a SS much different from the usual it may
suspect of an address collision. To be sure of the collision
it will have to run the collision solving protocol described
in the next section.

We have started by using an algorithm from Knuth [4]
to incrementally calculate the average (ss) and standard
deviation σss of the SS without having to keep all sam-
ples, i.e. the calculus is incremental. In order to get a
four nines confidence level in the collision detection we

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 210 215 220 225 230 235 240 245

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Signal Strength

Low noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 210 215 220 225 230 235 240 245

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Signal Strength

Low noise
High noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 210 215 220 225 230 235 240 245

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Signal Strength

Low noise
High noise

Compromise curve

Figure 3. Standard deviation behavior with the signal
strength (SSmax = 255) of messages.

check if the SS of each message is within four times the
standard deviation of the average (|ss − ssi| < 4σss),
otherwise we signal a collision. However, we have realized
that the SS average varies over time due to battery drain
and environment changes. Figure 2 shows the signal strength
over time, of messages received in a field of MicaZ Motes
using the TinyOS 802.15 stack. The first approach to solve
this problem was to calculate the SS average and standard
deviation using only the last few messages, however that
proved ineffective because the standard deviation with too
few messages lacked the necessary precision.

Instead of computing both the average and standard
deviation we chose to compute the average over the last
few messages and predict the standard deviation based on
the average. As expected the standard deviation over a few
messages is very small in low noise scenarios and is almost
twice in high noise scenarios (Figure 3). A good compro-
mise is given in Figure 3, in which the predicted standard
deviation is given by σ̂ss = 0.003ssi. With this information
the protocol signals a collision whenever |ss− ssi| > 4σ̂ss.
Our measurements showed that this equation is suitable both
for low and high noise scenarios, however if for extremely
high noise scenarios the number of false collisions detected
by this protocol is to high we incorporate a self regulatory
mechanism which increases the standard deviation every
time that a false positive is detected.

This solution has another advantage it is able to handle the
second collision scenario. If a node arrives to a network and
starts to communicate with two nodes with the same address
at the same time, it will not have previous information about
average and standard deviation therefore it will not be able to
find discrepancies with past history. However, with this so-
lution, although the average will still be wrongly calculated
because it will be something in between the two signals of
the two communicating nodes, the standard deviation will
not change much, which will allow the detection of the
collision.

The Listing 1 shows that whenever a message is received
with a signal strength above or below a predefine confidence

. . .
t y p e d e f s t r u c t {

u i n t _ 1 6 add ;
b y t e s s _a vg [2] ; / / s i g n a l s t r e n g t h average .
b y t e n [2] ; / / messages r e c e i v e d .
b o o l e a n s o l v i n g ;

} NodeRecord ;
c o n s t i n t maxMsgCount = 1 5 ;

void recMsgPwr (i n t add , i n t msgtype ,
i n t isB , / / 1−b r o a d c a s t , 0−o t h e r w i s e .
i n t s s) { / / s i g n a l s t r e n g t h .

NodeRecord n r e c = getAddRecord (add) ;
i f (n r e c . s o l v i n g) / / i f i t s a l r e a d y s o l v i n g

re turn ; / / f o r t h a t addres s , r e t u r n s .
i f (n r e c . n [i sB] > 0) {

i n t c i = 4 + f a l s e P o s i t i v e s ;
b y t e d i f f = abs (s s − n r e c . s s _av g [i sB]) ;
i f (d i f f > c i ∗0.003∗ s s)

s t a r t C o l S o l v i n g (add) ;
}
i f (n r e c . n [i sB] > maxMsgCount) {

n r e c . n [i sB] = 1 ;
n r e c . s s_ av g [i sB] = s s ;

} e l s e {
n r e c . n [i sB] + + ;
i n t d e l t a = s s − n r e c . s s_ av g [i sB] ;
n r e c . s s_ av g [i sB] += d e l t a / n r e c . n [i sB] ;

}
}

Listing 1. Detecting an address collision using previous
information on signal strength.

interval the solving protocol (see section 4.2) is started.
Notice that the set of values kept for each address is com-

prised by the average of the signal strength of every message
received (ss_avg), the number of messages received from
that address and a value indicating that a conflict is being
solved. Notice, also, that the record structure uses two sets of
values for each address, because it is expected that broadcast
communications be done with a different transmission power
than unicast communications. The transmission power of
unicast communications is usually adapted to the distance
between peer nodes, while the broadcast communications
do not have this kind of adaptation.

We have conducted two sets of experiments, using MicaZ
sensor nodes running TinyOS 2.0, in three different envi-
ronments: two small non-noisy environments and one open
and noisy environment, i.e. a large student hall with many
students moving, each one with its own laptop device with
Wifi, and many Wifi antennas in the vicinity. The first set
of experiments were designed to detect false positives, and
the second to detect false negatives.

The false positive ratio is an important metric because
it impacts the energy consumed by each node in the col-
lision solving protocol. As expected the number of false
positives in the non-noisy scenarios was close to 0% which
is consistent with the four nines accuracy specification. In
the noisy environment the system showed a rate of almost
11% of false positives if no adaption is taken place, however,
with the self regulatory mechanism after 3 false positives
the system reaches a stability situation without (0%) false
positives Another interesting result is the distribution of
false negatives with the distance. Most false positives (10%)

were experienced when the colliding nodes were 5 meters
apart form the arriving node. For larger distances, within the
transmission ratio of our nodes (in noisy environments 15
meters), the false negative rate is much lower, which may
be related with the saturation of the signal (it is difficult to
distinguish two persons shouting very near to us).

Although, we have defined two collision scenarios: the
arriving node connecting two networks previously discon-
nected and the arriving node having the same address of
another node, we have only measured the false negatives in
the former, because it is more general than the latter. Notice
that after maxMsgCount messages received from the same
address, the detecting node will be in the same situation than
the arriving node that connects two networks, because the
SS history will be cleaned.

Assuming that all nodes have an equal radio range, the
arriving one will be in the position of connecting two
previously disconnected nodes with potentially the same
address if it is place within the intersection of the two radio
coverages, and the trouble of detecting a collision will be
higher when the node is place at the exact some distance
of the tow colliding nodes. The protocol shows 0% of false
positives if it is closer to one of the colliding nodes, or if
it is run in a low noise environment, however in a high
noise environment with the two colliding nodes at exactly
the same distance we have experience a false negative rate
of 4%. A false negative does not mean that the arriving
node will never detect the collision, it just means that it
is not able to detect the collision within the frame period
of 2 times maxMsgCount. Fast detection is important to
minimize the impact of garbled communications.

4.2. Collision solving protocol

The collision detection protocol described in the previous
section does not provide a definitive answer on the existence
of an address collision. It ends by sending a query to every
node with a specific address. Only if several nodes reply
(with different extend addresses) the collision is confirmed.

When a node detects a collision it gives to every node with
the same address a nickname, and informs the node of that
nickname. The situation is similar to having two students
in the same class named John, and refer to one as “Little
John” and to the other as “Big John”. Notice that they will
still be named John for every one else, and we cannot just
name them “Little” and “Big”, because we would create
other collisions.

The solution is to reserve one bit from the 16 bit ad-
dresses for nicknames. Therefore, only 15 bit of the 16 bit
addresses are assigned by the address assignment protocol,
the remaining bit is originally set to zero. When a node
detects a collision it informs each of the colliding nodes
that one of their address will have to set the bit to one.
Each of the colliding nodes stores in a table the nickname
for which it is known by that node. Whenever the node that
changed its address receives a message from the node that
detected the collision it will only accept it if the bit on the

destination address is set to one. Notice that other nodes
continue to communicate with the node that changed the
address with the old address, the change is only relevant for
the communication with nodes that detect the collision.

This solution is only able to solve a single collision. If the
address of a node collides with two other nodes the protocol
does not work because, it would be possible for a node
to end-up being known by two nicknames by two different
nodes, which would have a negative impact in broadcast
communications. In fact, unicast communications would not
be affected because the node could choose the nickname
to use depending on the message destination, however for
broadcast communications the node would not know the
nickname to choose. Nevertheless, this is not a big problem
because 3-way collisions are much less probable than 2-way
collisions.

The proposed algorithm is shown in Listing 2. The algo-
rithm assumes that the node detecting the collision (the ini-
tiator) has sent a “collision query” message (ColQuery) to
all the nodes with the colliding address. After receiving that
message a node replies with its extend address. When the
initiator receives a “collision reply” (ColReply) message
it schedules a “collision solving” message (ColSolve) to
be sent after a predefined timeout. If the node receives
another “collision reply” message with a different extended
address it confirms the existence of a collision. If that
happens it marks the address has a collision and modifies the
“collision solving” message waiting to be sent by adding the
new extended address. Finally, upon receiving the “collision
solving” message the colliding nodes choose independently
the one that is going to adopt a nickname by comparing
the extended addresses. The one with the smallest extended
address adds a nickname to its address. Note that whenever
there is no collision (i.e. the collision detection protocol
had a false positive) none of the nodes adopts a nickname,
because the smallest extended address in the message is 0
which is an invalid extended address.

The cleanMsg method is used whenever a message
is received. If the message comes from someone with a
nickname and the receiver have not detected that collision
(some other node did) the nickname bit is clean. This ensures
that a node that adopted a nickname may use it in broadcast
communications.

5. Conclusion

We have described an algorithm for detection of address
collisions which thus not require the transmission of extra
messages and, a collision solving protocol which thus not
hinder routing tables. The overall collision solving system is
very energy efficient because: the collision solving protocol
only takes 4 messages; it does not invalidate existing routing
tables, which means that routing tables do not need to be
reconstructed; and the collision detection algorithm is very
precise in most scenarios. Overall the amount of energy
wasted to solve address collisions is very small. We have
tested the collision detection algorithm and proved that

. . .
void r ece iveMsg (msg_t msg) {

sw i t ch (msg . t y p e) {
. . .
case ColQuery :

msg ={msg . s_ id , myId , ColReply , myXId } ;
send (msg , r e p l y P o w e r) ;
break ;

case ColReply :
i f (i sMsgScheduledTo (msg . s_ id , msg . x i d [0])) {

addXIdToMsg (msg . s_ id , msg . x i d [0]) ;
markAdd (msg . s _ i d) ;
f a l s e P o s i t i v e s −−;

} e l s e {
msg = {msg . s_ id , myId , ColSolve , msg . x i d [0] } ;
scheduleMsgToSend (msg , t i m e o u t) ;
f a l s e P o s i t i v e s ++;

}
break ;

case ColSo lve :
i f (myXId == min (msg . x i d [0] , msg . x i d [1])

myId | = 0x80 ;
break ;

}
}
void cleanMsg (msg_t msg) {

i f (i sMarked (msg . s _ i d))
msg . s _ i d &= 0 x7f ;

}

Listing 2. Solving an address collision in late deployed
nodes.
radio-print measurements are quite effective in distinguish-
ing two non-byzantine nodes.

6. Acknowledgments
This work was partially supported by the European Com-

munity’s FP7/2007-2013 under grant agreement 224621.

References
[1] Mobile Ad, Charles E. Perkins, and Samir R. Das. IP address

autoconfiguration for ad hoc networks. Internet Draft draft-
ietfmanet-autoconf-01.txt, Internet Engineering Task Force,
MANET WG, July 2000.

[2] Maria Gradinariu and Colette Johnen. Self-stabilizing neigh-
borhood unique naming under unfair scheduler. In Euro-Par,
pages 458–465, 2001.

[3] Ted Herman and SÈbastien Tixeuil. A distributed tdma
slot assignment algorithm for wireless sensor networks. In
ALGOSENSORS, pages 45–58, 2004.

[4] D. E. Knuth. The art of computer programming. Vol.2:
Seminumerical algorithms. Atmospheric Chemistry & Physics,
1981.

[5] Aleksandar Micic and Ivan Stojmenovic. A hybrid randomized
initialization protcol for tdma in single-hop wireless networks.
In IPDPS, 2002.

[6] Koji Nakano and Stephan Olariu. Randomized initialization
protocols for ad hoc networks. IEEE Transactions on Parallel
and Distributed Systems, 11(7):749–759, 2000.

[7] Carlos Ribeiro. Robust sensor self-initialization: Whispering
to avoid intruders. In SECUWARE 2007, The International
Conference on Emerging Security Information, Systems, and
Technologies, pages 101–107. IEEE Computer Society, Octo-
ber 2007.

[8] Curt Schurgers, Gautam Kulkarni, and Mani B. Srivastava.
Distributed assignment of encoded MAC addresses in sensor
networks. In MobiHoc, pages 295–298. ACM, 2001.

[9] Nitin H. Vaidya. Weak duplicate address detection in mobile
ad hoc networks. In MobiHoc, pages 206–216. ACM, 2002.

