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Abstract

Many problems of cooperation involve repeated interactions among the same groups of individuals. When collective action
is at stake, groups often engage in Public Goods Games (PGG), where individuals contribute (or not) to a common pool,
subsequently sharing the resources. Such scenarios of repeated group interactions materialize situations in which direct
reciprocation to groups may be at work. Here we study direct group reciprocity considering the complete set of reactive
strategies, where individuals behave conditionally on what they observed in the previous round. We study both analytically
and by computer simulations the evolutionary dynamics encompassing this extensive strategy space, witnessing the
emergence of a surprisingly simple strategy that we call All-Or-None (AoN). AoN consists in cooperating only after a round
of unanimous group behavior (cooperation or defection), and proves robust in the presence of errors, thus fostering
cooperation in a wide range of group sizes. The principles encapsulated in this strategy share a level of complexity
reminiscent of that found already in 2-person games under direct and indirect reciprocity, reducing, in fact, to the well-
known Win-Stay-Lose-Shift strategy in the limit of the repeated 2-person Prisoner’s Dilemma.
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Introduction

The emergence and sustainability of cooperation constitutes one
of the most important problems in social and biological sciences
[1]. It revolves around the clash between individual and collective
interest, which becomes particularly clear when one considers the
evolution of collective action involving Public Goods Games
(PGG), such as the stereotypical N-person Prisoner’s Dilemma
(NPD) [2,3]. In the absence of additional mechanisms, such as the
presence of thresholds [4,5], risk [6], an embedding network of
interactions [7–12], institutions [13–15], punishment or voluntary
participation [16–19], evolutionary game theory predicts a
population fated to fall into a tragedy of the commons [20].

Collective action problems, however, often involve repeated
interactions between members of the same group [21–23], as
exemplified by the repeated attempts from country leaders to
cooperate in reducing emissions of greenhouse gases [6,24–29] or
in finding a solution to the Euro monetary crisis [30–32]. In such
scenarios, where collective action is more difficult to achieve in
larger groups [6], one is naturally led to question whether a
generalization of the direct reciprocity [33] mechanism to
problems of collective action may provide an escape hatch to

the aforementioned tragedy of the commons. Moreover, N-player
interactions pose many additional difficulties, in particular in what
concerns the emergence of reciprocation: If one interacts
repeatedly in a group of N-players it is hard to identify towards
whom should one reciprocate [3]. In fact, only recently direct
reciprocity has been generalized to PGGs [22,23], studying the co-
evolution of unconditional defectors with generalized reciproca-
tors, that is, individuals who, in a group of size N, only cooperate if
there were at least M (0#M#N) individuals who cooperated in
the previous round. Results show [22,23] that generalized
reciprocators are very successful in promoting cooperation.
Moreover, for a given group size N, there is a critical threshold
level of fairness, M*, at which reciprocation optimizes the
emergence of cooperation [22].

Generalized reciprocators [22] provide an intuitive generaliza-
tion of the TFT strategy to repeated N-player games. However,
and despite the underlying intuition, they constitute but a small
subset of all possible individual (reactive) strategies one can
envisage in a group of size N.

Here we explore the complete set of reactive strategies that
individuals may adopt when engaging in repeated Public Goods
Games with N-1 other individuals, assuming that the decision to
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cooperate or not is based on the behavioral decisions of the group
in the previous round (see below). We find that, in the context of
Public Goods Games, a reactive strategy not belonging to the set of
generalized reciprocators emerges as ubiquitous, ensuring the
emergence and sustainability of cooperation.

Models

Let us consider a finite and well-mixed population of Z
individuals, who assemble in groups of size N randomly formed,
and play a repeated version of the NPD [34]. In each round
individuals either cooperate (C) by contributing an amount c to a
public good or defect (D) by not doing so. The aggregated
contributions of the group are multiplied by an enhancement
factor F and equally divided among the N individuals of the group.
Hence, in each round, Ds achieve a payoff of pD(k)~kFc=N,
while Cs attain pC(k)~pD(k){c where k is the number of
contributions in that round. We consider a repeated PGG with an
undetermined number of rounds, such that at the end of each
round, another round will take place with probability w [3],
leading to an average number of rounds — m — given by m = (12
w)21. At the beginning of each round (with the exception of the
first), each individual decides to contribute (i.e. to play C) or not
(i.e. to play D), depending on the total number of contributions
that took place in the previous round.

Each strategy Si defines how an individual behaves in each
round (i.e. if she/he decides to cooperate or defect) and is encoded
in a string with N+2 bits (b21b0b1…bN21bN). The first bit (b21)
dictates the behavior in the initial round, while the remaining N+1
bits (b0b1…bN21bN) correspond in sequence to the player’s
behavior depending on the number of Cs in the previous round.
In this definition a bit 1 corresponds to a cooperative act and a bit
0 to a defective one. Hence, one obtains a maximum of 2N+2

strategies, corresponding to all possible combinations of 0 s and
1 s in a string of size N+2.

We consider groups of N individuals, randomly sampled from a
finite population of size Z, playing a repeated NPD. Individuals
revise their strategies through the Fermi update rule [35–38], a
stochastic birth-death process with mutations. At each time step a
randomly selected individual A (with strategy SA and fitness fSA

)
may adopt a different strategy i) by mutation with probability m or

ii) by imitating a random member B of the population
(with strategy SB and fitness fSB

) with probability (1{m)

(1zexp½{b(fSA
{fSB

)"){1, where b is the intensity of selection
that regulates the randomness of the decision process. The fitness
of each strategy fSi

is the average payoff attained over all rounds
and possible groups by individuals adopting strategy Si. It is well
known that execution errors profoundly affect the evolutionary
dynamics of repeated 2-person games [39–45]. Consequently, we
shall also consider that, in each round, and after deciding to
contribute or not according to bq, an individual may act with the
opposite behavior (12bq) with a probability e, thus making an
execution error.

Results/Discussion

Let us start by investigating the evolutionary dynamics of the
population in the small mutation limit approximation [46]. This
allows us to compute analytically the relative pervasiveness of each
strategy in time. It is noteworthy, however, that the results
obtained through this approximation remain valid for a wide
range of mutation probabilities, as we show explicitly in the
Supporting Information (SI) via comparison with results from
computer simulations. In a nutshell, and whenever mutations are
rare, a new mutant that appears in the population will either get
extinct or invade the entire population before the occurrence of
the next mutation. Hence, in each time-step there will be, at most,
2 strategies present in the population, which allows one to describe
the evolutionary dynamics of the population in terms of an
embedded (and reduced) Markov Chain with a size equal to the
number of strategies available. Each state represents a monomor-
phic population adopting a given strategy, whereas transitions are
defined by the fixation probabilities of a single mutant [47]. The
resulting stationary distribution ti will then indicate the fraction of
time the population spends in each of the 2N+2 states (or strategies
Si). We shall also make use of ti to compute the fraction of time the
population spends in a configuration/strategy with bi

q = 1, a

quantity we call stationary bit strategy, defined as b
q
~
P2Nz2

i~1 tib
q
i ,

where bq
i corresponds to the bit q of strategy i. The stationary bit

strategy allows us to easily quantify the relative dominance of each
behavior and extract the most pervasive strategic profiles.

Figure 1 shows the stationary bit distribution, b
q
, for different

group sizes. Colored cells highlight those bits (bq) that retain the

same value more than 75% of the time, with b
q
$0.75 (blue) and

b
q
#0.25 (red). For simplicity, we associate this feature with what

we call dominant bit.
Analysis of the stationary bit distributions for different group

sizes under small error probabilities puts into evidence the overall
evolutionary success of strategies that conform with a particular
profile: b0 = bN = 1 and bq = 0 for 0,q,N. A similar trend is
obtained if instead we analyze the stationary distribution ti for all
possible strategies Si: This strategy — or minor variations on this
profile (see below) — shows the highest prevalence for a wide
range of parameters even in the absence of errors of execution (see
SI). The philosophy encapsulated in this strategy is a simple yet
efficient one: cooperating only after a round of unanimous group
behavior (cooperation or defection). Hence we refer to this strategy
as All-Or-None (AoN), highlighting the two situations in which
these individuals are prone to cooperate. As group size increases,
so does the number of expected errors per round, which leads to
an overall reduction of the number of dominant bits found in the
intermediate sector (i.e. bq for 0,q,N) without affecting the ‘‘edge
bits’’, which again reveals the prevalence of AoN behaviour in the
population.

Author Summary

The problem of cooperation has been a target of many
studies, and some of the most complex dilemmas arise
when we deal with groups repeatedly interacting by
means of a Public Goods Game (PGG), where individuals
may contribute to a common pool, subsequently sharing
the resources. Here we study generalized direct group
reciprocity by incorporating the complete set of reactive
strategies, where action is dictated by what happened in
the previous round. We compute the pervasiveness in time
of each possible reactive strategy, and find a ubiquitous
strategy profile that prevails throughout evolution, inde-
pendently of group size and specific PGG parameters,
proving also robust in the presence of errors. This strategy,
that we call All-Or-None (AoN), consists in cooperating
only after a round of unanimous group behavior (coop-
eration or defection); not only is it conceptually very
simple, it also ensures that cooperation can self-sustain in
a population. AoN contains core principles found, e.g., in
the repeated 2-person Prisoner’s Dilemma, in which case it
reduces to the famous Win-Stay-Lose-Shift strategy.
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A monomorphic population of AoN players can easily sustain
unanimous group cooperation, even in the presence of errors.
Indeed, after an occasional individual defection, a round of full
defection ensues, resuming back to unanimous cooperation in the
following round. Therefore, AoN allows a prompt recovery from
errors of execution, which constitutes a key feature that allows
cooperation to thrive.

To investigate the robustness of AoN we show, in Figure 2, the

effect of execution errors on the stationary bit distribution (bq) for a
fixed group size (here N = 5): Clearly, both b0 and bN remain
associated with cooperation for a wide range of error probabilities
(e#0.2). The internal bits, in turn, remain qualitatively close to the
AoN profile (i.e. bq = 0 for 0,q,N), undergoing changes as the
error rate increases, allowing an efficient resume into full
cooperation, after (at least) one behavioral error. In particular,
for 0.01,e,0.1, evolution selects for defection in bits b1 to bN21,
with particular incidence to adjacent bits of b0 and bN, allowing a
fast error recovery. This feature gets enhanced with increasing e.
For larger values of e (e.0.1), unanimity becomes less likely and
we witness an adaptation of the predominant strategy that acts to
reduce the interval of bits in which defection prevails. In other
words, it is as if execution errors redefine the notion of unanimity
itself or, alternatively, individuals become more tolerant as
execution errors become more likely. It is also noteworthy that
the non-monotonous response to errors shown in Figure 2 has
been previously observed in other evolutionary models of
cooperation [48] where intermediate degrees of stochasticity
emerge as maximizers of cooperation. We confirmed that the
results remain qualitatively equivalent for different group sizes.

In the following we investigate the relevant issue of asserting
whether the introduction of this strategy can efficiently promote
the average fraction of cooperative actions. The level of
cooperation, g, may be defined as the average number of

contributions per round divided by the maximum number of
contributions possible. Denoting by Ci the average number of
contributions per round associated with strategy Si, g reads

g~ 1
N

P2Nz2

i~1 tiCi, where ti is the fraction of time the population

spends in the configuration Si and N is the group size. As shown in
Figure 3, the overall levels of cooperation remain high as long as
the average number of rounds is sizeable (left panel, for different
values of the PGG enhancement factor F).

The success of AoN can also be inferred by assessing its
evolutionary chances when interacting with unconditional defec-
tors (AllD). To do so, we compute the gradient of selection [5] —
G(k) — which provide information on the most likely direction of
change of the population configuration with time. This is given by
the difference between the probabilities of increasing and
decreasing the number of AoN players in a population of k AoNs
and Z-k AllDs. The result is depicted in the right panel of
Figure 3, a profile characteristic of a coordination game, in which
case the AoN strategy dominates whenever the population
accumulates a critical fraction of AoN players. Moreover, the size
of coordination barrier decreases with increasing values of the
enhancement factor F. In the SI we further show that the location
of the coordination point is rather insensitive to other game
parameters, in particular when the number of rounds is large.
Notably, the evolutionary chances of the AoN strategy remain
qualitatively independent from alterations on the first bit (b21).
Similarly, we have checked the robustness of the AoN strategy
when interacting with random strategists (RS), i.e., individuals that
cooperate or defect with equal probability. It can be shown that
both AoN and AllD are advantageous with respect to RS
strategists (regardless of their prevalence in the population), while
these should drive AllC to extinction. Finally, contrary to the
generalized versions of TFT strategies, in the presence of
errors, the AoN strategy is robust to invasion of unconditional

Figure 1. Stationary bit distribution as a function of N. Each bit (square) corresponds to the weighted sum of the fraction of time (i.e. the
analytically computed stationary distribution) the population spends in strategy configurations in which bq = 1. Blue (red) cells identify those bits that
are employed at least L of the time with value bq = 1.0 (bq = 0.0). The analysis provided extends for groups sizes (N) between 2 and 10 (rows). Other
model parameters: Z = 100, b = 1.0, F/N = 0.85, w = 0.96, e = 0.05, m%1/Z.
doi:10.1371/journal.pcbi.1003945.g001
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cooperators (AllC) by random drift, as the former can efficiently
exploit the latter.

To sum up, we have shown that the strategy AoN emerges as
the most viable strategy that leads to the emergence of cooperation
under repeated PGGs. This strategy, despite its remarkable
simplicity, cannot be encoded within the subspace of generalized
reciprocators studied before in this context [22]. When we
consider individuals capable of making behavioral errors, AoN is
dominant as suggested by analyzing both the stationary bit strategy
(Figures 1 and 2) and the stationary distribution in the monomor-
phic configuration space (SI). More importantly, our results
suggest that AoN dominates independently of the group size and
over a wide range of error rates.

Previous works have identified similar strategy principles
in different contexts. For instance, the Win-Stay-Lose-Shift

[39–41,49] strategy discovered in the context of the repeated 2-
person Prisoner’s Dilemma constitutes the N = 2 limit of AoN. In
the context of repeated N-Person games on the multiverse [34],
the strategy entitled generic Pavlov [50] encapsulates a behavioral
principle which is similar to that underlying AoN. In fact, one may
argue that the principles underlying AoN may very well be
ubiquitous: The simplicity of this strategy can be seen as
equivalent — in the context of problems of collective action
[5,6,14] involving Public Goods Games — to the simplicity of tit-
for-tat or Win-Stay-Lose-Shift strategies discovered in the context
of 2-person direct reciprocity, or the stern-judging social norm of
indirect reciprocity [51]. In these cases, we observe a fine balance
between strict replies towards defective actions and prompt
forgiving moves, allowing the emergence of unambiguous decision
rules (or norms) that may efficiently recover from past mistakes.

Figure 2. Stationary bit distribution as a function of the error rate. We plot (log-linear scale) the fraction of time the population spends in a
strategy with bq = 1 for a broad range of error probabilities e. Circles on the left indicate the values obtained for e = 0.0, gray areas show the range of
values for which bits were defined to have a dominant behavior. Note that for e = 0.5 all strategies behave randomly. The bar plot on the right shows
the results for e = 0.06 (vertical dashed line). Other model parameters: Z = 100, b = 1.0, N = 5, F/N = 0.85, w = 0.96 and m%1/Z.
doi:10.1371/journal.pcbi.1003945.g002

Figure 3. Left: Level of cooperation as a function of average number of rounds. m for three different values of the enhancement value F (4,
3 and 2) with N = 5 and in the absence of behavioral errors. Right: Gradients of Selection [5] for the evolutionary game between ALLD and AoN
(b21 = 0, N = 5, w = 0.96 or m = 25; other model parameters: Z = 100 and b = 1.0).
doi:10.1371/journal.pcbi.1003945.g003

Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas

PLOS Computational Biology | www.ploscompbiol.org 4 November 2014 | Volume 10 | Issue 11 | e1003945



Thus, despite the inherent complexity of N-person interactions
and the individual capacity to develop complex strategies, it is
remarkable how evolution still selects simple key principles that
lead to widespread cooperative behaviors.

Supporting Information

Text S1 Supporting text. (containing 4 additional figures)
provides additional details concerning the methodology adopted
and investigates the impact of i) mutation rates and ii) the
evolution in the absence of execution error rates in the

evolutionary dynamics of the N-Person repeated Prisoner’s
Dilemma.
(RAR)
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The Small Mutation Limit 

Whenever a population evolves under sufficiently small mutation rates, such that the 

fixation time of any mutant in a population is much smaller than the waiting time between 

any two mutations, the population is said to be evolving under the small mutation limit [1] 

and therefore at any moment in time it hosts a maximum of two different strategies (Si and 

Sj).  

 

Figure S1. Markov Chain that depicts the Z+1 configurations and respective one-step transitions, which 

describes the evolution of a system composed by Z individuals that can adopt one of two strategies. 

Under such conditions the stochastic evolutionary dynamics may be conveniently described 

by means of a reduced Markov Chain, whose transitions Tij between configurations are 

defined by the renormalized fixation probabilities ρij, that is 
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The fixation probability (ρij) represents the probability with which a mutant with strategy Sj 

is able to invade a resident population, reaching fixation, using strategy Si. For birth-death 

processes, as is the case, this quantity can be computed whenever all transition probabilities 

between configurations are known (see Fig. S1).  

Let us consider that each configuration corresponds to a different combination (k, Z-k) of 

two strategies in a population with Z individuals, where k is the number of individuals with 

the first strategy and Z-k the remaining individuals, adopting the other strategy. Probability of 
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transitions that increase the number individuals with the first strategy by one (from 

configuration k to k+1) are written as T+(k) while those that decrease that number by one are 

written as T-(k). This can be used to compute the fixation probability of a mutant i in a 

population of Z-1 m’s. Following [2-5] this can be written as 
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For the particular case of the Fermi update rule [5] the fixation probability is given by: 
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where β is the intensity of selection and fSi(k) the fitness of strategy Si. These fitnesses are 

computed by averaging the payoffs ΠSi(l) and ΠSj(l) over all groups of size N composed by l 

other individuals playing Si: 
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Both ΠSi
(l)   and )(l

jSΠ are computed numerically given the large number of strategies 

under study for all 0 ≤ l < N.  

The set of transition probabilities Tji build up a Transition Matrix (a stochastic matrix) 

whose eigenvector associated with the largest eigenvalue (i.e. 1) returns the stationary 

distribution (τi) of the population [6]. τi conveniently describes the average fraction of time 

the population spends in each of the 2N+2 possible monomorphic population configurations 

corresponding to situations in which every member employs the same strategy. 
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Evolution without errors  

The exponential growth of strategies that takes place with increasing group size precludes 

the use of numerically computed fixation probabilities or stationary distributions to carry out 

a detailed comparison of strategy profiles involving different group sizes. Instead, it is 

convenient to compute, numerically, the stationary bit strategy (see main text and previous 

section for details) which amounts to compute the pervasiveness, in time, of bit bq = 1 in the 

population. Indeed, this quantity allows us to best assess the evolutionary dynamics of 

populations, as shown in Fig. S2 in the case where no execution errors are allowed. Fig. S2 

stands as the counterpart of  Fig. 1 of main text where execution errors occur with probability 

ε = 0.05. 

 

Figure S2. Stationary-bit-Strategy in the absence of behavioral errors. Rows refer to different group sizes (N) 

and columns to different strategy bits (bq). Each cell indicates the fraction of time the population spends in a 

strategy with bit bq = 1. Blue (red) cells highlight group for which the population spends more (less) than ¾ of 

the time employing strategies with bq = 1. Parameters are Z = 100, β = 1.0, N = 5, F/N = 0.85, w = 0.96, ε = 0.00 

and μ<<1/Z.   

The results in Fig. S2 confirm the trend already present in Fig. 1 of main text pointing out to 

the emergence of the AoN as the prevailing strategic profile. In the absence of errors, Fig. S2 

shows that the remaining (intermediate) bits are weakly dominated by defective behavior. 
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The values obtained for N = 5 correspond to the positions of the dots in the left panel of Fig. 

2 of main text. 

Validity of the Small-Mutation Limit 

   In what follows, we check the validity of the small mutation limit comparing the results 

obtained for N = 3 with numerical simulations. Fig. S3 shows the stationary bit strategy 

obtained for a population of Z = 100 individuals evolving for a wide range of mutation 

probabilities (µ from 10-4 to 10-2). Dots represent the results of computer simulations while 

dashed lines reproduce the results under the small mutation limit. Each simulation starts from 

a random configuration of strategies and evolves for 106 generations after an appropriate 

transient of 103 generations. In order to compute the stationary bit strategy we computed the 

average frequency of strategies along the 106 generations over a total of 150 different 

evolutions.  

 

Figure S3. Comparison between numerical simulations and analytical results under the small mutation 

limit in the absence of errors (ε = 0.0). Dots represent the results from numerical simulations with different 

levels of mutation probability whereas dashed lines display the results obtained in the small mutation limit. 

Different colors are associated with the different bits indicated. 
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As depicted in Fig. S3 the agreement between numerical and analytical results is good and 

holds in general for µ < (10 Z)-1. 

All-or-None versus ALLD 

Here we determine the location of the internal roots of the gradient of selection [7] for 

evolutionary games between AllD and AoN as a function of the number of rounds. The first 

bit (b-1) of strategy AoN — dictating the behavior in the initial round — is assumed to be 0 

(defection), yet the results remain qualitatively equivalent whenever one assumes b-1=1. We 

obtain a single coordination point (see Fig. S4) below which greedy AoN is driven towards 

extinction, while above it AoN outcompetes AllD. Above m~20, the location of the 

coordination point converges, for every value of F, to a constant value. Moreover, increasing 

F also increases the basin of attraction of the AoN.  

 

Figure S4. Internal points of the Gradient of Selection [7] for the evolutionary game between AllD and AoN 

when N = 5 as a function of the number of rounds m and for different enhancement levels F (2, 3 and 5), other 

model parameters: Z = 100, β =1.0. 
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