
Self-Adapting Dynamically Generated Maps For Turn-

based Strategic Multiplayer Browser Games
Gonçalo Pereira

INESC-ID / IST
Av. Rovisco Pais
1049-001 Lisboa

Portugal

gdgp@ist.utl.pt

Pedro A. Santos
IST

Av. Prof. Cavaco Silva - Taguspark
2744-016 Porto Salvo

Portugal

pasantos@math.ist.utl.pt

Rui Prada
INESC-ID / IST

Av. Prof. Cavaco Silva - Taguspark
2744-016 Porto Salvo

Portugal

rui.prada@gaips.inesc-id.pt

ABSTRACT

In this paper we describe a method to create strategically and

visually rich game map environments for turn-based strategy

multiplayer browser games. Our method creates dynamic maps

which expand according to the players’ subscriptions pattern and

adapt to the players’ choices. This method mitigates current level

designer limitations and contributes to the solution of balancing

problems in turn-based massively multiplayer browser games.

Categories and Subject Descriptors

I.3.6 [Computer Graphics]: Methodology and Techniques

General Terms

Algorithms, Design.

Keywords

Strategy browser game, dynamic maps, self-adapting maps,

expanding maps, multiplayer game balance.

1. INTRODUCTION
Internet-based gaming has grown tremendously in the last few

years and it is possible to find many games from different genres

[1]. Among these are the browser games which are defined by

only requiring internet users to have a browser installed in their

computer in order to play. Some are multiplayer and take

advantage of the internet’s widespread nature to link many players

into a group game experience. Communities in these games are

large and can vary from several hundreds to thousands of players

gathered for a collective game experience [4].

With a few exceptions multiplayer browser games fall into two

main categories, namely Role-Playing Games (RPG) and strategy

games [3]. In strategy games, the player usually can choose some

special traits (“race”, “tribe” or “faction”) that give him specific

advantages and disadvantages. These influence economic and

military development and are sometimes influenced by the

environment. In this game genre, player location, terrain type and

richness in resources influence the strategic balance and player

challenge. These combined with the map’s visual detail affect the

player’s experience. Many strategy multiplayer online games

currently use models of map generation which cannot provide

both map complexity (visual and strategic) and scalability for the

multiplayer context.

Our goal is to create a game experience where players are placed

in a detailed and evolving map environment. This is accomplished

by expanding maps dynamically as players enter. The idea is that

maps should not limit either game complexity or scalability, they

should simply enable the best strategic and diverse environment to

be created and experienced.

2. EXISTENT MAP CREATION
There are two main ways of creating maps, manually or through

procedural generation. The manual creation method is

characterized by requiring the creator’s input for every detail of

the map. This makes the level designer creatively free, facilitating

the creation of map features. However, the large amount of human

input required makes it time consuming for a massively

multiplayer online context. Another disadvantage is that if a map

is created beforehand it cannot properly account for the player’s

choices, for example the race.

Procedural content generation (PCG) has been used in games for

several decades (for maps, names and others)1. It enables to create

great amounts of different game content dynamically and in a

more practical way than handmade [8]. Several techniques are

used to ensure that variety is present in the content created and at

the core of many procedural methods are techniques based on

pseudo-random number generation, probabilities and fractals [2].

One great advantage of the PCG approach is the time to generate a

map. Usually the generation time is small enough that players can

parameterize and generate the map on the fly like in Civilization2

and many roguelike games[7]. This approach is composed of

several stages that vary depending on the game [5]. Some

common stages are heightfield generation [6], resources

distribution and terrain feature creation.

1 In 1984 the game Elite (http://www.iancgbell.clara.net/elite/)

already used PCG extensively. These techniques continue to be

used in games like Spore(2008) (http://www.spore.com/ftl)

2 http://www.civilization.com/

However, on a massively multiplayer online context the same

method cannot be used since the amount, subscription time and

choices of players are unpredictable. Games like Travian3 face this

problem and solve it by statically creating generic game maps.

Joining players are placed in the game expanding from the center

of the map towards its limits. This generalization results on maps

that have little influence on the game.

The existent map creation cannot simultaneously accommodate a

rich/game influencing strategic environment and a large dynamic

community (of at least hundreds) of players for the massively

multiplayer online context. The obstacles are the unpredictability

of the amount, subscription times and choices of players.

3. SELF-ADAPTING DYNAMIC MAPS
Our approach intends to give players an improved multiplayer

online experience by creating a rich strategic environment where

the map’s characteristics are both influenced by player’s race and

time of subscription. This is done by expanding maps with each

player subscription and generating territory specifically to

accommodate the players’ choices.

This approach was developed for the game Almansur

Battlegrounds4. It is a strategy game of politics, economy and war

set in the early middle ages or, in some scenarios, fantasy world.

The game is turn-based and the map has a deep influence in the

game, ranging from path-planning to the cost and productivity

that the same building can have in different terrains. In this

environment there are several races for fantasy games: Barbarian,

Dwarf, Elf, Human and Orc. Each one has different needs in terms

of terrain characteristics, for example Orcs need swamps for better

development but Elves need forests. The player starts as a lord

from a race of his choice with a small army and territory which he

can then develop economically, make alliances or expand by

conquering neighbouring territories. Until now this game has

relied on manually created maps for a fixed number of players.

Our goal is to provide growing game maps while maintaining the

game balance and keeping the existent strategically rich

environment.

3.1 How to Create the Maps
At the core of any map is its representation model. Almansur

Battlegrounds uses a vertically aligned hexagonal grid where the

terrain unit is the hexagon, but the method could be adapted to

other grid models.

To create the maps we use an iterative procedural generation

method which has several input parameters. The most important

are the terrain prototypes for each race that can be played in the

game and the number of turns a player placeholder takes to expire.

A terrain prototype contains base values for each of the terrain’s

characteristics which the game uses. Examples of terrain

characteristics are altitude and fertility but any others can be used.

These prototype terrains are carefully crafted by the level

designer, since they are the basis for an adequate and balanced

map generation. Besides the base values of each prototype the

level designer also groups prototypes by categories and evaluates

the quality of each within their category based on heuristics. The

3 http://www.travian.com/

4 http://www.almansur.net/

categories will enable the use of the adequate prototypes for the

different terrain purposes. Examples of categories are “race

dwarf”, “feature lake” and “neutral terrains”. The evaluation of

individual prototypes in a group also enables their differentiated

use, based on their quality regarding that group.

A player placeholder(PP) is a specific position in the map that

can be a starting point for any entering player. As we will see

below, when there are no players joining for a preset period of

time, the generator must avoid upcoming players to be placed

adjacent to others much more developed. The parameter with the

number of turns a player placeholder takes to expire specifies how

many turns can elapse before an unused PP becomes unavailable.

In order to support an ever growing map, it is necessary to define

how it will grow. The idea is that the map should expand in an

interleaved way between neutral zones and player zones which

balance conflict and expansion. A zone is a set of terrain units

generated with a specific purpose based on one or several

categories of terrain prototypes. A player/neutral zone schema was

chosen5 based on game tests, with manually created maps

previous to this method. It is illustrated in figure 1.

Figure 1. Player/Neutral zones schema

The schema shown represents player 1 which is surrounded by

three player zones and three neutral zones. These player zones

represent other players which cause direct points of conflict with

the player in the center. Notice that these zones are composed of

two kinds of terrain, the player specific and the neutral territories.

Based on this player/neutral zone distribution we can then scale

our generation model to grow as needed. The creation of new

zones then depends only on player entries, where we impose the

constraint that one player must always be placed near an already

existent one. Once a new player is created the remaining possible

neutral and player zones surrounding it are made available for the

generation process allowing more players to join. The growth of

the map follows a spiral order for both player and neutral zones.

This ensures that a joining player will be placed in the oldest

unused PP available so the elapsed game time between new

players and others already playing is globally the smallest

possible. Other similar expansion ordering schemas can be used if

they retain the same player adjacency property. Note that the

neutral zones placement also follow the spiral scheme, but their

5 Personal communication with Marco Quinta from Almansur.

actual placement only happens when the next player zone is

created. This spiral schema is illustrated in figure 2.

Figure 2. Spiral expansion

The figure illustrates a normal evolution, where there is always

players entering. Notice that zones are now represented as just one

hexagon for image simplicity. In this example each different

number represents one expansion iteration. When the first player

joins one neutral and player zone are created, when the second

player joins a player zone alone is created, and so on.

However, player entries are not predictable, so we can have

different evolutions. If there are no player entries for a given

amount of game time (in our case turns) the generator marks as

expired zones the neutral and player zones for which the initially

set parameter number of turns to expire(TE) has been reached. If

players could enter in these places there would be a high

probability that the older players were much more developed and

could easily overrun the new ones. The expired zones are

generated as neutral impassable zones where map expansion

stops. To accomplish this they are created as natural barriers, like

a lake, impossible for game units to cross. As a consequence the

map will not grow in a pure spiral fashion but will only continue

to expand in a few places. This system allows the map to expand

or contract the places for expansion depending on the flow of

players. An example of such a situation is illustrated in figure 3.

Figure 3. Spiral expansion with expirations

In figure 3 we have a situation where the first eight players

entered without having any expiration. Then all the neighbour

places from the first seven players expired and two more players

joined. Finally no more players entered and the map closed itself.

The variation of the TE time influences the map shape and player

concentration. For a fixed number of players and subscription

times, a lower TE value leads to a more dispersed player

distribution/map while a higher value approximates the growth to

the normal, more agglomerated, evolution.

3.2 Zone Generation
Based on this schema the level designer can influence the

gameplay by varying the size (radius in hexagons around the

player zone center) of the player specific terrain (PSS) and/or the

neutral terrain (NTS). For example a game with PSS=2 and

NTS=1 is less aggressive than another with PSS=2 and NTS=0.

To generate a concrete terrain a prototype is picked and then all

its base values are randomized by adding or subtracting a random

offset to enable the creation of many different terrains from a

single prototype. The terrains in the player specific terrain are

generated with the prototypes from the category of the player’s

race. The neutral terrains and normal neutral zones are generated

with the “neutral terrains” category while feature zones (in neutral

zone places) are created based on the category of prototypes for

that feature.

3.3 Balancing
With this method a great part of the game balance is the

responsibility of the level designer for the generator

parameterization. Especially important is the correct definition

and evaluation of the terrain prototypes of all the races, since the

player specific terrain generation picks prototypes based on a

preset ordered combination of different prototype qualities.

The fact that players enter at different game times also creates

problems to the game balance since it originates significant

development differences between players. A first step to mitigate

this is the player/neutral zone schema where the chosen

configuration balances the number of direct conflict points a

player has to manage, which previous player tests have proven it

to be successful (see footnote 5). Also the spiral expanding

schema with PP expiration ensures that a new player never enters

near a much older and developed player by discarding unused PPs

that have passed the acceptable number of turns a player can have

as a head start from another.

4. PRACTICAL RESULTS
In this section we show some examples of different maps created

by our method in the implementation developed for Almansur.

The generation of these examples followed the same zone sizes

described in section 3. Also notice that players start only with a

single hexagon (further discussed in the next section).

The example in figure 4 is a map with eleven players that is partly

closed because of expired zones since there are few players

entering but still has some expansion places. In figure 5 we can

see the evolution of the map view for the first player to join the

game in the previous example. In (a) we have the view right after

the player joined and in (b) the view after all his neighbour PPs

have been filled. The example in figure 6 is a map with twenty

one players and is a case of a closed map, since no players joined

for a long period of time. The terrain visual detail is abstracted

and each isolated colored hexagon represents a different player.

Another important factor we tested was the amount of players that

we could add with an “acceptable” generation time for the

subscribing player. After several load tests we found that with the

current implementation we can add between 1000 and 1100

players with waiting times always under 4 seconds and running

the game on a laptop computer (Intel T7700 - 2.4GHz).

Figure 4- Example of a semi-closed map

Figure 5 - Player view changes

Figure 6 – Example of closed map

5. DISCUSSION
In our method of map generation there is a balance between the

level designer’s input and a procedural generation which enables

us to create rich dynamic maps for a large number of players.

The problem of delayed player entries is addressed by our schema,

which helps diminish the imbalances created by them. However,

the problem is not eliminated. Two further possibilities of

addressing the problem can be a protection period for new players

or increased strength of new players. These would diminish the

risk of delayed new players being overrun by any older players.

Beyond that, our schema also takes advantage of the procedural

methodology combined with the randomness from the flow of

players entering at a given time. The reaction of the method to the

players’ flow creates maps with random shapes which help avoid

player boredom and promote replayability.

The consequence of playing in a dynamic map for players is that

they must understand the nature of the map so they aren’t

surprised or frustrated. The nature of these maps is one of a

growing map where expanding places contain ungenerated terrain

for a short time, in which players cannot move. This terrain also

cause player view update issues. To reduce its impact it is possible

to generate all the terrain for a player, but let him only start with

his most important one.

6. CONCLUSIONS
Our approach enables us to create strategically rich environments

on maps for turn-based strategy massively multiplayer online

browser games. It also contributes to the solution of delayed

player entries and player unpredictability. Nonetheless, the

problem is not eliminated and is subject of future work.

Regarding the game designer, he is freed from the limitations of

having to create the game around the assumption of a generic or

size limited map. Game maps with strategic complex situations

can be procedurally created for the massively online context, but

there is an increased responsibility regarding the prototype

terrains and method parameterization.

From the player’s perspective the risk of tiring from repetitive

play is reduced since map generation depends on player entry

pattern and choices so that each game has a completely different

map. Using the techniques described in this paper, the massive

multiplayer browser strategy game can attain a depth and strategic

challenge unparalleled until now.

7. ACKNOWLEDGMENTS
Our thanks to Almansur for supporting our ideas and supply base

knowledge about previous game experience. We would also like

to thank PDM&FC for technical support.

8. REFERENCES
[1] Analyst: Online Games Now $11B of $44B Worldwide Game

Market, 2009. Retrieved June 20, 2009, from Gamasutra:

The Art & Business of Making Games:

http://www.gamasutra.com/php-

bin/news_index.php?story=23954

[2] Lecky-Thompson, G. W. 2001 Infinite Game Universe:

Mathematical Techniques. Charles River Media, Inc.

[3] List of multiplayer browser games, 2009. Retrieved June 20,

2009, from Wikipedia: The Free Encyclopedia:

http://en.wikipedia.org/wiki/List_of_multiplayer_browser_ga

mes

[4] Massively Multiplayer Online Game, 2009. Retrieved June

20, 2009, from Wikipedia: The Free Encyclopedia:

http://en.wikipedia.org/wiki/MMOG

[5] Prachyabrued, M., Roden, T. E., and Benton, R. G. 2007.

Procedural generation of stylized 2D maps. In Proceedings

of the international Conference on Advances in Computer

Entertainment Technology (Salzburg, Austria, June 13 - 15,

2007). ACE '07, vol. 203. ACM, New York, NY, 147-150.

DOI= http://doi.acm.org/10.1145/1255047.1255077

[6] Olsen, J. 2004. Realtime Procedural Terrain Generation:

Realtime Synthesis of Eroded Fractal Terrain for Use in

Computer Games. Retrieved June 18, 2009 from Oddlabs:

http://oddlabs.com/download/terrain_generation.pdf

[7] RogueBasin, 2009. Retrieved June 20, 2009, from

RogueBasin: http://roguebasin.roguelikedevelopment.org/

[8] Doull, A. 2008.The Death of the Level Designer: Procedural

Content Generation in Games. Retrieved August 30, 2009,

from Ascii Dreams: A roguelike developer's diary:

http://roguelikedeveloper.blogspot.com/2008/01/death-of-

level-designer-procedural.html

http://www.gamasutra.com/php-bin/news_index.php?story=23954
http://www.gamasutra.com/php-bin/news_index.php?story=23954
http://en.wikipedia.org/wiki/List_of_multiplayer_browser_games
http://en.wikipedia.org/wiki/List_of_multiplayer_browser_games
http://en.wikipedia.org/wiki/MMOG
http://doi.acm.org/10.1145/1255047.1255077
http://oddlabs.com/download/terrain_generation.pdf
http://roguebasin.roguelikedevelopment.org/
http://roguelikedeveloper.blogspot.com/2008/01/death-of-level-designer-procedural.html
http://roguelikedeveloper.blogspot.com/2008/01/death-of-level-designer-procedural.html

