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The whole is more than the sum of its parts.
Aristoteles





Abstract

Preventing global warming requires overall cooperation. Contributions
will depend on the risk of future losses, which plays a key role in decision-
making. Here, I discuss an evolutionary game theoretical model in which
decisions within small groups under high risk and stringent requirements
toward success significantly raise the chances of coordinating to save the
planet’s climate, thus escaping the tragedy of the commons. I analyze both
deterministic dynamics in infinite populations, and stochastic dynamics in
finite populations.

I also study the impact of different types of sanctioning mechanisms
in deterring non-cooperative behavior in climate negotiations, towards the
mitigation of the effects of climate change. To this end, I introduce pun-
ishment in the collective-risk dilemma and study the dynamics of collective
action in finite populations. I show that a significant increase in coopera-
tion is attained whenever individuals have the opportunity to contribute (or
not) to institutions that punish free riders. I investigate the impact of hav-
ing local instead of global sanctioning institutions, showing that the former
– which are expected to require less financial resources and which involve
agreements between a smaller number of individuals – are more conducive
to the prevalence of an overall cooperative behavior.

In the optics of evolutionary game theory, the system dynamics is solved
by means of a multidimensional stochastic Markov process. The interaction
between individuals is not pairwise but it occurs in n-person games; the in-
dividuals have perception of the risk and are allowed to explore unpopulated
strategies.

Keywords: Emergence of Cooperation; Evolution of Cooperation and
Institutions; Collective Action; Tragedy of the Commons; Climate Change;
Sustainability Science; Complex Systems; Stochastic Systems; Evolutionary
Game Theory; Evolutionary Dynamics.





Resumo

A prevenção do aquecimento global requer cooperação global. As atuais
contribuições dependerão do risco das perdas futuras, desempenhando assim
um papel fundamental na tomada de decisões. Nesta tese discuto um mo-
delo teórico para um jogo evolutivo, no qual a tomada de decisões envolvendo
grupos pequenos, com alto risco e requisitos rigorosos em direção ao sucesso
aumenta significativamente as hipóteses de coordenação para a salvação do
clima do planeta, evitando assim a tragédia dos comuns. Tanto a dinâmica
determińıstica em populações infinitas como a dinâmica estocástica em po-
pulações finitas são analisadas.

Além disto, estudo ainda o impacto de diferentes tipos de mecanismos
de sanção para desencorajar o comportamento não cooperativo nas nego-
ciações climáticas, de forma a mitigar os efeitos das alterações climáticas.
Para este fim, introduzo punição no jogo evolutivo e estudo a dinâmica da
ação coletiva em populações finitas. Mostro que um aumento significativo
na cooperação é alcançado quando os indiv́ıduos têm a oportunidade de
contribuir (ou não) para as instituições que punem os chamados “free ri-
ders”. Investigo o impacto da conceção de instituições fiscalizadoras locais
em vez de instituições globais, mostrando que as primeiras – das quais se
espera que exijam menos recursos financeiros e que envolvam acordos entre
um número menor de indiv́ıduos – são mais favoráveis para a prevalência de
um comportamento global cooperativo.

Na ótica da teoria dos jogos evolutiva, a dinâmica do sistema é resol-
vida por meio de um processo estocástico de Markov multidimensional. A
interação entre indiv́ıduos não é entre pares, mas ocorre em jogos de n pes-
soas, os indiv́ıduos têm perceção do risco e têm a capacidade de explorar
estratégias despovoadas.

Palavras Chave: Emergência da Cooperação; Evolução da Cooperação
e Instituições; Ação Coletiva; Tragédia dos Comuns; Alterações Climáticas;
Ciências da Sustentabilidade; Redes Complexas; Sistemas Complexos; Teo-
ria de Jogos Evolutiva; Dinâmica Evolutiva.
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Chapter 1
Introduction

“There is little time left. The opportunity and responsibility to avoid catas-
trophic climate change is in your hands”, said the United Nations Secretary-
General to nearly 100 world leaders, on a Climate Change summit by the
end of 2009, before the Copenhagen summit. By now, time is still running
out.

In a dance that repeats itself cyclically, countries and citizens raise sig-
nificant expectations every time a new International Environmental Summit
is settled. Unfortunately, few solutions have come out of these colossal and
flashy meetings. This represents a challenge on our current understanding of
models on decision-making: more effective levels of discussion, agreements
and coordination must become accessible. From Montreal and Kyoto to
Copenhagen summits, it is by now clear how difficult it is to coordinate
efforts [1, 2]. Copenhagen agreement was, in first place, intended to ex-
tend Kyoto’s caps to the US, China, India and other expanding economies.
However, this approach was clearly heading towards a dead end [3].

Climate is a public good, and, probably, the welfare of our planet ac-
counts for the most important and paradigmatic example of a public good: a
global good from which every single person profits, whether she contributes
or not to maintain it. However, these summits failed to recognize the well-
studied difficulties of cooperation in public-good games [4, 5, 6]. Often, indi-
viduals, regions or nations opt to be free riders, hoping to benefit from the ef-
forts of others while choosing not to make any effort themselves. Most coop-
eration problems faced by humans share this setting, in which the immediate
advantage of free riding drives the population into the tragedy of the com-
mons [4], the ultimate limit of widespread defection [4, 5, 6, 7, 8, 9, 10, 11].
When dealing with such an essential public good as climate, many efforts
are made to avoid this. To avoid free riding is then a major aim to the
countries, so that efforts are shared for all and balanced measures can then
be taken. The strive to identify and improve the mechanisms that allow this
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will be the goal of this work.
One of the multiple fatal flaws often appointed to such agreements is

a deficit in the overall perception of risk of widespread future losses, in
particular the perception by those occupying key positions in the overall
political network that underlies the decision process [10, 12, 13]. Another
problem relates to the lack of sanctioning mechanisms to be imposed on those
who do not contribute (or stop contributing) to the welfare of the planet [2,
14, 15]. Moreover, agreeing on the way punishment should be implemented
is far from reaching a consensus, given the difficulty in converging on the pros
and cons of some procedures against others. Many possibilities have been
under consideration - from financial penalties, trade sanctions, to emissions
penalties under future climate change agreements – but their details have
not been well established and negotiations are usually slow and difficult [16].
The impasse over these measures is expected since their consequences do not
have a solid theoretical or even experimental background.

To address this and other cooperation conundrums, ubiquitous at all
scales and levels of complexity, the last decades have witnessed the discovery
of several core mechanisms responsible to promote and maintain cooperation
at different levels of organization [4, 6, 11, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28].

Most of these key principles have been studied within the framework
of two-person dilemmas, such as the Prisoner’s Dilemma, which constitute
a powerful metaphor to describe conflicting situations often encountered
in the natural and social sciences. Many real-life situations, however, are
associated with collective action based on joint decisions made by a group
involving more than two individuals [4, 6, 17, 29]. These types of problems
are best dealt-with in the framework of n-person dilemmas and Public Goods
games, involving a much larger complexity that only recently started to be
unveiled [6, 30, 24, 31, 32, 33, 34, 35].

In this thesis, I aim to model the decision making process as a dynam-
ical process, in which behaviours evolve in time [24, 36], taking into con-
sideration decisions and achievements of others, which influence one’s own
decisions [37, 38, 39]. I implement such behavioural dynamics in the frame-
work of Evolutionary Game Theory, in which the most successful (or fit)
behaviours will tend to spread in the population. This way, one is able to
describe strategic interactions between individuals, complemented by evo-
lutionary principles. In particular, I will do so in finite populations, where
such fitness driven dynamics occurs in the presence of errors (leading to
stochastic effects), both in terms of errors of imitation [40] as well as in
terms of behavioural mutations [41], the latter accounting for spontaneous
exploration of the possible strategies.

In Chapter 2 I will formally define the system of variables and intro-
duce some useful concepts for the analysis. The following chapter describes
the standard approach of evolutionary game theory. Chapter 4 shows the
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effect of group size and risk awareness in the decision making process in
the context of the Collective Risk Dilemma (CRD), a simple Public Goods
game that mimetizes the problem at stake [7, 2, 10, 12]. Then, Chapter. 5
presents the effects of punishment via institutions when playing against de-
fectors (which leads to higher-order cooperation dilemmas [42, 22, 43, 24]).
Finally, in Chapter 6, I will bring the three strategies together and show
that, in the presence of risk, sanctioning needs to be neither high nor does
it require a global institution to supervise abidance (or opposition) to the
agreement. Instead, multiple local institutions [14] may very well provide an
easier solution to this “game that concerns all of us, and we cannot afford to
lose”. Chapter 7 closes the thesis with further discussion and conclusions.
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Chapter 2
Framework

Most of the phenomena in nature evolve in a very complicate and irregular
way. For sure, population and decision making processes are so intricate that
models have no hope in computing all variations and variables in detail.
Even if one would try, and succeed, the results would be so cumbersome
that, by themselves, would be imperceptible. What is of use is how average
properties evolve and are established and, often, this is described by much
simpler laws. For this reason, I will make use of a variety of concepts related
to the theory of probability and statistics.

In this chapter the framework used throughout the text is presented.
Most of the notation is defined also here. From stochastic processes to the
M-equation, this chapter sets itself as an overview and collection of results
that are relevant further on.

2.1 Stochastic Processes

Individuals in large populations are often named, or even categorized, ac-
cording to their preferences, behaviors, physical and psychological resem-
blance and many other characteristics that make people alike. This can
happen for the most various reasons, from hierarchisation to discrimination,
but is often a way to simplify the line of thought by means of despising
individuality. In what climate is concerned, people, nations, leaders and so
on are classified according to their acts, to their strategy on climate issues.

Therefore, it is convenient to consider a set of N elements, each of these
can be in one of s+1 states. I will think on the elements as the individuals
of a population who can adopt different strategies: S1, ..., Ss+1. Let ik(t)
be, at a given time t, the number of individuals with the strategy Sk, where
k = 1, ..., s + 1. The number of individuals of a given type will randomly
evolve in time according to some rule. To study these quantities I need the
proper framework; the probability theory has the right objects.
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Stochastic Processes

Let i be a random or stochastic variable defined by a set Ωi and a func-
tion Pi(x). Ωi represents the set of possible states of i; I will be calling
it indiscriminately “range”, “sample space”, “phase space” or “domain”.
Pi(x) is a probability distribution defined over Ωi. However, when studying
a system, one needs more than just a single value of its properties. One is
usually interested in describing their evolution in time. In order to do so,
one needs more than one stochastic variable. Suppose I build a set according
to Def.(1). It depends on the random variable i and on a parameter, t, that
represents time.

Definition 1 Stochastic Process
Let Y be a a set of stochastic variables indexed by a parameter, t: it1 , it2 ,
. . . , itm . If t represents time, Y is a Stochastic Process. Whenever t does
not represent time, Y is called a random function.

This set can be written in a compact way which easily takes into account
all possible values of the indexing parameter: Yi(t). To cut out notation,
often the set is named after the stochastic variable, ii(t) or, simply, i(t).
With the given care, one can write

Yi(t) := {f(i, t1), ..., f(i, tm)}
≡ {it1 ; ...; itm}
≡ ii(t)

≡ i(t). (2.1)

All ik, mentioned before as the number of individuals with a given strat-
egy, perfectly fit in this definition and so can be treated as a stochastic
process. Furthermore, note that

i1 + ...+ is+1 = N. (2.2)

Since Eq.(2.2) determines, for example, is+1 in terms of the remaining
ik, I only need to retain s of them. Strictly speaking, one defines i(t) =
{i1, ..., is} as multivariable stochastic process over an s-dimensional sample
space, Ωi, given in Eq.(2.3).

i1 ∈ {0, 1, ..., N} (2.3)

i2 ∈ {0, 1, ..., N − i1}
...

is ∈ {0, 1, ..., N − i1 − ...− is−1}

Within the framework of stochastic processes, there is a specific subclass
of processes called Markov processes. Markov processes are, by far, the most
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important, well known and used stochastic processes. In part due to their
manageability but, ultimately, because any isolated system can be described
as a Markov process once one considers all microscopic variables. Evidently,
this is not always possible or even desirable. The task is to find a small
collection of variables with the Markov property at a given time scale.

These are formally defined in Def.(2), which states that the conditional
probability of a future event at tn, P1|n, is independent of the knowledge
of the values at times earlier than tn−1. Informally, one can say that the
information required to compute future statistical properties depends only
on the actual state; the system has no memory.

Definition 2 Markov Property

Let i(t) be a Markov process, indexed by a set of n successive times, i.e.
t1 < t2 < ... < tn. The conditional probability of getting in at tn, given the
set of observed values in−1 at tn−1, . . . , i1 at t1 is given by:

P1|n−1(in, tn|i1, t1; ...; in−1, tn−1) = P1|1(in, tn|in−1, tn−1).

The evolution of a population is not a purely random process: there
must be mechanisms that generate a global tendency for individuals. In a
practical point of view, Markov property is the simplest way of introducing
statistical dependence into the models built and, hence, such tendency.

Individuals are part of a population with a given configuration of strate-
gies and they can opt to change their own whenever they feel their outcome
is not the best: they compare themselves with the present situation and
choose a better strategy. Therefore, one supposes that, at a give state, the
evolution of the system depends only on the present configuration so that
i(t) = {i1, ..., is} is a Markov process.

The study of a Markov process consists in determining its probability
density function (PDF) evolution, pi(t). Since i(t) has the Markov prop-
erty, its transition probability P1|1 respects the discrete time M-Equation,
Eq.(2.4), and consequently, with a delta-shaped initial condition, its PDF
also respects it [44]. This is a gain-loss equation that allows one to com-
pute pi(t) given the transition probability from the configuration i to the
configuration i′, Ti′i.

pi(t+ τ)− pi(t) =
∑

i′

{Tii′pi′(t)− Ti′ipi(t)} (2.4)

As a result, the problem is reduced to the computation of Tii′ . Further-
more, making the left side zero, in the search for a stationary pi(t), one falls
into an eigenvector search problem [44]. This way, my first goal will be to
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Kramers-Moyal Expansion to Langevin Equation

describe a model that can be used to calculate Ti′i in terms of quantities
that can relate to experiments.

2.2 Kramers-Moyal Expansion to Langevin Equa-

tion

Before I proceed with calculations on Ti′i, I want to get further insight on
its meaning and derive some related quantities. Therefore, in this section
I will review some important equations together with their interpretation,
which will be of use latter on. By the end of the section, I will derive these
equations, in the framework presented so far, in order to relate their well
known quantities to Ti′i.

The M-equation, Eq.(2.4), can be rewritten in an equivalent formulation,

the Kramers-Moyal (KM) expansion, Eq.(2.5). The functions D
(n)
i1,...,in

(x, t)
characterize the process and each one is called the n-th Kramers-Moyal
coefficient.

∂p

∂t
(t) =

+∞
∑

n=1

(−1)n
s
∑

i1,...,in

[

n
∏

l=1

∂

∂xil

]

D
(n)
i1,...,in

(x)p(x, t) (2.5)

This is an equation for the time evolution of the PDF, p(t), of an s-
dimensional continuous Markov process, X(t). It often allows one to make
use of perturbation theory and, consequently, the effect of its successive
terms can be more easily studied. Hence, the equation containing only the
first two terms is well discussed in the literature and is called the Fokker-
Planck Equation (FPE), Eq.(2.6). Pawula’s theorem reenforces the study of
this equation stating that stochastic processes obey this equation not only
as a first order approximation but exactly as long as one of the odd KM
coefficient is zero [45].

∂p

∂t
(t) = −

s
∑

i=1

∂

∂xi

[

D
(1)
i (x, t)p

]

+
s
∑

i=1

s
∑

j=1

∂2

∂xi∂xj

[

D
(2)
ij (x, t)p

]

(2.6)

The first KM coefficient, D
(1)
i (x, t), is called the Drift and the second,

D
(2)
ij (x, t), the Diffusion.

Associated with the FPE (2.6) is a system of s coupled Itô-Langevin
equations, which can be written as [45, 46]
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dX

dt
= h(X) +G(X)Γ(t) (2.7)

Here, Γ(t) is a set of s normally distributed random variables fulfilling

〈Γi(t)〉 = 0, 〈Γi(t)Γj(t
′)〉 = 2δijδ(t− t′) . (2.8)

These equations drive the stochastic evolution of X(t). The vectors h

and the matrices G = {gij} for all i, j = 1, . . . , s are connected to the local
Drift and Diffusion function through

D
(1)
i (X) = hi(X) and (2.9)

D
(2)
ij (X) =

s
∑

k=1

gik(X)gjk(X) . (2.10)

While the FPE describes the evolution of the joint distribution of the s
variables statistically, the system of Langevin equations in (2.7) models indi-
vidual stochastic trajectories of a system. In Eq. (2.7) the term h(X), related
to the Drift, contains the deterministic part of the macroscopic dynamics,
while the functions G(X), related to Diffusion, account for the amplitudes
of the stochastic forces mirroring the different sources of fluctuations due to
all sorts of microscopic interactions within the system.

Notice, however, that the s×s matrix G cannot be uniquely determined
from the symmetric diffusion matrix D(2) for s ≥ 2: the number of unknown
elements in G exceeds the number of known elements in D(2) leading to
s2 − 1

2s(s+ 1) = 1
2s(s− 1) free parameters. However, a simple method can

be used to obtain G from D(2) in such a way that a Langevin equation can
be extracted from a FPE, but is not unique [47]. Symbolically I will write

this particular G as
√
D(2).

Furthermore, in general, the eigenvalues of these matrices indicate the
amplitude of the stochastic force and the corresponding eigenvector indi-
cates the direction toward which such force acts, in the Langevin point of
view. Even more interesting features, however, can be extracted from the
eigenvalues and eigenvectors.

To each eigenvector of the diffusion matrix one can associate an indepen-
dent source of stochastic forcing Γi. In this scope, the eigenvectors can be
regarded as defining principal axes for stochastic dynamics. For instance, the
vector field aligned at each point to the eigenvector associated to the small-
est eigenvalue of matrix G defines the paths in phase space towards which
the fluctuations are minimal. Furthermore, if the corresponding eigenvalues
are very small compared to all the other ones at the respective points, the

9
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corresponding stochastic forces can be neglected and the system has only
s − 1 independent stochastic forces. In this situation the problem can be
reduced in one stochastic variable by an appropriate transformation of vari-
ables, since the eigenvectors in one coordinate system are the same as in
another one [47].

Now that I allowed some intuition on these equations, I will perform a
Kramers-Moyal expansion in order to identify the KM coefficients of our
system, namely the Drift and Diffusion. I will be able to prove that the
coefficients are sequentially smaller and therefore justify the analysis using
FPE and Langevin interpretation.

Consider that all transition probabilities and statistical properties de-
fined so far as function of the number of individuals of the different strategies,
i, are redefined as functions of the fraction of individuals in the total popu-
lation, X = i/N . Thus, I introduce the changes and notation in Eqs.(2.11).
This way, the discrete stochastic process X will tend to a continuous pro-
cess as one makes N → ∞ and, therefore, can be described by the FPE and
Langevin equation.

Hence, configurations are described by x, with a PDF ρ(x, t), and T δ(x)
represents a transition between configurations: from the configuration x in
the direction δ such that it gets to configuration x′ = x+ δ.

xk ≡ ik
N

(2.11a)

pi(t) → p(x, t) (2.11b)

Ti′={i1+∆1,...,is+∆s}i={i1,...,is} → T δ(x) (2.11c)

ρ(x, t) ≡ Np(x, t) (2.11d)

Finally, I can rewrite Eq.(2.4) in terms of the PDF of X, ρ(x, t), as
follows.

ρ(x, t+ τ)− ρ(x, t) =
∑

δ 6=0

[

ρ(x+ δ, t)T−δ(x+ δ)−

−ρ(x, t)T δ(x)
]

(2.12)

Having in mind the aim is a population model, it is reasonable to assume
that, as the population increases, the frequency in which an individual of
some type changes strategy also increases with N . Thus the update time
decreases with 1/N . Also, at this point, I need not to neglect different
individuals simultaneous transitions as long as one guarantees that δ scales
with 1/N . Then, taking into account that one has two small parameters, τ

10
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and δ, which scale with the same 1/N factor and using Eq.(2.13), I expand
Eq.(2.12) to the desired order.

F (x+ δ) =





+∞
∑

n=0

1

n!

s
∑

i1,...,in

n
∏

m=1

δim
∂

∂xim



F (x) (2.13)

=F (x) +
s+1
∑

k

δk
∂F

∂xk
(x)+

+
1

2

s+1
∑

k,l

δkδl
∂2F

∂xk∂xl
(x) +O(‖δ‖3)

(2.14)

I start by applying Eq.(2.14) considering F (t + τ) = ρ(x, t + τ) and
F (x + δ) = ρ(x + δ, t)T−δ(x + δ). The left side of Eq.(2.12) is easily
computed to be

ρ(x, t+ τ)− ρ(x, t) = τ
∂ρ

∂t
+

τ2

2

∂2ρ

∂t2
+O(τ3). (2.15)

The right side requires further analysis. Since I already have, to first
order in time, a time derivative, I will deduce the complete KM expan-
sion, identify the coefficients in terms of the known quantities and, finally,
explicitly compute the first coefficients.

Let me write the terms inside the sum in Eq.(2.12) and use the Taylor
expansion in Eq.(2.13) to isolate the terms without derivatives.

ρ(x+ δ, t)T−δ(x+ δ)− ρ(x, t)T δ(x) =

= ρ(x, t)T−δ(x)− ρ(x, t)T δ(x)+

+
+∞
∑

n=1

1

n!

s
∑

i1,...,in

[

n
∏

m=1

δim
∂

∂xim

]

ρT−δ (2.16)

I now perform the sum over the first two terms

∑

δ 6=0

[

ρ(x, t)T−δ(x)− ρ(x, t)T δ(x)
]

=

= ρ(x, t)
∑

δ 6=0

[

T−δ(x)− T δ(x)
]

= ρ(x, t)





∑

δ 6=0

T−δ(x)−
∑

δ 6=0

T δ(x)





= 0 (2.17)
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Then, I sum the remaining terms, reorder them and identify the KM
coefficients D(n)(x).

∑

δ 6=0

+∞
∑

n=1

1

n!

s
∑

i1,...,in

[

n
∏

m=1

δim
∂

∂xim

]

ρ(x)T−δ(x) =

=
+∞
∑

n=1

(−1)n
s
∑

i1,...,in

∑

δ 6=0

[

n
∏

m=1

∂

∂xim
δim

]

(−1)n

n!
T−δ(x)ρ(x, t)

=
+∞
∑

n=1

(−1)n
s
∑

i1,...,in

∑

δ 6=0

[

n
∏

l=1

∂

∂xil

][

n
∏

m=1

δim

]

(−1)n

n!
T−δ(x)ρ(x, t)

=
+∞
∑

n=1

(−1)n
s
∑

i1,...,in

[

n
∏

l=1

∂

∂xil

]





(−1)n

n!

∑

δ 6=0

[

n
∏

m=1

δim

]

T−δ(x)



 ρ(x, t)

= 1/N
+∞
∑

n=1

(−1)n
s
∑

i1,...,in

[

n
∏

l=1

∂

∂xil

]

D
(n)
i1,...,in

(x)ρ(x, t) (2.18)

One gets for the KM coefficients Eq.(2.19). This can be used to calcu-

late the Drift, D
(1)
k (x), and Diffusion, D

(2)
kl (x). Notice that the n-th KM

coefficient contains a factor which is roughly N |δ|n, which proves that the
terms in this KM expansion are increasingly small. In addition, it proves
that the dynamics of infinite populations is deterministic since all coeffi-
cients but the first tend to zero and, therefore, Langevin equation becomes
an ordinary differential equation.

D
(n)
i1,...,in

(x) = N
(−1)n

n!

∑

δ 6=0

[

n
∏

m=1

δim

]

T−δ(x) (2.19)

2.3 One-Step Processes

Populations evolve when individuals change their strategy. When an indi-
vidual with a given strategy decides to change, the number of individuals
with this strategy is reduced by one and the strategy for which he changes to
gains a new member. This means one has a birth-death or one step process,
keeping the total number of elements. The underlying assumption when
using this kind of processes is that the probability that two different indi-
viduals change strategy in a time interval τ is O

(

τ2
)

[44], making Def.3
appropriated.

When referring to the process, I will eventually introduce the extra
strategy index just to keep track of what I am doing; symbolically, i =
{i1, ..., is} = (i1, ..., is, is+1 = N − i1 − ... − is). Then, if one considers

12
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Definition 3 One Step Process

The process i is a one step process if its transition probability per unit time
between states i and i′, Tii′ , is zero for all non adjacent configurations.

all s + 1 strategies, the configuration of strategies at a given time is i =
(i1, ..., is, is+1) and it can only move to a configuration i′ = (i′1, ..., i

′
s, i

′
s+1) =

(i1+∆1, ..., is+1+∆s+1), where, either all ∆k are null, or only two of them are
non-zero and, respectively, 1 and −1, which identifies the adjacent states.
The probability that the system changes into states i′ that do not obey
these conditions is zero, Ti′i = 0. When all ∆k = 0, the system remains un-
changed, i′ = i, and the transition probability correspondent to this event
can be calculated from the remaining as Tii = 1 −∑i′ 6=i Ti′i. Hence, the
determination of the transition probabilities between adjacent states, allows
one to solve the problem. This will be left for Chapter 3.

In this section, I will present and derive several general results related to
these processes. Then, I will restrict the analysis to populations with only
two strategies so I can introduce concepts as fixation probability and fixation
time and motivate the study of stationary distributions.

2.3.1 Drift and Diffusion

Let me start by explicitly computing the Drift and Diffusion coefficients
for this kind of processes. Now that I am considering birth-death pro-
cesses, notice that the possible transition directions, δ, are under the as-
sumptions of the derivation since all its entries are null except two of them
which are, respectively, 1/N and −1/N , see Sec.2.2. Their explicit form is:
δ = {. . . , δk, . . . , δl, . . .} = {0, . . . , 0,±1/N, 0, . . . 0,∓1/N, 0, . . . , 0}. Using
Eq.(2.19) one writes

D
(1)
k (x) = −N

∑

δ 6=0

δkT
−δ(x)

= −N
∑

δ:δk 6=0

δkT
−δ(x)

= −N

N





∑

δ:δk=1/N

T−δ(x)−
∑

δ:δk=−1/N

T−δ(x)





= −





∑

δ:δk=1/N

T−δ(x)−
∑

δ:δk=1/N

T δ(x)





≡
(

TSk+(x)− TSk−(x)
)

(2.20)

and

13
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D
(2)
kl (x) =

N

2

∑

δ 6=0

δkδlT
−δ(x)

=
N

2

∑

δ:δk 6=0∧δl 6=0

δkδlT
−δ(x) (2.21)

Here is convenient to separate two distinct cases: k = l and k 6= l. In
the former case one gets Eq.(2.22) while, in the latter, one gets Eq.(2.23).

D
(2)
kk (x) =

N

2

∑

δ:δk 6=0

δkδkT
−δ(x)

=
N

2N2





∑

δ:δk=1/N

T−δ(x) +
∑

δ:δk=−1/N

T−δ(x)





=
1

2N





∑

δ:δk=1/N

T−δ(x) +
∑

δ:δk=1/N

T δ(x)





≡ 1

2N

(

TSk−(x) + TSk+(x)
)

(2.22)

D
(2)
kl (x) =

1

2N

(

−T−{...,δk=1,...,δl=−1,...}(x)− T−{...,δk=−1,...,δl=1,...}(x)
)

= − 1

2N

(

T {...,δk=−1,...,δl=1,...}(x) + T {...,δk=1,...,δl=−1,...}(x)
)

≡ − 1

2N
(TSk→Sl

(x) + TSl→Sk
(x)) (2.23)

Where in the last equalities I have used the definitions (2.24) and (2.25).
TSk±(x) is the sum of all transition probabilities that increase or decrease the
strategy k, respectively, and TSk→Sl

(x) is the probability that an individual
with strategy k changes into a strategy l.

TSk±(x) :=
∑

δ:δk=1/N

T±δ(x) (2.24)

TSk→Sl
(x) := T {...,δk=−1,...,δl=1,...}(x) (2.25)

I finally have Drift and Diffusion written in terms of quantities that
can be computed even in the finite system. I can finally write a Langevin
equation, which has now a very intuitive interpretation, Eq.(2.26). The
deterministic trend and the most probable direction in phase space, given by
the Drift, are a balance between the probability of increasing and decreasing

14
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a given strategy. The dispersion of the fraction of individuals with a given
strategy across the configurations in the phase space decreases with the
increase of population and the major terms in the Diffusion are a sum of
the transitions in opposite directions. In the unidimentional case this is
particularly easy to notice, Eq.(2.27).

dx

dt
= T+(x)− T−(x) +

1√
N

√

ND(2)Γ. (2.26)

dx

dt
= T+(x)− T−(x) +

1√
N

√

T+(x) + T−(x)

2
Γ. (2.27)

In any case, the study of the Drift and Diffusion will be the key for
the comprehension of the population dynamics. In what follows I will dis-
cuss briefly how to interpret these functions and how to relate them to the
population dynamics.

For large enough populations the fluctuations in the individuals of a
given strategy will be small compared to the global trend. Therefore, ne-
glecting the stochastic term in the Langevin equation, one finds a system
of ordinary differential equation, called the replicator equation in popula-
tion modeling: dx

dt = D(1)(x), where D(1)(x) = T+(x)−T−(x). This is an
intuitive way to motivate the Drift as the central direction in phase space.
Formally, for prediction of the system’s evolution, in general, short time
propagators need to be taken into account, P1|1(x, t+ τ |x′, t), which involve
both the stochastic (Diffusion) and the deterministic (Drift) parts of the
dynamics [45]; computing the gradient in x for the each point x′ one finds
D(1)(x′) as the most probable direction.

Let me get back to the finite systems. To make this transition clear, I
will use the i variables whenever I am in the finite system and the x vari-
ables when I am talking about the infinite limit. The functional dependence
distinction is done indexing the variable whenever I am talking about the
discrete system’s functions.

If the elements in the population can only adopt two different strategies,
say S1 and S2, I have a one-dimensional problem. Let i1 be the number
of individuals with a given strategy S1 (then N − i1 is the number of the
remaining strategy) and our configuration space be represented as a set of
points confined in a line segment such that 0 ≤ i1 ≤ N , see Eq.(2.3). When-

ever D
(1)
i1

> 0 (< 0) the population will tend to see the number of elements
with strategy S1 increase (decrease). Considering infinite populations, if
D(1)(x1) = 0 one finds a fixed point which can be stable or unstable, as
in traditional dynamical systems. However, since populations are finite,
stochasticity is present there is no fixation and these fixed points analogues
act as attractors or repellers, respectively. Diffusion is also a function of
i1 and is always non-negative, so it can be plotted as the Drift if one is
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interested in it. Fig.2.1a shows an example of simple way of gathering all
this information.
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Figure 2.1: Drift and Diffusion representation
(a) Illustration of Drift and Diffusion representation for a population whose
individuals can opt between two different strategies. The line with circles
represents the Drift and the line with the squares represents the Diffusion.
When the Drift is positive (negative) an arrow pointing right (left) is placed
in the configuration axis, indicating the general tendency of the population.
The dots in this axis represent fixed points analogues: a filled dot represents
a fixed point which acts as an attractor and an empty dot acts as a repeller.
Notice that those fixed points do not necessarily belong to the configuration
state space, for it is discrete, and that Diffusion in those points is necessarily
non-zero (see, eg. Eq.(2.27)). (b) Illustration of Drift representation for a
population whose individuals can opt between three different strategies. The
vector field indicates the direction of preferential motion and a color scale
is used to indicate its strength. Fixed point analogues are also visible in
this image though they are not represented to avoid overloading the image.
I will be using the background configuration space to plot the stationary
distribution (see next subsection). Diffusion is not represented for the same
reason.

However, if the elements in the population can adopt more than two
different strategies, the representation can get a little bit tricky. Notice
that, in general, the Drift is a vector field but the Diffusion is a tensor
field that is represented by a matrix. Therefore, using its eigenvectors and
making their magnitude equal to the correspondent eigenvalue, one is able
plot the Diffusion matrix [48, 47].

In this thesis, I will also require the representation of three different
strategies. Therefore, consider a population whose individuals can opt for
the strategies S1, S2 or S3. Let i = {i1, i2} denote the possible configura-
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tions, or, i = (i1, i2, i3 = 1−i1−i2). These configurations can be represented
in a discrete simplex defined by the domain in equation Eq.(2.3). Because
I am dealing with one-step processes, only one of the individual can change
strategy at time and, thereafter, there are six possible transitions. The way
to allow this transitions graphically, such that they are all equivalent, is
to arrange the population in a hexagonal lattice. Fig.2.1b represents some
Drift vector field and Fig.2.2 the detail of the hexagonal arrangement.

2.3.2 A geometric interpretation of the Drift

In this subsection, I will introduce a geometric interpretation for the Drift.
Fig.2.2 contains a local representation of a configuration and its possible
transitions. To every nearest neighbor, i′, I associate a vector with mag-
nitude Ti′i with the direction of i′ − i. Then I choose the standard non-
orthogonal basis, the unitary vectors u1 and u2 with the direction of ∂i

∂i1

and ∂i
∂i2

, respectively. Performing the sum of these vectors one finds a new
local vector, gi, the gradient of selection, which contains information about
all possible transitions and, using Eq.(2.24), can be written in the form of
Eq.(2.28), the Drift.

gi = (TS1+
i − TS1−

i )u1 + (TS2+
i − TS2−

i )u2 (2.28)

The entries of the gradient of selection correspond to the Drift in each di-

rection and, therefore, gi = D
(1)
i .

2.3.3 Fixation Problem and Stationary Distributions

In this subsection I will consider one-dimensional processes, i.e. populations
whose individuals can opt for two different strategies: S1 and S2. This way,
i = i1 = i.

Suppose the population dynamics has some stable and unstable fixed

points analogues, some {x ∈ ℜ : D
(1)
xN = 0}: attractors and repellers. The

population will, therefore, spend most of its time around the attractors and
little time near repellers but, since it is finite, stochasticity will allow all
configurations to be explored. Eventually, the configuration in which the
whole population adopts strategy S1 or S2 will occur and the imitation
process, which is the motive of the dynamics, will end: an individual can
only imitate his own strategy. Essentially, if only the imitation process
is considered, evolutionary dynamics in finite populations will (only) stop
whenever the population reaches a monomorphic state [49, 40].

Hence, in addition to the analysis of the shape of gi = gi, the gradient
of selection, or Drift, often one of the quantities of interest in studying the
evolutionary dynamics in finite populations is the probability φi that the
system fixates in a monomorphic S1 state, starting from, for instance, a
given number i of S1’s.
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Figure 2.2: Phase space representation
Local representation of the phase space and possible transitions for a bi-
dimensional one-step process. A vector can be associated with every tran-
sition between the element i and each adjacent element. The sum of these
vectors corresponds to the Drift in the configuration i, which is often called
the gradient of selection, gi (see Chapter 3).

The fixation probability of i S1’s, φi, depends on the ratio λi = T−
i /T+

i ,
being given by [50]

φi =
i−1
∑

l=0

l
∏

l′=1

λl′/
N−1
∑

l=0

l
∏

l′=1

λl′ (2.29)

Under neutral selection (that is, when the probability of changing or
not changing strategy is 1/2), the fixation probability trivially reads φ0

i =
i/N , providing a convenient reference point [20, 50, 40, 51]. For a given
i, whenever φi > φ0

i , natural selection will favor cooperative behavior, the
opposite being true when φi < φ0

i .

Yet, even if fixation in one of the two absorbing states is certain (i = 0
and i = N), the time required to reach it can be arbitrarily long. This
is particularly relevant in the presence of those basins of attraction with
polymorphic stable configurations, which correspond to finite population
analogues of co-existence equilibria in infinite populations. For instance, in
large populations, the time required for fixation, ti, can increase significantly.
Following Antal and Scheuring [52], the average number of updates ti the
population takes to reach monomorphic S1 , starting from i individuals with
strategy S1, can be written as [52, 53]
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ti = −t1
φ1

φi

N−1
∑

l=i

l
∏

l′′=1

λl′′ +
N−1
∑

l=i

l
∑

l′=1

φl′

T+
i

l
∏

l′′=l′+1

λl′′ (2.30)

where

t1 =
N−1
∑

l=i

l
∏

l′=1

φl′

T+
l′

l
∏

l′′=l′+1

λl′′ (2.31)

This way, one complements the simple study of the fixation probabili-
ties, knowing how long they take to fixate. Notice that if the fixation in
one of monomorphic state is certain but the time it takes to fixates is too
long the first knowledge is rather irrelevant. For example, the existence of
a stable equilibrium may turn the analysis of the fixation probability mis-
leading and, therefore, fixation probabilities may fail to characterize in a
reasonable way the evolutionary dynamics under general conditions. More-
over, as I mentioned before, stochastic effects in finite populations can be of
different nature, going beyond errors in the imitation process. In addition
to social learning by imitation dynamics, one can also consider the so-called
mutations: random exploration of strategies or any other reason that leads
individuals to change their behavior [41]. Under these circumstances, the
population will never fixate in none of the two possible monomorphic states
(see Chapter 4).

The proper alternative, which overcomes the drawbacks identified in
both φi and gi, consists in the analysis of the distributions of the complete
Markov as mentioned in the very beginning, Sec. 2.1. In general, for the
complete solution of the problem, one would solve M-Equation, Eq.(2.4), to
compute the PDF evolution. This can be very time and resource consuming
and, furthermore, the analysis of the results would not be simple. However,
I am not interested in transient distributions and, thereafter, I can look for
stationary solutions of this equation. In general, this is obtained from the
eigenvector associated to the eigenvalue 1 of the Ti′i matrix. Notice that
as long as the states are numerable this matrix is always buildable for an
arbitrary number of strategies.

To finish this subsection I will derive a solution that avoids solving
this eigenproblem for one-dimensional one-step processes. For an alternate
derivation see [44]. Let i be a limited one-step process: i = 0, 1, ..., N . The
transition probability from state i to i′ is Ti′i. Thus, the M-equation for
the probability pi(t) of the configuration i at t > t0, for an initial condition
pi(t0) = δii0 , is [44]:

19



One-Step Processes

∆pi(t) =
N
∑

i′=0

(Tii′pi′(t)− Ti′ipi(t)) (2.32)

=
N
∑

i′=0,i′ 6=i

(Tii′pi′(t)− pi(t)Ti′i) (2.33)

=











Ti i−1pi−1(t) + Ti i+1pi+1(t)− (Ti−1 i + Ti+1 i)pi(t), 0 < i < N

T01p1(t)− T10p0(t), i = 0

TN N−1pN−1(t)− TN−1NpN (t), i = N

Searching for a stationary solution, ∆pi(t) = 0 for all i, and one can use
the recurrent relation:

i = 0 ⇒ p1 = p0T10/T01 (2.34)

0 < i < N ⇒ pi+1 = (pi(Ti−1i + Ti+1i)− pi−1Tii−1)/Tii+1 (2.35)

i = N ⇒ pN = pN−1TNN−1/TN−1N (2.36)

Which allows one to write all pi as a function of p0. However, from
Eq.(2.35) and using Eq.(2.34), one has:

T12p2 = p1(T01 + T21)− p0T10 (2.37)

= p1(T01 + T21)− p1T01 (2.38)

= p1T21. (2.39)

Which is the same kind of relation as in Eq.(2.34). Thus, is natural to
assume the hypothesis:

pn = pn−1Tnn−1/Tn−1n, (2.40)

Valid for n = 1 via Eq.(2.34). Using Eq.(2.35) one writes:

Tnn+1pn+1 = pn(Tn−1n + Tn+1n)− pn−1Tnn−1 (2.41)

hip
= pn(Tn−1n + Tn+1n)− pnTn−1n (2.42)

= pnTn+1n (2.43)

Which validates the hypothesis, by induction, for i ≥ 1. Recurrently one
has:

pi = pi−1Tii−1/Ti−1i = pi−2Ti−1i−2/Ti−2i−1Tii−1/Ti−1i = . . . =

= p0
T10

T01

T21

T12
. . .

Ti−1i−2

Ti−2i−1

Tii−1

Ti−1i
(2.44)
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Finally, each pi is determined as a function of the ratio between T+
l = Tl+1l

and T−
l+1 = Tll+1, Rl, and p0 determined by normalization:

pi = p0

i−1
∏

l=0

Tl+1l

Tll+1
≡ p0

i−1
∏

l=0

Rl, p0 =

(

N
∑

i=0

i−1
∏

l=0

Rl

)−1

(2.45)
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Chapter 3
Evolutionary Game Theory

So far, I have reduced the problem of building up a model that describes the
evolution of a population to the ability of writing some transition probabil-
ities. To do this, one must understand what makes individuals to change
their own strategy. As already mentioned, an imitation principle must be
behind the evolution of the population but this is not enough, for it system-
atically leads the population to homogeneous states.

Individuals tend to copy others whenever these appear to be more suc-
cessful. Contrary to strategies defined by a contingency plan, which, as some
argue [54], are unlikely to be maintained for a long time scale, this social
learning (or evolutionary) approach allows policies to change as time goes
by [24, 36, 55]. Likely, these policies will be influenced by the behavior (and
achievements) of others, as it happens in the context of donations to public
goods [37, 38, 39]. This also takes into account the fact that agreements
may be vulnerable to renegotiation, as individuals may agree on intermedi-
ate goals or assess actual and future consequences of their choices to revise
their position [1, 2, 8, 56, 57, 58].

Moreover, one must also consider random exploration of strategies or any
other reason that leads individuals to change their behavior, mutation. In
the simplest scenario, this creates a modified set of transition probabilities,
with an additional random factor encoding the probability of a mutation,
µ, in each update step. Under these circumstances, the population will
never fixate in none of the two possible monomorphic states and will evolve
preferentially according the imitation process.

To this point, the missing transition probabilities correspond to the
probability that an element with a given strategy, Sl, changes into an-
other specific strategy, Sk. Evidently this can depend on the couple of
strategies but I will assume a common functional form for all strategies;
the process of decision has the same rule. The rule I use to compute
TSl→Sk

≡ T{...,ik+1,...,il−1,...}{...,ik,...,il,...} is the Fermi update rule with mu-
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tation, or pairwise comparison rule [40]:

• Considering all individuals are equally likely to conceive the change of
strategy, the probability an individual with strategy Sl gives it a try
is il/N .

• If the individual compares to all others in the same way, like for well-
mixed populations, he compares his strategy to the strategy Sk with
probability ik/(N − 1).

• In the comparison process, the individual more likely changes strat-
egy if his strategy is worse than the one he is comparing to. This is
accomplished using a Fermi distribution, (1 + exp(β∆SlSk

))−1, which
introduces errors in the imitation process, where β represents the in-
tensity of this selection and ∆SlSk

quantifies how better is strategy Sl

compared to Sk. For β << 1, selection is weak and its effect is but a
small perturbation to random drift in behavioral space.

• Additionally, one may introduce a parameter µ, the mutation, that
allows transitions between strategies independent of how good they
are. When µ has its maximum value, 1, the individual changes (or
not) to any strategy with equal probability.

These four ingredients build Eq.(3.1) [40, 59, 41].

TSl→Sk
=

il
N

(

ik
N − 1

1− µ

1 + exp(β∆SlSk
)
+

µ

s

)

(3.1)

This formulation allows one to explicitly compute the Drift and Diffusion
for a Fermi update rule using Eq.(2.20) and Eq.(2.21), see Sec. 3.1.

3.1 Drift and Diffusion for Fermi Update Rule

In this section I will calculate all Drift and Diffusion using the Fermi update
rule. I use the finite system notation.

Consider the quantities TSk+
i ± TSk−

i , whose definitions are given, in
Eq.(2.24), in terms of TSl→Sk

, Eq.(3.1). Then,

24



V. V. Vasconcelos

TSk+
i ± TSk−

i =
s+1
∑

l 6=k

[

il
N

(

ik
N − 1

1− µ

1 + exp(β∆SlSk
)
+

µ

s

)

±

± ik
N

(

il
N − 1

1− µ

1 + exp(β∆SkSl
)
+

µ

s

)]

(3.2)

=
s+1
∑

l 6=k

[

ik(1− µ)

N(N − 1)
il

(

1

1 + exp(β∆SlSk
)
±

± 1

1 + exp(β∆SkSl
)

)

+
µ

sN
(il ± ik)

]

(3.3)

Using the conceptual symmetry ∆SlSk
= −∆SkSl

and the identities (1+
exp(x))−1 − (1 + exp(−x))−1 ≡ tanh(−x/2) and (1 + exp(x))−1 + (1 +
exp(−x))−1 ≡ 1 I can write Eqs.(3.4).

TSk+
i − TSk−

i =
ik(1− µ)

N(N − 1)

s+1
∑

l 6=k

[

il tanh

(

∆SkSl

2

)]

+
µ

sN
(N − (s+ 1)ik)

(3.4a)

TSk+
i + TSk−

i =
ik(1− µ)

N(N − 1)
(N − ik) +

µ

sN
(N + (s− 1)ik) (3.4b)

In the same way, one computes

TSk→Sl
+ TSl→Sk

=
ikil(1− µ)

N(N − 1)
+

µ

sN
(ik + il) (3.5)

TSk+
i − TSk−

i is the Drift vector and the remaining functions are part of
the Diffusion matrix.

Notice that TSk+
i + TSk−

i and TSk→Sl
+ TSl→Sk

are independent of the
strategies. These elements build the diffusion matrix and, therefore, Diffu-
sion is the same for all conceivable games and strategies once one chooses
the Fermi update rule. If one is interested in the study of fluctuations of
strategies in populations, the mutation should follow some more complex
rule, otherwise no contributions from the games themselves will arise.

3.2 Interaction

By now, I only need to define how subjects compare their strategies. I have
already mentioned “better strategies” but, so far, all I did was packing this
information in ∆SlSk

. Actually, ∆SlSk
is indexed to a given configuration

too, since a strategy is only said to be good in a given situation. I will
consider that each strategy, Sk, for each configuration, has a well defined
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fitness, fSki. The bigger its fitness, the better succeeded is the strategy. In
this sense, one writes ∆SlSk

= fSl
− fSk

. The way the whole procedure is
built supposes this fitness must be accessible to the individuals since it is part
of their decision process. Evidently, this can only be done via interaction
with the other players.

I will consider n-person interactions: an individual interacts with all N
players but in groups of size n. In these small games one considers that each
player has a payoff, depending on the strategy he uses in the game. This
payoff is represented by a numerical amount, which is positive whenever
the interaction benefits the individuals and negative when they are harmed.
Since individuals with the same strategy behave in the same way, the payoff
is a characteristic of the strategy and, ultimately, the payoff, PSk

, is what
defines the strategy.

So that individuals are allowed to make good decisions, many of this
interaction will take part between each decision process. Thus, a mean field
approximation is considered and an average payoff, representing the social
success, must be taken into account.

Definition 4 Fitness
The fitness of a strategy Sl, fSl i, is the average payoff a single individual
with strategy Sl obtains over all possible games that can be played in a given
configuration of the whole population.

For finite, well-mixed populations of size N , this average is accomplished
using an hypergeometric sampling, sampling without replacement [60]. Let
j = {j1, ..., js} = (j1, ..., js+1) be the configuration of players in the group of
size n with identical definition to i but replacing N for n, i.e., the configu-
ration of the small group. Then, using Def.4, fSki is given by Eq.(3.6).

fSk i =

(

N − 1

n− 1

)−1
∑

j1,...,js
j1+...+js≤n−1

PSk j

(

ik − 1

jk

) s+1
∏

l 6=k

(

il
jl

)

(3.6)

Where PSk j is the payoff of an individual with strategy Sl in an n-person
game with configuration j, which must be such that it contains at least one
individual with strategy Sk.

If one assumes an infinite population, in a configuration x = {x1, ..., xs} =
(x1, ..., xs+1 = 1− x1 − ...− xs), where also every individual can potentially
interact with everyone else, the fitness of each individual can be obtained
from a random sampling of groups. The latter leads to groups whose com-
position follows a binomial distribution. Hence, for groups of size n and
configuration j, I may write the fitness of a given strategy fSk

(x) using
Eq.(3.7) [31, 32, 61].
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fSk
(x) =

∑

j1,...,js
j1+...+js≤n−1

(n− 1)!

j1! . . . js+1!
PSk j

s+1
∏

l

xjll (3.7)

Now on, our mission will be to define proper strategies by giving the
behavior of an individual in a group of size n and compare the effects that
different strategies have on the behavior of the population.
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Chapter 4
The effect of Risk

Now that the framework is settled, I will explore in detail the problem
exposed in the introduction: the welfare of our planet. Throughout this
chapter I will use most of the results introduced and derived before. I will
be considering two strategies and, therefore, the results are particularized
to a one-dimensional phase space.

One of the most distinctive features of this complex problem, only re-
cently tested and confirmed by means of actual experiments [10], is the role
played by the perception of risk that accrues to all actors involved when
taking a decision. Indeed, experiments confirm the intuition that the risk
of collective failure plays central role in dealing with climate change. Up
to now, the role of risk has remained elusive [1, 2, 62]. Additionally, it is
also unclear what is the ideal scale or size of the population engaging in
climate summits - whether game participants are world citizens, regions or
country leaders -, such that the chances of cooperation are maximized. In
this chapter I address these two issues in the context of game theory and
population dynamics [60].

The conventional public goods game - the so-called n-person Prisoner’s
Dilemma - involve a group of n individuals, who can be either Cooperators
(C) or Defectors (D). C’s contribute a cost c to the public good, whereas
D’s refuse to do so. The accumulated contribution is multiplied by an
enhancement factor that returns equally shared among all individuals of
the group. This implies a collective return that increases linearly with the
number of contributors, a situation that contrasts with many real situations
in which performing a given task requires the cooperation of a minimum
number of individuals of that group [28, 29, 31, 33, 34, 35, 63, 64, 65].
This is the case in international environmental agreements, which demand a
minimum number of ratifications to come into practice [1, 2, 66, 12, 56, 57],
but examples abound where a minimum number of individuals, which does
not necessarily equal the entire group, must simultaneously cooperate before
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any outcome (or public good) is produced. Furthermore, it is by now clear
that the n-person Prisoner’s Dilemma fails short to encompass the role of
risk, as much as the non-linearity of most collective action problems.

I will address these problems resorting to a simple mathematical model [60],
adopting unusual concepts within political and sustainability science re-
search, such as peer influence and evolutionary game theory. As a result
I encompass several of the key elements stated before regarding the climate
change conundrum in a single dynamical model.

Throughout this chapter I show how small groups under high risk and
stringent requirements toward collective success significantly raise the chances
of coordinating to save the planet’s climate, thus escaping the tragedy of the
commons. In other words, global cooperation is dependent on how aware
individuals are concerning the risks of collective failure and on the pre-
defined premises needed to accomplish a climate agreement. Moreover, is
shown that to achieve stable levels of cooperation, an initial critical mass
of cooperators is needed, which will then be seen as role models and foster
cooperation. I will start by presenting the model in Sec. 4.1. In Sec. 4.2, I
discuss the situation in which evolution is deterministic and proceed in very
large populations. In end the Chapter in Sec. 4.3, where I analyze the evo-
lutionary dynamics of the same dilemma in finite populations under errors
and behavioral mutations.

4.1 Model

Consider,once again, a large population of size N , in which individuals en-
gage in an n-person dilemma. Here, each individual is able to contribute or
not to a common good, i.e. to cooperate or to defect, respectively. Game
participants have each an initial endowment, or benefit, b. Cooperators (C’s)
contribute a fraction of their endowment, the cost, c < b, while defectors
(D’s) do not contribute. As previously stated, irrespectively of the scale
at which agreements are tried, most demand a minimum number of con-
tributors to come into practice. Hence, whenever parties fail to achieve a
previously defined minimum of contributions, they may fail to achieve the
goals of such agreement (which can also be understood as the benefit b),
being this outcome, in the worst possible case, associated with an appalling
doomsday scenario. To encompass this feature in the model one requires
a minimum collective investment to ensure success: if the group of size n
does not contain at least npg C’s (or, equivalently, a collective effort for the
public good of npgc), all members will lose their remaining endowments with
a probability r, the risk ; otherwise, everyone will keep whatever they have.
Hence, npg < n represents a coordination threshold [10, 31] necessary to
achieve a collective benefit. As a result, the payoff of a C in a group of size
n and iC = i C’s (and iD = n− i D’s) can be written as
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PCi = b{Θ(i− npg) + (1− r)(1−Θ(i− npg))}, (4.1)

where Θ(x) is the Heaviside step function (Θ(x < 0) = 0 and Θ(x ≥
0) = 1). Similarly, the payoff of a C is given by

PCi = PCi + c. (4.2)

The risk r is here introduced as a probability, such that with probability
(1−r) the benefit will be collected independently of the number of contribu-
tors in a group. This collective-risk dilemma (CRD) represents a simplified
version of the game used in the experiments performed by Milinski et al. [10]
on the issue of the mitigation of the effects of climate change, a framework
that is by no means the standard approach to deal with International En-
vironmental Agreements and other problems of the same kind [1, 2, 56, 57].
The present formalism has the virtue of depicting black on white the impor-
tance of risk and its assessment in dealing with climate change, something
that Heal et al. [67, 58] have been conjecturing for quite awhile. At the same
time, contrary to those experiments [10], this analysis is general and not re-
stricted to a given group size. Additionally, and unlike most treatments [1],
this analysis will not rely on individual or collective rationality. Instead,
this model relies on evolutionary game theory combined with one-shot Pub-
lic Goods games, in which errors are allowed. In fact, this model probably
includes the key factors in any real setting, such as bounded rational in-
dividual behavior, peer-influence and the importance of risk assessment in
meeting the goals defined from the outset.

4.2 Evolution of Collective Action in Large Popu-

lations

In the framework of evolutionary game theory, the evolution or social learn-
ing dynamics of the fraction xC = x of C’s (and xD = 1−x of D’s) in a large
population (N → ∞) is governed by the gradient of selection associated with
the replicator dynamics [24, 31, 68], Eq.(4.3). This is easily accomplished
using the one-dimensional Langevin equation Eq.(2.27), equivalent to the
replicator equation [68] (see Sec.2.3.1).

ẋ = g(x) ≡ (fC(x)− fD(x))x(1− x) (4.3)

The replicator dynamics characterizes the behavioral dynamics of the
population, where fC(fD) is the fitness of C’s (D’s), associated with the
game payoffs. According to the replicator equation, C’s (D’s) will increase
in the population whenever g(x) > 0 (g(x) < 0). Using Eq.(3.7) one can
write the fitness in this situation.

31



Evolution of Collective Action in Large Populations

fC(x) =
n−1
∑

j

(

n− 1

j

)

PCj+1x
j(1− x)n−1−j (4.4)

fD(x) =
n−1
∑

j

(

n− 1

j

)

PDjx
j(1− x)n−1−j (4.5)

where PCj and PDj are respectively defined in Eqs.(4.1,4.2).
Fig.4.1 shows that, in the absence of risk, g(x) is always negative. Risk,

in turn, leads to the emergence of two mixed internal equilibria, rendering
cooperation viable: for finite risk r, both C’s (for x < xL) and D’s (for
x > xR) become disadvantageous when rare. Co-existence between C’s and
D’s becomes stable at a fraction xR, which increases with r. Collective
coordination becomes easier to achieve under high-risk and, once the coor-
dination barrier (xL) is overcome, high levels of cooperation will be reached.

Figure 4.1: Effect of risk – appearance of internal equilibria
For each fraction of C’s, if the gradient g(x) is positive (negative) the fraction
of C’s will increase (decrease). Increasing risk, r, modifies the population
dynamics rendering cooperation viable depending on the initial fraction of
C’s (n = 6, npg = 3 and c/b = 0.1). The five curves correspond, from top
to bottom to, r = 1, 0.75, 0.5, 0.25, 0.

As descussed in Chapter 2, the appearance of two internal equilibria
under risk can be studied analytically, as the roots of the gradient of selection
determines the occurrence of nontrivial equilibria of the replicator dynamics.
From the equations above one may write, after some algebra, that

g(x) = b

[(

n− 1

npg − 1

)

xnpg−1(1− x)n−npgr − c/b

]

. (4.6)
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Defining the cost-to-risk ratio γ = c/br, i.e. the ratio between the fraction
of the initial budget invested by every C and the risk of losing it, the sign
of g(x) is conveniently analyzed by using the polynomial

p(x) =

(

n− 1

npg − 1

)

xnpg−1(1− x)n−npg − γ (4.7)

which, in turn, can be used to determine the critical value γ̄ below which
an interior fixed point x∗ ∈ (0, 1) emerges. Indeed, I can prove the following
propositions.

Proposition 1. Let Γ(x) =
(

n−1
npg−1

)

xnpg−1(1 − x)n−npg . For 1 < npg < n,

there exists a critical cost-to-risk ratio γ̄ = Γ(x̄) > 0 and fraction of C’s
0 < x̄ < 1 such that:

(a) If γ > γ̄, the evolutionary dynamics has no interior equilibria.

(b) If γ = γ̄, then x̄ is a unique interior equilibrium, and this equilibrium is
semistable.

(c) If γ < γ̄, there are two interior equilibria {xL, xR}, such that xL < x̄ <
xR, xL, is unstable and xR stable.

Proof. Let me start by noticing that

dΓ

dx
(x) = −

(

n− 1

npg − 1

)

xnpg−2(1− x)n−npg−1s(x) (4.8)

where s(x) = 1 + (n − 1)x − npg. Since n > 2 and 1 < npg < n, then
dΓ(x)/dx has a single internal root for x̄ = (npg − 1)/(n − 1). In addition,
s(x) is negative (positive) for x < x̄(x > x̄), which means that Γ has a
global maximum for x = x̄. (a) and (b) can now easily follow. Since Γ has
a maximum at x̄, it follows that Γ(x) = 0 has no solutions for γ > γ̄ and
a single one, at x̄, for γ = γ̄. Moreover, both when x → 0 and x → 1,
p(x) < 0, making x = 0 a stable fixed point and x = 1 an unstable one.
Therefore, if x̄ is a root, it must be semistable. To prove (c), I start by
noticing that Γ(0) = Γ(1) = 0. From the sign of s(x) (see above), Γ(x)
is clearly monotonic increasing (decreasing) to the left (right) of x̄. Hence,
there is a single root xL(xR) in the interval 0 < x < x̄ (x̄ < x < 1). Since
x = 0 is stable and x = 1 unstable, xR must be stable and xL unstable.

Proposition 2. For npg = 1, if γ < γ̄, there is one stable interior equilib-
rium point in the interval 0 < x < 1.

Proof. If npg = 1, Γ(x) = (1 − x)n−1, which is a monotonic decreasing
function for 0 < x < 1. This means that the function p(x) has only one
zero in that interval, i.e. there is only one x̄(0 < x̄ < 1) such that p(x̄) = 0.
Given that p(x) is positive (negative) for x < x̄(x > x̄) then x̄ is a stable
equilibrium point.
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Proposition 3. For npg = n, if γ < γ̄, there is one unstable interior
equilibrium point in the interval 0 < x < 1.

Proof. If npg = n, Γ(x) = xn−1, which is a monotonic increasing function
for 0 < x < 1. This means that the function p(x) has only one zero in that
interval, i.e. there is only one x̄(0 < x̄ < 1) such that p(x̄) = 0. Given that
p(x) is negative (positive) for x < x̄(x > x̄) then x̄ is an unstable equilibrium
point.

(a)
(b)

Figure 4.2: Effect of risk – dynamical scenarios for finite populations
(a) Classification of all possible dynamical scenarios when evolving an in-
finitely large population of C’s and D’s as a function of γ, npg and n. A
fraction x of an infinitely large population adopts the strategy C; the remain-
ing fraction 1−x adopts D. The replicator equation describes the evolution
of x over time. Solid (open) circles represent stable (unstable) equilibria of
the evolutionary dynamics; arrows indicate the direction of selection. (b)
Internal roots x∗ of g(x) for different values of the cost-to-risk ratio γ = c/r,
at fixed group size (n = 6) and different coordination thresholds (npg). For
each value of γ one draws a horizontal line; the intersection of this line with
each curve gives the value(s) of x∗, defining the internal equilibria of the
replicator dynamics. The empty circle represents an unstable fixed point
(xL) and the full circle a stable fixed point (xR) (npg = 4 and γ = 0.15 in
example).

In Fig.(4.2a), I provide a concise scheme of all possible dynamical scenar-
ios that emerge from collective-risk dilemmas, showing how the coordination
threshold and the level of risk play a central role in dictating the viability of
cooperation. Fig.(4.2b) also shows the role played by the threshold npg: for
fixed (and low) γ, increasing n will maximize cooperation (increase of xR)
at the expense of making it more difficult to emerge (increase of xL).
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4.3 Evolution of Collective Action in Small Popu-

lations

As has been discussed throughout this thesis, real populations are finite
and often rather small, contrary to the hypothesis underlying the dynamics
portrayed in the previous section. In particular, this is the case of the
famous world summits where group and population sizes are comparable
and of the order hundreds, as individuals are here associated with nations
or their respective leaders. For such population sizes, stochastic effects play
an important role and the deterministic description of the previous section
may be too simplistic [49]. For finite, well-mixed populations of size N , with
iC = i C’s and iD = N − i D’s, the fitness in Eq.(3.6) becomes respectively
(see Sec. 3.2)

fCi =

(

N − 1

n− 1

)−1 n−1
∑

l=0

(

i− 1

l

)(

N − i

n− l − 1

)

PCl+1 (4.9)

fCi =

(

N − 1

n− 1

)−1 n−1
∑

l=0

(

i

l

)(

N − 1− i

n− l − 1

)

PDl. (4.10)

The gradient of selection, or Drift, is , using Eq.(3.4a), given by

gi = (1− µ)
i

N

(

N − i

N − 1
tanh

(

β

2
(fCi − fDi)

))

+ µ
N − 2i

N
(4.11)

When mutation is absent, µ = 0, one can compute quantities introduced
before, such as fixation probability and fixation time. In Fig. 4.3 I plot
the fixation probability as a function of the initial fraction of C’s for differ-
ent values of risk, and a population of 50 individuals. Even if cooperators
remain disadvantageous for a wide range of the discrete frequency of C’s
(see Fig.4.1), the fixation probability of C’s outperforms neutral selection,
φ0
i (picture as a dashed grey line), for most values of i/N . This is due to

the stochastic nature of the imitation process, which allows the fixation of
rare cooperators, even when they are initially disadvantageous. Hence, even
without random exploration of strategies [41], simple errors in the imitation
process, finite β, are enough to overcome the unstable fixed point shown in
Fig. 4.2 and reach a more cooperative basin of attraction on the righthand
side of the gradient. As a result, for high values of risk and large, but finite,
populations, cooperation is by far the strategy most favored by evolution
irrespectively of the initial fraction of cooperators.

However, as mentioned in Chapter 2, fixation probability is not the whole
story (see Sec. 2.3.3). For high intensities of selection or large populations,
the fixation time can increase drastically. This is illustrated in Figs.4.3b,
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(a) (b)

Figure 4.3: Effect of risk – fixation times
Evolutionary dynamics for different values of risk in finite populations. In
panel (a), I show the fixation probabilities for different values of risk, r, as a
function of the number of C’s (N = 50, c/b = 0.1, n = 6 = 2npg, β = 1.0). In
panels (b), I show the average number of generations (tj/N) [52, 69] needed
to fixate an initial fraction of 0.5 of cooperators, as a function of the intensity
of selection β (top) and population size N (bottom). I consider the case of
maximum risk (r = 1) for both (b) panels and c/b = 0.1, n = 6 = 2npg.
Even if high risk can turn the fixation of cooperators almost certain (as
shown in panel (a)), the time the population takes to reach such state can
be arbitrarily long.
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where is computed the average number of generations (ti/N) needed to at-
tain monomorphic cooperative state as a function of the intensity of selection
and population size, starting from 50% of C’s and D’s for a dilemma with
highest risk (r = 1). These panels clearly indicate that even if high risk
can turn the fixation of cooperators almost certain (as shown in the left
panel, Figs.4.3a), the time the population takes to reach such state can be
arbitrarily long. While the computation of the fixation probabilities can be
mathematically attractive, its relevance may be limited for large intensities
of selection and/or large N . In other words, the stochastic information built
in φi shows how unstable roots of gi may be irrelevant; however, the lack of
time information in φi ignores the key role played by the stable roots of gi.

A proper alternative that overcomes the drawbacks identified in both φi

and gi consists in the analysis of the stationary distributions of the complete
Markov chain pi, of size N + 1 (see Chapter 2). Using the Fermi update
rule in Eq.(3.1) I can compute the transition matrix. The transition ma-
trix Ti′i is tridiagonal and the stationary distribution is then obtained from
the eigenvector corresponding to the eigenvalue 1 of Ti′i, or using Eq.(2.44).
In Fig. 4.4 I show the stationary distributions for different values of risk,
for a population of size N = 50 where n = 2npg = 6. While the finite
population gradient of selection gi shown in the inset exhibits a behavior
qualitatively similar to g(x) in Fig. 4.1, the stationary distributions show
that the population spends most of the time in configurations where C’s
prevail, irrespective of the initial condition. This is a direct consequence
of stochastic effects, which allow the “tunneling” through the coordination
barrier associated with iL, analogue of xL, rendering such coordination bar-
rier iL irrelevant and turning cooperation into the prevalent strategy. On
the other hand, the existence of a stable fixed root of gi is triggered in pi
with a maximum at this position, unlike what one observes with φi.

Yet, until now the effect of the population size on the game itself remains
uncharted. Fig. 4.5 is a plot of the roots of gi as a function of the cost-to-
risk ratio for different values of population size N . For large N the general
picture described for infinite populations remains qualitatively valid. As
before, two interior roots of gi characterize the evolutionary dynamics of
the population. However, the position of the interior fixed points can be
profoundly altered by the population size. The range of i/N in which C’s
are advantageous is also strongly reduced for small populations. Moreover,
while x̄ (see Sec. 4.2) remains almost unchanged as one moves from infinite to
finite populations, the critical γ̄ is drastically reduced for small populations
that, in turn, reduces the interval of cost-to-risk ratios for which a defection
dominance dilemma is replaced by a combination of coordination and co-
existence dilemmas. In other words, the smaller the population size the
higher the perception of risk needed to achieve cooperation. The population
size also plays an important role on the shape of the stationary distribution:
In Fig. 4.5c I plot the stationary distribution for r = 1 and c/b = 0.1, for
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Figure 4.4: Effect of risk – stationary distributions
Prevalence of cooperation in finite populations. The main panel pictures
the stationary distribution corresponding to the prevalence of each fraction
of C’s that emerges from the discrete gradient of selection gi shown in inset.
Whenever risk is high, stochastic effects turn collective cooperation into a
pervasive behavior, rendering cooperation viable and favoring the overcome
of coordination barriers, irrespective of the initial configuration (N = 50,
n = 6, npg = 3, c/b = 0.1, µ = 0.005).

different population sizes. Whenever the population size increases, a higher
number of errors is needed to escape the equilibrium between C’s and D’s,
leading the system to spend a higher fraction of time on the internal stable
root of gi.

Naturally, the assessment of the effects of the population size should be
carried out in combination with the number of parties involved in collective-
risk dilemmas, i.e. the group size. Whether game participants are world
citizens, world regions or country leaders, it remains unclear at which scale
global warming should be tackled [57, 70]. Indeed, besides perception of
risk, group size may play a pivotal role when maximizing the likelihood
of reaching overall cooperation. As shown by the stationary distributions
in Fig. 4.6, cooperation is better dealt with within small groups, with the
proviso that for higher npg/n values, coordination is harder to attain, as
shown by the position of the roots of gi (see inset of Fig. 4.6).
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(a)

(b) (c)

Figure 4.5: Effect of risk – population size dependence
Population size dependence for n = 6 = 2npg. (a) Internal roots of the
gradient of selection for different values of the cost-to-risk ratio and popu-
lation sizes. (b) Fixation probabilities for different values of the population
size for a fixed cost-to-risk ratio (γ = 0.1) as a function of the number of
C’s (β = 5.0). (c) I introduce a small mutation (µ = 0.005) to show the
stationary distribution for the same game parameters in (b) and different
population sizes. As the population size increases, the system spends in-
creasingly less time close to the monomorphic configurations. The three
curves correspond, from top to bottom to, N = 150, 100, 50.
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Figure 4.6: Effect of risk – group size dependence
Group size dependence for npg = 3. (a) Roots of the gradient of selection
for different values of the cost-to-risk ratio and group sizes. (b) Stationary
distribution for different group sizes and c/ br = 0.15. Cooperation will
be maximized in small groups, where the risk is high and goal achievement
involves stringent requirements.
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Chapter 5
Collective-risk Dilemmas and the

effect of punishment

As often happens with human behavior, the problem is to find more efficient
ways to promote cooperation. As discussed, artificial mechanisms must
be used to promote the cooperation of all world leaders. Mechanisms in
what group size of the decision-making process and perception of risk are
concerned where described in the previous chapter. Another main tool often
appointed is the idea of punishing those who do not contribute to the welfare
of the planet. However, the way this punishment is done is still uncertain
and it is hard to identify the benefits of some methods against others.

In this chapter I will study the effect of punishment comparing, against
Defectors, punitive strategies with the cooperative strategy. Therefore, all
the analysis can still be done using the one-dimensional analysis

Let me consider a CRD with two different types of punishment strategies,
P , and, along with it, the other two, already studied, different behaviors:
cooperation, C, and defection, D. Again, each of these types are defined by
their action when interacting with n − 1 other elements and, consequently,
by their payoffs in such interaction.

PC j =− c+ b Θ(jC + jP − npg)+ (5.1a)

+ (1− r)b Θ(npg − 1− jC − jP )

PP j =PC j − pt (5.1b)

PDj =PC j + c−Π(i, j, np) (5.1c)

In Eqs.(5.1), Θ(k) = {0 (k<0)
1 (k≥0) is the Heaviside function, npg a positive

integer value not greater than n and r is real parameter between 0 and 1;
the parameters c,pt,p and b are all positive. If I am considering only C’s
and D’s in the population jP = 0, otherwise, if I consider only P ’s and D’s,
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jC = 0. The interpretation is similar to what I have done before and is as
follows.

C’s and Punishers, P ’s, contribute a factor c, the cost, in order to reach
a common partial goal - it represents the effort of cooperation - and, if there
is enough contribution, npgc, everybody receives a benefit b, otherwise, they
only receive that benefit with a probability (1 − r). One calls r the risk
of non-achievement and npg is the public good game threshold. Besides, P ’s
also contribute with a punishment tax, pt, to an institution which, whenever
there is enough funding, nppt, is able to efficiently punish D’s by an amount
Π, which corresponds to a punishment function. Notice that this punish-
ment only occurs over a certain punishment threshold, np. However, the
institution need not to be a global one, supported by all P ’s, that overviews
all interactions but it can instead be local, created by the P ’s to overview
the interaction with a given group of individuals. This will result in different
punishment functions. If I want to use a local institution I pick Eq.(5.2),
which means that a punishment fine p is applied to each D in the group
whenever iP ≥ np, otherwise I choose Eq.(5.3), where punishment acts at
the population level, applying a punishment fine p now to every D in the
population, whenever iP ≥ np.

Π(i, j, np) = p Θ(jP − np) (5.2)

Π(i, j, np) = p Θ(iP − np) (5.3)

In the absence of P ’s, one recovers the n-person game of Chapter 4. As
discussed, this model shows that the emerging dynamics depends on the
perception of risk, population size and interaction group.

Now, I will consider the population size of the order of the number of
countries involved in climate, several dozens, and the interacting group size
one tenth. The different panels in Fig. 5.1 show the resulting stationary
probability distribution function (PDF) from Eq.(2.4) together with the
gradient of selection for two strategies in Eq.(3.4b) – C’s and D’s (left) and
P ’s andD’s (right). Once again, the maximum of the stationary distribution
is nearly coincident with the configuration i∗C , which makes an almost null
gradient with negative slope. Consequently, population will spend most of
the time around i∗C , as it happened in the previous Chapter.

Fig.5.1 shows how risk (decreasing from top to bottom) still plays a
crucial role in the overall population dynamics. The left panels reproduce
the scenarios obtained in the absence of P ’s, obtained in Chapter 4, which
will be used here as references, and reveal how sensitive the cooperation
state is to risk. For a 50/50 chance of achieving the goal, despite having the
maximum of the PDF in a cooperative state, one already sees a very strong
negative gradient, directing the population towards the defectors side and
making the right side tale of the distribution to fall rapidly. Has the risk
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decreases, one promptly watches the end of a cooperative population and,
with a risk of 25%, all configurations tend to have less cooperators. When
there is no risk, population receives a benefit whether they cooperate or
not. Intuitively, it is of no use to cooperate and, consequently, population
is driven to a configuration where everyone is a defector and will be there
all the time.

Conversely, the right panels show the impact of punishment on the lev-
els of cooperation – implemented here in the local institution version, see
Eq.(5.2) – as P ’s replace C’s in the entire population. In the absence of risk
(bottom), the gradient of selection is nearly half as negative compared to the
reference scenario. This means that the strength with which the population
is driven into defection is smaller and, as a result, the stationary distribu-
tion grows a heavy tail towards punishment, meaning that the population
actually spends a significant amount of time in configurations with less D’s.
This is a rather impressive result, revealing the power of punishment [71]
in hindering (in this case) defection. As we increase risk (center and top
panels) populations adopt more and more the punishment behavior.

An overall view of the results is provided in Fig.5.2 where I plot the
internal roots of the gradient of selection for different values of r. I compare
again the two strategies against D’s: C’s and P ’s with local institutions.

The CRD played between C’s and D’s, shows, as seen, two kinds of
behaviors. In the first scenario, for low values of the perception of risk, the
system is driven into a configuration in which defection dominates, apart
from mutations, which generate a small amount of C’s. As one increases the
perception of risk, one reaches the second scenario that comprises two basins
of attraction, where a local maximum appears now closer to full cooperation.
Above a critical value of the perception of risk, the analogues of stable and
unstable fixed points emerge, allowing the system to spend longer periods
of time in more cooperative configurations. When I replace C’s by P ’s, I
also change the relative size of the two basins of attraction, in particular
for low values of risk, as the critical perception of risk needed to create a
cooperative basin of attraction occurs for lower values of r. Furthermore,
with P ’s, the stable equilibrium where few D’s co-exist with P ’s occurs for
lower fraction of D’s. Overall, this means that the population will spend a
greater amount of the time in a more cooperative situation. Additionally,
and compared to C’s, P ’s also push the unstable fix point to lower fractions
of D’s, rendering collective coordination an easier task.

Finally, in Fig. 5.3 we adopt the same notation scheme of Fig. 5.2 to show
the position of the internal roots of the gradient in terms of the punishment
fine, p, and punishment tax,pt. This analysis is repeated for different values
of risk (low risk, r = 0.0, dots; intermediate risk, r = 0.5, triangles; high risk,
r = 1.0, squares). In the top panels we see how the punishment tax affects
the positions of the fixed points, for both low (left panel) and high (right
panel) punishment fine. As expected, if the taxes for the maintenance of
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Figure 5.1: Effect of punishment – stationary distributions
The role of risk in populations made of C’s and D’s (left), and P ’s and
D’s (right). From the top to the bottom, each panel shows the stationary
distributions and respective gradients of selection for r = 0.5, r = 0.25 and
r = 0. Blue lines represent the gradient of selection and gray dots correspond
to the stationary distribution function. (N = 40, n = 10, npg = 5, b = 1,
c = 0.1, pt = 0.02, p = 0.1, np = 3, µ = 0.025 and β = 5).

institutions are low, a considerable amount of P ’s pervades; however, as we
increase the tax, punishment eventually fades. When the punishment fine
applied to the defectors is smaller, punishment vanishes for smaller values
of the tax (left panel). In the bottom panels we show how the punishment
fine affects the positions of the internal roots of , for both low (left panel)
and high (right panel) punishment tax. If the tax for the punishment insti-
tution is low enough, a small punishment fine leads to the appearance of a
coexistence root further from the full defection configuration. However, if
the punishment fine is high, once again we regain the two different scenar-
ios: for very low (or none) punishment the population falls into the tragedy
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Figure 5.2: Effect of punishment – risk dependence
Interior roots of the gradient of selection for populations made of C’s and
D’s (red lines and symbols), and P ’s and D’s (blue lines and symbols). For
each value of r, the full (empty) symbols represent the finite population
analogues of stable (unstable) fixed points, that is, probability attractors
(repellers). (N = 40, n = 10, npg = 5, b = 1, c = 0.1, pt = 0.02, p = 0.1,
np = 3, µ = 0.025 and β = 5).

of the commons, whereas above a critical value of the punishment fine the
coexistence point will arise. Both left and right panels show that a small
increase on the punishment fine can drastically wipe-out defection. As a
final point, all panels contain the location of the internal roots for the three
values of risk indicated before, showing how important is the overall role of
risk in the emergence collective action.
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Figure 5.3: Effect of punishment – fine and tax dependence
Effect of punishment and sensitivity to risk. The top panels show the inter-
nal roots of the gradient as functions of p; the top left panel with low pt and
the bottom right panel with high pt, respectively, pt = 0.02 and pt = 0.50.
The bottom panels show the fixed point analogues as functions of the pun-
ishment tax, pt; the top left panel with a low punishment fine, p, and the
top right panel with a high p, respectively, p = 0.1 and p = 0.9. Dots,
triangles and squares represent increasing values of risk, r = 0, r = 0.5,
r = 1, respectively.(N = 40,n = 10,c = 0.1,b = 1.0,npg = 5,np = 3,β = 5
and µ = 0.025).
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Chapter 6
Closer to real world summits

Now that I have shown the positive effect of punishment in a population,
I can head closer into the real world summit meetings. To finish this the-
sis, I will explore the effects of global punishment institutions versus locally
arranged ones and argue at which scale should punishment happen. As
mentioned in the previous chapter, the institution need not be a global one
(such as the United Nations), supported by all P ’s, that overviews all group-
interactions in the population; it may also be a local, group-wide institution,
created by the P ’s to enforce cooperation within a particular group of indi-
viduals. While the establishment of global institutions will depend on the
total number of P ’s in the population, setting up local institutions relies
solely on the number of P ’s within a group. Moreover, one does not expect
that all the parties (e.g. countries, regions or cities [13]) will be willing to
pay in order to punish others, despite being willing to undertake the neces-
sary measures to mitigate the climate change effects (C’s). In other words,
one may expect to witness, in general, the three behaviors simultaneously in
the population and, thus, one can only presume the system to evolve in such
a way that cooperation naturally arises. Therefore, I will consider that the
elements in the population are able to conceive the three kinds of behaviors
I have used so far: C, D and P .

Notice that now, since I have s + 1 = 3 strategies, configurations will
be settled on a bi-dimensional phase space. However, last end, we are only
willing the planet salvation so it does not really matter if we save it with
punishment or with cooperation alone. In this sense, I should be able to
obtain results in the form of Fig.5.1 results, considering the overall fraction
of non-defective strategies instead of the cooperative or punishing strategies
by themselves.

Following what I have done so far, I consider a population of N individ-
uals, who setup groups of size n, in which they engage in the CRD public
goods game, being capable of adopting one of the three strategies: C, P and
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D. The payoff of an individual playing in a group in which there are jC C’s,
jP P ’s and jD = n− jC − jD D’s, are respectively written for C’s, P ’s and
D’s in Eqs.(5.1), where now jC and jP can be simultaneously different from
zero. If the overall contribution in the group is insufficient – that is, if the
joint number of C’s and P ’s in the group is below npg – everyone in that
group will lose their remaining endowments with a probability r; otherwise,
everyone will keep whatever they have. In addition, the fitness fX of an
individual adopting a given strategy, X, will be associated with the average
payoff of that strategy in the population. This can be computed for a given
strategy in a configuration i = iC , iP , iD using a multivariate hypergeometric
sampling, i.e. without replacement (see Sec. 3.2). The number of individuals
adopting a given strategy will evolve in time according to a stochastic birth-
death process combined with the pairwise comparison rule [40, 59], which
describes the social dynamics of C’s, P ’s and D’s in a finite population (for
details see Chapter 3).

I begin by analyzing global sanctioning institutions, that is, whenever
there are enough individuals, population-wide, to setup such an institution
that, in turn, will sanction all D’s in the entire population of players. This
is, in fact, the most natural scenario at present, given that countries typi-
cally make up the population of climate agreements, and hence the United
Nations constitutes a natural candidate to supervise (and impose sanctions
on) possible D’s. Alternately, I also discuss the case of local sanctioning
institutions. This latter case leads to a distributed scenario, as sanctions
are the responsibility of a variety of institutions.

Figures 6.1 and 6.2 show representative examples of the behavioral dy-
namics of C’s, D’s and P ’s under global institutions (Fig. 6.1) and local
institutions (Fig. 6.2), both for low (left panels) and high (right panels) val-
ues of the perception of risk. In the upper panels, we resort to a discrete
three-strategy simplex (an equilateral triangle) at every point of which we
have the relative frequencies of C’s, D’s and P ’s (summing up to one in
every point), whereas each vertex is associated with a monomorphic con-
figuration of the population. Given the stochastic nature of the dynamics,
which includes mutations, the populations will never fixate in any of the
three possible monomorphic configurations. This fact renders the stationary
distribution the most appropriate tool to analyze the behavior of the pop-
ulation, since it provides information on the pervasiveness in time of each
configuration. In the upper panels, the stationary distributions are shown
for each configuration (each cell of the discrete simplex), using a grey-scale,
where darker points indicate those configurations visited more often. Ad-
ditionally, arrows in the simplex represent the most probable direction of
evolution, obtained from the computation of the 2-dimensional gradient of
selection (see Chapter 2). Arrows are drawn using a continuous color code
(identified in the pictures) associated with the intensity of the gradient, i.e.,
the likelihood of such transitions.
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In the lower panels, I show (with solid circles) the prevalence of non-
defection in the population (that is, the combined fraction of C’s and P ’s
– those who contribute to the common good), obtained from projecting the
information in the upper panels onto a one-dimensional simplex. In such a
reduced configuration space (defection versus non-defection) the gradients
of selection amount to a single line drawn in solid blue in the lower panels.

Let me start by considering the case of global institutions (Fig. 6.1).
Whenever the population starts below np (the punishment threshold value)
and in the absence of behavioral mutations, punishment will not occur,
recovering a CRD played solely by C’s and D’s (see Chapter 4). When
mutations allow the appearance of P ’s in the population, and depending
on the actual perception of risk, the population may either be dominated
by D’s at low-risk (Fig. 6.1a), or D’s will engage in a coordination-type
game with non-D’s (that is, C’s and P ’s) as the perception of risk increases
(Fig. 6.1b). When the composition of the population lies above the threshold
line (indicated with orange arrows in the upper panel), D’s get extinct in
favor of P ’s (see Chapter 5), leading the population rapidly towards full
cooperation, associated with the CP -edge of the simplex. In this situation,
P ’s will be disadvantageous with respect to C’s as they contribute to support
an institution, which is now useless. Hence, the advantage of C’s leads the
population (slowly, as shown by the blue arrows) to a configuration that
“falls below” the threshold line again. For low perception of risk, the only
stable point of the dynamics below threshold will be full defection, as shown
in Fig. 6.1a. Thus, as shown by the stationary distributions, the population
will remain most of the time under widespread defection, with instances
where C’s and P ’s are able to co-exist due to mutations.

For high perception of risk, however, the situation is quite different,
as shown in Fig. 6.1b. Indeed, in this case C’s and D’s easily manage to
coexist for low fractions of P ’s, even for configurations below the threshold
nP , opening a window of opportunity for widespread cooperation to thrive.
In other words, punishment will be effective with the crucial help of risk-
perception, here mimicking the overall awareness of the danger associated
with widespread defection.

Focusing now on local institutions, comparison between Fig. 6.2a (low
risk-perception) and Fig. 6.2b (high risk-perception) shows that the role of
the threshold line is not so pronounced in this case. Considering that we
need the same fraction of P ’s to make the institution efficient, but now at the
level of the group (and no longer at the level of the population), it is possible
that some (though not all) games are played with a sufficient number of P ’s
for sanctions to become effective. This leads the population as a whole to
regimes in which it evolves towards widespread cooperation. Notably, in
this case the population will then stabilize in configurations comprising a
sizable amount of C’s and enough P ’s to prevent D’s from invading.

In this simple model, I was able to show that supervision is more efficient
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Figure 6.1: CRD with three strategies – global institutions
Collective Risk Dilemma (CRD) with three strategies: C’s, P ’s and D’s.
Punishment is enacted by a Global, population-wide institution, who is re-
sponsible for fining all those who do not contribute to the pubic goods game
in each group. The results depicted correspond to a population of size
N = 40, where individuals interact in groups of size n = 10, with the ben-
efit b = 1 and cost c = 0.1. The mutation probability is µ = 1/N , whereas
selection pressure is intermediate (β = 5); the threshold for punishment to
become active (indicated by the horizontal line and arrows) is nP = 8, that
is, at least 20% of the population must be P ’s before D’s are punished.
Punishment tax is pt = 0.01, whereas punishment for defecting is p = 0.3.
In panel a) we show results for a low perception of risk (r = 0.2), whereas in
panel b) risk perception is high (r = 0.9). In each full simplex shown in the
upper panels, a gray scale is used to plot the stationary distribution, while
the magnitude of the gradient of selection is represented in a continuous
blue-yellow-red scale, where blue stands for the lowest intensities and red
corresponds to the highest ones.

if it is accomplished in small groups. This avoids cycles of defection by
increasing the number of interactions in which the defectors are punished.
The fact that this happens for low r is of extreme importance, given that,
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Figure 6.2: CRD with three strategies – local institutions
Collective Risk Dilemma with three strategies: C’s, P ’s and D’s. Same
parameters and game settings as in Fig. 1, except that here, punishment is
enacted by local institutions, who are responsible for fining all those (in the
group) who do not contribute to the pubic goods game. I keep punishment
threshold at nP = 2, that is at least 20% of the individuals in each group
must punish before institutional punishment becomes effective.

at present, the perception of risk regarding climate issues is low, mostly
because the consequences of the actions required now will produce effects
only in decades from now [2]. For high risk-perception, local institutions
only enhance the positive prospects for cooperation already attained in the
global institutions case.

51





V. V. Vasconcelos

Chapter 7
Conclusions

In dealing with the mitigation of climate change effects, we are facing a Pub-
lic Goods dilemma in which the game must be played now despite the public
good being associated with preventing future losses and, talking about en-
vironmental sustainability, one cannot overlook the uncertainty associated
with collective investment. This, in turn, typifies many situations that hu-
mans did, do and will face throughout their history [72]. Here I propose
a simple form to describe this problem and study its impact in behavioral
evolution, a new n-person game where the risk of collective failure is explic-
itly introduced by means of a simple collective dilemma. Moreover, instead
of resorting to complex and rational planning or rules, individuals revise
their behavior by peer-influence, creating a complex dynamics akin to many
evolutionary systems. With it, I obtained an unambiguous agreement with
recent experiments [10], together with several concrete predictions. I do so
in the framework of non-cooperative n-person evolutionary game theory, an
unusual mathematical tool within the framework of modeling of political
decision-making. This framework allowed to address the impact of risk in
several configurations, from large to small groups, from deterministic to-
wards stochastic behavioral dynamics and also the effect of punishment.

Overall, I have shown how the emerging behavioral dynamics depends
heavily on the perception of risk. The impact of risk is enhanced in the
presence of small behavioral mutations and errors and whenever global co-
ordination is attempted in a majority of small groups under stringent re-
quirements to meet co-active goals. This result calls for a reassessment of
policies towards the promotion of public endeavors: instead of world sum-
mits, decentralized agreements between smaller groups (small n), possibly
focused on region-specific issues, where risk is high and goal achievement
involves tough requirements (large relative npg), are prone to significantly
raise the probability of success in coordinating to tame the planet’s climate.

In addition, I have shown how individuals may effectively self-organize
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their actions towards cooperation, by creating community enforcement in-
stitutions able to punish those who row against collective interest [31, 11].
Moreover, I offer insights on the scale at which such institutions should
be implemented, suggesting that a decentralized, polycentric, bottom-up
approach, involving multiple institutions instead of a single global one, pro-
vides better conditions both for cooperation to thrive and for ensuring the
maintenance of such institutions. This result is particularly relevant when-
ever perception of risk of collective disaster, alone, is not enough to provide
the means to achieve a cohesive configuration – in this case, local sanction-
ing institutions may provide an escape hatch to the otherwise tragedy of the
commons that humanity is falling into.

This model provides a “bottom-up” approach to the problem, in which
collective cooperation is easier to achieve in a distributed way, eventually
involving regions, cities, NGOs and, ultimately, all citizens. Moreover, by
promoting regional or sectorial agreements, we are opening the door to the
diversity of economic and political structure of all parties, which, as showed
before [34, 73] can be beneficial to cooperation.

Naturally, I am aware of the many limitations of a bare model such as
this, in which the complexity of human interactions has been overlooked.
From higher levels of information, to non-binary investments, additional
layers of realism can be introduced in the model. Moreover, from a math-
ematical perspective, several extensions and complex aspects common to
human socio-economical systems could be further explored [74, 75, 76, 77].
On the other hand, the simplicity of the dilemma introduced here, makes
it generally applicable to other problems of collective cooperative action,
which will emerge when the risks for the community are high, something
that repeatedly happened throughout human history [78, 79], from ancient
group hunting to voluntary adoption of public health measures [53, 80, 81].
Similarly, other cooperation mechanisms [11, 17, 18, 20, 24, 25, 26, 27, 28]
known to encourage collective action, may further enlarge the window of
opportunity for cooperation to thrive.

While most causes of climate change result from the combined action
of all inhabitants of our planet, the solutions for such complex and global
dilemma may be easier to achieve at a much smaller scale [14]. In light of
these results, the widely-repeated motto “Think globally but act locally”
would hardly appear more appropriate.
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