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Abstract Index-based insurances offer promising opportunities for climate-risk
investments in developing countries. Indeed, contracts conditional on, e.g., weather or
livestock indexes can be cheaper to set up than conventional indemnity-based insur-
ances, while offering a safety net to vulnerable households, allowing them to eventually
escape poverty traps. Moreover, transaction costs by insurance companies may be addi-
tionally reduced if contracts, instead of arranged with single households, are endorsed
by collectives of households that bear the responsibility of managing the division of
the insurance coverage by its members whenever the index is surpassed, allowing for
additional flexibility in what concerns risk-sharing and also allowing insurance com-
panies to avoid the costs associated with moral hazard. Here we resort to a population
dynamics framework to investigate under which conditions household collectives may
find collective index insurances attractive, when compared with individual index insur-
ances. We assume risk sharing among the participants of each collective, and model
collective action in terms of an N-person threshold game. Compared to less afford-
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able individual index insurances, we show how collective index insurances lead to
a coordination problem in which the adoption of index insurances may become the
optimal decision, spreading index insurance coverage to the entire population. We fur-
ther investigate the role of risk-averse and risk-prone behaviors, as well as the role of
partial correlation between insurance coverage and actual loss of crops, and in which
way these affect the original coordination thresholds.

Keywords Index insurance - Collective action - Evolutionary game theory -
Non-linear returns

Mathematics Subject Classification 91-XX - 91A22 - 91A06 - 91A40 - 91B18 -
91B30

1 Introduction

For over a decade, weather index insurances (insurance policies based on the use of
local data and statistical information, measured and gathered via local stations) have
become available in the developing world, to defray possible damage on crops that
may result from levels of drought above a certain threshold (Deng et al. 2007; Giné
et al. 2007; Osgood et al. 2007; Clarke and Kalani 2011; Clarke 2011; Gaurav et al.
2011; Clarke et al. 2012a,b; De Bock and Gelade 2012; Hossain 2013; De Janvry
et al. 2014; Dercon et al. 2014; Keswell and Carter 2014; Norton et al. 2014). Indeed,
such insurance policies offer promising opportunities for climate-risk management in
developing countries. Given that agriculture is an uncertain business in these regions,
making households economically vulnerable, and given that indemnity-based crop
insurances are usually unaffordable by these households (Hazell 1992; Hess et al.
2005), contracts conditional only on weather indices can be cheaper and still offer
protection against certain types of weather events (Hess et al. 2005). These poli-
cies typically are offered to individual households, so we term them Individual Index
Insurances (III), to distinguish from the Collective Index Insurances (CII) that have
received a lot of attention more recently (De Bock and Gelade 2012; Hossain 2013;
De Janvry et al. 2014; Dercon et al. 2014) and will be the focus of this paper.

The idea of CII is very simple: Similar to III, CII subjects the contracts to a tech-
nologically objective index, such as a weather variable, so that when this variable
exceeds the contracted value, the insurance company partially compensates for the
loss concomitant with the outcome expected from such a weather event. It is worth
pointing out that the compensation will happen irrespective of any actual loss, and
thus, unlike indemnity insurance—where the damages are assessed in loco by insur-
ance officials—the index insurance is not necessarily perfectly correlated with a real
loss, with the damages assessed in loco by insurance officials (the situation when a loss
is not perfectly correlated with surpassing the index value contracted will be addressed
in detail in the “Appendix”). Instead, coverage is automatic, which means that man-
agement costs by the insurance company can be significantly reduced—both in III
and CII. The automatic nature of index insurances also allows insurance companies to
avoid costs related to moral hazard associated, e.g., with resolution of potential con-
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flicts of interest with clients. It also discourages perverse practices often encountered
in conventional indemnity-based insurances. In CII, however, management costs by
the insurance companies can be additionally reduced compared to III, since the con-
tract is no longer made with each single household, but instead with a collective of
households. The fact that, in CII, it is the collective that bears the responsibility of
managing the division of the insurance coverage by its members whenever the index is
surpassed, allowing an asymmetric distribution of the insurance coverage by its mem-
bers, may render CII more attractive compared to III. Indeed, it is very likely that not
all members of a collective will be equally affected when the index is surpassed.

However attractive this idea may be, experience shows that in Ethiopia, where CII
was offered to Collectives, the levels of “spontaneous” adoption were very small,
although training of Collectives’ leaders in risk-sharing improved the situation sig-
nificantly (Clarke and Kalani 2011; Dercon et al. 2014). Other factors, such as the
difficulty in offering well-designed insurance policies, may have also contributed to
the limited adoption rates (Clarke and Kalani 2011; Dercon et al. 2014). This said, it is
noteworthy that, in some cases, coverage by IIT or CII would give poor farmers access
to (otherwise inaccessible) credit/micro-credit (some lenders, such as banks, in some
cases provide loans contingent on individuals buying also index insurance) (Barnett
et al. 2005; Carter et al. 2007; Cole et al. 2013) which makes the investment in new
technologies possible, thus increasing the production yield, and enabling farmers to
escape so-called “poverty traps” (Barrett and McPeak 2006).

Besides III and CII, weather markets and weather derivatives also exist that allow
companies of all sizes to hedge their cash-flow against “bad” weather (Alaton et al.
2002). However, the complexities inherent to a derivatives market (Alaton et al. 2002)
may seem daunting when farmers’ collectives or (often informal) small enterprises in
the developing world are at stake (Hazell 1992; Osgood et al. 2007). In such cases, a
more conventional approach may be more appropriate. Here, we shall follow (Clarke
2011) in translating our model parameters into an actuarial nomenclature, albeit closer
to more conventional insurance policies.

Here we investigate the feasibility of groups to adhere to CII in the framework of
evolutionary game theory, and investigate under which conditions household collec-
tives may find CII attractive. We shall ignore indemnity insurance, but will assume
that a (potentially small) fraction of farmers will be able to contract III, whenever
CII is not realizable. Furthermore, we assume that the decision that a given Collec-
tive adopts CII is a group decision, modeling this collective action problem in terms
of a N-person game. Thus, when a group decides to adopt CII, insurance coverage
is shared among all members of the group, a situation that may be associated with
informal risk-sharing practices commonly encountered (Clarke and Kalani 201 1; Dixit
etal. 2013).

2 Model
Let us consider a population of Z individuals (farmers, households) who set up groups

(collectives) of size N, in which individuals may opt for a CII; whether the joint group
decision will translate into an effective CII will be modeled in terms of a threshold
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N-person game (details below) (Pacheco et al. 2009; Souza et al. 2009; Santos and
Pacheco 2011). Each individual is capable of adopting one of two strategies: C (willing
to contract a CII or ITII—if affordable) and D (Denier of insurance).

The insurance companies offer both I and CII. CII will be contracted (at a smaller
collective cost, which translates into an individual cost c¢¢) if atleast M (1 < M < N)
individuals in the collective opt for them (that is, if the number nc of Cs satisfies
nc > M). Otherwise, only III will be available (at an individual cost ¢ > c¢¢), and
they will be purchased by a fraction y of the Cs in the population (those who can
afford them). Finally, insurance companies are called to cover possible damage that
may happen when a given (say weather) index surpasses a value /—we assume that
this process occurs with a probability r (the risk, which will be covered by both CII and
III). » Thus represents the probability that a full loss occurs, which coincides with the
probability that the index [ is surpassed. This is clearly a simplification, and we shall
address the general model in which there is no perfect correlation between these events
in the “Appendix”. Thus, a D loses the entire endowment b upon a full Loss, but keeps
the entire endowment under no Loss, given that she/he will never adhere to any form of
index insurance. Moreover, often insurance models postulate a distribution of losses. In
our case, such a distribution would require us to abandon the mean-field approximation
that lies at the heart of the present model. Thus, the same Loss that accrues to each
and every individual will correspond, in general, to the mean of a Loss distribution.

As s typical of index insurances, payment is contingent on a weather value surpass-
ing a given index 7, but coverage is not 100 % effective: only a fraction « of the loss L
(here equal to the initial wealth or endowment b of each individual, which we assume
results from, say, crop production) is actually covered by the insurance. In actuarial
terms, and using as a reference the III, we may define m = ﬁ , as the ratio between the
cost of III and the insurance coverage. In what concerns III, m > 1 reflects so-called
(from the insurance company perspective) actuarially favorable scenarios [those actu-
ally adopted in most scenarios to date (Clarke 2011)], m = 1 actuarially fair scenarios
and m < 1 actuarially unfair scenarios. Furthermore, we may define s¢ = ‘TC (areal
number smaller than 1) as the net reduction (saving) in the cost of moving from III to
CII, such that the same concepts associated with m for III apply for ms*sc regarding
CIIL.

2.1 Payoffs

We first consider the basic problem, without risk sensitivity, and then modify to show
how risk sensitivity makes the scheme feasible. In the absence of such sensitivity, the
payoffs that accrue to each participant in the group are, in all cases, the sum of two
contributions: One that occurs when the insurance is called to act (probability ) and
the other when nothing happens (probability 1 —r). We further assume (for simplicity)
that all individuals get identical benefit b from whatever activity they perform.

Thus, the payoffs IT of what we designate by the CII-game, detailed in Table 1 for
Ds and Table 2 for Cs, translate in the following expressions:

Mp=(1—rb
Mc(ne) = One — M) [rab + (1 — r)b — cc]
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Table 1 Expected payoffs of Ds in the CII-game

State Probability Payoff of Ds
0) 1—r
)] r

From the insurance company perspective, compensation based on an index insurance is triggered by the
parameter r, the probability that a full loss occurs, which in this basic model coincides with the probability
that the index I is surpassed (see the “Appendix” for an extended model). Thus, a D loses the entire
endowment b upon a full Loss, but keeps the entire endowment under no Loss, given that she/he will never
adhere to any form of index insurance

Table 2 Expected payoffs of Cs in the CII-game

State Probability Payoff of Cs

nc>M nc <M
0) 1—r b—cc yb—o)+ 1=y
(1) r ab —cc y(ab —c)

Same notation as in Table 1. Similar to Ds, a C will lose entire endowment b upon a full Loss if not ensured,
losing only part of it (1 — «)b if insured; insurance policy can be of III-type, in which case a C entails a
cost ¢, or of CII-type, in which case a C entails a cost c¢¢. Only a fraction y of all Cs can afford to buy
III, whereas CII are available to collectives in which more that a critical fraction M /N of them agrees to
adhere to a CII

+[1 = O(nc — M) [ryab+ (1 —r)b—yc]
=0O(0c —M)Q+[1 —Omc —M)]A+TIp

with @ = rab —cc = ¢(;; —sc) and A = y(rab — ¢) = yc(;. — 1) real valued
functions; ® (k) is the Heaviside function (that is, ® (k) = 1 whenever k > 0, being
zero otherwise). We are implicitly assuming that a Loss is a full Loss, thus no benefit
remains after a Loss.

2.2 Fitness and evolutionary dynamics

Now we can study the evolutionary dynamics of this population with players adopting
two different strategies. When risk (r) is small, Ds will always gather a payoff that is
larger than that of Cs. Consequently, they will dominate the evolutionary dynamics. For
increasing risk, what it pays to do will depend on the parameters—N, M, r, m, c, s¢
and y.

Let us assume large populations (Z large) and describe the dynamics using the
Replicator Equation (RE):

¥ =x(1=x)(fc(x) — fp(x))

where x denotes the fraction of Cs in the population. We are implicitly adopting the
well-mixed or mean-field approximation, in which all Cs and all Ds have the same
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(average) fitness, such that the evolutionary dynamics can be completely specified
in terms of x. We assume that groups of size N are formed by selecting individuals
independently and at random from the much larger total population, and compute
the fitness of any C and D in the population as the average payoff that an individual
employing this strategy obtains when participating in groups with all possible compo-
sitions of Cs and Ds. To this end, it is enough to specify how many, e.g., Cs are present
in a group. If we designate this number by £, the fitness of any C and any D is given
by averaging the payoff that a focal individual (C or D) gets when participating in
groups encompassing all possible compositions (note that the focal individual is part
of the group, which means that sampling extends to the remaining N — 1 individuals)
N-1

fo=3 (N,: 1) (1 =N K ek + 1)
k=0
N—1
o= (Nk‘ 1) (1 -V
k=0
so that fixed points occur at x = 0,x = 1, and possibly at intermediate points

x* € (0, 1), satistying fc(x*) = fp(x*). Using the expressions above for the payoffs,
we may write:
NSLow
fe@) = fpo) = ( ¢ ) (=N ek + D - T,

k=0

Let us define 0 < By m(x)

N-1 N—1 N —1
k=m—1 PN = Lk, x) = k—M—l( k )
k(1 — N1k <,

Given that Z;ICV:_OI ®(N — 1, k, x) = 1, we may write

N-1
fex) = fp(x) = ) ®(N — 1k x)[Mck+1)—TIp]
k=0

N—-1
- Z(D(N— Lk, x)[Ok+1—MSQ
0
[1 —Ok+1—M)]A+Tp—Tp]
+ (22— A) By m(x)

>+ 7

3 Results

Since By a(x) is a monotone (increasing) function of x, fc(x) — fp(x) will have at
most one root x* in the interval (0, 1). For 0 < y < 1, x* must satisfy the equation

i} A I
BN,M(X )= A—Q = l_lr—msc (])

y r—m
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For an internal root to exist, we must have either A > 0 A Q <QorA <0 A Q > 0;
the first condition is impossible, whereas the second leads tomsc < r < m. Moreover,
whenever r > m, Cs will dominate unconditionally; whenever r < msc, Ds will
dominate unconditionally. Whenever msc < r < m, the structure of fc(x) — fp(x)
shows that, for small x, fc(x) < fp(x)whereas for large x, fc(x) > fp(x); this,
in turn, implies that the internal fixed point of the RE is unstable—a coordination
point. This said, Eq. (1) clearly shows that the detailed behavior of the coordination
boundary is also determined by By s (x). The behavior of this monotonic function as
a function of group size N and collective threshold M is illustrated below in Fig. 2.
In the absence of CII, the only limit that is retained is » > m, and the overall dynam-
ics is characterized by an all-or-nothing scenario: For high risk (r > m) the fraction y
of the population that can afford ITI will contract them, whereas the remaining fraction
of the population will continue without any index insurance. On the other hand, as the
risk r falls below the critical value r = m, no-one will adhere to index insurance. This,
in turn, puts a lot of pressure into the design and planning of index insurances, given
that only in the actuarially unfavorable scenarios will there be individuals contracting
III. With regard to existing attempts to implement III in developing countries, where
m >1, our model predicts that no adherence will take place, independent of r. The
scenario is portrayed with a solid blue line in Fig. 1a, where we show the critical value
of risk, r* = m, that leads to an overturn of the overall evolutionary dynamics.
Introduction of CII (also assuming individuals are risk-averse, see Sect. 3.1), leads
to considerably less grim prospects for index insurance, as shown in Fig. 1b. Indeed,
and depending on the cost-effectiveness of CII compared to III, there are now 3
domains of risk (for finite y), 2 of which open the possibility for Cs to dominate over

1.0 1.0
A B RERBIRI
08 08 — =0.025
— 7 =0.100

06 i —_— 7 =0.250
x* Xk

0.4 0.4

0.2 0.2

0.0 0.0 LTS

00 02 04 06 08 10 0.0 02 04 06 08 1.0
risk , 7 risk , 7

Fig. 1 a In the absence of CII, a sufficiently high risk » (r = m = 0.75) is all that matters in driving
the fraction y of Cs that can afford an III to actually contract it. Upward (blue) and downward (red)
arrows indicate the direction of evolution under natural selection, which favors the extinction of Cs (x = 0)
whenever r < m and their fixation (x = 1) whenever r > m. b In the presence of a CII, now there appears a
region of r-values (0.25 < r < 0.75) in which Cs engage in a coordination game with Ds. The width of this
region is controlled by s¢ (s¢c = 1/3 in this case). In this region, the critical mass of Cs that will render this
strategy dominant in the population is indicated by the solid lines. The different solid lines correspond to
different values of the fraction y (y = {0.025, 0.1, 0.25} drawn with a black, blue and red line, respectively)
of Cs in the population that can afford III if CII fails. Other parameters: ¢ = 0.3, N =20, M =5
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1.0 1.0
A o \' =20.M =5 B — N =10,AM =5

0.8 m \' =20, M =10 0.8 — \ =20.M =10
— \" =20, M =15 m— \ =30, =15

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
risk , 7 risk , 7

Fig. 2 a Effect of threshold M for fixed group size N = 20. We let M take the values M = 5 (black)
M = 10 (blue) and M = 15 (red), showing that, all else being equal, the role of increasing M is to
render coordination more difficult for Cs. b Effect of increasing group size N for fixed M /N ratio. We fix
M/N = 0.5 and let the group size N take the values N = 10 (black) N = 20 (blue) and N = 30 (red).
Increasing N for fixed M /N not only renders coordination more difficult for Cs, but also sharpens the
transition between the critical values r = m and r = msc. This last effect is similar to what was obtained
in Fig. 1b by reducing y. Other parameters: ¢ = 0.3,m = 3/4,s¢c = 1/3

Ds: unconditional dominance (» > m) or conditional dominance (msc < r < m),
that is, for each value of risk r in this interval, there exists a critical fraction x* of
Cs in the population above which Cs dominate unconditionally over Ds. The critical
fraction x*, as shown with a solid black line in Fig. 1b, decreases monotonously with
increasing risk r, as depicted. The slope of x* as a function of r depends on y : the
larger the value of y, the larger the slope of the transition into a C-dominance scenario.

In Fig. 2 we illustrate the role of group size N and threshold number M in the
evolutionary dynamics of the CII-game. In Fig. 2a we fix the group size to N = 20 and
change the threshold M required to contract CII. Increasing M renders coordination
more difficult for Cs, that is, the critical mass of Cs present in the population to lead
to an overall coordination into contracting CII also increases.

On the other hand, Fig. 2b shows that increasing group size at fixed M/N (i)
increases the average fraction of Cs required to successfully coordination into CII and
(ii) sharpens the transition from r = ms¢ to r = m, similar to what we obtain when
reducing the fraction y of Cs who can afford to contract III (compare with Fig. 1b).

Note that, in all cases, the transition always takes place between the lines r = m and
r = msc. As y — 0, the coordination point becomes more and more independent of
r, and, as shown in Fig. 1b, coordination becomes easier until it disappears completely
for y = 0, in which case Cs dominate for » > msc and go extinct whenever r < msc.
This simple scenario, possibly realizable in the poorest places, positions CII as a very
important alternative to III, as the critical risk is reduced by sc.

In general, the thresholds obtained in this case also represent the thresholds for prof-
itability for the insurance companies, even in the absence of other costs the companies
have. Thus, in the absence of government subsidies, such a scheme will not work.
However, what makes insurance work is that individuals cannot sustain catastrophic
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losses, and thus exhibit a sensitivity to risk that companies can average over. We turn
to this modification in the next section.

3.1 Role of risk-aversion

In order to investigate the role of risk-aversion in our framework, we replace payoffs
by utilities when computing the fitness of different strategies. We may adopt any of
the following standard forms:

ux)=1-—e*R )

where 1/R measures the degree of risk-aversion (R being known as risk tolerance), as

well as the alternative form .

L—0p
where p is the so-called Arrow—Pratt coefficient of relative risk aversion (Arrow 1963).
Given the structure of the payoffs defined before,

u(x) = x!=r (3)

[x(nc) =r x Ax(nc) + (1 —r) x Bx(nc)

where Ay and By are directly extracted from Tables 1 and 2 and X stands both for C
or D, we may now write

Ux(ng) =r xul[Ax(nc)l+ (1 —r) xu[Bx(nc)]

and proceed to compute the average fitness of Cs and Ds. Doing so we obtain, instead
of Eq. (1) the following equation,

0 }”Yl—(l—l")Yg
By m(x™) = (T, 4)

where Yy, k € {1,2,3,4}read: Y| = (1 — e_V(“b_”)/R), Y, = (e_(b_y")/R — e_b/R),
Y; = (e—(ab—cc)/R — e—V(ab—C)/R) and Yy = (e—(b—VC)/R — e—(b—cc)/R), corre-
sponding to the utility definition in Eq. (2). For large values of the risk tolerance R,
Eq. (4) we obtain the risk-neutral limit which leads to the same behavior as that dis-
cussed in the previous section, with the same asymptotic limits » = msc and r = m.
The same happens when we employ Eq. (4) and make p = 0. For general values of
R and p, it is no longer possible to obtain a corresponding explicit expression for the
asymptotic behavior. Nonetheless, Fig. 3 illustrates what happens as we change the
degree of risk-aversion: Overall, risk aversion favors coordination into a cooperative
regime in which individuals end up contracting CII, which now takes place for smaller
values of risk (black and red lines in Fig. 3), compared to the no risk-aversion limit
(solid blue line in Fig. 3). Furthermore, closer inspection of Fig. 3 shows that increas-
ing risk-aversion contributes to enlarging the overall area in the {r, x* }-plane in which
C's dominate unconditionally, implying a widespread adherence to CII. This increase
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1.0 )
u(x) =1—e'% u(x) T X'
0.75 B
x* 0.50
0.25
0.0
0 10 1
risk, r

Fig. 3 Risk-aversion and CII. Here we illustrate the role of risk-aversion by plotting (solid curve in blue)
the same curve (with the same parameters) as in Fig. 2a, (N = 20, M = 10). Upon inclusion of risk
aversion using the formulations of Egs. (2) and (3), we obtain the curves plotted with red and black lines,
for the different values of the risk tolerance R and relative risk aversion p indicated. Compared to the
scenario without risk aversion portrayed, risk-aversion leads to more favorable scenarios for Cs, as the net
qualitative effect of risk-aversion is to decrease, for the same value of risk r, the critical value of x* above
which Cs will adhere to CII, at the same time enlarging the interval of risk values for which Cs dominate
unconditionally

takes place at the expense of both shrinkage of the area associated with D-dominance
as well as of the area in which coordination is necessary.

4 Discussion

The fact that CII allows insurance companies to save costs that can be reflected in the
actual cost per individual (c¢) that contracting a CII involves, compared to that of III
(c), means that CII are more attractive than III in getting poor households insured,
shifting the critical value of riskr above which Cs may adhere to CII from r = m to
r=msc.

On the other hand, the actuarial value of III, m, needs careful study and design,
as the advantages of CII obtained here are always measured with respect to m. In
this sense, m > 1 scenarios lead to the worst possible prospects for Cs to contract
CII. Strictly speaking, the risk r is not independent of m, in the sense defined here,
as r is the risk of surpassing a technological index 7, ultimately defined in the CII
contract. Thus, high values of I contribute to make r small, and this in turn may
enable insurance companies to offer III with m < 1. In any case, taking into account
the risk-averse nature of individuals renders possible situations in which insurance
companies can profit from the CII policies provided. It is worth pointing out that
climate change, by contributing to increase the occurrence of extreme events, also
has a counter-productive effect in the design of index insurances (Vasconcelos et al.
2014). Furthermore, there is a delicate interplay between I, rand m, which is required
to optimize index insurance policies. Finally, risk-premium valuation will be assessed
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in different ways, depending on the types of indices chosen, and on whether they are
traded or non-traded (Alaton et al. 2002). For instance, traded indices may pave the
way to more complex strategies that we do not address here. This said, our parameter
sc will ultimately define the width of the windows, in risk space, in which a critical
mass of Cs is required before overall acceptance of CII is in place.

An important point in this context is related to the fact that an actual loss incurred
by a household is not perfectly correlated with the act of surpassing the index 7
contracted via CIL Indeed, index insurances are, at best, partially correlated with
actual Loss: a harvest may be lost either by (i) local effects (detected or not) by (say)
the nearest weather station (and hence not always covered by III and CII), or by
(ii) other factors, such as pestilence, certainly not covered by III and CII. To take
this feature into consideration, we follow (Clarke 2011) and define two probabilities:
p, the probability that harvest is lost; ¢, the probability that any index insurance is
activated (as defined previously already in terms of the risk r). In the “Appendix”
we discuss in detail the effect of augmenting our model with these two probabilities.
Counter-intuitively, we show that all that matters is still the probability ¢ that index
insurance is activated.

In summary, our model shows that CII offers a clear advantage over Il in providing
aviable option for individuals, more so if risk-averse, to adhere to this type of insurance
policies, paving the way for a more resilient activity of farming in poor and emergent
countries. Indeed, CII transforms scenarios in which an index insurance adoption is
unlikely, into situations in which a critical mass of adherents is all that maybe required
for CII to prevail in the population. Our model also shows in which way risk-aversion
may act in favor of adhesion to CII which, in all cases, must be carefully designed
to become a useful option for farmers whilst remaining profitable for the insurance
companies. In this context, it would be interesting to investigate whether diversity in
behavior towards risk-aversion will actually foster or inhibit overall adhesion to CII.
Work along these lines is in progress.
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Appendix: When actual loss and insurance coverage do not fully overlap

Here we follow (Clarke 2011) and investigate the effect of introducing two different
probabilities instead of the risk » employed in the main text: p, the probability that

@ Springer



J. M. Pacheco et al.

harvest is lost; ¢, the probability that any index insurance is activated (as defined
previously already in terms of the risk r).
Depending on which one of the four possible states we are in, namely :

(0, 0)—(no Loss, no insurance activated)
(0, IN—(no Loss, insurance activated)
(L, 0)—(Loss, no insurance activated)
(L, I)—(Loss, insurance activated)

we can write down the following payoff tables for Cs and Ds:

Ds
State Probability Payoff
(0,0) P0,0 b
(0.0) Po,1 b
(L,0) P1,0 0
(L.D) P11 0
Cs
State Probability Payoff

nc>M nc <M
0,0) 10,0 b—cc yb—o)+A—-y)b
0.1 Po,1 b(l+a) —cc y[bd+a)—cl+ A —-y)b
(L,0) P1,0 —cc y(=0)
(L, 1) Pl ab —cc y(ab —c)

In the simplest scenario, we may assume that the probability p of occurrence of
a loss is statistically independent from the probability q that the index I of the II is
activated. Then we can write for the probabilities of occurrence of each of the 4 states:

poo=(1—-p)x1—-¢q)
po1=U-p)xgq
rro=pxI—gq)

P11 =pXxXq

Such a statistical independence is unlikely, however. Thus, the joint probability distri-
bution will not, in general, be the product of the 2 marginal probability distributions.
Following (Clarke 2011), we investigate a symmetric joint probability distribution,
defined in terms of a new parameter u,which corresponds to the probability that an
individual will incur a Loss but without the II be activated (pj,0). In terms of u, the
probabilities now read:

poo=1l—qg—u po1=q—p+u
pPio=u P11 =p—u
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Again, we can write for the fitness difference between Cs and Ds
fe(x) — fp(x) = A+[Q2— Al By u(x)

with A = ye(22L2 — J)and @ — A = ¢y + ZoLPLL g0,

m

The expressions for A and 2 — Adepend only on the combination pg 1+ p1,1 = ¢,
despite the fact that, individually, both po 1 and p;,; depend on p, ¢ and u. Since
po.1 + p1.1 = q, irrespective of whether the p and ¢ distributions are independent
or not, this means that the results we obtain for the original model also hold for this
“extended model” provided that the original risk r is replaced by the probability q.

O
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