Multiplayer Ultimatum Game in Populations of
Autonomous Agents

Fernando P. Santos,
Francisco C. Santos
INESC-ID and Instituto Superior Técnico,
Universidade de Lisboa
Taguspark, Av. Prof. Cavaco Silva
2780-990 Porto Salvo, Portugal

{fernando.pedro,franciscocsantos}@ist.utl.pt

Francisco S. Melo,
Ana Paiva
INESC-ID and Instituto Superior Técnico,
Universidade de Lisboa
Taguspark, Av. Prof. Cavaco Silva
2780-990 Porto Salvo, Portugal

{fmelo,ana.paiva}@inesc-id.pt

Jorge M. Pacheco
CBMA and Departamento de Matematica e
Aplicacdes, Universidade do Minho
Campus de Gualtar
4710-057 Braga, Portugal
jmpacheco@math.uminho.pt

ABSTRACT

There are numerous human decisions and social preferences
whose features are not easy to grasp mathematically. Fair-
ness is certainly one of the most pressing. In this paper,
we study a multiplayer extension of the well-known Ulti-
matum Game through the lens of a reinforcement learning
algorithm. This game allows us to study fair behaviors be-
yond the traditional pairwise interaction models. Here, a
proposal is made to a quorum of Responders, and the over-
all acceptance depends on reaching a threshold of individual
acceptances. We show that, while considerations regard-
ing the sub-game perfect equilibrium of the game remain
untouched, learning agents coordinate their behavior into
different strategies, depending on factors such as the group
acceptance threshold, the group size or disagreement costs.
Overall, our simulations show that stringent group criteria
trigger fairer proposals and the effect of group size on fair-
ness depends on the same group acceptance criteria. Fair-
ness can be boosted by the imposition of disagreement costs
on the Proposer side.

1. INTRODUCTION

The role of fairness in decision-making has for long cap-
tured the attention of academics and the subject comprises
a fertile ground of multidisciplinary research [9, 10]. In this
context, the Ultimatum Game (UG), proposed more than
thirty years ago, stands as a simple interaction paradigm
that is capable of capturing the essential clash between ra-
tionality and fairness [12]. In its original form, two players
interact acquiring two distinct roles: Proposer and Respon-
der. The Proposer is endowed with some resource and has
to propose a division to the second player. After that, the
Responder has to state her acceptance or rejection. If the
proposal is rejected, none of the players earns anything. If
the proposal is accepted, they will divide the resource as
it was proposed. A fair outcome is usually defined as an
egalitarian division, in which both the Proposer and the Re-
sponder earn a similar reward.

The minimalism of this game is convenient to allow a

mathematical treatment that aims at computing the most
probable outcome in which humans will end up, while play-
ing it. A first approach would be to look into each agent as
being rational and oriented to the maximization of rewards.
Thinking in a backward fashion, one may realize that the Re-
sponder should always accept any offer; the Proposer, confi-
dent about this reasonable reaction, should always propose
to give the minimum possible amount to the Responder. In-
deed, this line of thought gives an intuition for the sub-game
perfect equilibrium of the UG: low offers by Proposers and
low acceptance thresholds by Responders [19]. These pre-
dictions regarding how people act are, however, misleading.
A vast number of works report experiments with people in
which they behave very differently from the rational sub-
game prediction [23, 12, 30]. Humans tend to reject low
proposals, i.e., they have high thresholds of acceptance and
they tend to offer fair divisions. The explanations for this
fact diverge. Some authors argue that the Proposers have a
natural propensity to be fair; others suggest that they fear to
have a proposal rejected [30]. Interestingly, humans keep ex-
hibiting fair preferences in dictator games, where a proposal
is always accepted no matter what is the Responder opin-
ion [10], a behavior that can be explained by reciprocity-like
mechanisms [13].

The mathematical treatment of this game followed the
need to come up with different predictions, other than the
game theoretical sub-game perfect equilibrium. Why is that
it pays for individuals to reject low proposals and offer high
ones? How to explain the evolution of this behavior mathe-
matically? Resorting to evolutionary game theoretical tools,
Nowak et. al. suggested that if Proposers are able to get
pieces of information about previous actions of the oppo-
nents, then it is worth for the Responders to cultivate a
fierce reputation [18]. This way, Proposers would offer more
to Responders that are used to reject low offers and it nat-
urally leads the Responders to nurture an intransigent rep-
utation by rejecting unfair offers. Other models attribute
the evolution of fairness to the repetition of interactions [33]
or empathy [21]. A slightly different approach suggests that



fair Proposers and Responders may emerge due to the topo-
logical arrangement of their network of contacts: if individ-
uals are arranged in lattices [22, 28] clusters of fairness may
emerge. Also using learning frameworks, a lot of attention
was given to the UG [11, 6, 5]. For a neat work that com-
bines learning agents (that play UG) with complex networks,
volunteering and reputation we refer to De Jong et al. [6].

Any mathematical explanation (and/or prediction) for hu-
man behavior in the UG holds as a fundamental result of
clear importance in areas as evolutionary biology, economics
or philosophy. In Artificial Intelligence specifically, these
advancements provide an important asset for the design of
artificial agents and the simulation of artificial societies, in
terms of i) performance, ii) expectation and 4ii) accuracy: i)
artificial agents that do incorporate features of human-like
behavior when playing the UG are agents capable of per-
forming better (a purely selfish agent that always offers close
to nothing to a human Responder will naturally be doomed
to a hopeless performance) [5, 15]; ) artificial agents play-
ing with humans in UG-like interactions are naturally more
believable and enjoyable if they exhibit human preferences
as they will meet their opponents expectation; i) models
based on the simulation of artificial societies that seek to
predict the impact of policies on aggregate behavior and
emergent outcomes [29], will be more accurate if they in-
clude the appropriate mathematical assumptions regarding
human behaviors; in this case, the proper feelings towards
fairness and unfairness.

While these stand as important criteria for the case of
agents playing the two-player UG, the same apply to a wide
range of human-agent interactions that a pairwise interac-
tion model does not enclose. It is perfectly straightforward
to realize that also UG instances take place in groups, with
proposals being made to assemblies [25]. Take the case
of pervasive democratic institutions, economic and climate
summits, collective bargaining, markets, auctions, or the an-
cestral activities of proposing divisions regarding the loot of
group hunts and fisheries. All those examples go beyond a
pairwise interaction. Indeed, there is a growing interest in
doing experiments with multiplayer versions of the UG [11,
9, 16, 7]. A simple extension may turn it adequate to study
a wide variety of ubiquitous formats of people encounters.
This extension, the Multiplayer UG (MUG), allows to study
the traditional 2-person UG in a context where proposals are
made to groups and the groups should decide, through suf-
frage, about its acceptance or rejection.

In the context of this game, if we want to fulfill the previ-
ous criteria, some immediate answers need to be addressed:
what is the role of group in the individual decisions? What
is the impact of group acceptance rules on individual offers?
What is the role of group size on fairness?

In this paper we provide a model to approach those an-
swers, by combining MUG with agents that learn how to
play it through reinforcement learning [27]. We test the
well-known Roth-Erev algorithm [23]. We show that there
is a set of parameters (group size, decision rule, disagreement
costs) that are relevant given the setting of MUG and that
provide non-trivial effects regarding the learned strategies.

We start by reviewing the equilibrium notions of classi-
cal game theory, namely, the sub-game perfection. We show
that the above game parameters are irrelevant regarding the
equilibrium approach. Notwithstanding, they deeply affect

the learned behaviors, with serious impacts on group fair-
ness.

Table 1: Glossary

Symbol Meaning
P Offer by Proposer
q Acceptance threshold of Responder
Ip(pi,q—:) Payoff earned by a Proposer
r(pj,q—;) Payoff earned by a Responder
I1(ps, qi, p—i,q—i) | Payoff being Proposer and Responder
Apirq_s Group acceptance flag
d Disagreement cost
Q) Propensity matrix at time ¢
A Forgetting rate
€ Local experimentation
pri(t) Probability that k uses strategy i
P Average p population-wide
ip,q Integer representation of strategy (p, q)
R Number of runs
Z Population size
N Group size
M Group acceptation threshold
T Number of time steps
R Number of runs

2. MULTIPLAYER ULTIMATUM GAME

In the typical pairwise UG, a Proposer receives a sum and
decides the fraction (p) that should offer to a Responder.
The Responder must then state her acceptance or rejection.
This decision can rely on a personal threshold (g), which is
used to decide about acceptance or rejection: if p > ¢ the
proposal is accepted and if p < ¢, the proposal is rejected.
Considering that the amount being divided sums to 1, if
the proposal is accepted the Proposer earns 1 — p and the
Responder earns p. If the proposal is rejected, none of the
individuals earn anything [18].

This two-person game can now be extended to an N-
person game, assuming the existence of a quorum of N — 1
Responders. Again, a proposal is made (p), yet now each of
the Responders states acceptance of rejection and the over-
all acceptance depends on an aggregation of these individual
decisions: if the number of acceptances equals or exceeds a
threshold M, the proposal is accepted by the group. In this
case, the Proposer keeps what she did not offer (1 — p) and
the offer is evenly divided by all the Responders (p/(N —1));
otherwise, if the number of acceptances remains below M,
the proposal is rejected by the group an no one earns any-
thing.

The payoff function describing the gains of a Proposer
i, with strategy p;, facing a quorum of Responders with
strategies q—; = {q1, ..., qj,-..,qN—1},j 7 i reads as

HP(pivq—i) = (1 _pi)apiﬂ—i (1)

Where a,,,q_, summarises group acceptance of the proposal
made by agent i, p;, standing as

_ {17 y ZinQ—z‘ O(pi —
Apiq—y = :

0, otherwise.

q) > M. @)

O(z) is the Heaviside unit step function, having value 1



whenever z > 0 and 0 otherwise. This way, O(p; — ¢;) =1
if agent j accepts agent’s i proposal.
Similarly, the payoff function describing the gains of a Re-
sponder belonging to a quorum with a strategy profile g_; =
{q1, -y QK Qi .-, qn—1}, k # 7, listening to a Proposer j with
strategy pj, is given by

Hr(pj,q-;) = %ap,wq_j (3)
Assuming that these games take place in groups where each
individual acts once as a Proposer (in turns and following
a round robin fashion), the overall payoff of an individual
with strategy (pi,q:), playing in a group where opponent
strategies are summarised in the strategy profile (p—;, g—;),
is given by,

(pi, qisp—irq—:) = Mp(pi,g—) + > Mrlpjq-;) (4)
P;EP—i

The interesting values of M range between 1 and N — 1. If
M < 1 all proposals would be accepted and having M >
N — 1 would dictate unrestricted rejections. If N = 2 and
M = 1, payoff function above reduces to

1—pl+p2, ifpl>q2andp2>ql.

Ti( ) = 1—pl, if p1 > ¢2 and p2 < ql.
P1,q1,p2,92) = P2, if pl < g2 and p2 > ¢1.
0, if pl < ¢2 and p2 < ql.

(5)
recovering the traditional 2-person UG, described above [12,
18, 22).

MUG has interesting connections with typical N-person
cooperation games, namely the ones with thresholds [24,
20, 25]. Indeed, defining altruistic cooperation as giving a
benefit to the other incurring in a cost, we may say that
a Proposer has a cost of p in order to provide a benefit of
p/(N — 1) to the Responders. This way, fair proposals are
cooperative gestures. Comparing with typical Public Good
Games (PGG) with thresholds, in MUG i) we have a zero-
sum game in which the multiplication factor is 1, promoting
an unfavourable scenario for cooperation to thrive; ) the
threshold that dictates a successful proposal is endogenously
imposed by each Responder; #4) individual offers, instead of
group achievement, are the subject of suffrage and iv) the
risk of failure, when a proposal does not comply with group
threshold, is 1.

We further include a disagreement cost payed by the Pro-
poser when her offer is rejected, that resembles an opportu-
nity cost, the psychologic cost of having a proposal rejected
or even the environmental cost of not reaching an agree-
ment. When explicitly stated, this disagreement cost (d)
affects Eq.(1) following

Op(pi,q-i) = (1 = pi)ap;,q_; —d(1 —ap,,q_;)  (6)

2.1 Sub-game perfect equilibrium

To predict the outcome of the game previously introduced,
we start by doing a typical equilibrium analysis. In this case,
the predictions regarding Nash Equilibria (i.e., a strategy
profile from which no player has interest in deviating alone)
can be misleading, as those are well suited for non-sequential
games. In sequential extensive form games, as MUG, the
strategy profiles that are robust (i.e., that players looking

forward to maximize utility will stick with) can be provided
by the notion of the sub-game perfect equilibrium [19].

Let us first introduce some canonical notation. The game
given in a sequential form has a set of stages in which a
specific player (chosen by a player function) should act. A
history stands as any possible sequence of actions, given the
turns assigned by the player function. Roughly speaking, a
terminal history is a sequence of actions that go from the
beginning of the game until an end, after which there are
no actions to follow. Each terminal history will prescribe
different outcomes to the players involved, given a specific
payoff structure that fully translates the preferences of the
individuals.

A sub-game is (again, a game) composed by the set of
all possible histories that may follow a given non-terminal
history. Informally, a sub-game is the game yet to play,
after a given sequence of actions already performed by the
players. A strategy profile is a sub-game perfect equilibrium
if it also the Nash equilibrium of every sub-game, i.e., a
Nash equilibrium of the sub-games that follow any possible
sequence of actions (non-terminal histories).

Let us turn to the specific example of MUG to clarify this
idea. In this game, the player function dictates that the
Proposer does the first move and, after that, the Responders
should state acceptance or rejection. The game has two
stages and any terminal history is composed by sets of two
actions, one taken by a single individual (Proposer, that may
suggest any division of the resource) and the second by the
group (acceptance or rejection).

Picture the scenario in which groups consist in 5 play-
ers, where one is the Proposer, the other 4 are the Re-
sponders and M=4 (different M would lead to the same
conclusions). Let us evaluate two possible strategy profiles:
s1 = (0.8,0.8,0.8,0.8,0.8) and s2 = (1,0,0,0,0), where the
first value is the offer by the Proposer and the remaining
4 are the acceptance thresholds by the Responders. Both
strategy profiles are Nash Equilibria of the whole game. In
the first case, the Proposer does not have interest in devi-
ating from 0.8: if she lowers this value, the proposal will be
rejected and thus she will earn 0; if she increases the offer,
she will keep less to herself. The same happens with the
Responders: if they increase the threshold, they will earn
0 instead of 0.2, and if they decrease it, nothing happens
(non-strict equilibrium). The exact same reasoning can be
made for s2, assuming that u/(N —1) is the smallest possible
division of the resource.

Regarding sub-game perfection, the conclusions are dif-
ferent. Assume the history in which the Proposer has cho-
sen to offer u (let’s call the sub-game after this history, in
which only one move is needed to end the game, h). In
this case, the payoff yielded by s1 is (0,0,0,0,0) (every Re-
sponder rejects a proposal of u) and the payoff yielded by
sz is (1= p, /(N = 1), /(N = 1), /(N = 1), p/ (N = 1)).
So it pays for the Responders to choose so instead of si,
which means that s; is not a Nash Equilibrium of the sub-
game h. Indeed, while any strategy profile in the form s =
(p,p,0,p,p), 1t < p < 1is a Nash Equilibrium of MUG, only
s* = (u,0,0,0,0) is the sub-game perfect equilibrium. As
described in the introductory section, a similar conclusion,
yet simpler and more intuitive, could be reached through
backward induction.

This sub-game perfect equilibrium prescribes a payoff of
1 — p to the Proposer and u/N to the Responder, therefore,



in terms of fairness, the scenario is dark. In real life, indi-
viduals do not play this way. Would artificial agents learn
sub-game perfection or would they learn to behave fair as
humans?

3. LEARNING MODEL

We use the Roth-Erev algorithm [23] to analyse the out-
come of a population of learning agents playing MUG in
groups of size N. In this algorithm, at each time-step ¢, each
agent k is defined by a propensity vector Qy(¢). This vec-
tor will be updated considering the payoff gathered in each
play. This way, successfully employed actions will have high
probability of being repeated in the future. We consider
that games take place within a population of size Z > N
of adaptive agents. To calculate the payoff of each agent,
we sample random groups without any kind of preferential
arrangement (well-mixed assumption). We consider MUG
with discretised strategies. We round the possible values
of p (proposed offers) and ¢ (individual threshold of accep-
tance) to the closest multiple of 1/D, where D measures the
granularity of the strategy space considered. We map each
pair of decimal values p and ¢ into an integer representation,
thereafter ip 4 is the integer representation of strategy (p, q)
and p; (or g;) designates the p (q) value corresponding to
the strategy with integer representation i.

The core of the learning algorithm takes place in the up-
date of the propensity vector of each agent, Q(t+ 1), after a
play at time-step ¢t. Denoting the set of possible actions by
A,a; € A: a; = {pi,q:} and the population size by Z, the
propensity matrix, Q(t) € fow is updated following the
base rule

i(t) + I(p;, iy P—iy Q—i if k played 1
Qui(t+ 1) = { Qi) + 1P ¢ip—i54-4) play

Qri(t) otherwise

(7

The above update can be enriched with human learning fea-
tures: forgetting rate (A\,0 < XA < 1) and local ezperimenta-
tion, (¢,0 < e < 1) [23], leading to an update rule slightly
improved,

Qri(t)X + (pi, qi,p—i, q—i)(1 —€)  k played i
Qri(t+1) = Qki(t)i\ + W(pi, @i, p—, qfi)g k pl. sz +1

Qri()A + T(ps, @i, p—i 4-i) § kpl ig+1

Qri(t)A otherwise

(8)
where A = 1 — A and 4, & 1(4, £ 1) corresponds to the in-
dex of the p (q) values of the strategies adjacent to p; (g;),
naturally depending on the discretisation chosen. The in-
troduction of local experimentation errors is convenient as
they prevent the probability of playing less used strategies
(however close to the used ones) from going to 0. Moreover,
those errors may introduce the spontaneous trial of novel
strategies, a feature that is both human-like and showed to
improve the performance of autonomous agents [26]. The
forgetting rate is convenient to inhibit the entries of @ to
grow without bound: when the propensities reach a certain
value, the magnitude of the values forgotten, Qgi(t)A, ap-
proach those of the payoffs being added, II(p;, gi, p—i, ¢—i)-
All together, the individual learning algorithm can be intu-
itively perceived: when individual k uses strategy ¢ she will
reinforce the use of that strategy provided the gains that
she obtained; higher gains will increase more the probabil-

ity of using that strategy in the future. The past use of the
remaining strategies, and the obtained feedbacks, will be for-
gotten over time; The similar strategies to the one employed
(which in the case of MUG are just the adjacent values of
proposal and acceptance threshold) will also be reinforced,
yet to a lower extent.

When an agent is called to pick an action, she will do so
following the probability distribution dictated by her nor-
malised propensity vector. The probability that individual
k picks the strategy i at time t is given by

_ Qui(t)

0= 5, Q) )
The initial values of propensity, Q(0), have a special role in
the convergence to a given propensity vector and on the
exploration wersus exploitation dilemma. If the norm of
propensity vectors in Q(0) is high, the initial payoffs ob-
tained will have a low impact on the probability distribu-
tion. Oppositely, if the norm of propensity vectors in Q(0) is
small, the initial payoffs will have a big impact on the prob-
ability of choosing the corresponding strategy again. Con-
vergence will be faster if the values in Q(0) are low, yet in
this case agents will not initially explore a wide variety of
strategies.

Additionally, we consider a modified probability distribu-
tion that takes the form of a Gibbs-Boltzmann probability
distribution. This distribution will be useful to introduce
negative payoffs, occurring when we include disagreement
costs (see Section 2).

eQri(t)/T

Pki (t) = Zn eQrn(D)/T (10)

Parameter 7 corresponds to a temperature: low values will
highlight the differences in propensity values in the corre-
sponding probability distribution, while high values will in-
troduce stochasticity by softening the effect of the propen-
sities on the probability of choosing a given action.

Algorithm 1: Roth-Erev reinforcement learning al-
gorithm in an adaptive population and considering

synchronous update of propensities.

Q(0) «—random initialisation;
for t < 1 to T, total number of time-steps do
tmp « {0, ...,0}

payoffs of the current generation to

/* keeps the temporary

allow for synchronous update of
propensities */;

for k< 1 to Z do
1. pick random group with individual k;

2. collect strategies (Eq. 9,10);

3. calculate payoff of k (Eq. 4);

4. update tmplk] with payoff obtained;
update Q(t) given Q(t — 1) and tmp (Eq. 8);
save p (Eq. 11);
save q (Eq. 11);




As said, we consider a population of Z learning agents.
Propensities will be synchronously updated after each time-
step (t). In a time-step, every agent plays once in a randomly
assembled group. A general view over the learning algorithm
is provided in Algorithm 1. After each t, we keep track of
the average values of p and ¢ in the population, designating
them by p and . Provided a propensity matrix, they are

calculated as
1
=y XY

1<k<Z 1<i<|A|

% Z Z Priqi (11)

1<k<Z 1<i<|A]|

q

The learning algorithm employed is rather popular [8, 23],
providing a representative form of individual based learn-
ing. Other algorithms, such as Q-learning [31, 3], Learning
Automata [17, 6] or Cross Learning [4, 1], can be similarly
employed [2]. In the scope of this work, a simple stateless
formulation Q-learning can be used [3], whereby the update
of propensities follows the rule

Qri(t) + oIl — Qwi(t)) if k played 4
Quri(t) otherwise

where « stands for the learning rate and I is used as a sim-
plification for I1(p;, g;, p—i, g—i). Learning Automata implies
the direct update of the own action usage probabilities (in-
stead of updating an intermediary propensity vector). Using
this method, the probabilities of using each strategy a are
updated, from ¢ to ¢ — 1, according to

Qri(t+1) = { (12)

pki(t) + aIl(1 — pgi(t)) if k played ¢
pri(t) — ollpyi(t)
A comparison between each of these algorithms, in the con-

text of autonomous agents interacting through MUG, is cur-
rently under progress.

) (13)
otherwise

pri(t+1) = {

4. RESULTS AND DISCUSSION

Through the simulation of the multiagent system described
in the previous section, we first show that different group de-
cision thresholds have a considerable impact on the average
values of offers (p) and acceptance thresholds (g) learned by
the population. As the time-series in Figure 1 show, both for
M =1and M = 4 (the extreme cases when the group size is
5), agents learn the strategies that allow them to maintain
high acceptance rates and high average payoffs. Notwith-
standing, the offered values when M = 4 are fairer than the
ones learned when M = 1. An average p of 0.2 (M = 1)
endows Proposers with an average payoff of 0.8, while each
Responder keeps 0.05. Oppositely, an average value of p
close to 0.6 provides the equalitarian outcome of endowing
Proposers with 0.4 and Responders with 0.15. If one as-
sumes that the role of Responder will be played (N — 1)
times often, then Responders earn 0.2 for M = 1 and 0.6 for
M = 4 and here indeed, the group decision criteria is enough
to even provide an advantage for Responders. Recall that
sub-game perfect equilibrium always predicts that Proposers
would keep all the sum and Responders would earn 0.

To have a better intuition for the distribution of strategies
within a population, we take a snapshot, for a specific run, of
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Figure 1: Time series reporting the evolution of av-
erage strategies (p and §), average payoff population-
wide and proposals rejection rate. Each plot corre-
sponds to the average over various runs, each start-
ing with a random propensity matrix where each
entry is sampled from a uniform distribution from
0 to Q(0)maz. For group size N = 5 and for the ex-
treme cases of threshold M (M = 1, M = 4), the
rejection rate converges to a value near the mini-
mum, thereby, the average payoff in the population
approximates the maximum possible. Other param-
eters: population size Z = 50, granularity D = 20,
forgetting rate A\ = 0.01, local experimentation rate
e = 0.01, total number of time-steps 7' = 10000, num-
ber of runs R = 50, disagreement cost d = 0, initial
propensities maximum Q(0)maz = 50.

the population distribution over the space of possible p and
q values for time-steps ¢t = 0, ¢ = 2000 and ¢ = 8000. The
corresponding results are pictured in Figure 2. Each square
corresponds to a pair (p,¢q) and a darker square means that
more agents have a propensity vector whose average strat-
egy stands in that position. Figure 2 shows that, over time,
agents learn to use a p value that grows with M. Concern-
ing g, the learned values have a sizeable variance within the
same population. This variance decreases with M. The rea-
soning for this result is straightforward: as M increases, a
proposal is only accepted if more Responders accept it. In
the limiting case of M = N — 1, all Responders have to
accept an offer in order for it to be accepted by the group,
thereby, the pressure for having low acceptance thresholds,
q, is high. When M is low, a lot of ¢ in the group of Respon-
ders turn to be irrelevant. If M = 1, a single Responder is
enough to accept a proposals and thereafter, all the other ¢
values in the group do not need to be considered. In this
case, the pressure for ¢ values to converge to confined do-
main is softened.



t=8000

t=8000

e

Figure 2: Snapshots of the population composition
regarding the average values of p and ¢ to be played
given Q(t). Each plot represents the space of all pos-
sible combination of p and ¢, assuming that D = 20
and thereby, p and ¢ are rounded to the closest mul-
tiple of 1/D. We represent the state of the popula-
tion for three distinct time-steps (¢ = 0, ¢ = 2000 and
t = 8000) and given two values of threshold M, M =1
and M =4 (group size N =5). The time location of
these snapshots is represented in Figure 1 by means
of vertical dashed lines. Each square within the 2D-
plots represents a specific combination of (p,q). If
the square is darker it means that more individuals
of the population play, on average, with a strategy
corresponding to that location. For accessing other
fixed parameters, see the caption of Figure 1.

The relation between M and within population strategy
variance is further evidenced in Figure 3. Here we plot the
average values of p and ¢, taken as the time average after
a transient period of half of the total time-steps, T. The
error bars represent the average (over time) of the standard
deviation of the p and ¢ values within the population. The
standard deviation of ¢ is clearly high and it decreases with
M. Also here, the effect of stringent group acceptation cri-
teria is evident, in what concerns the learning of being a fair
Proposer.

The effect of M can even be leveraged if we include dis-
agreement costs (d). As Figure 4 shows, increasing the cost
that a Proposer incurs in when the quorum of Responders
rejects a proposal has the effect of increasing the values pro-
posed. Once again, if we followed the prediction stemming
from sub-game perfection (Section 2.1) we would not take
into account the possible effects of a disagreement cost. If
we considered that all the proposals were to be accepted by
the Responders, the Proposer would never fear the disagree-
ment cost, and this parameter would be innocuous.

Finally, we highlight the effect of group size (IN), on the
average value of proposals made and proposals willing to be
accepted. As Figure 5 depicts, larger groups induce indi-

0.8

N=7
0.6
p 0.4
0.2

0.6
q 0.4
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Figure 3: The average values of p and ¢ for group
size N = 7 with M assuming all possible non-trivial
values 1 < M < N — 1. Each point corresponds to
a time and ensemble average: i) time average over
the last half of the time-steps, i.e., we wait for a
transient time for propensity values to stabilise and
7i) we take the average of 50 runs, each one starting
from a random Q(0) propensity matrix. For other
parameters, see caption of Figure 1.
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Figure 4: The effect of disagreement const, d, on the
adopted values of p and ¢, for different M. Due to
the possibility of having negative payoffs, this is the
only scenario where the probabilities of selecting a
given action are given by Eq. (10) instead of Eq.
(9). We used 7(t) = 7/t and 7 = 10*. For other
parameters, see caption of Figure 1.

viduals to rise their average acceptance threshold. It is rea-
sonable to assume that, as the group of Responders grows
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Figure 5: Average values of p and ¢ for different
combinations of group sizes, N, and group deci-
sion criteria, M. Other parameters: population size
Z = 50, granularity D = 20, forgetting rate A = 0.01,
local experimentation rate ¢ = 0.01, total number of
time-steps 7' = 10000, number of runs R = 50, dis-
agreement cost d = 0, initial propensities maximum
Q(0)maz = 50.

and as they have to divide the offers between more individ-
uals, the pressure to learn optimal low ¢ values is alleviated.
This way, the values of ¢ should increase, on average, ap-
proaching the 0.5 barrier that would be predicted if they
behaved erratically. Differently, the proposed values exhibit
a dependence of the group size that is conditioned on M.
For mild group acceptance criteria (low M), having a big
group of Responders is synonym of having a proposal easily
accepted. In these circumstances, Proposers tend to offer
less without risking having their proposals rejected, keeping
this way more for themselves and exploiting the Responders.
Oppositely, when groups agree upon stricter acceptance (val-
ues of M that, as Figure 5 shows, can go from majority to
unanimity), having a big group of Responders means that
more persons need to be convinced of the advantages of a
proposal. This way, Proposers have to adapt, increase the
offered values and sacrifice their share in order to have their
proposals accepted. We tested these results for values of lo-
cal experimentation error (€) and forgetting rate (A) in the
set {0.001,0.005,0.01,0.05,0.1}. While high values of € and
A lead to a slight decrease in the average values of p and
increase in ¢, the conclusions regarding the effects of M, N

and d remain the same. We additionally tested for N = 7,
M =1,3,6 and Z = 20, 30, 50, 100, 200, 300, 500 and verified
that the conclusions regarding the effect of M remain valid
for the considered population sizes.

5. CONCLUSION

We are all part of large multi-agent systems and our pref-
erences are (also) the result of adaptation and response within
those systems. The path taken during that adaptive process
may disembogue in nontrivial behaviors. Being fair is an ex-
ample. Why and how did we end up being fair are questions
that may never be fully answered, however, trying to do so
turns to be paramount if we want to understand societies
and design fruitful institutions. The mathematical or com-
putational apprehension of fairness turns to be extremely
relevant in the contemporary digital societies. More than
being part of human multi-agent systems, we are today in-
teracting with artificial agents. Take the example of auto-
matic negotiation [14, 15]. What would be the requirements
of artificial agents designed to negotiate with a human in an
environment that is surely dynamic? Should they behave
assuming human rationality and predicting sub-game per-
fect equilibrium (see Section 2.1)? Should they learn with
the dynamics of the environment and opponents?

We employ a reinforcement learning algorithm to shed
light on the role of decision rules, group size and disagree-
ment costs. We model an adaptive population in which
learning agents shape both their propensities and ergo, op-
ponents’ playing environment. We show that increasing the
group acceptation threshold has the effect of increasing the
offered values and decreases the acceptance thresholds. The
imposition of disagreement costs, to be paid by the Pro-
posers in case of having a proposal rejected, even helps to
leverage group fairness. Moreover, the effect of group size
depends on the group decision rule: big groups combined
with soft group criteria are a fertile ground for selfish Pro-
posers to thrive. Oppositely, big groups that require una-
nimity to accept a proposal, by being strict in accepting low
proposals, induce Proposers to offer more.

The individual learning model that we implement is close
to a trial and error mechanism that individuals may use to
successively adapt to the environment, given the feedback
provided by their own actions. A different approach imple-
ments a system of social learning [25], in which individuals
learn by observing the strategies of others and accordingly
imitate the strategies perceived as best. These two learning
paradigms (individual and social) can lead to very different
outcomes, concerning the learned strategies and the long-
term behaviour of the agents [32]. Interestingly, our results
(besides providing new intuitions regarding the role of dis-
agreement costs and group size in MUG) are in line with
some of the results obtained in the context of evolutionary
game theory and social learning [25].
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