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Abstract—Behavioral data on children with Autism Spectrum
Disorders (ASD) are available thanks to standardized diagnostic
tools, such as the Autism Diagnostic Observation Schedule
(ADOS). This data can be of great use to enhance the learning and
reasoning of agents interacting with children with ASD. However,
the amount of such available data is limited and may not prove
useful by itself to inform the algorithms of complex agents.
To address this data scarcity problem, we present a method
for generating synthetic behavioral data in the form of feature
vectors characterizing a wide range of children with ASD. Our
method relies on a thorough analysis and partition of the feature
space based on a real dataset containing the ADOS scores of 279
children. We first analyze the real dataset using dimensionality
reduction techniques, then introduce data-driven descriptors that
partition the feature space into regions naturally arising from the
data. We end by presenting a descriptor-based sampling method
to generate synthetic feature vectors that successfully preserves
the correlation structure of the real dataset.

I. INTRODUCTION

Autism Spectrum Disorders (ASD) are a set of widespread
developmental disorders usually affecting children at an early
age. Individuals with ASD present a number of difficulties in-
cluding communication, social interaction, sensory, and emo-
tional challenges. Causes and mechanisms of ASD have been
mainly studied from a developmental, neuropsychological [1],
and genetic [2] perspective, but most ASD diagnosis tools to
date strongly rely on behavioral features [3] [4] [5].

On the other hand, several research efforts have looked
at introducing agents in ASD therapy sessions in the hopes
of increasing the effectiveness of the treatment. These agents
include robots [6], some of which reason and act using data
[7], as well as other technological interfaces including avatars,
virtual and augmented reality interfaces, and wearables [8].

There is great potential in utilizing behavioral data from
individuals with ASD to enhance and personalize social in-
teractions of agents with such individuals, especially given
that the range of exhibited behaviors varies greatly between
individuals. Such data can be used to create better models
of interactions with different types of ASD individuals, and
inform the reasoning and learning of an agent expected to

interact with such a population. Unfortunately, such data are
limited in number partly because they are difficult to obtain
or share (high cost of diagnostic tests and privacy issues), and
partly because the data can be high-dimensional and sparse. As
a result, the real data need to be complemented by additional
synthetically generated data in order to be useful for the
training of complex AI and Machine Learning algorithms.

In this work, we extract domain knowledge from a limited
number of real behavioral data points from children with ASD,
and generalize from them to generate an arbitrary number
of synthetic data points. We use the features of the Autism
Diagnostic Observation Schedule (ADOS) [3], a standardized
test to diagnose ASD by coding a wide range of behaviors
in response to a set of activities. Compared to other existing
tools, the very systematic aspect of ADOS makes it useful for
computing applications such as agent modeling, but also learn-
ing and reasoning. The feature space associated with ADOS
features is very large, and it prompts us to investigate methods
for efficiently sampling from it synthetic data consistent with
real data. But in order to do so, it is crucial to first understand
patterns of the real data in order to generalize from it.

Synthetic data generation often includes constraining the
properties of the data to be generated. In other words, it is
useful to define regions of the feature space where we want the
generated data to fall. In this paper, we introduce descriptors
as a way to partition the feature space into a finite set of
classes. These descriptors can then be used by our synthetic
data generation algorithm to generate feature vectors in the
different classes specified by the given descriptor.

The contributions of this paper are: (1) an analysis of the
distribution of real ADOS data in the feature space using
dimensionality reduction methods (section IV), (2) two new
data-driven descriptors that take into account information
unused by the existing ADOS descriptor, and partition the
feature space into 4 classes (section V), and (3) a sampling
method operating in the full feature space that generates
synthetic data consistent with the correlation structure of the
real dataset and constrained by a given descriptor (section VI).



II. RELATED WORK AND BACKGROUND

A. Synthetic data generation

Synthetic data can be very useful in many applications to
train, test or inform a wide range of algorithms. It is widely
used to train fraud detection systems [9], but also information
discovery systems [10], spatial microsimulation models to
inform policy intervention [11], sensor network deployment
[12], and much more. Some general purpose synthetic data
generation methods also utilize ways of describing the data to
be generated (e.g., the Synthetic Data Description Language
(SDDL) [13]), while others are designed to generate very
specific types of data in a rather unstructured way. In this
paper, we focus on synthetic data sampling methods that
preserve the correlation between features while incorporating
constraints on the region of the feature space where that data
will be generated.

B. Autism Diagnostic Observation Schedule (ADOS) structure

The ADOS is a state-of-the-art, standardized, semi-
structured diagnostic tool for ASD used by therapists world-
wide. It comprises 5 modules suitable for different language
abilities and/or ages. Module 1 (Pre-verbal/Single Words)
remains the main module used by therapists as an initial
assessment of young children that aren’t toddlers, which is
why we focus on this particular module in this work. However,
our methods can be applied to any of the ADOS modules as
they possess a very similar structure.

Module 1 of the ADOS is composed of 10 standardized
activities, ranging from unstructured activities such as ‘Free
Play’ (where the child is left to freely play in the room)
to highly structured activities such as a ‘Response to name’
activity (where the therapists calls the child’s name at different
degrees of intensity and observes the child’s response). In a
session where the ADOS is administered, the therapist per-
forms the activities and records behaviors of interest through-
out the session, in a time span of 40-60 min.

At the end of the session, the therapist codes the behaviors
exhibited by the child throughout the whole session. There are
a total of 29 ADOS features for different, usually exclusive,
behavior types. Of these 29 features only 14 are used in
the algorithm that returns the overall total score used for
diagnosis. The overall total can be broken down into three
subtotals: Communication (Comm.), Reciprocal Social Inter-
action (Soc.), and Restricted and Repetitive Behavior (RRB).
Feature values are all remapped to a 0-2 integer scale before
they are summed. From the overall total, one can compute a
comparison score (integer-valued between 1 and 10) which
serves as our measure for autism severity. In this paper,
we make use of all 29 features with their full range, as
summarized in Table I.

III. DOMAIN AND DATASET DESCRIPTION

A. Domain definitions and notation

The features we use in this work are the 29 ADOS
features, summarized in Table I. These include items related

TABLE I
SUMMARY OF THE ADOS MODULE 1 FEATURES USED

Feature name Code Range
Overall Level of Non-echoed Language A1 1-4
Frequency of Vocalization Directed to Others A2 1-3
Intonation of Vocalizations or Verbalizations A3 1-2
Immediate Echolalia A4 1-3
Stereotyped/Idiosyncratic Use of Words or Phrases A5 1-3
Use of Other’s Body to Communicate A6 1-2
Pointing A7 1-3
Gestures A8 1-2
Unusual Eye Contact B1 1-2
Responsive Social Smile B2 1-3
Facial Expressions Directed to Others B3 1-2
Integration of Gaze [etc.] During Social Overtures B4 1-3
Shared Enjoyment in Interaction B5 1-2
Response to Name B6 1-3
Requesting B7 1-3
Giving B8 1-2
Showing B9 1-2
Spontaneous Initiation of Joint Attention B10 1-2
Response to Joint Attention B11 1-3
Quality of Social Overtures B12 1-3
Functional Play With Objects C1 1-3
Imagination/Creativity C2 1-3
Unusual Sensory Interest in Play Material/Person D1 1-2
Hand and Finger and Other Complex Mannerisms D2 1-2
Self-Injurious Behavior D3 1-2
Unusually Repetitive Interests or Stereotyped Beh. D4 1-3
Overactivity E1 1-2
Tantrums, Aggression, Negative or Disruptive Beh. E2 1-2
Anxiety E3 1-2

to A: Language and Communication, B: Reciprocal Social
Interaction, C: Play, D: Stereotyped Behaviors and Restricted
Interests, and E: Other Abnormal Behaviors. The values for
these features, denoted fi, i = 1, . . . , 29 in the order listed in
the table, are integers in the range shown in the third column
of the table.

Since the aim of this paper is to generalize from real data to
generate synthetic data, it is important to distinguish between:

• Arbitrary feature vectors, i.e., points in the feature
space, denoted by f = (f1, . . . , f29),

• Real data points: x = {xi}Ni=1 representing real subjects
in our dataset, where xi = f (xi) = (f

(xi)
1 , . . . , f

(xi)
29 ) is a

feature vector and N is the dataset size, and
• Synthetic data points: x̂ = {x̂i}Mi=1, representing simu-

lated subjects and generated by our algorithm informed
by real data, where x̂i = f (x̂i) = (f

(x̂i)
1 , . . . , f

(x̂i)
29 ) is a

feature vector and M is the number of generated feature
vectors.

B. Dataset description and preprocessing

Our dataset consists of the full ADOS Module 1 score set
(f1 through f29) of children suspected of having an ASD
(N=279). The data came from two sources: out of the 279
score sets, 212 were obtained from the National Database
for Autism Research (NDAR)1 and 67 were obtained from
the Child Development Center (CDC) at the Garcia de Orta

1NDAR is a collaborative informatics system created by the National
Institutes of Health (NIH) to provide a national resource to support and
accelerate research in autism.



Hospital in Alameda, Portugal2. The average age is 67.7
months (SD = 39.6 months), with a minimum age of 20
months and a maximum age of 236 months. Part of the dataset
doesn’t have gender information, but for the 147 data points
that have it, the Male-to-Female ratio is 38:49.

This type of data presents some challenges, outlined below:
- Data are discrete, which makes it harder to generate synthetic
data that are consistent with real data (for example, sampling
synthetic data points according to a correlation model is
straightforward with the Gaussian assumption, but without it,
it is not).
- Data are ordinal, which means that traditional parametric
methods might not be suitable for this type of data.
- Data are noisy. Although the ADOS is a standardized test,
there is some level of subjectivity in the coding as different
therapists may assign different values for a same set of
observations during an administration session.
- Data are sometimes incomplete. The dataset has missing
entries (NaN’s) in some features for some of the subjects (28
of 8091 entries were missing, mostly for feature A3).
- The dataset includes data from both the first version of
the test, ADOS-G [14] and the second version, ADOS-2 [3],
contributing to additional noise. The main differences between
the two versions are: (1) coding (feature A6 coding rules were
slightly revised and 4 out of 29 have their range changed from
a 3-pt to 4-pt scale), (2) some extra features added in ADOS-
2 (those were neglected), and (3) a different algorithm for
computing total scores (we used the most recent).

Values of 7 and 8 in the database, corresponding to spe-
cial circumstances or insufficient observations, were directly
treated as NaN’s, which we replaced with randomly sampled
values in the allowed range for the missing feature value. Even
though more advanced methods of dealing with missing data
such as matrix completion [15] could be used, this simple
method ensures that the correlation structure of the data, the
basis for our synthetic data generation algorithm, is maintained
after preprocessing, at the cost of adding some noise.

IV. VISUALIZING AND ANALYZING REAL ADOS DATA

In this section, we present two methods for visualizing
the feature vectors of our dataset using a lower-dimensional,
human-readable representation. The first one uses a Self-
Organizing Map (SOM) that maps the data points to a 2D
space and the second one exploits groupings of features arising
in the ADOS total computation algorithm and maps data
points to a 3D space. These visualizations are useful to assess
whether or not clusters or low-density regions are present in
the data, and to inform our method, presented in section VI,
for generating new descriptors based on the real data.

A. Dimensionality reduction using a 2D Self-Organizing Map
A self-organizing map (SOM) is a neural network

that learns, in an unsupervised way, an alternative, low-
dimensional, representation of high-dimensional data in the

2These ADOS scores are part of a database kept for statistical purposes.
All data is anonymous; only age and gender were collected from the sample
for biographical characterization.

form of a 2D map consisting of interconnected neurons
preserving the topology of the original data [16]. We trained
on our dataset an SOM consisting of 25 neurons connected
in a 5-by-5 hexagonal map. With each neuron, there is an
associated position in the map space.

A common visualization method of an SOM is through the
unified distance matrix (U-matrix) [17], which computes the
distance between a neuron and its neighbors in the map space.
The left part of Fig. 1 shows the U-matrix for our trained SOM,
where brighter regions correspond to more clustered regions
and darker regions correspond to low-density regions. Our U-
matrix suggests that there aren’t clearly separated clusters in
the data, but rather some low-density regions.

The trained network maps input feature vectors to the
closest neuron in the map space. The right part of Fig. 1 shows
a histogram of the number of data points being mapped to each
neuron for our dataset. This plot confirms the intuition we got
from the U-matrix that there are low-density regions in the
dataset rather than clearly separated clusters.

As a final note, we justify our choice of the main SOM
hyperparameter, namely its size. Even though no systematic
validation of our size choice was performed, it was chosen as
a result of experimenting with different sizes, as a tradeoff
between overfitting and generalization power, especially in
relation to the resulting sample hit histogram, which gives
us an idea of the probability distribution across the map. It is
worth mentioning that no clear cluster separation was found
even with larger SOM sizes.

B. Dimensionality reduction using ADOS subtotals (3D)

Even though all 29 features are coded by the therapist during
an ADOS session, only 14 are used for the computation of a
total score on which a diagnosis is made to assess the subject’s
autism severity. The ADOS algorithm generates an overall total
from a feature vector, which can then be transformed into a
severity score or a severity class. The algorithm consists in
first categorizing the subject into either the ‘no words’ or the
‘some words’ category according to the value of feature A1.
Then, feature values are remapped to a range of 0-2, and a
subset of the features are summed to form three subtotals,
namely the Communication (Comm.) subtotal (range: 0-6),
the Reciprocal Social Interaction (Soc.) subtotal (range: 0-16),
and the Restricted Repetitive Behaviors (RRB) subtotal (range:
0-8), with slight differences for the ‘no words’ and ‘some
words’ categories. The overall total is the sum of these three
subtotals. The algorithm was revised in ADOS-2 to increase
the robustness of the diagnosis [3]. Since both the original and
revised algorithm operate on the same features, we can safely
use the more robust algorithm [3] to compute those subtotals.

Fig. 2(a) shows the data points in the 3D ADOS subtotal
space, where each axis corresponds to one subtotal. Consistent
with our SOM analysis, we observe that the data points do not
form clearly separated clusters, but rather present some low
density regions.



Fig. 1. 2D visualization of the real dataset using a Self-Organizing Map (SOM). Left: U-Matrix showing distance between neighboring neurons. The darker
the color, the more separated the connected neurons. Right: Sample hit histogram showing the number of data points mapping to each neuron. The U-matrix
and Sample Hit plots suggest that there are no clearly defined clusters, but rather low-density regions in the input space. SOM parameters: # epochs for
training (1,000); distance type (link distance); initial input space covering (100); initial neighborhood size (3).

Fig. 2. (a) Real data grouped according to descriptor DADOS (red circles: Minimal to No Evidence, black triangles: Low, blue squares: Moderate, green
asterisks: High). (b) Real data grouped according to K-means run in the ADOS subtotal space (descriptor Ddata,lo). (c) Real data grouped according to
K-means run in the full feature space (descriptor Ddata,hi) and visualized in the ADOS subtotal space. (d) ADOS subtotal space visualization of synthetic
feature vectors generated according to the sampling method described in section VI, and grouped according to Ddata,lo. (e) Same as (d) but grouped according
to Ddata,hi. Notes: Axes labels shown in (a) and consistent in all other plots. Very small perturbations were applied to the visualized data to be able to
distinguish points that are exactly overlapping.

V. DESCRIPTORS FOR PARTITIONING THE
HIGH-DIMENSIONAL FEATURE SPACE

In this section, we introduce descriptors as a tool to partition
the large feature space into classes. As a result, we are able to
characterize large sets of ‘similar’ feature vectors by grouping
them under the same class.

A. Descriptor formalism and existing descriptor
We define a descriptor D as a function mapping any feature

vector f to a class index k in {1, . . . ,K}. A descriptor
partitions the feature space into K classes Ck, such that

Ck = {f |D(f) = k}, k = 1, . . . ,K.

In this paper, we consider three types of descriptors: ADOS-
based DADOS, low-dimensional data-driven Ddata,lo, and
high-dimensional data-driven Ddata,hi.

ADOS-based descriptor (DADOS): The ADOS algorithm
produces an overall total, as explained in section IV-B, which
is then converted to a comparison score (1-10), thresholded
to form 4 severity classes. This function from feature space
to class index can be thought of as a descriptor with 4
corresponding classes, namely ‘Minimal to No Evidence’
(CADOS

1 ), ‘Low’ (CADOS
2 ), ‘Moderate’ (CADOS

3 ), and ‘High’
(CADOS

4 ). We overlaid the class information according to this
descriptor on the scatter plot of Fig. 2(a).



B. Generating new descriptors from the real data

The existing descriptor DADOS classifies subjects into 4
classes, designed to capture a scale of different autism sever-
ities. These classes are useful for diagnosing and informing
decisions such as whether or not the subject needs therapy.
However, from a behavioral modeling point of view, this
descriptor may be neglecting important behavioral aspects that
are not directly related to a one-dimensional scale of autism
severity. More specifically, there are two limitations to the
existing descriptor, as we explain next.

First, two subjects can have the same overall totals but very
different subtotals (for instance, one subject might have a very
high RRB subtotal and a very low Comm. and Soc. subtotal
and another might have medium values on all subtotals). In
this case, it is not clear whether or not it is natural to group
them under the same class. Second, although only 14 out of the
29 features have been identified as having enough predictive
power when it comes to the autism severity, the remaining 15
features carry behavioral information that might be useful in
the behavioral model. Also, the calculation of totals involves
remapping which reduces the resolution of some features by
lumping values of 2 and 3 in one category.

In order to address these limitations, we use a data-driven
approach to generate new descriptors obtained through clus-
tering of the real data points. Even though we established
in section IV the absence of clearly separated clusters in the
data, clustering algorithms effectively define regions of the
feature space using the distribution of the data across that
space. To address the first limitation, we perform clustering in
the 3D ADOS subtotal space to generate descriptor Ddata,lo.
To address the second, we perform clustering in the full feature
space to generate descriptor Ddata,hi.

There exist many types of clustering algorithms, broadly
categorized as density-based, distribution-based, connectivity-
based, and centroid-based methods. Density-based clustering
[18] assumes large density differences within and between
clusters, which from our SOM analysis is not a reasonable
assumption. Distribution-based clustering (e.g. using
Expectation-Maximization over a Gaussian Mixture Model)
[19] assumes we know the distribution of the data, which is
not a practical assumption since such domain knowledge is
hard to approximate. Connectivity-based clustering [20] is
not robust to noise and outliers, which makes it not suited for
our noisy dataset. Therefore, we perform clustering on our
data using a simple K-means [21] (centroid-based approach)
with parameters summarized in Fig. 2. The tendency of the
algorithm to partition the data into equally-sized regions makes
it desirable for our purposes. We select as our number of
classes K = 4 (similar to DADOS). We use L1 distance as our
distance function since we are dealing with discrete features.
An analysis of the resulting class centroids is presented below.

Low dimensional data-driven descriptor (Ddata,lo): This
descriptor maps feature vectors to the index of a class
obtained through running K-means on the real data points

in the 3D ADOS subtotal space. The resulting centroids for
classes Cdata,lo

1 through Cdata,lo
4 are (1, 3, 1.5), (3, 8, 5),

(5, 11, 3), and (6, 13, 5) (vector order is Comm., Soc., RRB).
Fig.2(b) shows the real data points grouped according to this
descriptor. Comparing this partition to that of DADOS shows
that Ddata,lo captures differences in the RRB subtotal not
reflected in the ‘Moderate’ class region of DADOS .

High-dimensional data-driven descriptor (Ddata,hi): This
descriptor maps feature vectors to the index of a class obtained
through running K-means on the real data points in the full
feature space. We analyze the resulting class centroids3 by
looking at the (sample) variance for the centroid features
as well as the (sample) correlation between the centroid
features. The highest variance, corresponding to features that
vary most across the 4 class centroids, occurs for feature
A7: ‘Pointing’ followed by feature A1: ‘Overall Lev. of
Non-echoed Lang.’. The lowest variance occurs for features
E3: ‘Anxiety’ and D3: ‘Self-Injurious Beh.’ where all 4
values are zero for both E3 and D3. The most negative
correlation (−0.4263) between pairs of features occurs for
pairs (E1:‘Overactivity’, A3:‘Intonation of Voc. or Verb.’)
and (E1:‘Overactivity’, A5:‘Stereotyped/Idiosyncratic Use of
Words or Phrases’). However, since both A3 and A5 had
a particularly significant number of NaN values replaced by
random values, this last result might not be very accurate. On
the other hand, many features had a correlation of 1 across
class centroids, indicating that it is more common to have
similar trends in different feature values across classes as
opposed to inversely related trends.

Fig.2(b) shows the real data points rendered in the ADOS
subtotal space for easy visualization and grouped according to
Ddata,hi. Even though this descriptor still somehow encodes
severity, it also captures specific differences that seem to vary
more intensely across subjects such as pointing behaviors and
use of language. Some overlapping points in the 3D space
are even mapped to different classes, validating the fact that
DADOS neglects important features for behavioral modeling.

VI. GENERALIZING FROM REAL DATA: A SYNTHETIC DATA
SAMPLING METHOD

In this section, we discuss a method for generating feature
vectors consistent with the correlation structure of our real
dataset, for a given class specified by a descriptor.

A. Correlation analysis

In our correlation analysis, we only consider pairwise corre-
lations between features. Fig. 3(a) shows the Spearman corre-
lation matrix for our features. The Spearman’s rank correlation
coefficient is a non-parametric measure (real number between
-1 and 1) capturing how well a monotonic function can be used

3The full centroids for Cdata,hi
1 through Cdata,hi

4 are:
(1,1,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,1,2,0,0,0,0,1,0,0)
(1,1,2,1,2,0,1,1,2,1,1,1,1,0,1,1,2,2,0,1,1,1,1,1,0,1,0,0,0)
(3,2,2,1,2,1,3,2,2,2,2,2,1,1,1,1,2,2,0,2,2,3,2,2,0,2,1,0,0)
(3,2,1,2,1,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,1,1,0,1,2,1,0)



to describe the relation between two random variables (the sign
indicates whether this function is increasing or decreasing)
[22]. It is a well suited measure of correlation when dealing
with ordinal variables like our features.

We observe that many features are positively correlated,
which is not surprising given that neurological, developmental,
and genetic [23] causal relationships have been found to
explain a large set of behaviors in autistic subjects. However,
some features seem to have a low or even slightly negative cor-
relation with other features, especially in the D (Stereotyped
Behaviors and Restricted Interests), and E (Other Abnormal
Behaviors) categories.

B. Unconstrained generation of synthetic feature vectors

Our aim is to generate synthetic data such that correlations
between the features are maintained. Since the features are
discrete and ordinal, such a task is non-trivial. There exist
methods to sample ordinal correlated data such as the Gaussian
copula [24], the binary conversion, and the mean mapping [25]
methods. In this work, we opt for the mean mapping method,
which gave best results for our application. The method takes
as an input the target correlation matrix and the marginals for
each feature, and performs the following steps [25]:

1) For the given marginals, compute the quantiles assuming
an underlying Gaussian model for each feature.

2) Estimate a corresponding correlation matrix in contin-
uous space, where ordinal variables are replaced with
the underlying Gaussian variables. This step involves
interpolating a function over a regular grid of computed
probabilities to estimate correlation coefficients.

3) Sample normal data according to the estimated corre-
sponding correlation matrix and cut the samples accord-
ing to the computed quantiles to get back ordinal data.

The resulting samples asymptotically achieve the target
correlation structure and marginals.

Fig. 3(b-d) shows the sample correlation matrix for an
increasing number of generated feature vectors, along with
the associated RMS errors (rmsE) and maximum absolute
errors (maxE) with respect to the target matrix (Fig. 3(a)).
As a heuristic to enforce uniform generation across descriptor
classes, we set our target marginals to uniform distributions
over the feature ranges. The generated feature vectors for
M = N = 279 are plotted in Fig. 2(d-e), and grouped ac-
cording to Ddata,lo and Ddata,hi respectively for comparison.

C. Generating synthetic feature vectors according to descrip-
tors

As mentioned previously, descriptors are a convenient tool
to specify the type of synthetic data an algorithm generates.
They can be thought of as high-level controls a potential user
can specify. To incorporate the constraint on the type of data
to be generated, we present a simple alteration of the original
mean mapping algorithm, Descriptor-Based Mean Mapping
Sampling (DBMMS), to sample feature vectors belonging to
a specific class Cl

i defined by descriptor Dl. The algorithm
relies on the idea of rejection sampling, by which only

the generated samples that fall under a given descriptor are
accepted, otherwise they are rejected. This method does not
depend on the choice of descriptor or feature choice.

Algorithm 1 shows a pseudocode of the algorithm for
centroid-based descriptors such as Ddata,lo and Ddata,hi. Pa-
rameters of the mean mapping method params, including
the corresponding correlation matrix and quantiles, only need
to be computed once before starting the sampling process. If
the closest centroid index k̂ to the generated feature vector is
equal to the desired centroid index, the sample is accepted;
otherwise it is rejected. The effect of the descriptor constraint
on the generated data points in Fig. 2(d-e) would simply be
to filter out any data point outside the specified class.

Algorithm 1 Descriptor-Based Mean Mapping Sampling (DB-
MMS) algorithm to generate M synthetic feature vectors in
class Cl

k, according to descriptor Dl represented as a list of
centroids cl = (cl1, . . . , c

l
K), targeting correlation matrix corr

and feature marginals marginals
1: procedure DBMMS(M, cl, k, corr, marginals)
2: x̂← ∅
3: m← 0
4: params ← MeanMappingParams(corr, marginals)
5: while m < M do
6: x̂← MeanMapping(params,1)
7: k̂ ← argmink∈{1,...,K}|x̂− clk|
8: if k̂ = k then
9: x̂← x̂ ∪ {x̂}

10: m← m+ 1

11: return x̂

VII. CONCLUSION AND FUTURE WORK

This work aimed at devising a method to generalize from
real behavioral data on children with ASD to consistently
generate synthetic data. Our dataset consisted of the ADOS
Module 1 features for 279 children suspected of having an
ASD. We began by analyzing the data to assess the distribution
of the data points in the feature space using two dimensionality
reduction methods. The first one used a Self-Organizing Map
to visualize the data with a learned 2D representation, and the
second one used the 3D space defined by the ADOS subtotals.
We moved on to introduce two new data-driven descriptors of
the feature space using a K-means clustering algorithm. The
resulting classes capture subtle variability that the existing
ADOS descriptor neglects. Finally, we present a descriptor-
based sampling method which preserves the correlation struc-
ture of the data. The method is a modification of the mean
mapping algorithm for generating correlated ordinal values.

In the future, we would like to use the generated synthetic
data to train algorithms for a social agent interacting with
children with ASD. The feature values can be transformed
into a reward function which, in combination with a transition
model, could potentially be used in the context of model-based
reinforcement learning approaches to learn optimal policies,



Fig. 3. Spearman correlation matrix for: (a) the feature vectors from the real dataset; (b-d) feature vectors from a generated dataset sampled according to
the mean mapping method of (b) the same size as the real dataset, (c) of size 1,000, and (d) of size 10,000.

hence providing adaptability to each child’s therapy needs.
Alternatively, the generated data could be used as part of a
behavioral simulator of children with ASD in order to train
apprentice therapists to administer the ADOS in simulation.
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