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Abstract
This paper describes a social robotic game player that is able
to successfully play a team card game called Sueca. The ques-
tion we will address in this paper is: how can we build a social
robot player that is able to balance its ability to play the card
game with natural and social behaviours towards its partner
and its opponents. The first challenge we faced concerned the
development of a competent artificial player for a hidden in-
formation game, whose time constraint is the average human
decision time. To accomplish this requirement, the Perfect In-
formation Monte-Carlo (PIMC) algorithm was used. Further,
we have performed an analysis of this algorithm’s possible
parametrizations for games trees that cannot be fully explored
in a reasonable amount of time with a MinMax search. Ad-
ditionally, given the nature of the Sueca game, such robotic
player must master the social interactions both as a partner
and as an opponent. To do that, an emotional agent frame-
work (FAtiMA) was used to build the emotional and social
behaviours of the robot. At each moment, the robot not only
plays competitively but also appraises the situation and re-
sponds emotionally in a natural manner. To test the approach,
we conducted a user study and compared the levels of trust
participants attributed to the robots and to human partners.
Results have shown that the robot team exhibited a winning
rate of 60%. Concerning the social aspects, the results also
showed that human players increased their trust in the robot
as their game partners (similar to the way to the trust levels
change towards human partners).

As interactive entertainment expands, computer games
are progressively moving from the virtual world back to the
physical world. Augmented reality games, haptic interfaces
in gaming, touch tables, etc, are some of the types of in-
teractivity placing human players in physically situated en-
tertainment experiences. In parallel with this move into the
physical world, artificial partners and opponents can also be
created to exist in such physical world. To do that, the area
of entertainment robots offers challenging opportunities as
it explores the role of a robot as a game player. In general,
social robots can contribute with new and broad ways of cre-
ating socially engaging interactions with humans in enter-
tainment contexts. The challenges of these human-robot in-
teractions may vary from game to game. Some games, when
played in the physical world not only hold complex social
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behaviours, but they also hinder performance aspects related
with the competitive nature of the game itself.

Furthermore, in many types of games, current advances in
Artificial Intelligence (AI) over the past few years has shown
that strong and powerful algorithms combined with signifi-
cant amounts of data, are able to defeat human world cham-
pions of these games (see for example, the game of Go).
These results raise our expectations and people are starting
to consider such artificial agents as fierce competitors. Yet,
when we consider multi-player games, where the social en-
vironment becomes more relevant, and when the games are
played in the physical world, how will people perceive a so-
cial robotic player compared to human standards? Will peo-
ple be willing to trust a social robot to be his partner in a
team game?

To address these questions we created a social au-
tonomous robotic partner for the Sueca card game, with a
twofold goal of both playing competitively and interacting
socially with the other players. The development of such
robotic game player introduces some challenging aspects, in
particular finding the best balance between social responses
and computations related with the game, in order for the so-
cially intelligent agent to produce natural and human-like
behaviours.

Another important challenge of creating an intelligent
agent in this social context is the time constraint on the com-
putation of a hidden information card game. State-of-the-art
approaches, for instance PIMC, promise good results on the
Sueca domain according to the game properties. However,
the full computation of multiple perfect information games
is not time-efficient and will hinder natural interaction in
a game with human players. Therefore, this paper also ex-
plores how the algorithm’s parametrizations affect the game
results in order to choose the best performance-time config-
uration.

Finally, by using an expressive robot that is able to ex-
press emotions, provide spoken feedback, and respond so-
cially, the game experience can be created balancing these
social and game competencies. In this case, we built the so-
cial competencies by using an emotional agent framework
(FatiMA) which allows for emotional appraisal to occur and
fire social and emotional behaviours. At each moment, the
robot not only plays competitively, but also appraises the sit-
uation and responds emotionally to the game situations.
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To evaluate such robotic game player, we have consid-
ered two central aspects for assessing when playing in the
card game: (1) competitiveness between team opponents and
(2) cooperation between team partners. Performance can be
measured by the number of games won, and simulations
made with the developed algorithm to test it against other ar-
tificial players. But, most importantly, to assess how humans
perceive the robot as a game player we conducted a user
study with 60 participants and measured the human players’
trust levels in their partners (before and after playing). Con-
cerning the competence of the robot, the results show that
the robot is able to play competitively with human players,
achieving a winning rate of 60%. We also compared the trust
level on the robotic partner with the trust level on human
partners. The results show that human players significantly
increased their trust in the robot as their game partners (in a
similar way to the trust levels they perceive to have towards
human partners).

Background
PIMC is a search algorithm suitable for partially observable
environments. It uses a Monte-Carlo methodology and deals
with the imperfect information by the determinization tech-
nique. In other words, the hidden information is sampled
several times and the best move is computed by solving ex-
actly or heuristically in each perfect information game.

The main two disadvantages of this approach were
pointed by Frank and Basin in 1998 (Frank and Basin 1998),
and were called strategy fusion and non-locality. The first
one refers to decisions that would only make sense for cer-
tain sampled distributions and when applied turned out to be
poor decisions. The non-locality results from the fact that the
value of a game tree node only considers its children values,
however, in an imperfect information game, some guesses
might be done using values of the non-local sub-tree.

Nonetheless, this algorithm already counts with some suc-
cessful implementations as the Ginsberg’s Intelligent Bridge
player (GIB) (Ginsberg 2001), Skat (Buro et al. 2009), or
Hearts (Sturtevant 2008). Their remarkable results seem to
reveal the effectiveness of determinization. However, there
were still difficulties in understanding the strong results of
this algorithm. As such, Long et al. (Long et al. 2010) not
only have analysed the previously mentioned problems of
PIMC search, but the authors have also shown how three
different properties of a game can influence the success of
PIMC. The first property is leaf correlation, which refers to
how likely it is to affect a the payoff of a player in the neigh-
bourhood of a leaf. When the probability of all siblings hav-
ing the same payoff values is higher, the correlation value
increases. Secondly, bias indicates the chance of a player
being preferred over another. Finally, the last game charac-
teristic that has been pointed is disambiguation factor, that
denotes how rapidly the hidden information is revealed. The
authors analysed these properties for the game of Skat, indi-
cating a considerably good performance of PIMC, due to its
values of leaf correlation, bias, and disambiguation factor
(Long et al. 2010). This analysis strongly led us to consider
PIMC in our first implementation for the Sueca domain, and

to expect a reasonable performance, considering the obvious
similarities between these two trick-taking card games.

Related Work
Robots are being developed and introduced in social envi-
ronments with humans as tools for assistive (Feil-Seifer and
Matarić 2005), educational (Castellano et al. 2013) and even
entertainment purposes (Pereira, Prada, and Paiva 2012). In
the scope of this work, we will focus on entertaining ac-
tivities - namely playing the card game of Sueca - with an
artificial robotic companion.

The gaming experience with an artificial player is an en-
gaging experience due to the agent’s sociability and embod-
iment (Behrooz, Rich, and Sidner 2014), either virtual or
physical. Therefore, game playing scenarios became more
popular to analyse the influence of physically embodied
agents on different aspects that might be related with the
game experience or with the perception of the artificial
player. For instance, physical embodiment can provide a
more immersive user experience, an improved game feed-
back and a more believable social interaction (Pereira et al.
2008). Additionally, other studies revealed that empathic be-
haviour can positively affect how children perceive a robot
in a game playing scenario (Leite et al. 2012).

Henceforth, different playful scenarios have been devel-
oped, in which robots and humans interact and play together.
Sometimes humans can behave as opponents towards each
other and towards the robot, like in the Risk game scenario
(Pereira, Prada, and Paiva 2012). In this game, the robot be-
haves in the game as a socially aware agent that can play and
socially interact with the human players. Its social behaviour
is driven by its ability to have memory of the game actions
of other players, be emotionally aware and consider social
roles in the game (e.g., as Dominant or Exhibitionist towards
the other players). In a more recent scenario, a robot played
the Mastermind game with elderly people as a mean to pro-
vide social support in a form of entertainment (Johnson et
al. 2016). Although participants have indeed recognised the
robot to have an entertaining associated value, the hypothe-
sis that participants would enjoy more a robot displaying be-
havioural patterns associated with the game progress when
compared to randomly displayed behaviours was not sup-
ported.

Overall, the mentioned research studies prove the broad
application of entertainment robotics among different age
groups, at the same time they constitute insightful consid-
erations for the design and development of any social en-
tertainment robot. We aim to extend this line of research,
by developing a scenario in which a robot plays either as
an opponent and as a partner in the traditional card game of
Sueca. This card game is a well-known game in Portugal and
(young) adults and elderly play usually the game in social
contexts of interaction, providing joyful moments together.

The Sueca card game
Sueca is a Portuguese trick-taking card game played by four
players divided into two teams. It uses a French deck with
the cards 2-6, Q, J, K, 7 and A valuing 0, 2, 3, 4, 10 and
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11 points respectively, and summing 120 points across all
suits. The rules are quite similar to any other trick-taking
card game: if possible, players need to follow the suit of the
first played card in the trick (lead suit); and the team players
win the trick points if one of their cards has the highest value
belonging to the trump suit or the lead suit. At the end, a
score between 61-90 points accumulates one victory for that
team, a score between 91-119 points accumulates two vic-
tories for that team, and a score of 120 points accumulates
four victories for that team. When a player does not follow a
suit lead suit while holding it in his hand, the game ends and
the opponent team accumulates four victories. These victory
points determine the winning team in a session of n games.

Sueca is a non-deterministic game, since it includes what
is called the element of chance by the cards being randomly
dealt at the beginning. Additionally, as the cards of each
player are hidden from the other players, it is considered an
imperfect information game.

The general winning strategy is to play the highest card of
a non-trump suit when other players probably still have that
suit and, therefore, cannot cut the trick with a trump. This
situation typically occurs in the first tricks for each differ-
ent lead suit. The trump cards are usually saved for cutting
tricks.

The Social Robotic player
Our social robotic player is responsible for prescribing nat-
ural and human-like behaviours based on both social re-
sponses and computations related with the game. The ulti-
mate socially intelligent decision maker includes two mod-
ules: the Game Module – that holds our proposed task AI
and is responsible for choosing, at each play, among the set
of possible moves, while also updating the agent’s beliefs
from the game events–; and the Social Module – that holds
the “social AI” of the robot, and is responsible for selecting
utterances of verbal and nonverbal behaviours according to
both game events and the beliefs from the Game Module.

The Game Module
During the development of the proposed AI for the Sueca
card game, we went through three main stages: (1) creating
a benchmark player based on rules for further evaluation; (2)
applying PIMC algorithm in our domain; (3) enhancing the
previous approach considering our requirements.

The Rule-based player
The Rule-based player roughly replicates the general game-
play strategy of non-professional human players. Its rule-
based procedure starts by identifying the highest cards of
each allowed suit for the current play; it then assesses
whether or not to play each card by checking (i) if it is the
highest unplayed card of that suit; and (ii) if there are less
than 5 cards from that same suit in its hand, except for the
trump suit. The condition (i) ensures no other player has a
higher card of the same suit, while condition (ii) helps to
measure the probability of another player cutting the trick.
If both conditions are true, it plays one of its highest cards,
otherwise it plays a random zero-value card.

We evaluated the performance of the rule-based player by
running two experiments involving rule-based players and
random1 players. The first experiment consisted in 1, 000 in-
dependent games involving a team of one rule-based player
and one random player against a team of two random play-
ers. The second experiment consisted in 1, 000 independent
games involving a team of two rule-based players against a
team of two random players. In the first experiment, the team
with the rule-based player attained a winning rate of 56.6%,
while in the second simulation, the team with two rule-based
players attained a winning rate of 61.1%.

These results illustrate two important aspects. First of all,
they highlight the cooperative nature of the game (by com-
paring results of the first and second experiments), which
also matches the practical experience of human players: a
good player matched with a bad teammate may not be able
to properly leverage its proficiency during play. A second
important aspect is that the rules of the game will often im-
pose severe restrictions on the cards that a player may play.
In those circumstances, the random player will essentially be
as good as the optimal player, since no decision is actually
taking place. This means that the card distribution among
the two teams has a significant impact in the outcome of the
game—which explains the surprisingly high winning rate of
the random players.

Finally, it is worth noting that, as will soon as it will
become apparent in Section “Evaluation and Discussion”,
the performance of the rule-based agent against our player
is similar to the performance of human players against our
player, suggesting that the rule-based player is able to prop-
erly capture the fundamental game-play of regular human
players and, as such, provides an adequate baseline for com-
parison.

PIMC in the Sueca domain
The decision of using the PIMC algorithm in the Sueca do-
main relates to our main requirements of time-efficient on-
line computation and also to the previous results in the Skat
domain (Long et al. 2010), which is a similar trick-taking
card game. Its pseudo-code is described in Algorithm 1.

Algorithm 1 PIMC search pseudo-code.
1: procedure PIMC(InfoSet I , int N )
2: for all m ∈ Moves(I) do
3: val[m] = 0
4: for all i ∈ {1..N} do
5: x = Sample(I)
6: for all m ∈ Moves(I) do
7: val[m] += PerfectInfoValue(x, m)
8: return argmax

m
{val[m]}

We also illustrate in Figure 1 how PIMC can be applied
in this card game. The example shows an 8th trick of the
game, where each player still holds two cards in their hands.
The first step is to sample card distributions or configura-
tions for other players’ unknown hands. Then, it calculates

1Random players only played allowed moves
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the reward of playing each card in its own hand for every
sampled distribution. These two steps are repeated N times.
The chosen card to play is, therefore, the one with the max-
imum accumulated reward for all the sampled distributions.
This algorithm contains two important steps referred in Fig-
ure 1 as Sample and Search, which are discussed below in
greater detail.

Figure 1: Illustration of the PIMC procedure in the 8th trick.

Sample In order to sample possible card distributions for
the other three players with their real conditions, the arti-
ficial player must store all relevant information to update
its beliefs on other players’ game states. Therefore, the in-
formation set summarises all visible information during a
game, and also inferred information based on certain events.
The player must keep an instance of the information set per
game and update it when necessary. In this case, it stores
the known hand of the player itself and a deck with all the
cards whose owner is unknown. As a result, each time an-
other player plays a card, it should be removed from that
deck.

This data allows to sample distributions with more ac-
curate information, considering the closer they are to the
real world conditions, the more accurate the returning value
of each search will be. Additionally, the information set
keeps track of suits per player and, when a player does not
follow the lead-suit of a trick, it removes that suit from
the player possible suits. By possessing this information,
sampling possible distributions gets even closer to the real
world. However, it increases the complexity of the sampling
process. The current sampling method builds a Constraint
Satisfaction Problem (CSP) where the variables are the un-
played cards; the corresponding domains are the set of play-
ers that still have that suit; and the constraints are the number
of times a player can be assigned to a card.

Search As mentioned above, PIMC has to calculate the re-
ward of playing each possible card, for each sampled world.
Since a sampled distribution assigns the remaining cards to
players, every game can be handled as a perfect information
game and the MinMax algorithm can perform this search.

However, exploring full game trees is a hard computa-
tional task, in light of our time constraint. This is particu-
larly critical in the early plays of the game, since the number
of computed game trees is the number of possible moves
times the number of sampled distributions, and the size of

each game tree depends on the tricks that are left to finish
the game. We set a time constraint of two 2 seconds for de-
liberation for each of the ten tricks. This time constraint was
based on the observation of human Sueca players during a
pilot study, where they took an average time of 2 seconds
playing each card during a game.

To respect the time constraint, the MinMax search per-
formed depth cuts on the game trees, which could only be
fully explored from the 5th trick on. However, considering
important game decisions might occur during the first tricks,
this naive solution may compromise the results. To circum-
vent such difficulty, we propose a different approach to com-
pute the perfect information games in the PIMC algorithm,
presented in the continuation.

The Hybrid player
In order for the algorithm to respect the time constraint with-
out bounding the depth of the search, we contribute a hybrid
player that computes the perfect information game with a
MinMax search only from a certain trick on; up to that trick,
each player node in the tree search selects a card according
to a predefined play strategy. The trick from which we chose
to compute full perfect information games is the 5th trick,
because it is the highest that allows an average decision time
of 2 seconds for a reasonable N (N = 50).

The predefined play strategy is a stochastic version of the
rule-based strategy adopted in the baseline players. It con-
sists of a set of rules that eliminate potentially poor plays
from the set of available plays, and then randomises between
the remaining possibilities (usually a very small set).

Summarising, we introduce another loop into the PIMC
algorithm (around line 7 of Algorithm 1), which causes the
PIMC algorithm to calculate M times, instead of only once,
the reward of playing each possible card for the N sam-
pled worlds. In other words, this approach computes a total
amount of N × M roll-outs or perfect information games.
The performance effects of the N and M parameters are fur-
ther discussed.

Parametrizations of Hybrid player
The Hybrid player that uses the PIMC algorithm can be con-
figured by the N and M parameters, which correspond to the
number of sampled distributions, and the number of com-
puted perfect information games for each card in each sam-
pled distribution, respectively.

The results presented in Table 1 correspond to simulations
of 1, 000 independent games, where a team with one Hybrid
player and one Rule-based player played against a two Rule-
based players’ team, for each different parametrization. The
chosen parametrizations denote all possible combinations
for N and M within {1, 5, 10}. These values were set con-
sidering a maximum number of 100 computed perfect infor-
mation games (given by N×M ), which already exceeds our
time constraints.

By analysing the table above, we can generally conclude
that the higher the M and N parameters are, the higher the
mean points and the winning rate are, although suggesting
that the observed growth may eventually stabilise. Compar-
ing directly parametrizations of N = 1 with M = 1 for
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Table 1: Mean points, standard deviations and winning rates
obtained by the team with one Hybrid player and one Rule-
based player against to two Rule-based players in 1, 000
games for each parametrization

N = 1 N = 5 N = 10

M = 1 58,8 ± 26,8
47,3%

61,2 ± 26,6
52,4%

61,4 ± 26,2
54,2%

M = 5 59,4 ± 26,5
50,3%

62,8 ± 25,8
55,8%

62,3 ± 25,6
54,6%

M = 10 61,4 ± 25,7
52,9%

63,1 ± 25,5
56%

63,2 ± 25,9
57%

the same number of computed perfect information games,
one can conclude that sampling more is better than compute
more games in the same sampled distribution. However, the
bottom right square of 4 parametrizations does not lead to a
similar conclusion. Due to the non-determinism of our Hy-
brid player, computations within the same sampled distribu-
tion require less sampled worlds in order to achieve a similar
performance. What could easily have turned into redundant
computations led indeed to a reduction of the execution time
of all perfect information games. Naturally, a better sam-
pling process requires more execution time, which in our
case with the CSP, caused an impractical time consuming as
the N parameter increases.

Additionally, the decision mean times of our Hybrid
player were measured for each trick and the red-coloured
configurations present the mean time of at least one trick
higher than 2 seconds. The orange-coloured configurations
have mean times lower than 2 seconds, although with large
standard deviations presenting a high probability of tak-
ing more than 2 seconds in the decision procedure of
some tricks. Consequently, we excluded the red-colored
parametrizations of the table ({M = 5, N = 10}, {M =
10, N = 5}, and {M = 10, N = 10}), and selected the
parametrization {M = 5, N = 5} as the best trade-off be-
tween performance and execution time.

Furthermore, it is important to note that this result was
achieved by a team consisting of two players with a signifi-
cant difference in skill, which will generally perform below
the ability of the most skilled player. For that reason, we
ran a second set of 1, 000 games, now involving a team of
two Hybrid players against a team of two Rule-based play-
ers. We used the chosen configuration of {M = 5, N = 5}
for both Hybrid players. As expected, in this second set of
experiments, the Hybrid-player-team attained a significantly
larger winning rate of 63.7% (66.031± 24.168points).

The Social Module
The social module is able react upon a received game event
by prescribing adequate interaction that use both verbal and
non-verbal behaviours. Those behaviours were based on hu-
man players, since we conducted previously a user centred
study to analyse how people behave during a Sueca card
game. The collected behaviours were then categorised ac-
cording to the corresponding game event, the game state and
other relevant features of the Sueca game. For instance, the

analysed participants usually used an encouraging tone to-
wards their partners and a competitive tone towards their
opponents. As a result, an important consideration was that
the social agent should differentiate utterances towards op-
ponents and towards partners.

Moreover, we used Fearnot AffecTIve Mind Architec-
ture (FAtiMA) as the emotional agent’s architecture (Dias,
Mascarenhas, and Paiva 2011), providing our social robot
the ability to appraise each new event according to its goals
in the game (e.g. winning), and therefore produce an ade-
quate emotion. Each triggered emotion in our social robot is
expressed through the physical posture of the embodiment,
and also to index the subcategory of some utterances (e.g.
gloating, resentment, happy, or pity when a player does a
move). In other words, this emotional agent’s architecture
allowed us to balance social and competitive aspects of our
social robot player.

Evaluation and Discussion
In order to evaluate the proposed social robot that plays the
Sueca card game, we conducted a user study where the agent
integrates the best achieved parametrization (see the previ-
ous subsection. Besides measuring the performance of the
robot team as a competition factor, we also measured the
level in which humans trust the social robot as their part-
ner in Sueca. Henceforth, we have set up the environment in
which the robot interacts with human players and analysed
their perceived trust levels (see Figure 2).

We hypothesise that the trust levels that human players
will report towards their robotic partner will be similar to
the trust levels that human players report on their human
partners. The motivation behind this hypothesis is related
with the fact that the measure of human-robot trust(Schae-
fer 2013) was reported by its authors as a complex concept
dependent upon many factors, but most importantly, upon
robot-related factor as its performance. Our social robotic
player not only uses behaviours that were inspired by hu-
man fashion as its performance was evaluated as good for
simulations against a rule-based agent.

Procedures and Methodology The game playing exper-
iment involved three humans playing Sueca with the au-
tonomous robot EMotive headY System (EMYS) over a
multi-touch table using physical cards, as Figure 2 suggests.
Each session lasted about an hour and included the time par-
ticipants took to answered to two sets of questionnaires: one
before and one after playing with EMYS (i.e.,pre- and post-
questionnaires). Moreover, the study followed the Ethical
norms of conduct in which participants signed the consent
form and assented to participate in the study.

Firstly, each participant selected his team player in a draw
and according to each partner - having a human or robot
partner -, participants answered to the pre-questionnaire
called Human-Robot Trust Questionnaire (Schaefer 2013)
(a modified version of the questionnaire was used for the
participants with a human partner), aimed at measuring the
expectation of trust towards their partner in the game. The
Human-Robot Trust Questionnaire is a validated question-
naire that measures trust perception in HRI scenarios, con-
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Figure 2: Example of a card game session with EMYS.

sidering the theoretical complexity of the construct.
Then, a researcher explained the game rules with a stan-

dard deck, and played some tricks until all participants
agreed upon the game dynamics. This stage was performed
to disambiguate the possible changes in the card game rules
that sometimes occur, and to have a standardised version
played during this study. After reviewing the Sueca game,
participants moved to the touch table and started a session
of five games with or against EMYS, considering their part-
ner assigned in the initial draw.

When the five games ended, the participants answered
to the post-questionnaires of Human-Robot Trust Question-
naire (Schaefer 2013), aimed at measuring the trust levels
towards their partner after the game play experience. More-
over, participants also filled in a questionnaire related with
demographic questions.

Sample A group of 60 participants participated in this
study (M = 24,31 SD = 3,852; 20 females, 39 males, 1 un-
known). Out of the 60 subjects, 40 played the game with
a human partner and 20 played with EMYS. These distri-
butions aimed to collect a valid number of answers from
EMYS’ partners. Furthermore, the majority of the partici-
pants confirmed that their knowledge of the game was at a
medium level.

Competence Out of the 20 performed sessions with hu-
man players, the robot’s team won 12 and drawn 1 session
of games, achieving a winning rate of 60%. The average dif-
ference of victory points between the robot’s team and the
other team was 1.5 with a standard deviation of 4.796.

Trust Results and Discussion To analyse if the trust lev-
els changed after the experience of interaction in the Sueca
card game a Mixed ANOVA statistical test was run on data.
The results revealed a statistically significant difference (p =
0.03) when comparing the pre- and post-levels of trust per-
ceived by the participants towards their partners. This means
that the trust levels increased after playing the card game
when having both human and the robotic partners. Figure
3a shows the mean trust levels before and after playing the
game, and we can see they increase from 70.5% to 75.0%,
respectively.

This result shows that human players perceive an increase
in their trust towards their partners after having played the
game with them - either having played with a human or a

(a) (b)

Figure 3: (a) Trust level comparison between the pre-game
and post-game. (b) Trust levels towards the robotic and hu-
man partners after playing the game.

robotic partner. This result translates that the experience of
having had interacted with a robotic partner in the game
is similar with the experience of having interacted with
a human partner. In turn, this tell us that both the social
component and the game module developed for the robot
are valid in the context of playing the game of Sueca in a
team that considers both partners and opponents.

When analysing the trust levels of the pre- and post-
questionnaires in relation with the type of the partner (hu-
man or robotic partner), the results did not revealed to be
statically significant (p = 0.65), although the trust increased
in both partner types. This means that, despite having a hu-
man or a robotic partner in the game, the trust levels re-
mained similar and above average i.e.,above 50%.

This result enable us to corroborate to our study hypoth-
esis. By considering the results found, we can suggest that
interacting with a human partner in the card game seems to
show similar results in terms of trust when compared with
playing the game with a robotic partner, taking into account
the initial levels of trust. This means that the players had a
similar experience of trust towards their partner in the case -
being that partner a robot or a human.

Additionally, we run the statistical Welch Test to the data
to analyse if the levels of trust were influenced by the type
of game partner after playing the game. Henceforth, when
taking into account only the trust levels perceived at the end
of the interaction, results showed to be statistically signif-
icant between having a robot partner or a human partner
(p < 0.01). Participants’ trust levels towards human part-
ners was higher than the trust levels towards the robot as a
partner (trust mean value of 81.538% and of 77.215% for
human and robot partners, respectively - see Figure 3b).

By looking at Figure 3b we can see that the trust levels
are indeed similar, however, trust acquired slightly higher
values in human partners (81.538%) comparing with robotic
partner (77.215%). This result is somehow expected as it
shows that after playing the game the trust in human partners
is slightly higher, denoting that humans tend to trust more
in other humans when playing the game. Another reason
that can explain this result relates with the fact that robots
are a novel type of technology and therefore, unknown to
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most people. The (possible and expectable) strangeness of
interacting with a robot for the first time when playing the
game can be a inhibitor factor for higher levels of trust. It is
to note thought, that the difference between trust levels is
not statistically significant, as mentioned earlier.

Conclusion
In this paper, we have presented the design, development and
test of a robotic game partner and opponent in a multi-player
card game. Our results reveal that we have succeeded in this
development and suggest that the behaviour of the robot, in
conjunction with its ability to play the game well, led to a
desirable balance of interaction.

The main goal of this work was to study if a social robot
can be perceived as a trustable game partner in the enter-
taining activity of playing the card game of Sueca. How-
ever, studying trust is not a straightforward accomplishment
due to the complex nature of this construct (Hancock et
al. 2011), and according to the authors, the robot’s factors
as performance have an important role in the perception of
trust. Therefore, we carefully considered the time constraint
of playing in a social and natural context in the develop-
ment of our social robotic player. Moreover, we conducted
an analysis of possible parametrizations for the state-of-the-
art algorithm for solving imperfect information card games
(PIMC) in order to achieve the best compromise between
execution time and performance. We believe the technique
explored in our Hybrid Player can be beneficial when the
constraints and requirements are similar to the ones we had
– namely, computing optimal or nearly optimal values for
each perfect information game tree within a human decision
time.

From the results of the user study, it seems that yes - we
do seem to trust in a robot to be our game partner in a card
game. Also, the fact that the trust in the robot is similar to
the trust in the human partner show the success of the so-
cial Human-Robot Interaction (HRI) interaction. Finally, we
conclude that trust is an important construct in HRI enter-
tainment scenarios.
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