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Abstract— In this paper, we learn dynamics from high-
dimensional demonstrations to facilitate model-based predic-
tion and robot control. The proposed approach leverages the
progress in variational-bayes and sequence modeling, extracting
a low-dimensional latent space so the dynamical relations of
interest can be compactly represented and learned. Different
from existing works, our model captures latent dynamics
in a more general form and features efficient inference for
pattern filtering, prediction and synthesis. The extracted feature
mapping and latent dynamics can be naturally integrated in
robot learning, yielding task imitation from raw data and
prediction-based reproduction. The performance of latent dy-
namics learning and model-based imitation is shown in three
tasks: 1) reconstructing and predicting images of bouncing balls
movement with an accuracy competitive to the state-of-the-
art; 2) synthesizing diverse handwriting image sequences; 3)
learning to strike a ball under partial visual input, with results
significantly outperforming baselines.

I. INTRODUCTION

The capability of learning complex sensorimotor skills is

one of the hallmarks of robots with a greater autonomy

and a potential to work in unstructured environments. To

achieve this, robots often need to process rich perceptions.

One illustrative example can be found in Figure 1: a robot

observes a ball rolling down a slope and moves its arm in

an attempt to goal-strike. Predicting the dynamics of ball

movement is necessary for the robot to prepare its motor

command early enough to strike on time. One challenge

is that the sensory input, in our case a raw video stream,

is very high-dimensional and only a tiny fraction of this

input is informative (the pixels that pertain to the ball

position). Existing approaches to learn models of dynamical

systems have relied on low-dimensional examples, where

input explicitly represents the state of system dynamics [1],

[2], [3]. However, in the case considered here, although the

visual representation is of a high-dimensional unstructured

form, the underlying process is largely governed by a low-

dimensional model describing the motion of the ball. We

thus investigate how to extract this low-dimensional space

and establish the dynamical relations therein.

We build upon recent progresses on modeling high-

dimensional sequential patterns [4], [5]. In particular, the

framework based on variational-bayes and representation

learning introduces latent variables, enabling a tractable

optimization of the bound of original data likelihood. The

latent variables are associated with observations through the
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Fig. 1: Learning a motor task which requires reasoning about

unstructured sensory inputs and their underlying dynamical

relations: A robot strikes a ball based on the stream of images

and the predicted states (transparent balls).

posterior distribution model, whose design plays a key role

in the variational framework. Existing works [6], [7] tend

to perform the posterior inference upon future observations,

which have merits in contexts such as language processing.

They are, however, not applicable to robotics, where infer-

ence must be performed on-line as observations come.

Moreover, and returning to our rolling ball example, the

estimated model for the ball movement implies the pos-

sibility of a model-based control. This could be vital for

handling more challenging conditions, such as the delay

or malfunction of sensory input. For instance, humans can

anticipate the movement of a ball and intercept it based on

an internal prediction without observing the full trajectory.

Yet, reasoning about unstructured data via representation

learning is relatively less explored in model-based learning

and control paradigms.

In this paper, we propose to encapsulate high-dimensional

sequences with dynamical relations in a space with a lower

dimensionality. Such a dynamical model is then utilized in

model-based task imitation and reproduction. Our approach

embeds high-dimensional sensations with a posterior model

that is more suitable for robotics contexts comparing with

[6], [7]. The posterior estimation is designed as part of the

latent variables and the enforced dynamical relation is of a

general nonlinear form, different from the specific design

in [8], [9]. Conceptually, these proposed structures yield

a state space model for the prior dynamics, which is not

considered in works like [5]. At the same time, the training

loss is derived as a valid bound of marginal data likeli-



hood, enjoying advantages comparing with other variational

embedding works like [10]. Furthermore, we propose and

demonstrate that the obtained posterior and prior dynamics,

as useful intermediate models, can be utilized to reduce

task data dimension and to enable control upon foreseen

sensations. Shortly, in this work, we are not only interested in

learning to model sequential sensory patterns, but also take

a step towards latent state filtering, predicting, and as such,

acting under sensory uncertainties. The paper demonstrates

the contributed approach in two sequential pattern synthesis

tasks and the motivating ball-striking task, to highlight its

performance on dynamics learning and model-based control

in the robotics context. To summarize, the main paper

contributions include:

• A type of variational model with a general latent dynam-

ics that facilitates efficient learning and inference upon

rich, high-dimensional and unstructured sequential data.

• A model-based paradigm that analyzes raw visual inputs

and latent dynamics, enabling robust reproduction in

simulated and real-world ball striking tasks.

II. RELATED WORK

The advancement of representation learning evokes re-

searchers’ recent interests on modeling high-dimensional

sequential data without explicit or handcrafted features. In

[5], a model based on a similar variational recurrent posterior

is shown to be effective in a few pattern synthesis tasks.

However, [5] chooses to involve raw features in the transition

of prior model, resulting in a non-state-space model and

difficulties in applying to model-based control. [6] and [7]

regularize the training loss with priors that are independent

of raw observations but the proposed posterior model is

defined over the full data sequence. This implies a richer

posterior estimation and is preferred for smoothing tasks.

Our approach follows a similar variational treatment while

with a posterior model over the history, which is necessary

in robot motor tasks. In other similar works, [8] and [9]

do not rely on future observations and the observation

history is embedded as the parameters of a mixture of

locally-linear dynamical systems. Interesting results emerge

from this informative structure, demonstrating a correlation

between identified latent variables and physical states. In our

work, the posterior estimation is part of the latent variables,

whose dynamical relation is formulated as general nonlinear

dynamics. From this perspective, our work generalizes the

enforced dynamics, which could be more compact for cap-

turing diverse sequential patterns as is show in results IV-B.

Meanwhile, many robotic tasks face challenges of curse

of dimensionality of the task data, for which dimension

reduction techniques are often applied. Successful applica-

tions include [11] and [12], where linear projections and

discrete latent variables are considered. They also assume

global latent variables without a dynamical structure. This

is similar to [13] which although adopts continuous latent

variables and nonlinear embeddings. [14] uses variational

auto-encoders to first obtain a latent representation and then

fit recurrent networks to capture the dynamical behavior. Our

approach learns the recognition and dynamics model in joint

manner and more importantly, adopts a richer posterior fam-

ily, handling the raw data without a Markovian assumption.

Variational latent dynamics is successfully employed in [10]

in a simulated inverted-pendulum example. Differently, as is

pointed in [8], the dynamics training is not performed with

a well-defined likelihood surrogate and requires i.i.d. data

frames like [14]. Similar to [10], [15] realizes a planning-

based control by reasoning about raw images with neural

models. The models, however, are not learned as generative

ones with a variational treatment.

III. APPROACH

A. Variational Latent Dynamics

We are interested in building a probabilistic model of high-

dimensional sequences x0:T ∈ ℜNx×T , with the dynamical

relations captured in a compact latent space through the pair

of latent variables z0:T ∈ ℜNz×T and h0:T ∈ ℜNh×T , with

Nz = Nh ≪ Nx. Considering the log-likelihood of x0:T , a

variational evidence lower bound (ELBO) can be derived:

log p(x0:T ) > Eq(z0:T ,h0:T |x0:T )[log p(x0:T |z0:T ,h0:T )]

− KL[q(z0:T ,h0:T |x0:T )‖p0(z0:T ,h0:T )]
(1)

where z0:T and h0:T denote the sequence of latent vari-

ables, with q and p0 as approximated posterior and prior

distributions in Equation (1) respectively. We decompose the

latent representation into two parts: 1) zt as a probabilistic

encoding to fit the variational inference framework; 2) ht as a

deterministic dynamics prediction (see below). Taking a first-

order dynamical system perspective on the latent variables,

we assume an observation only depends on its history and

{zt,ht} are a sufficient representation, namely:

log p(x0:T )− log p(x0) =

T∑
t=1

log p(xt|x0:t−1)

>

T∑
t=1

{

∫
log p(xt|zt,ht)q(zt,ht|x0:t)dztdht

−KL[q(zt,ht|x0:t)‖p0(zt,ht|zt−1,ht−1)]}

(2)

Both posterior q and prior p0 are further factorized into two

parts, introducing an interaction between the latent variables

z and h:

q(zt,ht|x0:t) = q(zt|ht,xt)q(ht|x0:t−1)

p0(zt,ht|zt−1,ht−1) = p0(zt|ht)p0(ht|zt−1,ht−1)
(3)

Thus the latent embeddings are retrieved from the ob-

servations till now, unlike [6], [7] which need to access

future observations. To effectively back-propagate stochastic

gradients, a deterministic temporal interaction is desired [5],

[8]. Such an interaction can be shared between q and p0
since we expect posterior and prior models to follow an

identical dynamics. Concretely, when taking samples from

q(ht|x0:t−1) and p0(ht|zt−1,ht−1), we assume ht can be

obtained through a deterministic latent dynamics, given ht−1

and zt−1:

ht = f(ht−1, zt−1) (4)



where f denotes a general nonlinear function which can be

estimated, for instance, by a recurrent neural network or other

nonlinear estimators [16]. The stochasticity of the process

is embedded in taking samples from a prior p0(zt|ht),
which is expected to match the estimation from q(zt|ht,xt)
(KL term in Equation (1)) for a robust prediction of latent

variables in face of a partial observable x0:T . Figure 2(a)

and 2(b) illustrate inference for generation and recognition

as graphical models.

B. Training and Inference

We parameterize the likelihood surrogate in a way similar

to the popular variational-bayes method [17], [18], which

approximates all of the conditional distributions of interest

in Equation (2) as Gaussians. The conditioned variables

are mapped to the means and diagonal covariance matrices

through nonlinear function approximators. In light of the

deterministic dynamics of Equation (4), a one-layer Long

Short Term Memory (LSTM) is used to mitigate the van-

ishing gradients in back-propagation through the time [19].

The training objective can be optimized with respect to

parameters for generative model θg , recognition model θr,

prior θ0 and latent dynamics θf :

L(θg,θr,θ0,θf ) =

T∑
t=1

{

Eqθr (zt|fθf
(ht−1,zt−1),xt)[log pθg

(xt|zt, fθf
(ht−1, zt−1))]

−KL[qθr
(zt|fθf

(ht−1, zt−1))‖pθ0
(zt|fθf

(ht−1, zt−1)]}

(5)

The recognition model transforms sensory observations

into a low-dimensional feature space. Note the encoding also

depends on ht which carries the information of previous

observations to the current step. Synthesizing xt given

x0:t−1 can be achieved by recursively applying Equation (4),

p0(zt|ht) and the generation model (Figure 2(a)):

p(xt|x0:t−1) =

∫
p(xt|zt,ht)p0(zt|ht)q(ht|x0:t−1)dztht

(6)

According to this equation, we can obtain an empirical

estimation of xt by conducting Monte-Carlo sampling.

C. Model-based Imitation Learning and Control

The models parameterized by θr and θf encode the

original feature xt. We propose to leverage these models to

learn tasks from expert demonstrations {xt,ut}. One way to

realize this is to estimate a joint density as Gaussian Mixture

Models (GMM). Here, in particular, the low-dimensional

encodings zt alleviate the curse-of-dimensionality and en-

able full covariance matrices. In reproduction, the control is

derived by maximizing the conditional likelihood. To this

end, the GMM can be viewed as an approximation of a

Boltzmann distribution, resulting in a type of maximum

entropy imitation learning [20]:

p(zt,ht,ut) ≈
N∑

k=1

wkN (zt,ht,ut|µk,Σk)

∝p(ut|zt,ht) =
e−Q(zt,ht,ut)∫
e−Q(zt,ht,ut)dut

u∗
t =argmin

ut

Q(zt,ht,ut) = argmax
ut

p(ut|zt,ht)

(7)

Here Q(·) denotes statistical moments that cause the expert

demonstrations to incur a low cost and {wk,µk,Σk} are the

GMM parameters.

The latent dynamical system p0(zt,ht|zt−1,ht−1) pro-

vides a prediction of latent variables to apply the learned

controller free of sensory input. This adds an extra value

for a potentially more robust and flexible task reproduction

with a delayed or missed xt. The entire learning pipeline is

schematically shown as Figure 3.

IV. IMPLEMENTATION AND RESULTS

A. Bouncing Balls

We first validate the approach to model the dynamics of a

group of bouncing balls. We use the bouncing-ball dataset,

a dataset of images showing 3 bouncing balls and used

previously to assess dynamical patterns generators/predictors

[21], [22]. We follow the supplementary script of [21]

to generate 30 × 30 grayscale images, constructing 4000

sequences as the training data and 1000 as the test data.

The samples of synthesized movement are demonstrated in

the supplementary video.

Table I reports one-step pixel prediction error, with some

of the results from [22]. Although our approach does not

directly optimize prediction accuracy, it achieves an average

error on par with previous approaches while using latent

dynamics of a smaller size (the second column in Table I).

One possible explanation to this is that the enforced nonlinear

dynamics allow is flexible to capture the sequential data in

a more compact form.

TABLE I: Pixel Prediction Error

Model Latent Size Pred. Err.

DTSBN-s 100-100 2.79± 0.39

TSBN-ORDER-4 100 3.07± 0.40

TSBN-ORDER-1 100 9.48± 0.38

RTRBM 3750 3.88± 0.33

SRTRBM 3750 3.31± 0.33

KVAE 16× 9 3.79± 1.04

Ours 64 3.07± 0.89

In Figure 4, we present reconstructed and predicted im-

ages, where the reconstruction (the second row) from the

filtered latent state turns out to match the true motion (the

first row) well. The last two rows highlight reconstructed

images from predicted latent variables. As was observed in

[8], the prediction without sensory input (the third row, right

of dash line) can be reliable only for a short time horizon.

Eventually the predicted dynamics moves away from the true
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Fig. 2: Graphical representation of the proposed model: The latent state is an augmentation of a stochastic component z

(circular node) and h (diamond node) that has a deterministic dependency on the previous state. The latent state has an

internal dependency between z and h. The belief of z can be propagated through the latent dynamics, while it could also

depend on x in the recognition model (Figure 2(b)). The dashed arrows mean the dependency on observation is optional so

the estimation can be fully governed by the latent state dynamics.
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Fig. 3: A schematic view of pipelines: Models for generation, prior dynamics and feature recognition (shapes with a darker

gray color) are obtained through latent dynamics learning in Section III-B (subprocess in the dashed frame); Demonstration

data are encoded by the recognition model to build the task learner in the latent space (green flows); Reproduction (purple

flows) reasons about raw observations with the recognition model or resorts to an internal prediction when observations are

not available (transparent purple arrow).

trajectory. Long-term predictions retains only a qualitative

accuracy, as is shown in Figure 4. A quantitative comparison

can be found in Figure 5, where our approach consistently

outperforms the baseline on pixel square errors.

B. Modeling Handwriting Image Sequences

In this experiment, the proposed approach is applied to

modeling rich handwriting samples, which include alphabet-

ical letters (capital and lower case) and digits from the UJI

Char Pen 2 dataset [23]. The algorithm in [24] is used to

diversify letter trajectories. These trajectories are then used



Fig. 4: Each row of samples: 1) ground truth; 2) reconstruc-

tion with input image (our approach); 3) and 4) reconstruc-

tion with the first 8 frames (left of dash line, t = 0, 3, 7)

and prediction of remained 12 steps (right of dash line, t =

8, 10, 13, 15, 17, 19) Row 3) - ours. Row 4) - KVAE.
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Fig. 5: Accuracy (mean square of pixel error across time

horizon) of forward prediction as the number of time steps

increase.

to generate 1984 video clips for 62 character types. Each

sequence consists of 20 grayscale images of a 28× 28 size.

The synthesis result is shown in Figure 6(a). The model

successfully learns to generate plausible samples of different

types with the same model setup as the bouncing ball

example. Note that sometimes a fraction of the pixels are

not exactly kept in the next frames. For instance, the initial

step of generating “e” (the second column in Figure 6(a))

does not match the finalized image in terms of pixels. This is

because the pixels are not incrementally filled and the latent

dynamics only propagates abstract states for reconstructing

the entire image. Still, the overall stroke direction and pattern

are consistent throughout the generation process.

We find the KVAE approach at modeling locally-linear

latent dynamics appears inadequate in this task, at least for

models with a similar size. Most failing samples exhibit

an oscillating pattern or an inconsistent generation process,

as are shown in the lower part of Figure 6(a). This is

probably due to the fact that, comparing with the bouncing-

ball example, the dynamical behaviors here are much more

diverse and the generation of pixels requires to encode

a long-history dependency. Mixing locally-linear dynamics

might not be sufficient to handle this without resorting to a

vast number of local models.

Figure 6(b) presents some samples of completing the

character formation with seeding images. Specifically, eight

initial frames of the test samples are fed and the prior

dynamics is recursively applied to generate the remaining

steps. One can find that the synthesized sequences conform to

the initial steps and complete the formation with reasonable

characters.

C. Learning to Strike a Rolling Ball

Finally, the proposed approach is applied to the motivating

task illustrated in Figure 1. We teach a Baxter robot through

tele-operation to learn from demonstrations to strike a rolling

ball towards a goal. The task setup is shown as a Roboschool

simulation environment [25] in Figure 7(a)1. The ball starts

rolling on the slope with a random velocity. The robot moves

a paddle to score a goal by striking the ball at a proper

position and instant. The state of ball movement can only

be observed through a camera and the real ball position and

velocity are unknown to the robot. Meanwhile, the visual

input is switched off after the first few frames so the robot

has to anticipate and act based on the model prediction.

To demonstrate the task, a human operator watches the

ball rolling movement and uses a keyboard to steer the

end-effector position and initiate the strike. The successful

demonstrations record the paddle position (up) for goal-

making strikes as well as the frames from the ball starts

rolling until the robot strikes it (x0:ts ).

To learn the rolling dynamics, 50 rollouts with random

initial velocities are collected without striking attempts. Each

rollout lasts 150 simulation steps. The visual data are RGB

images composed of 50 × 50 × 3 pixel values. In addition,

we demonstrate successful strikes under 16 perturbation

conditions. The GMMs p(xts) and p(xt, up) are learned

to model, respectively, the density of striking frame and

the joint density of images and robot action. In the test

reproduction, the robot moves according to p(up|xt) and

exercises a strike through a torque controller when p(xts) >
ǫ. Here, ǫ is a threshold to decide if the current frame is

sufficiently similar to demonstrations and its value is chosen

in an ad-hoc manner as 10−3. The task learning is performed

under three settings:

• Full observability: GMM models are learned from the

16 demonstrations with striking attempts, using real ball

position and velocity. The real ball position and velocity

are also always observable in the test runs. Hence no

model prediction is performed in this condition.

• Proposed approach with partial observability: We

first learn the recognition model p(zt|x0:t) and the prior

latent dynamics p0(zt,ht|zt−1,ht−1) from 50 rollouts

without striking attempts. The dimension of combined

latent variable is 8. GMM models are trained on the

1https://github.com/navigator8972/roboschool_

baxterstriker
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Fig. 6: (a) Samples of synthesizing handwriting image sequences. The sampling starts from a zero latent variable and

recursively applies the learned latent dynamics and a Gaussian random perturbation. Each row: steps (t = 0, 4, 8, 12, 16,

19) of the synthesized character sequence: upper - ours; lower - KVAE ([9]) (b) Samples of completing image sequences

given the first few handwriting frames. The synthesis starts with a latent variable encoded from the pivoting frames. Each

row: pivoting frames (left of the dash line, t = 0, 3, 7); completed image steps (right of the dash line, t = 10, 13, 16, 19).
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Fig. 7: (a) Task setup of Baxter ball striking domain: The robot observes the ball movement through a wrist camera and

moves a paddler to strike the ball on the goal. The visual sensing can be off halfway so an internal model is desired to

determine the possible trajectory (dash line) and its action. (b) Encoding and predicting what the robot observes for a strike

demonstration: ground truth and reconstruction from the propagation of latent dynamics. The dynamics is learned from data

without strike actions.

16 demonstrations whose images are encoded with the

recognition model. In the test runs, after the ball starts

rolling, the robot has access to images during the first

30/40/50/60 steps and uses the prior dynamics model to

predict and act afterwards.

• Using original feature or a linear latent representa-

tion: Here we learn both dynamics and control policies

without extracting the latent representation or using one

obtained from linear dimension reduction. For dynamics

learning, an additional GMM model is trained to model

the adjacent observations pairs p(xt+1,xt) in the 50

rollouts without striking attempts. The baseline of a

linear latent representation is retrieved through a PCA

explaining 99% data variance, reducing the original

dimension from 7500 to 137.

Figure 7(b) shows that the predicted frames from the

learned dynamical model match the real ones well. The main

differences are about the paddle and ball position after the

strike occurs. This is as expected because the behaviors of

paddle and ball-striking are unseen to the model.

Figure 8 shows a quantitative assessment of performance

in simulation and qualitative demonstration through a series

of snapshots. For each learned controller, the robot starts

with a fixed posture and is tested with 20 consecutive trials.

The test is replicated five times so the robot can score 100

goals in maximum. Since the success of scoring the goal is

sensitive to the striking position and time, we also use the

occurrences of hitting the ball as a part of the evaluation.

As a result, the robot under the full observability condition

manages to hit the ball every time and strikes on the target

in most of the trials. This is not surprising because the robot

enjoys a perfect access to the true state and its performance
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Fig. 8: Results of the Baxter ball striking example: (a) Proportion of successful hits and goals of different approaches and

setups: The full observability setup can always retrieve the real state and no model prediction is performed. The number

in the parentheses indicates the length of initial frames that are accessible to our approach in a partial observable setting.

The baselines based on no/linear dimension reduction never hit the ball thus are not shown in the figure. (b) Snapshots

of successful strikes from simulated Baxter control based on model prediction. (c) Prediction uncertainty by overlapping

real and predicted ball position images with the time axis collapsed (t = 0, 9, 19, 29, 39, 49, 59, 69, 79, 81, 89): real -

solid red color. The prediction - transparent purple color. The predicted motions are stochastic and 5 samples are taken and

merged. From left to right: performing prediction 10/20/30/40/50/60 frames. The outlier of red dots indicates the position

after striking so it is not close to predictions.

can be regarded as an upper-bound for the given imitation

learning pipeline. Comparatively, the proposed variational

dynamics learning can also secure quite a number of hits

and goals, especially when the robot does not have to plan

too long in the absence of sensory feedback. When the time

window for observation is limited, e.g., only the first 30

frames are accessible, the latent dynamics could only provide

a coarse prediction as the observations at early stage are

ambiguous to determine an accurate future trajectory. This

can be further demonstrated in Figure 8(c): the uncertainty

of ball pixels gradually decreases as more frames can be

observed before the model-based prediction. Therefore a

rough prediction for a long horizon might help the robot

to still hit the ball many times but is not accurate enough

to ensure an on-goal strike. The results of no/linear latent

representation baseline are omitted because of their poor

performance: neither enables the robot to hit the ball once.

This highlights the necessity of learning complex latent

representations in handling unstructured sensory data, for

which traditional approaches are inadequate or not directly

applicable. Figure 8(b) and 9 demonstrate successful trials

and the implementation on the simulated and real Baxter

robot.

Fig. 9: Snapshots of successful strikes from Baxter control

based on model prediction. Real camera data is collected and

used for the real-world implementation.



V. CONCLUSION

The proposed approach is shown to be effective to extract

a low-dimensional space and a dynamical relation, which en-

able efficient filtering/prediction of high-dimensional sequen-

tial patterns. Comparing with baseline methods, the adopted

nonlinear embeddings and latent dynamics are advantageous

in modeling diverse dynamical images and realizing an

improved prediction accuracy. This facilitates learning and

reproducing challenging visual motor tasks under a model-

based setting, although care must be taken in determining

the number of steps to predict ahead. Also, a large volume

of data is desired to capture complex dynamical process,

such as bouncing balls and handwriting formation, because

the enforced dynamics is designed with limited task-relevant

structure.

Our work opens several directions for further research.

The latent dynamics learning is independent of the target

task and the encoded dynamics exhibits certain robustness

in dealing with untrained paddler behaviors. This motivates

research towards a kind of task-agnostic learning, in which

the robot first extracts useful features/constraints and then

adapts to the target domain with limited task data. In terms of

enforced dynamics, this paper adopts LSTM for an improved

modeling flexibility. Actually, a more restrictive form which

is convenient for analysis could also be considered for

certain scenarios. For instance, one can try to impose a

convergence guarantee for a goal-directed linear parameter

varying system, hence extending works [26], [27]. Moreover,

when demonstrating the task is not straightforward, the latent

dynamics can be leveraged in the optimization of trajectory

and policy [10], [15]. It is necessary to investigate how to

utilize the unreliable long-term prediction in these settings,

probably with additional information such as the uncertainty

about latent variables.
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