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Multiplayer games have long been used as testbeds in artificial intelligence research, aptly

referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused

on using well-known games to build strong agents. This progress, however, can be better

informed by characterizing games and their topological landscape. Tackling this latter

question can facilitate understanding of agents and help determine what game an agent

should target next as part of its training. Here, we show how network measures applied to

response graphs of large-scale games enable the creation of a landscape of games, quanti-

fying relationships between games of varying sizes and characteristics. We illustrate our

findings in domains ranging from canonical games to complex empirical games capturing the

performance of trained agents pitted against one another. Our results culminate in a

demonstration leveraging this information to generate new and interesting games, including

mixtures of empirical games synthesized from real world games.
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Games have played a prominent role as platforms for the
development of learning algorithms and the measurement
of progress in artificial intelligence (AI)1–4. Multiplayer

games, in particular, have played a pivotal role in AI research and
have been extensively investigated in machine learning, ranging
from abstract benchmarks in game theory over popular board
games such as Chess5,6 and Go7 (referred to as the Drosophila of
AI research8), to realtime strategy games such as StarCraft II9 and
Dota 210. Overall, AI research has primarily placed emphasis on
training of strong agents; we refer to this as the Policy Problem,
which entails the search for super human-level AI performance.
Despite this progress, the need for a task theory, a framework for
taxonomizing, characterizing, and decomposing AI tasks has
become increasingly important in recent years11,12. Naturally,
techniques for understanding the space of games are likely ben-
eficial for the algorithmic development of future AI entities12,13.
Understanding and decomposing the characterizing features of
games can be leveraged for downstream training of agents via
curriculum learning14, which seeks to enable agents to learn
increasingly-complex tasks.

A core challenge associated with designing such a task theory
has been recently coined the Problem Problem, defined as “the
engineering problem of generating large numbers of interesting
adaptive environments to support research”15. Research associated
with the Problem Problem has a rich history spanning over 30
years, including the aforementioned work on task theory11,12,16,
procedurally-generated videogame features17–19, generation of
games and rule-sets for General Game Playing20–26, and proce-
dural content generation techniques27–36; we refer readers to
Supplementary Note 1 for detailed discussion of these and related
works. An important question that underlies several of these
interlinked fields is: what makes a game interesting enough for an
AI agent to learn to play? Resolving this requires techniques that
can characterize the topological landscape of games, which is the
topic of interest in this paper. We focus, in particular, on the
characterization of multiplayer games (i.e., those involving inter-
actions of multiple agents), and henceforth use the shorthand of
games to refer to this class.

The objective of this paper is to establish tools that enable
discovery of a topology over games, regardless of whether they are
interesting or not; we do not seek to answer the interestingness
question here, although such a toolkit can be useful for subse-
quently considering it. Naturally, many notions of what makes a
game interesting exist, from the perspectives of human-centric
game design, developmental learning, curriculum learning, AI
training, and so on. Our later experiments link to the recent work
of Czarnecki et al.37, which investigated properties that make a
game interesting specifically from an AI training perspective, as
also considered here. We follow the interestingness character-
ization of Czarnecki et al.37, which defines so-called Games of
Skill that are engaging for agents due to: (i) a notion of progress;
(ii) availability of diverse play styles that perform similarly well.
We later show how clusters of games discovered by our approach
align with this notion of interestingness. An important benefit of
our approach is that it applies to adversarial and cooperative
games alike. Moreover, while the procedural game structure
generation results we later present target zero-sum games due to
the payoff parameterization chosen in those particular experi-
ments, they readily extend to general-sum games.

How does one topologically analyze games? One can consider
characterizations of a game as quantified by measures such as the
number of strategies available, players involved, whether the game
is symmetric, and so on. One could also order the payouts to
players to taxonomize games, as done in prior works exploring
2 × 2 games38–40. For more complex games, however, such
measures are crude, failing to disambiguate differences in similar

games. One may also seek to classify games from the standpoint
of computational complexity. However, a game that is compu-
tationally challenging to solve may not necessarily be interesting
to play. Overall, designation of a single measure characterizing
games is a non-trivial task.

It seems useful, instead, to consider measures that characterize
the possible strategic interactions in the game. A number of
recent works have considered problems involving such interac-
tions41–51. Many of these works analyze agent populations, relying
on game-theoretic models capturing pairwise agent relations.
Related models have considered transitivity (or lack thereof) to
study games from a dynamical systems perspective52,53; here,
a transitive game is one where strategies can be ordered in terms
of strength, whereas an intransitive game may involve cyclical
relationships between strategies (e.g., Rock–Paper–Scissors). Fun-
damentally, the topology exposed via pairwise agent interactions
seems a key enabler of the powerful techniques introduced in the
above works. In related literature, graph theory is well-established
as a framework for topological analysis of large systems involving
interacting entities54–56. Complexity analysis via graph-theoretic
techniques has been applied to social networks57,58, the web-
graph59,60, biological systems61–63, econometrics64,65, and linguis-
tics66. Here, we demonstrate that the combination of graph and
game theory provides useful tools for analyzing the structure of
general-sum, many-player games.

The primary contribution of this work is a graph-based toolkit
for analysis and comparison of games. As detailed below, the
nodes in our graphs are either strategies (in abstract games) or AI
agents (in empirical games, where strategies correspond to
learned or appropriately-sampled player policies). The interac-
tions between these agents, as quantified by the game’s payoffs,
constitute the structure of the graph under analysis. We show that
this set of nodes and edges, also known as the α-Rank response
graph49–51, yields useful insights into the structure of individual
games and can be used to generate a landscape over collections of
games (as in Fig. 1). We subsequently use the toolkit to analyze
various games that are both played by humans or wherein AI
agents have reached human-level performance, including Go,
MuJoCo Soccer, and StarCraft II. Our overall analysis culminates
in a demonstration of how the topological structure over games
can be used to tackle the interestingness question of the Problem
Problem, which seeks to automatically generate games with
interesting characteristics for learning agents15.

Results
Overview. We develop a foundational graph-theoretic toolkit that
facilitates analysis of canonical and large-scale games, providing
insights into their related topological structure in terms of their
high-level strategic interactions. The prerequisite game theory
background and technical details are provided in the “Methods”
section, with full discussion of related works and additional
details in Supplementary Note 1.

Our results are summarized as follows. We use our toolkit to
characterize a number of games, first analyzing motivating
examples and canonical games with well-defined structures, then
extending to larger-scale empirical games datasets. For these
larger games, we rely on empirical game-theoretic analysis67,68,
where we characterize an underlying game using a sample set of
policies. While the empirical game-theoretic results are subject to
the policies used to generate them, we rely on a sampling scheme
designed to capture a diverse variety of interactions within each
game, and subsequently conduct sensitivity analysis to validate
the robustness of the results. We demonstrate correlation between
the complexity of the graphs associated with games and the
complexity of solving the game itself. In Supplementary Note 2,
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we evaluate our proposed method against baseline approaches for
taxonomization of 2 × 2 games38. We finally demonstrate how
this toolkit can be used to automatically generate interesting game
structures that can, for example, subsequently be used to train AI
agents.

Motivating example. Let us start with a motivating example to
solidify intuitions and explain the workflow of our graph-
theoretic toolkit, using classes of games with simple parametric
structures in the player payoffs. Specifically, consider games of
three broad classes (generated as detailed in the Supplementary
Methods 1): games in which strategies have a clear transitive
ordering (Fig. 2a); games in which strategies have a cyclical
structure wherein all but the final strategy are transitive with
respect to one another (Fig. 2d); and games with random (or no
clear underlying) structure (Fig. 2g). We shall see that the core
characteristics of games with shared underlying structure is
recovered via the proposed analysis.

Each of these figures visualizes the payoffs corresponding to 4
instances of games of the respective class, with each game
involving 10 strategies per player; more concretely, entry M(si, sj)
of each matrix visualized in Fig. 2a, d and g quantifies the payoff
received by the first player if the players, respectively, use
strategies si and sj (corresponding, respectively, to the i-th and j-
th row and column of each payoff table). Despite the variance in
payoffs evident in the instances of games exemplified here, each
essentially shares the payoff structure exposed by re-ordering
their strategies, respectively, in Fig. 2b, e and h. In other words,
the visual representation of the payoffs in this latter set of figures
succinctly characterizes the backbone of strategic interactions
within these classes of games, despite not being immediately
apparent in the individual instances visualized.

More importantly, the complexity of learning useful mixed
strategies to play in each of these games is closely associated
with this structural backbone. To exemplify this, consider the
computational complexity of solving each of these games; for
brevity, we henceforth refer to solving a game as synonymous
with finding a Nash equilibrium (similar to prior works69–72,
wherein the Nash equilibrium is the solution concept of interest).
Specifically, we visualize this computational complexity by
using the Double Oracle algorithm73, which has been well-
established as a Nash solver in multiagent and game theory
literature47,74–76. At a high level, Double Oracle starts from a sub-
game consisting of a single randomly-selected strategy, iteratively
expands the strategy space via best responses (computed by an
oracle), until discovery of the Nash equilibrium of the full
underlying game.

Figure 2c, f and i visualize the distribution of Double Oracle
iterations needed to solve the corresponding games, under
random initializations. Note, in particular, that although the
underlying payoff structure of the transitive and cyclical games,
respectively, visualized in Fig. 2a, d is similar, the introduction of
a cycle in the latter class of games has a substantial impact on the
complexity of solving them (as evident in Fig. 2f). In particular,
whereas the former class of games are solved using a low (and
deterministic) number of iterations, the latter class requires
additional iterations due to the presence of cycles increasing the
number of strategies in the support of the Nash equilibrium.

Workflow. Overall, the characterization of the topological
structure of games is an important and nuanced problem. To
address this problem, we use graph theory to build an analytical
toolkit automatically summarizing the high-level strategic inter-
actions within a game, and providing useful complexity measures
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Fig. 1 A landscape of games revealed by the proposed response graph-based workflow. This landscape is generated by collecting features associated
with the response graph of each game, and plotting the top two principal components. At a high level, games whose response graphs are characteristically
similar are situated close to one another in this landscape. Notably, variations of games with related rules are well-clustered together, indicating strong
similarity despite their widely-varying raw sizes. Instances of Blotto cluster together, despite their payoff table sizes ranging from 20 × 20 for Blotto(5,3) to
1000 × 1000 for Blotto(10,5). Games with strong transitive components (e.g., variations of Elo games, AlphaStar League, Random Game of Skill, and
Normal Bernoulli Game) can be observed to be well separated from strongly cyclical games (Rock–Paper–Scissors and the Disc game). Closely-related real-
world games (i.e., games often played by humans in the real world, such as Hex, Tic-Tac-Toe, Connect Four and each of their respective Misere
counterparts) are also clustered together.
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thereof. Specifically, consider again our motivating transitive
game, re-visualized using a collection of graph-based measures in
Fig. 3. Each of these measures provides a different viewpoint on
the underlying game, collectively characterizing it. Specifically,
given the game payoffs, Fig. 3b visualizes the so-called α-Rank
response graph of the game; here, each node corresponds to a
strategy (for either player, as this particular game’s payoffs are
symmetric). Transition probabilities between nodes are informed
by a precise evolutionary model (detailed in “Methods” section
and Omidshafiei et al.50); roughly speaking, a directed edge from
one strategy to another indicates the players having a higher
preference for the latter strategy, in comparison to the former.
The response graph, thus, visualizes all preferential interactions
between strategies in the game. Moreover, the color intensity of
each node indicates its so-called α-Rank, which measures the
long-term preference of the players for that particular strategy, as
dictated by the transition model mentioned above; specifically,
darker colors here indicate more preferable strategies.

This representation of a game as a graph enables a variety of
useful insights into its underlying structure and complexity. For
instance, consider the distribution of cycles in the graph, which
play an important role in multiagent evaluation and training
schemes41,50,53,77 and, as later shown, are correlated to the
computational complexity of solving two-player zero-sum games
(e.g., via Double Oracle). Figure 3f makes evident the lack of
cycles in the particular class of transitive games; while this
is clearly apparent in the underlying (fully ordered) payoff
visualization of Fig. 3a, it is less so in the unordered variants
visualized in Fig. 2a. Even so, the high-level relational structure
between the strategies becomes more evident by conducting a
spectral analysis of the underlying game response graph. Full
technical details of this procedure are provided in the “Methods”
section. At a high level, the so-called Laplacian spectrum (i.e.,
eigenvalues) of a graph, along with associated eigenvectors,
captures important information regarding it (e.g., number of
spanning trees, algebraic connectivity, and numerous related

properties78). Reprojecting the response graph by using the top
eigenvectors yields the spectral response graph visualized in
Fig. 3c, wherein similar strategies are placed close to one another.
Moreover, one can cluster the spectral response graph, yielding
the clustered response graph, which exposes three classes of
strategies in Fig. 3d: a fully dominated strategy with only outgoing
edges (a singleton cluster, on the bottom left of the graph), a
transient cluster of strategies with both incoming and outgoing
edges (top cluster), and a dominant strategy with all incoming
edges (bottom right cluster). Finally, contracting the clustered
graph by fusing nodes within each cluster yields the high-level
characterization of transitive games shown in Fig. 3e.

We can also conduct this analysis for instances of our other
motivating games, such as the cyclical game visualized in Fig. 4a.
Note here the distinct differences with the earlier transitive game
example; in the cyclical game, the α-Rank distribution in the
response graph (Fig. 4b) has higher entropy (indicating preference
for many strategies, rather than one, due to the presence of cycles).
Moreover, the spectral reprojection in Fig. 4d reveals a clear set of
transitive nodes (left side of visualization) and a singleton cluster
of a cycle-inducing node (right side). Contracting this response
graph reveals the fundamentally cyclical nature of this game
(Fig. 4f). Finally, we label each strategy (i.e., each row and column)
of the original payoff table Fig. 4a based on this clustering analysis.
Specifically, the color-coded labels on the far left (respectively, top)
of each row (respectively, column) in Fig. 4a correspond to the
clustered strategy colors in Fig. 4d. This color-coding helps clearly
identify the final strategy (i.e., bottom row of the payoff table)
as the outlier enforcing the cyclical relationships in the game. Note
that while there is no single graphical structure that summarizes
the particular class of random games visualized earlier in Fig. 2h,
we include this analysis for several instances of such games in
Supplementary Note 2.

Crucially, a key benefit of this analysis is that the game structure
exposed is identical for all instances of the transitive and cyclical
games visualized earlier in Fig. 2a, d, making it significantly easier
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Fig. 2 Motivating example of three classes of two-player, symmetric zero-sum games. a, d, and g, respectively, visualize payoffs for instances of games
with transitive, cyclical, and random structure. Each exemplified game consists of two players with 10 strategies each (with payoff row and column labels,
{s0, …, s9}, indicating the strategies). Despite the numerous payoff variations possible in each class of games illustrated, each shares the underlying payoff
structure shown, respectively, in b, e, and h. Moreover, variations in payoffs can notably impact the difficulty of solving (i.e., finding the Nash equilibrium)
of these games, as visualized in c, f, i.
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to characterize games with related structure, in contrast to analysis
of raw payoffs. Our later case studies further exemplify this,
exposing related underlying structures for several classes of more
complex games.

Analysis of canonical and real-world games. The insights
afforded by our graph-theoretic approach apply to both small
canonical games and larger empirical games (where strategies are
synonymous with trained AI agents).

Consider the canonical Rock–Paper–Scissors game, involving a
cycle among the three strategies (wherein Rock loses to Paper,
which loses to Scissors, which loses to Rock). Figure 5a visualizes a
variant of this game involving a copy of the first strategy, Rock,
which introduces a redundant cycle and thus affects the distribution
of cycles in the game. Despite this, the spectral response graph
(Fig. 5d) reveals that the redundant game topologically remains the
same as the original Rock–Paper–Scissors game, thus reducing to
the original game under spectral clustering.

This graph-based analysis also extends to general-sum games.
As an example, consider the slightly more complex game of
11–20, wherein two players each request an integer amount of
money between 11 and 20 units (inclusive). Each player receives
the amount requested, though a bonus of 20 units is allotted to
one player if they request exactly 1 unit less than the other player.
The payoffs and response graph of this game are visualized,
respectively, in Fig. 5g, h, where strategies, from top-to-bottom
and left-to-right in the payoff table, correspond to increasing
units of money being requested. This game, first introduced by
Arad and Rubinstein79, is structurally designed to analyze so-
called k-level reasoning, wherein a level-0 player is naive (i.e., here
simply requests 20 units), and any level-k player responds to an
assumed level-(k− 1) opponent; e.g., here a level-1 player best
responds to an assumed level-0 opponent, thus requesting 19
units to ensure receiving the bonus units.

The spectral response graph here (Fig. 5j) indicates a more
complex mix of transitive and intransitive relations between
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Fig. 3 Method workflow, with accompanying transitive game results. Given the game payoffs a, the so-called α-Rank response graph of the game is
visualized in b. In c, reprojecting the response graph by using the top eigenvectors of the graph Laplacian yields the spectral response graph, wherein
similar strategies are placed close to one another. In d, taking this one step further, one can cluster the spectral response graph, yielding the clustered
response graph, which exposes three classes of strategies in this particular example. In e, contracting the clustered graph by fusing nodes within each
cluster yields the high-level characterization of transitive games. In f, the lack of cycles in the particular class of transitive games becomes evident. Finally,
in g and h, one can extract the principal components of various response graph statistics and establish a feedback loop to a procedural game structure
generation scheme to yield new games.
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strategies. Notably, the contracted response graph (Fig. 5l) reveals
7 clusters of strategies. Referring back to the rows of payoffs in
Fig. 5g, relabeled to match cluster colors, demonstrates that our
technique effectively pinpoints the sets of strategies that define
the rules of the game: weak strategies (11 or 12 units, first two
rows of the payoff table, and evident in the far-right of the
clustered response graph), followed by a set of intermediate
strategies with higher payoffs (clustered pairwise, near the lower-
center of the clustered response graph), and finally the two key
strategies that establish the cyclical relationship within the game
through k-level reasoning (19 and 20 units, corresponding to
level-0 and level-1 players, in the far-left of the clustered response
graph).

This analysis extends to more complex instances of empirical
games, which involve trained AI agents, as next exemplified.
Consider first the game of Go, as played by 7 AlphaGo variants:
AG(r), AG(p), AG(v), AG(rv), AG(rp), AG(vp), and AG(rvp),
where each variant uses the specified combination of rollouts r,
value networks v, and/or policy networks p. We analyze the
empirical game where each strategy corresponds to one of these
agents, and payoffs (Fig. 6a) correspond to the win rates of these
agents when paired against each other (as detailed by Silver et al.7

Table 9). The α-Rank distribution indicated by the node (i.e.,
strategy) color intensities in Fig. 6b reveals AG(rvp) as a dominant
strategy, and the cycle distribution graph Fig. 6c reveals a lack of
cycles here. The spectral response graph, however, goes further,
revealing a fully transitive structure (Fig. 6d, e), as in the
motivating transitive games discussed earlier. The spectral analysis
on this particular empirical game, therefore, reveals its simple
underlying transitive structure (Fig. 6f).

Consider a more interesting empirical game, wherein agents
are trained to play soccer in the continuous control domain of
MuJoCo, exemplified in Fig. 6 (second row). Each agent in this
empirical game is generated using a distinct set of training
parameters (e.g., feedforward vs. recurrent policies, reward
shaping enabled and disabled, etc.), with full agent specifications
and payoffs detailed by Liu et al.80. The spectral response graph
(Fig. 6k) reveals two outlier agents: a strictly dominated agent
(node in the top-right), and a strong (yet not strictly dominant)
agent (node in the top-left). Several agents here are clustered
pairwise, revealing their closely-related interactions with respect
to the other agents; such information could, for example, be used
to discard or fuse such redundant agents during training to save
computational costs.
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Fig. 5 Results for redundant Rock–Paper–Scissors (RPS) and 11–20 game. In Redundant RPS, the redundant copy of the first strategy (Rock) is clustered
in the spectral response graph. In 11–20, seven clusters of strategies are revealed, exposing the cyclical nature of this game.
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similarly-performing agents are revealed in the clusters produced.
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Consider next a significantly larger-scale empirical game,
consisting of 888 StarCraft II agents from the AlphaStar Final
league of Vinyals et al.9. StarCraft II is a notable example,
involving a choice of 3 races per player and realtime gameplay,
making a wide array of behaviors possible in the game itself. The
empirical game considered is visualized in Fig. 7a, and is
representative of a large number of agents with varying skill
levels. Despite its size, spectral analysis of this empirical game
reveals that several key subsets of closely-performing agents exist
here, illustrated in Fig. 7d. Closer inspection of the agents used to
construct this empirical payoff table reveals the following insights,
with agent types corresponding to those detailed in Vinyals et al.9:
(i) the blue, orange, and green clusters are composed of agents in
the initial phases of training, which are generally weakest (as
observed in Fig. 7d, and also visible as the narrow band of low
payoffs in the top of Fig. 7a); (ii) the red cluster consists primarily
of various, specialized exploiter agents; iii) the purple and brown
clusters are primarily composed of the league exploiters and main
agents, with the latter being generally higher strength than the
former. To further ascertain the relationships between only the
strongest agents, we remove the three clusters corresponding to
the weakest agents, repeating the analysis in Fig. 7 (bottom row).
Here, we observe the presence of a series of progressively stronger
agents (bottom nodes in Fig. 7h), as well as a single outlier agent
which quite clearly bests several of these clusters (top node of
Fig. 7h).

An important caveat, as this stage, is that the agents in
AlphaGo, MuJoCo soccer, and AlphaStar above were trained to
maximize performance, rather than to explicitly reveal insights
into their respective underlying games of Go, soccer, and
StarCraft II. Thus, this analysis focused on characterizing
relationships between the agents from the Policy Problem
perspective, rather than the underlying games themselves, which
provide insights into the interestingness of the game (Problem
Problem). This latter investigation would require a significantly
larger population of agents, which cover the policy space of the
underlying game effectively, as exemplified next.

Naturally, characterization of the underlying game can be
achieved in games small enough where all possible policies can be

explicitly compared against one another. For instance, consider
Blotto(τ, ρ), a zero-sum two-player game wherein each player has
τ tokens that they can distribute amongst ρ regions81. In each
region, each player with the most tokens wins (see Tuyls et al.53

for additional details). In the variant we analyze here, each player
receives a payoff of +1, 0, and −1 per region, respectively, won,
drawn, and lost. The permutations of each player’s allocated
tokens, in turn, induce strong cyclical relations between the
possible policies in the game. While the strategy space for this

game is of size
τ þ ρ� 1
ρ� 1

� �
, payoffs matrices can be fully

specified for small instances, as shown for Blotto(5,3) and Blotto
(10,3) in Fig. 8 (first and second row, respectively). Despite the
differences in strategy space sizes in these particular instances of
Blotto, the contracted response graphs in Fig. 8d, h capture the
cyclical relations underlying both instances, revealing a remark-
ably similar structure.

For larger games, the cardinality of the pure policy space
typically makes it infeasible to fully enumerate policies and
construct a complete empirical payoff table, despite the pure
policy space being finite in size. For example, even in games such
as Tic–Tac–Toe, while the number of unique board configura-
tions is reasonably small (9!= 362880), the number of pure,
behaviorally unique policies is enormous (≈10567, see Czarnecki
et al.37 Section J for details). Thus, coming up with a principled
definition of a scheme for sampling a relevant set of policies
summarizing the strategic interactions possible within large
games remains an important open problem. In these instances,
we rely on sampling policies in a manner that captures a set of
representative policies, i.e., a set of policies of varying skill levels,
which approximately capture variations of strategic interactions
possible in the underlying game. The policy sampling approach
we use is motivated with the above discussions and open question
in mind, in that it samples a set of policies with varying skill
levels, leading to a diverse set of potential transitive and
intransitive interactions between them.

Specifically, we use the policy sampling procedure proposed by
Czarnecki et al.37, which also seeks a set of representative policies
for a given game. The details of this procedure are provided in

Payoffs Spectral graph Clustered graph Contracted graph

A
lp

ha
S

ta
r

(a
ll

ag
en

ts
)

a b c d

A
lp

ha
S

ta
r

(b
es

t
ag

en
ts

)

e f g h

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 7 AlphaStar results, with both the full league and the league with best agents visualized. Spectral analysis of the empirical AlphaStar League game
reveals that several key subsets of closely-performing agents, illustrated in d. Closer inspection of the agents used to construct this empirical payoff table
reveals the following insights, with agent types corresponding to those detailed in Vinyals et al.9: (i) the blue, orange, and green clusters are composed of
agents in the initial phases of training, which are generally weakest (as observed in d, and also visible as the narrow band of low payoffs in the top region of
the payoff table a); (ii) the red cluster consists primarily of various, specialized exploiter agents; (iii) the purple and brown clusters are primarily composed
of the league exploiters and main agents, with the latter being generally higher strength than the former.
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Supplementary Methods 1, and at a high level involve three
phases: (i) using a combination of tree search algorithms,
Alpha–Beta82 and Monte Carlo Tree Search83, with varying tree
depth limits for the former and varying number of simulations
allotted to the latter, thus yielding policies of varying transitive
strengths; (ii) using a range of random seeds in each instantiation
of the above algorithms, thus producing a range of policies for
each level of transitive strength; (iii) repeating the same procedure
with negated game payoffs, thus also covering the space of
policies that actively seek to lose the original game. While this
sampling procedure is a heuristic, it produces a representative set
of policies with varying degrees of transitive and intransitive
relations, and thus provides an approximation of the underlying
game that can be feasibly analyzed.

Let us revisit the example of Go, constructing our empirical
game using the above policy sampling scheme, rather than the
AlphaGo agents used earlier. We analyze a variant of the game
with board size 3 × 3, as shown in Fig. 8 (third row). Notably, the
contracted response graph (Fig. 8l) reveals the presence of a
strongly-cyclical structure in the underlying game, in contrast to
the AlphaGo empirical game (Fig. 6). Moreover, the presence of a
reasonably strong agent (visible in the top of the contracted
response graph) becomes evident here, though this agent also
shares cyclical relations with several sets of other agents. Overall,
this analysis exemplifies the distinction between analyzing an
underlying game (e.g., Go) vs. analyzing the agent training
process (e.g., AlphaGo). Investigation of links between these two
lines of analysis, we believe, makes for an interesting avenue for
future work.

Linking response graph and computational complexity. A
question that naturally arises is whether certain measures over
response graphs are correlated with the computational

complexity of solving their associated games. We investigate these
potential correlations here, while noting that these results are not
intended to propose that a specific definition of computational
complexity (e.g., with respect to Nash) is explicitly useful for
defining a topology/classification over games. In Fig. 9, we
compare several response graph complexity measures against the
number of iterations needed to solve a large collection of games
using the Double Oracle algorithm73. The results here consider
specifically the α-Rank entropy, number of 3-cycles, and mean in-
degree (with details in “Methods” section, and results for addi-
tional measures included in Supplementary Note 2). As in earlier
experiments, solution of small-scale games is computed using
payoffs over full enumeration of pure policies, whereas that of
larger games is done using the empirical games over sampled
policies. Each graph complexity measure reported is normalized
with respect to the maximum measure possible in a graph of the
same size, and the number of iterations to solve is normalized
with respect to the number of strategies in the respective game.
Thus, for each game, the normalized number of iterations to solve
provides a measure of its relative computational complexity
compared to games with the same strategy space size (for com-
pleteness, we include experiments testing the effects of normal-
ization on these results in Supplementary Note 2).

Several trends can be observed in these results. First, the
entropy of the α-Rank distribution associated with each game
correlates well with its computational complexity (see Spearman’s
correlation coefficient ρs in the top-right of Fig. 9a). This matches
intuition, as higher entropy α-Rank distributions indicate a larger
support over the strategy space (i.e., strong strategies, with non-
zero α-Rank mass), thus requiring additional iterations to solve.
Moreover, the number of 3-cycles in the response graph also
correlates well with computational complexity, again matching
intuition as the intransitivities introduced by cycles typically
make it more difficult to traverse the strategy space42. Finally, the
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Fig. 8 Results for Blotto(5,3), Blotto(10,3), and Go (board size=3). Despite the significant difference in sizes, both instances of Blotto yield a remarkably
similar contracted response graph. Moreover, the contracted response graph for Go is notably different from AlphaGo results, due to the latter being an
empirical game constructed from trained AI agents rather than a representative set of sampled policies.
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mean in-degree over all response graph nodes correlates less so
with computational complexity (though degree-based measures
still serve a useful role in characterizing and distinguishing graphs
of differing sizes84). Overall, these results indicate that response
graph complexity provides a useful means of quantifying the
computational complexity of games.

The landscape of games. The results, thus far, have demonstrated
that graph-theoretic analysis can simplify games (via spectral
clustering), uncover their topological structure (e.g., transitive
structure of the AlphaGo empirical game), and yield measures
correlated to the computational complexity of solving these
games. Overall, it is evident that the perspective offered by graph
theory yields a useful characterization of games across multiple
fronts. Given this insight, we next consider whether this char-
acterization can be used to compare a widely-diverse set of games.

To achieve this, we construct empirical payoff tables for a suite
of games, using the policy sampling scheme described earlier for
the larger instances (also see Supplementary Methods 1 for full
details, including description of the games considered and
analysis of the sensitivity of these results to the choice of
empirical policies and mixtures thereof). For each game, we
compute the response graphs and several associated local and
global complexity measures (e.g., α-Rank distribution entropy,
number of 3-cycles, node-wise in-degrees and out-degree
statistics, and several other measures detailed in the “Methods”
section), which constitute a feature vector capturing properties of
interest. Finally, a principal component analysis of these features
yields the low-dimensional visualization of the landscape of
games considered, shown in Fig. 1.

We make several key insights given this empirical landscape of
games. Notably, variations of games with related rules are well-
clustered together, indicating strong similarity despite the widely-
varying sizes of their policy spaces and empirical games used to
construct them; specifically, all considered instances of Blotto
cluster together, with empirical game sizes ranging from 20 × 20
for Blotto(5,3) to 1000 × 1000 for Blotto(10,5). Moreover, games

with strong transitive components (e.g., variations of Elo games,
AlphaStar League, Random Game of Skill, and Normal Bernoulli
Game) are also notably separated from strongly cyclical games
(Rock–Paper–Scissors, Disc game, and Blotto variations). Closely-
related real-world games (i.e., games often played by humans in
the real world, such as Hex, Tic-Tac-Toe, Connect Four, and each
of their respective Misère counterparts wherein players seek to
lose) are also well-clustered. Crucially, the strong alignment of
this analysis with intuitions of the similarity of certain classes of
games serves as an important validation of the graph-based
analysis technique proposed in this work. In addition, the analysis
and corresponding landscape of games make clear that several
games of interest for AI seem well-clustered together, which also
holds for less interesting games (e.g., Transitive and Elo games).

We note that the overall idea of generating such a landscape
over games ties closely with prior works on taxonomization of
multiplayer games38,85. Moreover, 2D visualization of the
expressitivity (i.e., style and diversity) and the overall space of
of procedurally-generated games features have been also
investigated in closely related work86,87. A recent line of related
inquiry also investigates the automatic identification, and
subsequent visualization of core mechanics in single-player
games88. Overall, we believe this type of investigation can be
considered a method to taxonomize which future multiplayer
games may be interesting, and which ones less so to train AI
agents on.

While the primary focus of this paper is to establish a means of
topologically studying games (and their similarities), a natural
artifact of such a methodology is that it can enable investigation
of interesting and non-interesting classes of games. There exist
numerous perspectives on what may make a game interesting,
which varies as a function of the field of study or problem being
solved. These include (overlapping) paradigms that consider
interestingness from: a human-centric perspective (e.g., level of
social interactivity, cognitive learning and problem solving,
enjoyment, adrenaline, inherent challenge, esthetics, story-
telling in the game, etc.)89–94; a curriculum learning perspective
(e.g., games or tasks that provide enough learning signal to the
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human or artificial learner)95; a procedural content generation or
optimization perspective (in some instances with a focus on
General Game Playing)21 that use a variety of fitness measures to
generate new game instances (e.g., either direct measures related
to the game structure, or indirect measures such as player win-
rates)20,31,34,35,96; and game-theoretic, multiplayer, or player-vs.-
task notions (e.g., game balance, level of competition, social
equality or welfare of the optimal game solution, etc.)97–99.
Overall, it is complex (and, arguably, not very useful) to introduce
a unifying definition of interestingness that covers all of the above
perspectives.

Thus, we focus here on a specialized notion of interestingess
from the perspective of AI training, linked to the work of
Czarnecki et al.37. As mentioned earlier, Czarnecki et al.37

introduce the notion of Games of Skill, which are of interest, in
the sense of AI training, due to two axes of interactions between
agents: a transitive axis enabling progression in terms of relative
strength or skill, and a radial axis representing diverse intransitive/
cyclical interactions between strategies of similar strength levels.
The overall outlook provided by the above paper is that in these
games of interest there exist many average-strength strategies with
intransitive relations among them, whereas the level of intransi-
tivity decreases as transitive strength moves towards an extremum
(either very low, or very high strength); the topology of strategies
in a Game of Skill is, thus, noted to resemble a spinning top.

Through the spinning top paradigm, Czarnecki et al.37 identifies
several real-world games (e.g., Hex, Tic–Tac–Toe, Connect–Four,
etc.) as Games of Skill. Notably, the lower left cluster of games in
Fig. 1 highlights precisely these games. Interestingly, while the
Random Game of Skill, AlphaStar League, and Elo game
(noise= 0.5) are also noted as Games of Skill in Czarnecki
et al.37, they are found in a distinct cluster in our landscape. On
closer inspection of these payoffs for this trio of games, there exists
a strong correlation between the number of intransitive relations
and the transitive strength of strategies, in contrast to other Games
of Skill such as Hex. Our landscape also seems to highlight non-
interesting games. Specifically, variations of Blotto, Rock–
Paper–Scissors, and the Disc Game are noted to not be Games
of Skill in Czarnecki et al.37, and are also found to be in distinct
clusters in Fig. 1.

Overall, these results highlight how topological analysis of
multiplayer games can be used to not only study individual
games, but also identify clusters of related (potentially interesting)
games. For completeness, we also conduct additional studies in
Supplementary Note 2, which compare our taxonomization of
2 × 2 normal-form games (and clustering into potential classes of
interest) to that of Bruns38.

The problem problem and procedural game structure genera-
tion. Having now established various graph-theoretic tools for
characterizing games of interest, we revisit the so-called Problem
Problem, which targets automatic generation of interesting
environments. Here we focus on the question of how we can
leverage the topology discovered by our method to procedurally
generate collections of new games (which can be subsequently
analyzed, used for training, characterized as interesting or not per
previous discussions, and so on).

Full details of our game generation procedure are provided in
the “Methods” Section. At a high level, we establish the feedback
loop visualized in Fig. 3, enabling automatic generation of games
as driven by our graph-based analytical workflow. We generate the
payoff structure of a game (i.e., as opposed to the raw underlying
game rules, e.g., as done by Browne and Maire20). Thus, the
generated payoffs can be considered either direct representations
of normal form games, or empirical games indirectly representing

underlying games with complex rules. At a high level, given a
parameterization of a generated game that specifies an associated
payoff tensor, we synthesize its response graph and associated
measures of interest (as done when generating the earlier
landscape of games). We use the multidimensional Elo para-
meterization for generating payoffs, due to its inherent ability to
specify complex transitive and intransitive games41. We then
specify an objective function of interest to optimize over these
graph-based measures. As only the evaluations of such graph-
based measures (rather than their gradients) are typically available,
we use a gradient-free approach to iteratively generate games
optimizing these measures (CMA-ES100 is used in our experi-
ments). The overall generation procedure used can be classified as
a Search-Based Procedural Content Generation technique
(SBPCG)34. Specifically, in accordance to the taxonomy defined
by Togelius et al.34, our work uses a direct encoding representation
of the game (as the generated payoffs are represented as real-
valued vectors of mElo parameters), with a theory-driven direct
evaluation used for quantifying the game fitness/quality (as we rely
on graph theory to derive the game features of interest, then
directly minimize distances of principal components of generated
and target games).

Naturally, we can maximize any individual game complexity
measures, or a combination thereof, directly (e.g., entropy of the
α-Rank distribution, number of 3-cycles, etc.). More interestingly,
however, we can leverage our low-dimensional landscape of
games to directly drive the generation of new games towards
existing ones with properties of interest. Consider the instance of
game generation shown in Fig. 10a, which shows an overview of
the above pipeline generating a 5 × 5 game minimizing Euclidean
distance (within the low-dimensional complexity landscape) to
the standard 3 × 3 Rock–Paper–Scissors game. Each point on this
plot corresponds to a generated game instance. The payoffs
visualized, from left to right, respectively correspond to the initial
procedural game parameters (which specify a game with constant
payoffs), intermediate parameters, and final optimized para-
meters; projections of the corresponding games within the games
landscape are also indicated, with the targeted game of interest
(Rock–Paper–Scissors here) highlighted in green. Notably, the
final optimized game exactly captures the underlying rules that
specify a general-size Rock–Paper–Scissors game, in that each
strategy beats as many other strategies as it loses to. In Fig. 10b,
we consider a larger 13 × 13 generated game, which seeks to
minimize distance to a 1000 × 1000 Elo game (which is transitive
in structure, as in our earlier motivating example in Fig. 2a). Once
again, the generated game captures the transitive structure
associated with Elo games.

Next, we consider generation of games that exhibit properties
of mixtures of several target games. For example, consider what
happens if 3 × 3 Rock–Paper–Scissors were to be combined with
the 1000 × 1000 Elo game above; one might expect a mixture of
transitive and cyclical properties in the payoffs, though the means
of generating such mixed payoffs directly is not obvious due to
the inherent differences in sizes of the targeted games. Using our
workflow, which conducts this optimization in the low-
dimensional graph-based landscape, we demonstrate a sequence
of generated games targeting exactly this mixture in Fig. 10c.
Here, the game generation objective is to minimize Euclidean
distance to the mixed principal components of the two target
games (weighted equally). The payoffs of the final generated game
exhibit exactly the properties intuited above, with predominantly
positive (blue) upper-triangle of payoff entries establishing a
transitive structure, and the more sporadic positive entries in the
lower-triangle establishing cycles.

Naturally, this approach opens the door to an important
avenue for further investigation, targeting generation of yet more
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interesting combinations of games of different sizes and rule-sets
(e.g., as in Fig. 10d, which generates games targeting a mixture of
Go (board size = 3) and the AlphaStar League), and subsequent
training of AI agents using such a curriculum of generated games.
Moreover, we can observe interesting trends when analyzing the
Nash equilibria associated with the class of normal-form games
considered here (as detailed in Supplementary Note 2). Overall,
these examples illustrate a key benefit of the proposed graph-
theoretic measures in that it captures the underlying structure of
various classes of games. The characterization of games achieved
by our approach directly enables the navigation of the associated
games landscape to generate never-before-seen instances of
games with fundamentally related structure.

Discussion
In 1965, mathematician Alexander Kronrod stated that “chess is
the Drosophila of artificial intelligence”8, referring to the genus of
flies used extensively for genetics research. This parallel drawn to
biology invites the question of whether a family, order, or, more
concretely, shared structures linking various games can be iden-
tified. Our work demonstrated a means of revealing this topolo-
gical structure, extending beyond related works investigating this
question for small classes of games (e.g., 2 × 2 games40,85,101). We
believe that such a topological landscape of games can help to
identify and generate related games of interest for AI agents to
tackle, as targeted by the Problem Problem, hopefully significantly
extending the reach of AI system capabilities. As such, this paper

a b

c d

Blotto(10,3)
Blotto(10,5)

Blotto(10,4)
Blotto(5,3)

Blotto(5,4)
Blotto(5,5)

Misère Tic-Tac-Toe
3-move parity game
Hex (board size = 3)

Tic-Tac-Toe
Misère hex (board size = 3)

Quoridor (board size = 3)
Go (board size = 3)

Quoridor (board size = 4)
Connect four

Misère connect four
Go (board size = 4)

Rock-paper-scissors

Disc game

Elo game (noise = 1.0)

Kuhn poker

Random game of skill

Elo game (noise = 0.5)

Alphastar league

Elo game (noise = 0.1)

Normal bernoulli game

Elo game (noise = 0.0)

Transitive game

Blotto(10,3)
Blotto(10,5)

Blotto(10,4)
Blotto(5,3)

Blotto(5,4)
Blotto(5,5)

Misère Tic-Tac-Toe
3-move parity game
Hex (board size = 3)

Tic-Tac-Toe
Misère hex (board size = 3)

Quoridor (board size = 3)
Go (board size = 3)

Quoridor (board size = 4)
Connect four

Misère connect four
Go (board size = 4)

Rock-paper-scissors

Disc game

Elo game (noise = 1.0)

Kuhn poker

Random game of skill

Elo game (noise = 0.5)

Alphastar league

Elo game (noise = 0.1)

Normal bernoulli game

Elo game (noise = 0.0)

Transitive game

Blotto(10,3)
Blotto(10,5)

Blotto(10,4)
Blotto(5,3)

Blotto(5,4)
Blotto(5,5)

Misère Tic-Tac-Toe
3-move parity game
Hex (board size = 3)

Tic-Tac-Toe
Misère hex (board size = 3)

Quoridor (board size = 3)
Go (board size = 3)

Quoridor (board size = 4)
Connect four

Misère connect four
Go (board size = 4)

Rock-paper-scissors

Disc game

Elo game (noise = 1.0)

Kuhn poker

Random game of skill

Elo game (noise = 0.5)

Alphastar league

Elo game (noise = 0.1)

Normal bernoulli game

Elo game (noise = 0.0)

Transitive game

Blotto(10,3)
Blotto(10,5)

Blotto(10,4)
Blotto(5,3)

Blotto(5,4)
Blotto(5,5)

Misère Tic-Tac-Toe
3-move parity game
Hex (board size = 3)

Tic-Tac-Toe
Misère hex (board size = 3)

Quoridor (board size = 3)
Go (board size = 3)

Quoridor (board size = 4)
Connect four

Misère connect four
Go (board size = 4)

Rock-paper-scissors

Disc game

Elo game (noise = 1.0)

Kuhn poker

Random game of skill

Elo game (noise = 0.5)

Elo game (noise = 0.1)

Normal bernoulli game

Elo game (noise = 0.0)

Transitive game

0.0 0.2 0.4 0.6 0.8 1.0

Alphastar league

Fig. 10 Visualization of procedural game structure generation projected in the games landscape. Each figure visualizes the generation of a game of
specified size, which targets a pre-defined game (or mixture of games) of a different size. The three payoffs in each respective figure, from left to right,
correspond to the initial procedural game parameters, intermediate parameters, and final optimized parameters. a 5 × 5 generated game with the target
game set to Rock–Paper–Scissors (3 × 3). b 13 × 13 generated game with the target game set to Elo (1000 × 1000). c 13 × 13 generated game with the target
game set to the mixture of Rock–Paper–Scissors (3 × 3) and Elo game (1000 × 1000). d 19 × 19 generated game with the target game set to the mixture of
AlphaStar League and Go (board size= 3). Strategies are sorted by mean payoffs in b and c to more easily identify transitive structures expected from an
Elo game.
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presented a comprehensive study of games under the lens of
graph theory and empirical game theory, operating on the
response graph of any game of interest. The proposed approach
applies to general-sum, many-player games, enabling richer
understanding of the inherent relationships between strategies (or
agents), contraction to a representative (and smaller) underlying
game, and identification of a game’s inherent topology. We
highlighted insights offered by this approach when applied to a
large suite of games, including canonical games, empirical games
consisting of trained agent policies, and real-world games con-
sisting of representative sampled policies, extending well beyond
typical characterizations of games using raw payoff visualizations,
cardinal measures such as strategy or game tree sizes, or strategy
rankings. We demonstrated that complexity measures associated
with the response graphs analyzed correlate well to the compu-
tational complexity of solving these games, and importantly
enable the visualization of the landscape of games in relation to
one another (as in Fig. 1). The games landscape exposed here was
then leveraged to procedurally generate games, providing a
principled means of better understanding and facilitating the
solution of the so-called Problem Problem.

While the classes of games generated in this paper were
restricted to the normal-form (e.g., generalized variants of
Rock–Paper–Scissors), they served as an important validation of
the proposed approach. Specifically, this work provides a foun-
dational layer for generating games that are of interest in a richer
context of domains. In contrast to some of the prior works in
taxonomization of games (e.g., that of Bruns40, Liebrand39,
Rapoport and Guyer38), a key strength of our approach is that it
does not rely on human expertize, or manual isolation of patterns
in payoffs or equilibria to compute a taxonomy over games. We
demonstrate an example of this in Supplementary Note 2, by
highlighting similarities and differences of our taxonomization
with those of Bruns38 over a set of 144 2 × 2 games. Importantly,
these comparisons highlight that our response graph-based
approach does not preclude more classical equilibrium-centric
analysis from being conducted following clustering, while also
avoiding the need for a human-in-the-loop analysis of equilibria
for classifying the games themselves.

While our graph-based game analysis approach (i.e., the
spectral analysis and clustering technique) applies to general-sum,
many-player games, the procedural game structure generation
approach used in our experiments is limited to zero-sum games
(due to our use of the mElo parameterization). However, any
other general-sum payoff parameterization approaches (e.g., even
direct generation of the payoff entries) can also be used to avoid
the zero-sum constraint. The study of normal-form games con-
tinues to play a prominent role in the game theory and machine
learning literature102–108 and as such the procedural generation of
normal-form games can play an important role in the research
community. An important line of future work will involve
investigating means of generalizing this approach to generation of
more complex classes of games. Specifically, one way to generate
more complex underlying games would be to parameterize core
mechanisms of such a games class (either explicitly, or via
mechanism discovery, e.g., using a technique such as that
described by Charity et al.88). Subsequently, one could train AI
agents on a population of such games, constructing a corre-
sponding empirical game, and using the response graph-based
techniques used here to analyze the space of such games (e.g., in a
manner reminiscent of Wang et al.35, though under our graph-
theoretic lens). The connection to the SBPCG literature men-
tioned in The Problem Problem and Procedural Game Structure
Generation section also offers an avenue of alternative investi-
gations into game structure generation, as the variations of fitness

measures and representations previously explored in that litera-
ture34 may be considered in lieu of the approach used here.

Moreover, as the principal contribution of this paper was to
establish a graph-theoretic approach for investigating the land-
scape of games, we focused our investigation on empirical ana-
lysis of a large suite of games. As such, for larger games, our
analysis relied on sampling of a representative set of policies to
characterize them. An important limitation here is that the
empirical game-theoretic results are subject to the policies used to
generate them. While our sensitivity analysis (presented in Sup-
plementary Note 2) seems to indicate that the combination of our
policy sampling scheme and analysis pipeline produce fairly
robust results, this is an important factor to revisit in significantly
larger games. Specifically, such a policy sampling scheme can be
inherently expensive for extremely large games, making it
important to further investigate alternative sampling schemes and
associated sensitivities. Consideration of an expanded set of such
policies (e.g., those that balance the odds for players by ensuring a
near-equal win probability) and correlations between the
empirical game complexity and the complexity of the underlying
policy representations (e.g., deep vs. shallow neural networks or,
whenever possible, Boolean measures of strategic complex-
ity109,110) also seem interesting to investigate. Moreover, formal
study of the propagation of empirical payoff variance to the
topological analysis results is another avenue of future interest,
potentially using techniques similar to Rowland et al.51. Another
direction of research for future work is to analyze agent-vs.-task
games (e.g., those considered in Balduzzi et al.41) from a graph-
theoretic lens. Finally, our approach is general enough to be
applicable to other areas in social and life sciences111–115, char-
acterized by complex ecologies often involving a large number of
strategies or traits. In particular, these processes may be modeled
through the use of large-scale response graphs or invasion
diagrams116–120, whose overall complexity (and how it may vary
with the inclusion or removal of species, strategies, and conflicts)
is often hard to infer.

Overall, we believe that this work paves the way for related
investigations of theoretical properties of graph-based games
analysis, for further scientific progress on the Problem Problem
and task theory, and further links to related works investigating
the geometry and structure of games37,40,42,85,101,121.

Methods
Games. Our work applies to K-player, general-sum games, wherein each player
k ∈ [K] has a finite set Sk of pure strategies. The space of pure strategy profiles
is denoted S=∏kSk, where a specific pure strategy profile instance is denoted s=
(s1, …, sK) ∈ S. For a give profile s ∈ S, the payoffs vector is denoted MðsÞ ¼
ðM1ðsÞ; ¼ ;MK ðsÞÞ 2 RK , where Mk(s) is the payoff for each player k ∈ [k]. We
denote by s−k the profile of strategies used by all but the k-th player. A game is said
to be zero-sum if ∑kMk(s)= 0 for all s ∈ S. A game is said to be symmetric if all
players have the same strategy set, and Mk(s1, …, sK) = Mρ(k)(sρ(1), …, sρ(K)) for all
permutations ρ, strategy profiles s, and player indices k ∈ [K].

Empirical games. For the real-world games considered (e.g., Go, Tic–Tac–Toe, etc.),
we conduct our analysis using an empirical game-theoretic approach67,68,122–124.
Specifically, rather than consider the space of all pure strategies in the game (which
can be enormous, even in the case of, e.g., Tic–Tac–Toe), we construct an empirical
game over meta-strategies, which can be considered higher-level strategies over
atomic actions. In empirical games, a meta-strategy sk for each player k corresponds to
a sampled policy (e.g., in the case of our real-world games examples), or an AI agent
(e.g., in our study of AlphaGo, where each meta-strategy was a specific variant of
AlphaGo). Empirical game payoffs are calculated according to the win/loss ratio of
these meta-strategies against one another, over many trials of the underlying games.
From a practical perspective, game-theoretic analysis applies to empirical games (over
agents) in the same manner as standard games (over strategies); thus, we consider
strategies and agents as synonymous in this work. Overall, empirical games provide a
useful abstraction of the underlying game that enables the study of significantly larger
and more complex interactions.
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Finite population models and α-Rank. In game theory125–129, one often seeks
algorithms or models for evaluating and training strategies with respect to one
another (i.e., models that produce a score or ranking over strategy profiles, or an
equilibrium over them). As a specific example, the Double Oracle algorithm73,
which is used to quantify the computational complexity of solving games in some
of our experiments, converges to Nash equilibria, albeit only in two-player zero-
sum games. More recently, a line of research has introduced and applied the α-
Rank algorithm49–51 for evaluation of strategies in general-sum, n-player many-
strategy games. α-Rank leverages notions from stochastic evolutionary dynamics in
finite populations118,130–134 in the limit of rare mutations117,120,135, which are
subsequently analyzed to produce these scalar ratings (one per strategy or agent).
At a high level, α-Rank models the probability of a population transitioning from a
given strategy to a new strategy, by considering the additional payoff the popu-
lation would receive via such a deviation. These evolutionary relations are con-
sidered between all strategies in the game, and are summarized in its so-called
response graph. α-Rank then uses the stationary distribution over this response
graph to quantify the long-term propensity of playing each of the strategies,
assigning a scalar score to each.

Overall, α-Rank yields a useful representation of the limiting behaviors of the
players, providing a summary of the characteristics of the underlying game–albeit a
1-dimensional one (a scalar rating per strategy profile). In our work, we exploit the
higher-dimensional structural properties of the α-Rank response graph, to make
more informed characterizations of the underlying game, rather than compute
scalar rankings.

Response graphs. The α-Rank response graph50 provides the mathematical model
that underpins our analysis. It constitutes an analog (yet, not equivalent) model of
the invasion graphs used to describe the evolution dynamics in finite populations in
the limit when mutations are rare (see, e.g., Fudenberg and Imhof117, Hauert
et al.136, Van Segbroeck et al.120, Vasconcelos et al.119). In this small-mutation
approximation, directed edges stand for the fixation probability131 of a single
mutant in a monomorphic population of resident individuals (the vertices), such
that all transitions are computed through a processes involving only two strategies
at a time. Here, we use a similar approach. Let us consider a pure strategy profile s
= (s1, …, sK). Consider a unilateral deviation (corresponding to a mutation) of
player k from playing sk∈ Sk to a new strategy σk∈ Sk, thus resulting in a new
profile σ= (σk, s−k). The response graph associated with the game considers all
such deviations, defining transition probabilities between all pairs of strategy
profiles involving a unilateral deviation. Specifically, let Es,σ denote the transition
probability from s to σ (where the latter involves a unilateral deviation), defined as

Es;σ ¼ η
1�exp �α MkðσÞ�MkðsÞð Þð Þ
1�exp �αm MkðσÞ�MkðsÞð Þð Þ if MkðσÞ≠MkðsÞ

η
m otherwise;

8<
: ð1Þ

where η is a normalizing factor denoting the reciprocal of the total number of

unilateral deviations from a given strategy profile, i.e., η ¼ ðPK
l¼1ðjSlj � 1ÞÞ�1

.
Furthermore, α≥0 and m 2 N are parameters of the underlying evolutionary
model considered and denote, respectively, to the so-called selection pressure and
population size.

To further simplify the model and avoid sweeps over these parameters, we
consider here the limit of infinite-α introduced by Omidshafiei et al.50, which
specifies transitions from lower-payoff profiles to higher-payoff ones with
probability η(1− ε), the reverse transition with probability ηε, and transition
between strategies of equal payoff with probability η

2, where 0 < ε≪ 1 is a small
perturbation factor. We use ε= 1e− 10 in our experiments, and found low
sensitivity of results to this choice given a sufficiently small value. For further
theoretical exposition of α-Rank under this infinite-α regime, see Rowland et al.51.
Given the pairwise strategy transitions defined as such, the self-transition
probability of s is subsequently defined as,

Es;s ¼ 1�
X

k 2 ½K�
σjσk 2 Sk n fskg

Es;σ :

ð2Þ

As mentioned earlier, if two strategy profiles s and σ do not correspond to a
unilateral deviation (i.e., differ in more than one player’s strategy), no transition
occurs between them under this model (i.e., Es,σ= 0).

The transition structure above is informed by particular models in evolutionary
dynamics as explained in detail in Omidshafiei et al.50. The introduction of the
perturbation term ε effectively ensures the ergodicity of the associated Markov
chain with row-stochastic transition matrix E. This transition structure then
enables definition of the α-Rank response graph of a game.

Definition 1
(Response graph) The response graph of a game is a weighted directed graph (digraph)
G= (S, E) where each node corresponds to a pure strategy profile s∈ S, and each
weighted edge Es,σ quantifies the probability of transitioning from profile s to σ.

For example, the response graph associated with a transitive game is visualized
in Fig. 3b, where each node corresponds to a strategy s, and directed edges indicate

transition probabilities between nodes. Omidshafiei et al.50 define α-Rank π ∈
Δ∣S∣−1 as a probability distribution over the strategy profiles S, by ordering the
masses of the stationary distribution of E (i.e., solution of the eigenvalue problem
πTE= πT). Effectively, the α-Rank distribution quantifies the average amount of
time spent by the players in each profile s∈ S under the associated discrete-time
evolutionary population model117. Our proposed methodology uses the α-Rank
response graphs in a more refined manner, quantifying the structural properties
defining the underlying game, as detailed in the workflow outlined in Fig. 3 and, in
more detail, below.

Spectral, clustered, and contracted response graphs. This section details the
workflow used to for spectral analysis of games’ response graphs (i.e., the steps
visualized in Fig. 3c to e). Response graphs are processed in two stages: (i) sym-
metrization (i.e., transformation of the directed response graphs to an associated
undirected graph), and (ii) subsequent spectral analysis. This two-phase approach
is a standard technique for analysis of directed graphs, which has proved effective
in a large body of prior works (see Malliaros and Vazirgiannis137, Van Lierde138 for
comprehensive surveys). In addition, spectral analysis of the response graph is
closely-associated with the eigenvalue analysis required when solving for the α-
Rank distribution, establishing a shared formalism of our techniques with those of
prior works.

Let A denote the adjacency matrix of the response graph G, where A= E as G is
a directed weighted graph. We seek a transformation such that response graph
strategies with similar relationships to neighboring strategies tend to have higher
adjacency with one another. Bibliometric symmetrization139 provides a useful
means to do so in application to directed graphs, whereby the symmetrized
adjacency matrix is defined eA ¼ AAT þ ATA. Intuitively, in the first term, AAT,
the (s, σ)-th entry captures the weighted number of other strategies that both s and
σ would deviate to in the response graph G; the same entry in the second term,
ATA, captures the weighted number of other strategies that would deviate to both s
and σ. Hence, this symmetrization captures the relationship of each pair of
response graph nodes (s, σ) with respect to all other nodes, ensuring high values of
weighted adjacency when these strategies have similar relational roles with respect
to all other strategies in the game. More intuitively, this ensures that in games such
as Redundant Rock–Paper–Scissors (see Fig. 5, first row), sets of redundant
strategies are considered to be highly adjacent to each other.

Following bibliometric symmetrization of the response graph, clustering
proceeds as follows. Specifically, for any partitioning of the strategy profiles S into
sets S1⊂ S and �S1 ¼ S n S1, define wðS1;�S1Þ ¼

P
s2S1 ;σ2�S1Es;σ . Let the sets of disjoint

strategy profiles fSkgk2½K� partition S (i.e., ⋃k∈[K]Sk= S). Define the K-cut of graph
G under partitions fSkgk2½K� as

cutðfSkgÞ ¼
X
k

wðSk;�SkÞ ; ð3Þ

which, roughly speaking, measures the connectedness of points in each cluster; i.e.,
a low cut indicates that points across distinct clusters are not well-connected. A
standard technique for cluster analysis of graphs is to choose the set of K partitions,
fSkgk2½K� , which minimizes (Eq. 3). In certain situations, balanced clusters (i.e.,
clusters with similar numbers of nodes) may be desirable; here, a more suitable
metric is the so-called normalized K-cut, or Ncut, of graph G under partitions
fSkgk2½K� ,

NcutðfSkgÞ ¼
X
k

wðSk;�SkÞ
wðSk; SÞ

: ð4Þ

Unfortunately, the minimization problem associated with Eq. (4) is NP-hard even
when K= 2 (see Shi and Malik140). A typical approach is to consider a spectral
relaxation of this minimization problem, which corresponds to a generalized
eigenvalue problem (i.e., efficiently solved via standard linear algebra); interested
readers are referred to Shi and Malik140, Van Lierde138 for further exposition.
Define the Laplacian matrix L ¼ D� eA (respectively, L ¼ I�D�1

2eAD�1
2), where

degree matrix D has diagonal entries Di;i ¼
P

j
eAi;j , and zeroes elsewhere. Then the

eigenvectors associated with the lowest nonzero eigenvalues of L provide the
desired spectral projection of the datapoints (i.e., spectral response graph), with the
desired number of projection dimensions corresponding to the number of
eigenvectors kept. We found that using the unnormalized graph Laplacian L ¼
D� eA yielded intuitive projections in our experiments, which we visualize 2-
dimensionally in our results (e.g., see Fig. 3c).

The relaxed clustering problem detailed above is subsequently solved by
application of a standard clustering algorithm to the spectral-projected graph
nodes. Specifically, we use agglomerative average-linkage clustering in our
experiments (see Rokach and Maimon141, Chapter 15 for details). For determining
the appropriate number of clusters, we use the approach introduced by Pham
et al.142, which we found to yield more intuitive clusterings than the gap statistic143

for the games considered.
Following computation of clustered response graphs (e.g., Fig. 3d), we contract

clustered nodes (summing edge probabilities accordingly), as in Fig. 3e. Note that
for clarity, our visualizations only show edges corresponding to transitions from
lower-payoff to higher-payoff strategies in the standard, spectral, and clustered
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response graphs, as these bear the majority of transition mass between nodes;
reverse edges (from higher-payoff to lower-payoff nodes) and self-transitions are
not visually indicated, despite being used in the underlying spectral clustering. The
exception is for contracted response graphs, where we do visualize weighted edges
from higher-payoff to lower-payoff nodes; this is due to the node contraction
process potentially yielding edges with non-negligible weight in both directions.

Low-dimensional landscape and game generation. We next detail the approach
used to compute the games landscape and to procedurally generate games, as,
respectively, visualized in Figs. 1 and 10.

To compute the low-dimensional games landscape, we use principal component
analysis (PCA) of key features associated with the games’ response graphs; we use a
collection of features we found to correlate well with the underlying computational
complexity of solving these games (as detailed in the Results section).

Specifically, using the response graph G of each game, we compute in-degrees
and out-degrees for all nodes, the entropy of the α-Rank distribution π, and the
total number of 3-cycles. We normalize each of these measures as follows: dividing
node-wise in-degrees and out-degrees via the maximum possible degrees for a
response graph of the same size; dividing the α-Rank distribution entropy via the
entropy of the uniform distribution of the same size; finally, dividing the number of
3-cycles via the same measure for a fully connected directed graph.

We subsequently construct a feature vector consisting of the normalized α-Rank
distribution entropy, the normalized number of 3-cycles, and statistics related to
normalized in-degrees and out-degrees. Specifically, we consider the mean, median,
standard deviation, skew, and kurtosis of the in-degrees and out-degrees across all
response graph nodes, similar to the NetSimile84 approach, which characterized
undirected graphs. This yields a feature vector of fixed size for all games. We
subsequently conduct a PCA analysis of the resulting feature vectors, visualizing
the landscape in Fig. 1 via projection of the feature vectors onto the top two
principal components, yielding a low-dimensional embedding vg for each game g.

Procedural game structure generation. The games generated in Figs. 2 and 10
use the multidimensional Elo (mElo) parametric structure41, an extension of the
classical Elo144 rating system used in Chess and other games. In mElo games,
each strategy i is characterized by two sets of parameters: (i) a scalar rating
ri 2 R capturing the strategy’s transitive strength, and (ii) a 2k-dimensional
vector ci capturing the strategy’s intransitive relations to other strategies. The
payoff a strategy i receives when played against a strategy j in a mElo game
is defined by Mði; jÞ ¼ σðri � rj þ cTi ΩcjÞ where σðzÞ ¼ ð1þ expð�zÞÞ�1,

Ω ¼ Pk
i¼1 e2i�1e

T
2i � e2ie

T
2i�1

� �
, and ei is the unit vector with coordinate i equal

to 1. This parametric structure is particularly useful as it enables definition of a
wide array of games, ranging from those with fully transitive strategic interac-
tions (e.g., those with a single dominant strategy, as visualized in Fig. 2a), to
intransitive interactions (e.g., those with cyclical relations, as visualized in
Fig. 2d), to a mix thereof.

The procedural game structure generation visualized in Fig. 10 is conducted as
follows. First, we compute the low-dimensional game embeddings for the collection
of games of interest, as detailed above. Next, for an initially randomly-generated
mElo game of the specified size and rank k, we concatenate the associated mElo
parameters ri and ci for all strategies, yielding a vector of length ∣S∣ (1+ 2k) fully
parameterizing the mElo game, and constituting the decision variables of the
optimization problem used to generate new games. We used a rank 5 mElo
parameterization for all game generation experiments. For any such setting of mElo
parameters, we compute the associated mElo payoff matrix M, then the associated
response graph and features, and finally project these features onto the principal
components previously computed for the collection of games of interest, yielding
the projected mElo components vmElo.

Subsequently, given a game g of interest that we would like to structurally
mimic via our generated mElo game, we use a gradient-free optimizer, CMA-ES100,
to minimize jjvmElo � vg jj22 by appropriately setting the mElo parameters. For
targeting mixtures of games (e.g., as in Fig. 10c, d), we simply use a weighted
mixture of their principal components vg (with equal weights used in our
experiments). We found the open-source implementation of CMA-ES145 to
converge to suitable parameters within 20 iterations for all experiments, with the
exception of the larger game generation results visualized in Fig. 10d, which
required 40 iterations.

Statistics. To generate the distributions of Double Oracle iterations needed to
solve the motivating examples (Fig. 2), we used 20 generated games per class
(transitive, cyclical, random), showing four examples of each in Fig. 2a, d and g.
For each of these 20 games, we used 10 random initializations of the Double Oracle
algorithm, reporting the full distribution of iterations. To generate the complexity
results in Fig. 9, we likewise used 10 random initializations of Double Oracle per
game, with standard deviations shown in the scatter plots (which may require
zooming in). For the Spearman correlation coefficients shown in each of Fig. 9a to
c, the reported p-value is two-sided and rounded to two decimals.

Data availability
We use OpenSpiel146 as the backend providing many of the games and associated payoff
datasets studied here (see Supplementary Methods 1 for details). Payoff datasets for
empirical games in the literature are referenced in the main text.

Code availability
We use OpenSpiel146 for the implementation of α-Rank and Double Oracle.
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