EditION: A Collaborative Calligraphic Tool to Manage Virtual Environments

Alfredo Ferreira* Marco Vala

Joaquim A. Jorge

Guilherme Raimundof

J.A .Madeiras Pereira
Ana Paiva

Department of Information Systems and Computer Science
INESC-ID/IST/Technical University of Lisbon

Abstract

Simulating the dynamics of real worlds using Virtual En-
vironments (VEs) is a growing area with many interesting
applications. There are tools based on graphical inter-
faces to create and visualise these VEs, although most of
them are specific to a particular type of environment. Fol-
lowing recent developments in calligraphic systems, which
have emerged as a viable alternative to conventional direct
manipulation interfaces, we devised an approach that takes
advantage of these systems to manage the elements in a VE.

In this paper we present a tool that allows users to man-
age VEs collaboratively using a sketch-based interface to-
gether with a simple visual language that generically de-
scribes the elements in a VE. To validate our work we did a
small test case with the simulation of a world populated by
synthetic characters.

1 Introduction

The real world can be seen as a collection of many en-
tities from a simple grain of sand to an intelligent human
being. Furthermore, these entities are not static. They are
constantly interacting, changing their properties and thus
creating an ever mutating universe.

We are often interested on simulating these dynamics in
a virtual manner. Maybe we need to better understand the
real world such as the movement of crowds in a building
on fire or the growth of a plant in a greenhouse due to the
manipulation of humidity and temperature. Maybe we just
want to impersonate a hero on a quest for entertainment pur-
poses. However, to achieve such goals, we need to have the
means to manage these simulations which to some extent is

*A.Ferreira was supported by the Portuguese Foundation for Science
and Technology, grant reference SFRH/BD/17705/2004.

G.Raimundo was supported by the Portuguese Foundation for Science
and Technology, grant reference SFRH/BD/25725/2005.

to manipulate and visualise the associated virtual environ-
ment (VE).

We use the ION framework to handle the simulation de-
tails, ensuring that the rules of the world are followed, and
propose EditION as a calligraphic tool that controls it. Edi-
tION allows symbolic representation and manipulation of
elements in a VE through a sketch based interface based on
a visual language for VEs. Moreover, this manipulation is
done in a distributed collaborative fashion both before or
during the simulation.

The EditION tool is an evolution of the preliminary work
presented in [9]. It uses a calligraphic interface to take ad-
vantage of the way developers sketch VEs in sheets of pa-
per before creating them. To that end we developed a visual
language to represent the various elements in a VE which
allows users to sketch a symbolic representation of each
element directly on the computer, reducing the amount of
scripting and/or textual input.

After a short discussion of the related work, we will
present an overview of our approach to sketch-based man-
agement of VEs. We briefly describe the architecture and
the necessary modules. Then we focus on the creation of
VEs using sketches, depicting the visual language and the
symbol recognition methodology as well as a description of
the user interaction with our tool. Finally we present some
conclusions and suggest directions for future work.

2 Related Work

Although no calligraphic interfaces had been devised
for virtual environment management, several experimen-
tal sketch-based systems were developed in recent years
for a number of different areas, such as interface design,
mechanical systems simulation or control systems analysis.
SILK [15] is an interactive tool to sketch interfaces using
an electronic pad and stylus. Designers can use SILK to
quickly sketch the user interface and, when they are satis-
fied with the early prototype, produce a complete and opera-
tional interface. A similar tool, JavaSketchlt, was presented

by Caetano et al. [6] and generates a Java interface based
on hand-drawn compositions of simple geometric shapes.
The JavaSketchlt evaluation concluded that users consider
their sketch-based system more comfortable, natural and in-
tuitive to use than traditional mouse-based tools.

Alvarado and Davis [1] developed ASSIST, a program
that produces simple 2D mechanical devices from hand-
drawn sketches. This system performs real-time interpreta-
tion, as the sketch is being created, using a set of heuristics
to construct a recognition graph containing the likely inter-
pretation of the sketch and selects the best one based on
both contextual information and user feedback. A similar
approach was followed by Hammond and Davies [11, 12]
in Tahuti, their recognition environment for class diagrams
in UML.

Hong and Landay [13] developed a Java toolkit to sup-
port the creation of pen-based applications. Using this
framework, Lin et al. [16] created DENIM, a sketch-based
system that helps web site designers in the early stages of
the design process. SketchySPICE [13] is another program
developed using SATIN. It consists in a calligraphic inter-
face for SPICE, a circuit CAD tool developed at University
of California at Berkeley. In this editor where users can
draw simple circuits gates in two distinct modes. In immedi-
ate mode recognised sketches are immediately replaced by
its formal symbol, while in deferred mode recognised ob-
jects are left sketchy but the recognised symbols are drawn
translucent behind the sketch, in order to give some feed-
back to users.

More recently, Kara and Stahovich [14] presented the
SIM-U-SKETCH, an experimental sketch-based interface
for Matlab’s Simulink software package, an add-on pack-
age for analyzing feedback control system and other similar
dynamic systems. With this interface users can sketch func-
tional Simulink models and interact with them, modifying
existing objects or add new ones. SIM-U-SKETCH was de-
signed to allow users to draw as they would do on paper,
with no constraints imposed by the recognition engine. To
that end, this system employs a recognise on demand strat-
egy in which the users have to explicitly indicate whenever
they want the sketch to be interpreted. Then, once the sketch
is finished, it is interpreted by the system in order to become
a Simulink model.

Liwicki and Knipping [17] developed a system for rec-
ognize sketched logic circuits and graphically simulate
them. In this solution even the simulation is controlled
through calligraphic interaction. It allows specification of
input values by hand-writing the corresponding numbers.
However, the sketches were never converted to precise di-
agram and the simulation is represented over the sketched
circuit.

Despite their apparent similarity, distinct approaches and
strategies are used in the systems referred above. We stud-

ied the advantages and drawbacks of these methodologies
and used them to devise a collaborative calligraphic inter-
face to create and manage VEs in the context of ION frame-
work.

3 Overview

Usually agent frameworks do not offer native tools to
create agent-based applications. Among positive exceptions
are ZEUS Agent Building Toolkit [19], depicted in Figure 1,
and AgentFactory [7] which have tools to generate starting
scripts for creating agents. Agent Academy [18] has a tool
to parameterize and launch agent-based applications using
previously defined agent types. Agent Society Configura-
tion Manager and Launcher (ASCML) [5] is a tool for the
Java Agent Development Framework (JADE) which facili-
tates the configuration and deployment of agent societies.
NetLogo [21] is a programmable modeling environment,
featuring hundreds of independent agents, where modelers
can give instructions using text-based input.

But all these tools lack some interactivity. Most use a
script language and a command interpreter that parses and
executes scripts. Even the solutions which provide graph-
ical interfaces are quite limited and dependent on textual
input.

In order to overcome the problem stated above, we
present EditION, a solution to collaboratively create and
manage VEs defined in the /ON framework. With EditION
Editor, users can sketch world elements or command ges-
tures in order to create and control the VE. By providing
immediate visual feedback to users of what is happening in
the world, it allows high level debugging.

Agent Options
@k e ol
| | [omeer | [@ g T e

Buyer
PC_Factory

Create Scripts for ... ® ‘Windoy

[0 Name | Type |~ Command

Narneserverd Narneserver | javazeus.agents ANServer Nameserver0-t1.0-fn
Fagilitatord Facilitator java zeus.agents.F acilitator Facilitator0 -o null -s ns..
Visualiser0 Visualiser java Zeus.visualiserVisualiser Visualiser0 -s ns.db
Factory Agent java Factory -0 null -s ns.db -e myUl
Make_Computer Task

Generation Messages

Generating Agent: Factary .. ok
Generating Task: Make_Computer .. ok
Writing Scripts ... ok

TR

Generation Plan |Utity Agents | Task Agents | Tasks |

Figure 1. Zeus agent building toolkit

3.1 Architecture

Although EditION should work closely with the /JON
framework, they must be independent. Indeed, the frame-
work core handles the VE and provides a generic API for
external control, which can be done by different clients,
ranging from a simple textual console to our calligraphic
tool. Next we will describe the architecture we propose for
such solution.

EditlON Editor
. EditlON |1\ ION Network OGRE Realizer
: Manager A
° / ION
EditION Editor o Core
.
Remote 1 \
Console N
.
L]
. \\
i —
Client XPTO

Figure 2. Architecture overview

Figure 2 depicts the overall architecture of the developed
system. The actual simulation process takes place at the
ION.Core module. ION.Network supplies an access point
where all ION.Core functionality is available to potential
remote clients. One of these is the Edit/ON Manager which
handles all spatial and visual representation issues in or-
der to cope with distribution. Users can control the world
through EditION Editor, a calligraphic tool connected to
EditION Manager. On the right of Figure 2 we have OGRE
Realizer which is a module used for the visualisation of 3D
worlds.

3.2 The ION framework

The ION framework aims at providing a means to simu-
late dynamic environments. To achieve this goal it identifies
five basic elements: Entities, Properties, Actions, Groups
and Events. Entities populate the simulation universe, they
can have Properties and change the world through the use
of their Actions. Also, Entities can be connected through
the use of Groups.

The simulation is processed in a discreet step manner.
All the universe manipulations are made so that it is as-
sured that at a given simulation step the same informa-
tion is available for all elements. Let us take as an ex-
ample Craig Reynolds simulation of flocking behaviour
Boids [20]. Imagine a flock of birds that fly in an open
space. In the ION framework each bird would be repre-
sented as an Entity that has a given position Property and

that can fly around through the Action move. In this ex-
ample the movement of a bird depends on the positions of
the birds in the vicinity. This is true for all moving birds.In
other words, when the move Action sets the new position for
the bird it will influence the movement of the other birds in
the simulation. The ION framework assures that for a given
simulation step all changes to the world only are taken when
all actions have been performed. So, the position of a bird
will only be changed after all new positions are computed
and the information available to all birds will be the same
no matter the order by which their movement is computed.

When the universe changes, such as when the value of
a Property is modified or an Action is started or stopped,
an Event is created. This Event is then propagated to
whomever registered to be notified of such an Event.

The ION.Network module provides a way to manipulate
the simulated universe from a remote access point. This is
accomplished through a star network topology.

3.3 The EditION Manager

Connected to the ION.Network module, the EditION
Manager provides distribution functionality to calligraphic
editors. To that end, it must handle not only an image of
the symbolic representation of the VE used by ION.Core,
but also its schematic counterpart, the diagram representa-
tion of that world used by EditION Editor. As depicted in
Figure 3, EditION Manager stores a World Representation
containing all relevant information about the VE, as seen by
ION, and corresponding diagram, as seen by EditION.

Besides guaranteeing a correct synchronisation of these
two representations, the EditlON Manager must handle
collaborative management of the schematic representation,
since several instances of EditION Editor can edit the di-
agram at the same time. Since collaboration itself is not

Scribbles N
‘ CALI ‘ Viewer

Sketch Recogniser

1 Gestures _ J j

Elements & Comm -
— >)

‘ Scheme Manager ‘
Scheme <):>
Representation <«

Elements &
Status Information

EditlON Editor
L |nstruction51 : FEVeNtS - - -

Instructionsl Events ;
i EditlON Manager

Ty (T
world <{=>| World Manager ‘
Representation |
w7

Figure 3. EditlON architecture

EditlON Editor

Ceamon
Client
> TR

Scheme

Representation U
/ Event\

EditilON Manager

ION Network

_Listener

T

;\ Server /

\{ o)
J

G EHI

Event Manager -
World
Representation

command
sync

@Y \\

Server /

Yo
{ION Client)
A il answer

event

fioN Even)

4 Event \‘
\ Listener /™

_Dispatcher
\Jepernet/

assync

([hY
. . ~
EditION Editor Editor
§ Clients
(EditioN ()1
@
Scheme
Representation
‘/Event\\’
\\Listener/‘

Figure 4. Communication details

in the scope of this paper, here we will just briefly describe
how it was implemented, omitting an extensive presentation
of this topic.

To implement the collaborative features of proposed sys-
tem, a rigid communication protocol was established, with
centralised control in the EditION Manager. In short, it re-
ceives messages from editors, commonly generated upon
user intervention. Parsed and validated, the received infor-
mation is then broadcasted to other editors and forwarded
to ION framework, after proper processing.

In the basis of these collaborative features is the commu-
nication system upon which the proposed solution was de-
veloped. This system relies on a simple message exchange
over TCP/IP connections. As depicted in Figure 4, each ed-
itor has a client that send instructions to the manager and a
event listener that receives events from the manager. Every
time a user changes something on his editor or something
happens in the ION network, the event manager updates
its world representation and disseminates the correspond-
ing events to all editors and, if necessary, to the ION net-
work. This solution proved to be fast and effective for our
purposes, allowing real-time collaborative management of
world simulations.

3.4 The EditION Editor

To create and manage the VE users interact with the pro-
posed solution through EditION Editor. It includes a calli-
graphic interface where users sketch a symbolic represen-
tation of the VE, receiving proper visual feedback. Unlike
other approaches, like SketchySPICE, where users can se-
lect in which mode they draw, only the immediate mode

makes sense in EditION. Therefore, the sketch is interpreted
and validated as it is being drawn, allowing on-the-fly cre-
ation instead of having to draw the entire diagram prior to
its interpretation.

Therefore, real time recognition of gestures must be per-
formed as well as syntactic validation of sketches and corre-
sponding context. This means that the whole process should
be, above all, efficient. Following this premise, we focused
on devising a simple solution that provides good results.
The EditION Editor tool can be divided into four distinct
modules, illustrated in Figure 3 and described below.

Scribbles drawn by users are processed by the Sketch
Recogniser module, which uses CALI [10] library to recog-
nise them as shapes or commands. We choose this recog-
niser due to its simplicity, comparing for instance with the
powerful sketch recognition engine proposed by Alvarado
and Davis [2], and due to the fact that it completely fulfils
our needs. Based on feedback provided by CALI, which
classifies submitted scribbles according to a predefined ges-
ture set, Sketch Recogniser then identifies if recognised ges-
ture is an element of the world or a command, sending the
corresponding information to the Scheme Manager module.

The Scheme Manager module can be considered as the
core of EAit ION tool. It handles the diagram representing
the world, performing syntactic and basic semantic valida-
tion. To that end, it applies a set of predefined grammat-
ical rules to guarantee the correctness of the scheme. The
scheme is stored as a directed graph, in which the nodes rep-
resent the elements and the edges represent the connectors.
This way, common graph manipulation techniques could be
used to manage the scheme and navigate through it. At this
level just essential information about the world is stored,

since for viewing and editing purposes it can be considered
as a diagram.

The Viewer module encapsulates the output details of
our approach. It is responsible for providing visual feed-
back to the user, by selecting the graphical shapes displayed
for each element and its properties according to the current
state. Based on information received from the Scheme Man-
ager, the viewer determines which shape must be drawn, its
position and colour. Moreover, it manages the way mes-
sages are shown to users and how long they remain in the
screen.

The communication with the EditlON Manager applica-
tion is done trough sockets and is controlled by the Scheme
Manager module. It includes an event listener triggered by
messages sent from ION Framework. Moreover, any new
element or command generated by the Sketch Recogniser
originates, after being validated, an instruction sent to JON
Framework, which performs the complete validation and
provides proper feedback.

4 Sketching Virtual Environments

Developers often start by drawing VEs on paper. Then,
they generally use script-based tools to specify the world in
the framework. Even when these tools have graphical inter-
faces with mouse interaction, they are greatly dependent on
textual commands. Following the recent developments in
pen and sketch-based interfaces, Edit ION is an alternative
to standard mouse-based tools to create and manage VEs.

4.1 Visual Language

In order to produce an easy to use tool we start by iden-
tifying shapes commonly used by developers when they
sketch a diagram of a VE on paper. We select a set of four
symbols to represent the different elements of a VE, based
on its visual similarity with the hand-drawn elements, usu-
ally sketched by developers when schematically represent-
ing their VEs. As depicted in Figure 5, entities are repre-
sented by a rectangle, actions by a small square, properties
by a small circle and groups by a lozenge.

To allow easier identification, we give a different colour
to each shape. Moreover, element colour changes accord-
ing to element state to convey even more information about

Entity Action Property Group
- N 7 C
Figure 5. Symbols for virtual environment el-
ements.

the world. For instance, when a property changes the cor-
responding visual element gets darker and slowly returns to
the original colour. This way users can easily understand
what is happening in the world. However, selected colours
are just development options, lacking some tests to validate
them or changing to a more appropriate palette.

4.2 Scribble Recognition

As expected in a calligraphic tool, the interaction with
editION is usually made through pen-based hardware
such as a TabletPC or a digitising tablet. After capturing
the scribbles drawn by the user, these are recognised, inter-
preted and validated to become useful. Thus, the whole pro-
cess of handling the user input and producing corresponding
output both to the user and to the framework, plays a ma-
jor role in our calligraphic tool. This task can be divided
in two distinct components: symbol recognition and sketch
analysis.

In order to provide on-line recognition of sketches, our
approach processes the scribbles as they are being sketched
and not the entire sketch on demand, as performed by
SILK and SiM-U-SKETCH. These scribbles are clusters of
strokes drawn by the user which are submitted to a recogni-
tion process when the user’s pauses are longer than a given
time between strokes. To improve efficiency, older strokes
are discarded if not included in a recognised symbol dur-
ing a certain period of time, giving scribbles a decaying be-
haviour.

All combinations of strokes that compose the scribble

Scribble

RS l

‘ Calligraphic Recognition ‘

l

CALI

Gesture
Shape Command

/ N\

‘ ‘ Command Interpretation

l l

Element Command

Element Generation

Sketch
Recogniser

Syntactic Validation ‘ ‘ Command Processing

Manager

[}

£

[

E | |

[2]
: Instruction Instruction :
.............. F R RRRRRTRTTPRILLEr ERSSRRPRRRIRRY

Figure 6. Recognition strategy

I:C}r;:i; %) O Elllpse Qj
<7|;ectaae: ﬁ Diamonc
YV =
Pl
Triangle Delete
WavyLine ove
AT | C DU
Cross Copy

Figure 7. Gestures recognised by CALI

are submitted to the recognition mechanism, starting with
combinations that contain all the strokes and finishing with
single strokes if no symbol were recognised before. In or-
der to recognise scribbles drawn by users and convert them
into instructions for /ON, we use a multi-level recognition
and parsing strategy, outlined in Figure 6. This strategy is
divided in several steps, detailed below.

We start by performing the calligraphic recognition of
submitted scribbles. To that end, we use CALI, the fast, sim-
ple and compact scribble recogniser used in JavaSketchlt.
It combines temporal adjacency, fuzzy logic and geomet-
ric features to classify scribbles. CALI identifies shapes of
different sizes and rotated at arbitrary angles, drawn with
dashed, continuous strokes or overlapping lines. It detects
not only the most common shapes in drawing such as trian-
gles, lines, rectangles, circles, diamonds and ellipses, using
multiple strokes, but also other useful shapes such as ar-
rows, crossing lines or wavy lines, as depicted in figure 7.

Comparing the visual language defined previously with
the set of gestures recognised by CALI, we easily identify
a subset of this that will be used to specify elements. Then
we can use some more gestures to specify commands nec-
essary to manage the VE elements. The complete subset
of gestures we use is depicted in Figure 8. The scribbles
to represent the elements were obviously selected from the
already defined visual language. Additionally, pre-specified
gestures represent the “delete”, “’start”, ”stop”” and ’change”
commands.

Generally considered as an advantage, the rotation and

O o

Group Property Action

M/{W/W>><WW

Delete Start Stop

Entity

Change

Figure 8. Gestures for elements and com-
mands.

size independence of CALI recogniser is not useful in our
approach. Thus, we need to carry out additional computa-
tion to determine scribble orientation and size. With this ad-
ditional information and based on output provided by CALI,
the second calligraphic recognition level performs gesture
identification and yields two categories of gestures: shape
gestures and command gestures. To perform gesture identi-
fication we apply the grammar presented in Figure 9. This
set of simple rules provides an efficient manner not only
to determine if the scribble is a command or a shape, but
also to identify the command or element corresponding to a
given scribble.

The second level of the recognition strategy, gesture
identification, is the application of the grammar mentioned
above. This process transforms gestures recognised by
CALI into elements or commands for the Scheme Manager.

GESTURE-IDENTIFICATION-GRAMMAR(S)::=

valid_gesture — shape — command
shape — entity — action — group — property — connector
command — delete — start — stop — change
entity — Gesture(S, RECTANGLE) &

SizeWithin(S, Tpaz Tmink) & AspectRatio(S, 4, 3)
action — Gesture(S, RECTANGLE) &

SizeUnder(S,7a) & AspectRatio(S,1,1)
group — Gesture(S, DIAMOND) &

SizeWithin(S, TpyasC s TminG)
property — Gesture(S, CIRCLE) & SizeUnder (S, Tp)
connector — Gesture(S, LINE)
delete — Gesture(S, DELETE)
start — Gesture(S, MOVE)
stop — Gesture(S, CROSS)
change — Gesture(S, WAVYLINE)
Gesture(sc,t) — Scribble sc recognized by CALI as ¢
SizeWithin(sc, ty,t;) — Size of scribble sc within ¢,, and #;
SizeUnder(sc,t) — Size of scribble sc is below ¢
AspectRatio(sc, w, h) — Aspect ratio of scribble sc ~ w:h

Figure 9. Grammar for gesture identification.

In this process, rectangles are transformed into entities or
actions, depending on their geometric properties, diamonds
into groups, circles into properties and lines into connec-
tors. On the other hand, pre-specified command gestures
are transformed into “’delete”, start”, ”stop” and “change”
commands. After identifying the category to which the de-
tected gesture belongs, we follow distinct parsing paths for

shapes and commands.
4.3 Sketch Analysis and Validation

When a scribble is identified as an element, it goes
through validation. To that end, context information is used
to verify if such element makes sense in the current scheme.
In the case of a connector, such information is also valuable
to determine if it is a simple connector or a bind. The simple
connector links an action or property to it’s manager while
a bind connects an entity with a group. If the newly created
element passes the syntactic validation, the corresponding
instruction is created and sent to the EditlON Manager.

Select type for element 'Entity’

Entty
EmptyEntity

Figure 10. Creating an entity with EditlON

Even after passing the syntactic validation performed by
Scheme Manager the element, further syntactic validation
is needed as well as semantic validation. Thus, the new el-
ement is marked as “not validated” until its creation were
broadcasted by Edit/ION Manager to other EditION editors
and sent to the /ON framework for further validation. Ac-
cording to the result of syntactic and semantic validation
performed by the JON framework, corresponding events are
transmitted back to the EditlON Manager and then broad-
casted to all EditION editors. Such events provide informa-
tion that will be used to give visual feedback to the user,
either by replacing the sketch by the corresponding element
on the screen, showing an meaningful error message or ask-
ing more details about the recognised element.

For instance, in Figure 10 is shown the process of creat-
ing an entity in three steps. First, the user sketches the cor-
responding gesture, which is recognised as an Entity. This
information is then sent to the EditION Manager that vali-
dates such instruction and sends information about possible
types of pre-defined entities. The user should then select
the type of entity from a list and the result of this choice
is transmitted to the EditION Manager, which validates the
creation of the given entity and provides the proper feed-
back and took the necessary measures to create it. Among
these measures are the dissemination of the creation com-
mand by all connected editors and to the ION Network. This
command includes the specification of the complete set of
elements that correspond to the created entity.

If a scribble is identified as a command, the context is
analysed to verify its validity. It uses information extracted
from context to produce an instruction to send to the Edi-
tION Manager. As for the elements, the command is broad-
casted to other EditION editors and sent ION framework.
After validating and processing the command, the frame-
work will transmit the corresponding events. Based on these
events the scheme will be updated and the user will receive
proper feedback.

5 Editing and Debbuging with EditION

Currently, users sketch their VEs in sheets of paper be-
fore coding it into the framework. In EditION we take ad-
vantage of the users’ ability to draw VEs with a pen to auto-
mate the boring and time consuming task of writing unnec-
essary lines of code. Therefore, users can sketch the world
in the EditION calligraphic interface using a pen-based dig-
itizer and it will be automatically created in the framework.

Since we perform on-the-fly gesture recognition, the
sketch is interpreted and validated as it is being drawn.
Moreover, the on-line connection with the framework al-
lows EditION to provide immediate feedback to all users
connected to the framework. To that end, syntactic and se-
mantic verification of the sketches are performed while the

world is being constructed. Thus, it is no longer necessary
to design the complete world to check if any errors exist, as
it usually happens in other tools.

Thus, to create a VE with EditION the user sketches each
element at a time using single or multi-stroke scribbles. The
scribble is immediately interpreted by the recogniser and
its creation is communicated to other editors working in
this collaborative environment. When it is interpreted by
the framework as a valid element, the corresponding formal
symbol replaces the sketch in all editors.

Besides elements, the user can also sketch commands.
These are also interpreted by the recogniser and, if as they
are validated and executed by the framework, the corre-
sponding action immediately takes place and the drawing
area is updated accordingly in all editors.

Moreover, if an external application or an internal event
of the framework changes the status of the VE in the
ION, such change is immediately reflected in the editors if
needed.

My name is Paulie

127,0.0.1;3000 A

Figure 12. Partial symbolic view

Additionally, to allow proper debugging it is possible
to control the program flow from the editor by performing
step-by-step executions in the framework. This way it is
possible to debug a VE in run-time. Thanks to the collab-
orative feature of EditION, it is easy to have multiple users
in distinct computers analysing diferent views of the world
symbolic representation during the debug operation.

To test presented solution, we performed a small study
case based in FearNot! [3, 4] which is a computer applica-
tion developed to tackle and eventually help to reduce bul-
lying problems in schools. Thus, the overall objective of
the development of FearNot!, was to build an anti-bullying
demonstrator in which children, of age 8 to 12, experience a
virtual scenario where they can witness (from a third-person
perspective) bullying situations.

Through the use of two EditION editors, in separate
computers, we have set up the simulation universe by creat-
ing two Entities that represented a bully and a victim charac-
ter. We then staged a bullying episode by changing Proper-
ties values, such as who should the bully hit, and by starting
Actions such as the crying of the victim. As the simulation
took place the Ogre.Realizer module functioned as a view
of the spatial elements of the world (Figure 11). On the
other hand, EditION Editor provided not only an efficient
manner by which to interact with the world but also offered
a symbolic view (Figure 12) of the simulation. Namely, as-
pects that were not easily grasped, or even visible, by the
Ogre.Realizer module such as the internal emotional state
of a character were clearly depicted by EditION.

The diagram depicted in the screenshot of Edition shown
in Figure 12 represents the two characters seen in Figure 11.
Each rectangle corresponds to a character (an agent) in the
simulation, while the squares represents the actions associ-
ated to that agents and the circles represent the properties
of that actions. Properties of the characters are also repre-
sented as circles and indeed exist in the depicted scenario
but are oustide the illustrated view. Through simple ges-
tures, presented in Figure 8, the user can control the status
of the world, namely by changing properties or triggering
actions.

To appraise the proposed system on a collaborative en-
vironment we install it on lab equipped with a large screen
display, the LEMe wall [8]. Then we asked two users of
the FearNot! application to test it. Using TabletPCs, each
user controlled two entities of the world simulation through
EditION Editor. Besides having the TabletPC screen where
each one can see a symbolic view of the world that best
suits his purposes, in this particular collaborative environ-
ment the proposed system provides an additional symbolic
view of the world, as well as a 3D view of the simulation
(see Figure 13). Thanks to proposed collaborative method-
ology changes made by any user are immediately displayed
in every views, allowing a realtime collaborative interaction

Figure 13. Collaborative usage of EditlON on a large screen display

with the simulation.

Compared with a user evaluation, the test described in
previous paragraph was quite informal, focused mainly on
the technical details of the pre-defined tasks. Nevertheless,
we manage to obtain qualitative feedback from the users.
Both considered the system a good approach for the prob-
lem they face when designing VEs, as well as controlling
and debugging simulations in these virtual environments.

6 Conclusions and Future Work

We proposed a collaborative calligraphic solution as an
alternative approach to manage VEs. Instead of writing
code or dragging and dropping elements from toolbars and
menus, EditION is closer to traditional paper-and-pencil
methods where the user simply sketches the elements he
wants to create in the VE. Such sketches are interpreted and
validated as they are being drawn, allowing an immediate
feedback which prevents errors or incoherence.

The user can also change elements dynamically while
the simulation is running. EditION uses a visual language
to represent each element in the VE and this symbolic repre-
sentation changes as the VE evolves during the simulation.
This is really useful to visually debug and easily understand
what is indeed happening in the virtual environment.

Moreover, EditION also allows collaborative manage-
ment, meaning that several users can sketch and manipulate
elements at the same time. Collaboration is very important
not only for creating the VE in less time, but also to allow
multiple users to interact with the simulation at the same
time.

However, there is still room for improvements. The gen-
eration and constant update of the symbolic representation
as the simulation goes creates several visualisation prob-
lems related with spatial constraints. Elements should not

overlap and they should be distributed in a readable and un-
derstandable manner. Currently, EditION has some prob-
lems when we have too many elements being displayed at
the same time. Clearly, We need more advanced methods to
achieve an efficient spatial distribution.

The visual language can also be extended to include
more visual elements, namely the propagation of events as
well as other dynamic processes that occur inside the simu-
lation. This could not only create a richer view of the sim-
ulation, but also make the visual debug capabilities men-
tioned before even more efficient. Additionally, the input
of textual information can be further enhanced by adding
hand-writing recognition to complement the sketch-based
control of the simulation.

In conclusion, EditION brings some new contributions
to the area of simulation mainly because it is able to display
what is happening inside the simulation rather than just the
results. Furthermore, it can display this information visu-
ally using a symbolic representation that can be manipu-
lated offstage or during the simulation by multiple users at
the same time in a collaborative manner. We feel this is the
right path to what will be the tools of the future when we
talk about managing virtual environments.

References

[1] C. Alvarado and R. Davis. Resolving ambiguities to create
a natural sketch based interface. In Proceedings of IJCAI-
2001, August 2001.

[2] C. Alvarado and R. Davis. Dynamically constructed bayes
nets for multi-domain sketch understanding. In SIGGRAPH
'06: ACM SIGGRAPH 2006 Courses, page 32, New York,
NY, USA, 2006. ACM Press.

[3] R. Aylett, S. Louchart, J. Dias, A. Paiva, and M. Vala.
Fearnot! - an experiment in emergent narrative. In Pro-

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

ceedings of Fifth International Working Conference on In-
telligent Virtual Agents, IVA 2005, pages 305-316, 2005.

R. Aylett, S. Louchart, J. Dias, A. Paiva, and M. Vala. Un-
scripted narrative for affectively driven characters. [EEE
Computer Graphics and Applications, 26(2):42-52, 2006.
L. Braubach, A. Pokahr, D. Bade, K.-H. Krempels, and
W. Lamersdorf. Deployment of distributed multi-agent sys-
tems. In F. Z. Marie-Pierre Gleizes, Andrea Omicini, editor,
5th International Workshop on Engineering Societies in the
Agents World, pages 261-276. Springer-Verlag, Berlin Hei-
delberg, 8 2005.

A. Caetano, N. Goulart, M. Fonseca, and J. Jorge. Javas-
ketchit: Issues in sketching the look of user interfaces. In
Proceedings of the 2002 AAAI Spring Symposium - Sketch
Understanding, pages 9—14, Palo Alto, USA, Mar. 2002.

R. W. Collier. “Agent Factory: A Framework for the Engi-
neering of Agent-Oriented Applications”. PhD thesis, ”Uni-
versity College Dublin”, 2001.

B. R. de Aragjo, T. Guerreiro, R. J. J. Costa, J. A. P. Jorge,
and J. ao Anténio Madeiras Pereira. Leme wall: Desenvol-
vendo um sistema de multi-projec¢ao, October 2005.

A. Ferreira, M. Vala, J. M. Pereira, J. A. Jorge, and A. Paiva.
A calligraphic interface for managing agents. In Proceed-
ings of the 14th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision,
2006.

M. J. Fonseca, C. Pimentel, and J. A. Jorge. CALI: An On-
line Scribble Recognizer for Calligraphic Interfaces. In Pro-
ceedings of the 2002 AAAI Spring Symposium - Sketch Un-
derstanding, pages 51-58, Palo Alto, USA, Mar. 2002.

T. Hammond and A. Davis. Tahuti: A geometrical sketch
recognition system for uml class diagrams. In AAAI Spring
Symposium on Sketch Understanding, pages 59—68. AAAI
Press, 2002.

T. Hammond and R. Davis. Tahuti: a geometrical sketch
recognition system for uml class diagrams. In SIGGRAPH
'06: ACM SIGGRAPH 2006 Courses, page 25, New York,
NY, USA, 2006. ACM.

J. I. Hong and J. A. Landay. Satin: a toolkit for informal
ink-based applications. In UIST ’00: Proceedings of the
13th annual ACM symposium on User interface software
and technology, pages 6372, New York, NY, USA, 2000.
ACM Press.

L. B. Kara and T. F. Stahovich. Sim-u-sketch: a sketch-
based interface for simulink. In Proceedings of the Working
Conference on Advanced Visual Interfaces, pages 354-357,
New York, NY, USA, 2004. ACM Press.

J. A. Landay and B. A. Myers. Sketching interfaces: Toward
more human interface design. IEEE Computer, 34(2):56-64,
2001.

J. Lin, M. W. Newman, J. I. Hong, and J. A. Landay.
DENIM: finding a tighter fit between tools and practice for
web site design. In CHI, pages 510-517, 2000.

M. Liwicki and L. Knipping. Recognizing and Simulat-
ing Sketched Logic Circuits, volume 3683/2005 of Lecture
Notes in Computer Science, pages 588-594. Springer, Berlin
Heidelberg, 2005.

(18]

[19]

(20]

(21]

P. A. Mitkas, D. Kehagias, A. L. Symeonidis, and 1. N.
Athanasiadis. ”a framework for constructing multi-agent ap-
plications and training intelligent agents”. In Proceedings of
the 4th Int. Workshop on Agent-Oriented Software Engineer-
ing (AOSE-2003), pages 96-109, 2003.

H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus: a
toolkit and approach for building distributed multi-agent
systems. In Proceedings of the 3rd conference on Au-
tonomous Agents, pages 360-361. ACM Press, 1999.

C. Reynolds. Flocks, herds, and schools: A distributed be-
havioral model. In SIGGRAPH ’87 Conference Proceed-
ings, pages 25-34, 1987.

U. Wilensky. Netlogo. Center for Connected Learning
and Computer-Based Modeling. Northwestern University,
Evanston, IL., jhttp://ccl.northwestern.edu/netlogo;, 1999.

