Robotics Reading Group

@ Instituto Superior Técnico

Session #4
29-11-2019

Joao Ribeiro

(€Y Google DeepMind

e DON

T

HUMAN-LEVEL CONTROL THROUGH
DEEP REINFORCEMENT LEARNING

Some background

action

A

Some background

action
A

Rt+l
S.. | Environment

Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in
states

Some background

action
A

Rt+l
S.. | Environment

Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in
states

(in other words)

Some background

action
A

Rt+l
S.. | Environment

Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in
states

(in other words)
- Expectation of “how good executing action a in state s is for the agent”

Learning Q(s,a) (trial-and-error)

Learning Q(s,a) (trial-and-error)

In a given timestep:

Learning Q(s,a) (trial-and-error)
In a given timestep:

1. Observe state s (described by some designed features)

Learning Q(s,a) (trial-and-error)
In a given timestep:

1. Observe state s (described by some designed features)

2. Execute action aon the environment

Learning Q(s,a) (trial-and-error)
In a given timestep:

1. Observe state s (described by some designed features)
2. Execute action aon the environment

3. Observe next state s’ and reward r

Learning Q(s,a) (trial-and-error)

In a given timestep:

1.

2.

Observe state s (described by some designed features)
Execute action a on the environment
Observe next state s’ and reward r

Update Q(s,a) estimate iteratively:

Learning Q(s,a) (trial-and-error)

In a given timestep:

1.

2.

Observe state s (described by some designed features)
Execute action a on the environment

Observe next state s’ and reward r

Update Q(s,a) estimate iteratively:

a. Q(s,a)=(1-a)Q(s,a) + a[r + ymax Q(s’, a’)]

Learning Q(s,a) (trial-and-error)

In a given timestep:

1.

2.

Observe state s (described by some designed features)
Execute action a on the environment

Observe next state s’ and reward r

Update Q(s,a) estimate iteratively:

a. Q(s,a)=(1-a)Q(s,a) + a[r + ymax Q(s’, a’)]

(known as Q-Learning)

We can do better!

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-a) Q(s,a) + a[r +y max Q(s’, a’)]

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-a) Q(s,a) + a[r +y max Q(s’, a’)]

Use function approximation (neural network)!

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-a) Q(s,a) + alr +ymax Q(s, a’)]
Use function approximation (neural network)!
Predictions Targets

y_hat=Q(s, 3, 6) y =r+ymaxQ(s, a, 6)

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-a) Q(s,a) + alr +ymax Q(s, a’)]
Use function approximation (neural network)!
Predictions Targets

y_hat=Q(s, 3, 6) y =r+ymaxQ(s, a, 6)

Loss (Mean Squared Error):

1/N sum (y-yhat)”* 2

Three
Problems

1 - How to design good feature representations?

state =7

1 - How to design good feature representations?

state = I““

Distance to pipes?
£

AP < o

(B nn | o LI

1 - How to design good feature representations?

state = [.‘
Distance to pipes? _ . II!.[
Distance to ground? £ : A
] ' .
A< _ (ol

Biae w5 L

1 - How to design good feature representations?

state = [.‘
Distance to pipes? _ % II!..[
Distance to ground? £ . A
Distance to higher pipe? : .
] " .
AP, = . T

Biee w5 L

1 - How to design good feature representations?

state = [.‘
Distance to pipes? _ % II!..[
Distance to ground? £ . A
Distance to higher pipe? : .
] " .
AP, = . T

Bad!

Biee w5 L

1 - How to design good feature representations?

state = [.‘
Distance to pipes? _ £ Il!_.l
Distance to ground? £ . A
Distance to higher pipe? : .
] " .
AP, = . T

Bad!

ot ol
1. Requires domain knowledge n 1n.-1 *I‘. 1

1 - How to design good feature representations?

state = [.‘
Distance to pipes? _ £ Il!_.l
Distance to ground? £ . A
Distance to higher pipe? : .
] " .
AP, = . T
Bad!

o [l
1. Requires domain knowledge
2. Pronetohuman bias 1 . 1

1 - How to design good feature representations?

state = [.‘
Distance to pipes? _ £ II!.l
Distance to ground? £ . A
Distance to higher pipe? : .
] " .
.= ' T
Bad!

e (B

1. Requires domain knowledge 2
2. Pronetohuman bias 1

3. Could limit learning!

Solution?

Deep Learning!

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

2 - Neural fitted-Q Iteration

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

iteratively trained using single datapoint (s, a, r, s’)

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

iteratively trained using single datapoint (s, a, r, s’)
(Inefficient!)

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

iteratively trained using single datapoint (s, a, r, s’)
(Inefficient!)

Solution?

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

- iteratively trained using single datapoint (s, a,r, s’)
- (Inefficient!)

Solution?

1. Collect(s,a,r,s’)

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

- iteratively trained using single datapoint (s, a,r, s’)
- (Inefficient!)

Solution?

1. Collect(s,a,r,s’)
2. StoreindatasetD

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

- iteratively trained using single datapoint (s, a,r, s’)
- (Inefficient!)

Solution?
1. Collect(s,a,r,s’)

2. Storeindataset D
3. Randomly sample a batch of B datapoints for backpropagation!

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

- iteratively trained using single datapoint (s, a,r, s’)
- (Inefficient!)

Solution?

1. Collect(s,a,r,s’)
2. StoreindatasetD
3

Randomly sample a batch of B datapoints for backpropagation!

(Known as Experience Replay!)

3 - Target Neural fitted-Q

3 - Target Neural fitted-Q

Targets for loss computed using the same network

Predictions Targets

y_hat =Q(s, a; 6) y =r+ymaxQ(s,a’; 6)

3 - Target Neural fitted-Q

Targets for loss computed using the same network
Predictions Targets
y_hat =Q(s, a; 6) y =r+ymaxQ(s,a’; 6)

(Can heavily bias training!)

3 - Target Neural fitted-Q

Targets for loss computed using the same network

Predictions Targets
y_hat = Q(s, a;) y=r+ymaxQ(s, a’; 6)
(Can heavily bias training!)

Solution?

3 - Target Neural fitted-Q

Targets for loss computed using the same network

Predictions Targets
y_hat = Q(s, a;) y=r+ymaxQ(s, a’; 6)
(Can heavily bias training!)

Solution - Two networks!

3 - Target Neural fitted-Q

Targets for loss computed using the same network
Predictions Targets

y_hat = Q(s, a;) y=r+ymaxQ(s, a’; 6)
(Can heavily bias training!)
Solution - Two networks!

One for predictions

Q(s, a; 6)

3 - Target Neural fitted-Q

Targets for loss computed using the same network
Predictions Targets

y_hat = Q(s, a;) y=r+ymaxQ(s, a’; 6)
(Can heavily bias training!)
Solution - Two networks!

One for predictions One for targets

Q(s, a; 6) Q(s, a; Bearser)

Putting it all together

Putting it all together

Automatic
feature extraction

|
CNN

Putting it all together

Automatic Experience
feature extraction Replay

I |
CNN Dataset D

Putting it all together

Automatic Experience Main & Target
feature extraction Replay Networks

I | |
CNN Dataset D Q(s,a:8) Q(s,a;B:ree)

The Deep Q-Network!

Automatic Experience Main & Target
feature extraction Replay Networks
| | |
CNN Dataset D Q(s,a:8) Q(s,a;B:ree)

Convolution Convolution Fully connected
v - v

_n
=4
<
8
S
5
@
o
23
(]
Q

A
==
==
==
e

Does it work?

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

Results

49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Only high-level sensorial input
- Game screen (pixels)
- Current score

43/49 games - Outperformed best algorithms for each individual game

29/49 games

Results

49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Only high-level sensorial input
- Game screen (pixels)
- Current score

43/49 games - Outperformed best algorithms for each individual game

29/49 games - Human level or above

Results

49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Only high-level sensorial input
- Game screen (pixels)
- Current score

43/49 games - Outperformed best algorithms for each individual game

29/49 games - Human level or above
15/29 games

Results

49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Only high-level sensorial input
- Game screen (pixels)
- Current score

43/49 games - Outperformed best algorithms for each individual game

29/49 games - Human level or above
15/29 games - Superhuman control!

http://www.youtube.com/watch?v=TmPfTpjtdgg

Cool resources to check out:

- OpenAl Baselines - Tensorflow implementation of SOTA algorithms:
- https://github.com/openai/baselines

- Stable Baselines - Fork from openai/baselines with refactored code:
- https://github.com/hill-a/stable-baselines

- Tensorflow Agents - Full Deep RL library with good abstractions, written in tensorflow:
- https://github.com/tensorflow/agents

- Deep Reinforcement Learning that Matters - Really cool paper on statistical
significance and reproducibility of Deep RL work:
- https://arxiv.org/abs/1709.06560

- Deep RL Hands on - Really practical book on DRL with code examples written in
PyTorch:
- https://github.com/aibooks/aibooks.github.io

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/tensorflow/agents
https://arxiv.org/abs/1709.06560
https://github.com/aibooks/aibooks.github.io

Throttie: D.0Q, Steering: 0.00
Ui arom hayd 1o Mo, 1) b L3EAMN fo sant
sate bey Togle recarding -~ e Change s e

Maae VAN

Traming Stonus

I T T

1 s
L 1

"N

N

L
prlaade sowerd | 1

-

"oy

http://www.youtube.com/watch?v=iiuKh0yDyKE

