
Robotics Reading Group
@ Instituto Superior Técnico

Session #4
29-11-2019

João Ribeiro

Some background

Some background

Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in

state s

Some background

Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in

state s

(in other words)

Some background

Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in

state s

(in other words)
- Expectation of “how good executing action a in state s is for the agent”

Learning Q(s,a) (trial-and-error)

Learning Q(s,a) (trial-and-error)

In a given timestep:

Learning Q(s,a) (trial-and-error)

1. Observe state s (described by some designed features)

In a given timestep:

Learning Q(s,a) (trial-and-error)

1. Observe state s (described by some designed features)

2. Execute action a on the environment

In a given timestep:

Learning Q(s,a) (trial-and-error)

1. Observe state s (described by some designed features)

2. Execute action a on the environment

3. Observe next state s’ and reward r

In a given timestep:

Learning Q(s,a) (trial-and-error)

1. Observe state s (described by some designed features)

2. Execute action a on the environment

3. Observe next state s’ and reward r

4. Update Q(s,a) estimate iteratively:

In a given timestep:

Learning Q(s,a) (trial-and-error)

1. Observe state s (described by some designed features)

2. Execute action a on the environment

3. Observe next state s’ and reward r

4. Update Q(s,a) estimate iteratively:

a. Q(s,a) = (1-α) Q(s,a) + α[r + γ max Q(s’, a’)]

In a given timestep:

Learning Q(s,a) (trial-and-error)

1. Observe state s (described by some designed features)

2. Execute action a on the environment

3. Observe next state s’ and reward r

4. Update Q(s,a) estimate iteratively:

a. Q(s,a) = (1-α) Q(s,a) + α[r + γ max Q(s’, a’)]

In a given timestep:

(known as Q-Learning)

We can do better!

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-α) Q(s,a) + α [r + γ max Q(s’, a’)]

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-α) Q(s,a) + α [r + γ max Q(s’, a’)]

Use function approximation (neural network)!

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-α) Q(s,a) + α [r + γ max Q(s’, a’)]

Use function approximation (neural network)!

Predictions Targets

y_hat = Q(s, a, θ) y = r + γ max Q(s’, a’, θ)

We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-α) Q(s,a) + α [r + γ max Q(s’, a’)]

Use function approximation (neural network)!

Predictions Targets

y_hat = Q(s, a, θ) y = r + γ max Q(s’, a’, θ)

Loss (Mean Squared Error):

1/N sum (y-yhat)^2

Three
Problems

1 - How to design good feature representations?

state = ?

state = [
 Distance to pipes?

]

1 - How to design good feature representations?

state = [
 Distance to pipes?
 Distance to ground?

]

1 - How to design good feature representations?

state = [
 Distance to pipes?
 Distance to ground?
 Distance to higher pipe?
]

1 - How to design good feature representations?

state = [
 Distance to pipes?
 Distance to ground?
 Distance to higher pipe?
]

Bad!

1 - How to design good feature representations?

state = [
 Distance to pipes?
 Distance to ground?
 Distance to higher pipe?
]

Bad!
1. Requires domain knowledge

1 - How to design good feature representations?

state = [
 Distance to pipes?
 Distance to ground?
 Distance to higher pipe?
]

Bad!
1. Requires domain knowledge
2. Prone to human bias

1 - How to design good feature representations?

state = [
 Distance to pipes?
 Distance to ground?
 Distance to higher pipe?
]

Bad!
1. Requires domain knowledge
2. Prone to human bias
3. Could limit learning!

1 - How to design good feature representations?

Solution?

Deep Learning!

2 - Neural fitted-Q Iteration

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

Solution?

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

Solution?

1. Collect (s, a, r, s’)

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

Solution?

1. Collect (s, a, r, s’)
2. Store in dataset D

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

Solution?

1. Collect (s, a, r, s’)
2. Store in dataset D
3. Randomly sample a batch of B datapoints for backpropagation!

2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

Solution?

1. Collect (s, a, r, s’)
2. Store in dataset D
3. Randomly sample a batch of B datapoints for backpropagation!

(Known as Experience Replay!)

3 - Target Neural fitted-Q

3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ)

3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ)

(Can heavily bias training!)

3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ)

(Can heavily bias training!)

Solution?

3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ)

(Can heavily bias training!)

Solution - Two networks!

3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ)

(Can heavily bias training!)

Solution - Two networks!

One for predictions

Q(s, a; θ)

3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ)

(Can heavily bias training!)

Solution - Two networks!

One for predictions One for targets

Q(s, a; θ) Q(s, a; θtarget)

Putting it all together

Putting it all together

Automatic
feature extraction

|
CNN

Putting it all together

Automatic
feature extraction

|
CNN

Experience
Replay

|
Dataset D

Putting it all together

Main & Target
Networks

|
Q(s,a;θ) Q(s,a;θtarget)

Automatic
feature extraction

|
CNN

Experience
Replay

|
Dataset D

The Deep Q-Network!

Automatic
feature extraction

|
CNN

Experience
Replay

|
Dataset D

Main & Target
Networks

|
Q(s,a;θ) Q(s,a;θtarget)

Does it work?

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games - Human level or above

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games - Human level or above
- 15/29 games

Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games - Human level or above
- 15/29 games - Superhuman control!

http://www.youtube.com/watch?v=TmPfTpjtdgg

Cool resources to check out:
- OpenAI Baselines - Tensorflow implementation of SOTA algorithms:

- https://github.com/openai/baselines

- Stable Baselines - Fork from openai/baselines with refactored code:
- https://github.com/hill-a/stable-baselines

- Tensorflow Agents - Full Deep RL library with good abstractions, written in tensorflow:
- https://github.com/tensorflow/agents

- Deep Reinforcement Learning that Matters - Really cool paper on statistical
significance and reproducibility of Deep RL work:

- https://arxiv.org/abs/1709.06560

- Deep RL Hands on - Really practical book on DRL with code examples written in
PyTorch:

- https://github.com/aibooks/aibooks.github.io

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/tensorflow/agents
https://arxiv.org/abs/1709.06560
https://github.com/aibooks/aibooks.github.io

http://www.youtube.com/watch?v=iiuKh0yDyKE

