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Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in 

state s

(in other words)
- Expectation of “how good executing action a in state s is for the agent”
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1. Observe state s (described by some designed features)

2. Execute action a on the environment

3. Observe next state s’ and reward r

4. Update Q(s,a) estimate iteratively:

a. Q(s,a) = (1-α) Q(s,a) + α[r + γ max Q(s’, a’)]  

In a given timestep:

(known as Q-Learning)
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We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-α) Q(s,a) + α [r + γ max Q(s’, a’)] 

Use function approximation (neural network)! 

Predictions Targets

y_hat = Q(s, a, θ) y = r + γ max Q(s’, a’, θ) 

Loss (Mean Squared Error):

1/N sum (y-yhat)^2
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state = [
   Distance to pipes?
   Distance to ground?
   Distance to higher pipe?
]

Bad!
1. Requires domain knowledge
2. Prone to human bias
3. Could limit learning!

1 - How to design good feature representations?



Solution?



Deep Learning!
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2 - Neural fitted-Q Iteration

Neural Network Q(s, a; θ):

- iteratively trained using single datapoint (s, a, r, s’)
- (Inefficient!)

Solution?

1. Collect (s, a, r, s’)
2. Store in dataset D
3. Randomly sample a batch of B datapoints for backpropagation! 

(Known as Experience Replay!)
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3 - Target Neural fitted-Q
Targets for loss computed using the same network

Predictions Targets

y_hat = Q(s, a; θ) y = r + γ max Q(s’, a’; θ) 

(Can heavily bias training!)

Solution - Two networks!

One for predictions One for targets

Q(s, a; θ) Q(s, a; θtarget)
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The Deep Q-Network!

Automatic 
feature extraction

|
CNN

Experience
Replay
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Main & Target 
Networks

|
Q(s,a;θ) Q(s,a;θtarget)



Does it work?



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score

- 43/49 games



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games - Human level or above



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games - Human level or above
- 15/29 games



Results

- 49 DQN’s trained on 49 games from the Atari2600 Platform
- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

- Only high-level sensorial input 
- Game screen (pixels)
- Current score

- 43/49 games - Outperformed best algorithms for each individual game

- 29/49 games - Human level or above
- 15/29 games - Superhuman control!



http://www.youtube.com/watch?v=TmPfTpjtdgg


Cool resources to check out:
- OpenAI Baselines - Tensorflow implementation of SOTA algorithms:

- https://github.com/openai/baselines

- Stable Baselines - Fork from openai/baselines with refactored code:
- https://github.com/hill-a/stable-baselines

- Tensorflow Agents - Full Deep RL library with good abstractions, written in tensorflow:
- https://github.com/tensorflow/agents

- Deep Reinforcement Learning that Matters - Really cool paper on statistical 
significance and reproducibility of Deep RL work:

- https://arxiv.org/abs/1709.06560

- Deep RL Hands on - Really practical book on DRL with code examples written in 
PyTorch:

- https://github.com/aibooks/aibooks.github.io

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/tensorflow/agents
https://arxiv.org/abs/1709.06560
https://github.com/aibooks/aibooks.github.io


http://www.youtube.com/watch?v=iiuKh0yDyKE

