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Action-Value Function Q(s,a)
- Expectation of how much future discounted reward the agent will obtain by executing action a in
states

(in other words)
- Expectation of “how good executing action a in state s is for the agent”
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Learning Q(s,a) (trial-and-error)

In a given timestep:

1.

2.

Observe state s (described by some designed features)
Execute action a on the environment

Observe next state s’ and reward r

Update Q(s,a) estimate iteratively:

a. Q(s,a)=(1-a)Q(s,a) + a[r + ymax Q(s’, a’)]

(known as Q-Learning)
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We can do better!

Instead of iteratively updating Q(s,a):

Q(s,a) = (1-a) Q(s,a) + alr +ymax Q(s, a’)]
Use function approximation (neural network)!
Predictions Targets

y_hat=Q(s, 3, 6) y =r+ymaxQ(s, a, 6)

Loss (Mean Squared Error):

1/N sum (y-yhat)”* 2
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1 - How to design good feature representations?

state = [ .‘
Distance to pipes? _ £ II!.l
Distance to ground? £ . A
Distance to higher pipe? : .
] " .
.= ' T
Bad!

e (B

1. Requires domain knowledge 2
2. Pronetohuman bias 1

3. Could limit learning!




Solution?




Deep Learning!

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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2 - Neural fitted-Q Iteration

Neural Network Q(s, a; 6):

- iteratively trained using single datapoint (s, a,r, s’)
- (Inefficient!)

Solution?

1. Collect(s,a,r,s’)
2. StoreindatasetD
3

Randomly sample a batch of B datapoints for backpropagation!

(Known as Experience Replay!)
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3 - Target Neural fitted-Q

Targets for loss computed using the same network
Predictions Targets

y_hat = Q(s, a; ) y=r+ymaxQ(s, a’; 6)
(Can heavily bias training!)
Solution - Two networks!

One for predictions One for targets

Q(s, a; 6) Q(s, a; Bearser)
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The Deep Q-Network!

Automatic Experience Main & Target
feature extraction Replay Networks
| | |
CNN Dataset D Q(s,a:8) Q(s,a;B:ree)
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Does it work?
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Results

49 DQN’s trained on 49 games from the Atari2600 Platform

- 50M training frames (timesteps)
- 30 test episodes (mean ep. reward reported, N=30)

Only high-level sensorial input
- Game screen (pixels)
- Current score

43/49 games - Outperformed best algorithms for each individual game

29/49 games - Human level or above
15/29 games - Superhuman control!





http://www.youtube.com/watch?v=TmPfTpjtdgg

Cool resources to check out:

- OpenAl Baselines - Tensorflow implementation of SOTA algorithms:
- https://github.com/openai/baselines

- Stable Baselines - Fork from openai/baselines with refactored code:
- https://github.com/hill-a/stable-baselines

- Tensorflow Agents - Full Deep RL library with good abstractions, written in tensorflow:
- https://github.com/tensorflow/agents

- Deep Reinforcement Learning that Matters - Really cool paper on statistical
significance and reproducibility of Deep RL work:
- https://arxiv.org/abs/1709.06560

- Deep RL Hands on - Really practical book on DRL with code examples written in
PyTorch:
- https://github.com/aibooks/aibooks.github.io
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http://www.youtube.com/watch?v=iiuKh0yDyKE

