
Robotics Reading Group
@ Instituto Superior Técnico

Session #5
13-12-2019

Rui Silva

Paper
Sarah Keren, Avigdor Gal, & Erez Karpas. 2014.

Goal Recognition Design
Proceedings of the Twenty-Fourth International Conference on

Automated Planning and Scheduling

Goal Recognition Design

Goal Recognition
+

Design

Goal Recognition
● Given a set of possible goals, and

observations of an agent acting...
● Recognize the goal of the agent.

G1 G2

A

A, optimal agent

Goal Recognition
● Given a set of possible goals, and

observations of an agent acting...
● Recognize the goal of the agent.

G1 G2

A

A, optimal agent

Goal Recognition Design

G1 G2

I

“What is the best way to modify the world so that any agent
acting within it reveals its objective as early as possible”

Offline design as a mechanism to facilitate online goal recognition

Goal Recognition Design

Approach:

1. Evaluate: Measure how long it takes to recognize the agent’s goal in the worst case

2. Optimize: Reduce this worst case time

Evaluate: Measuring how hard to detect agent’s goal

Worst case distinctiveness (wcd)
● maximal length of a path until the objective of

the agent becomes clear
G1 G2

A

Wcd = 4

Evaluate: Computing wcd

Naive algorithm (high level)
● Compute all optimal paths.
● Return the longest subpath common to >1 goals

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal. Stop once we find a node that is

on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G2

A

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal. Stop once we find a node that is

on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G2

1

1 A 1

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal. Stop once we find a node that is

on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G2

2 1

2 1 A 1

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal. Stop once we find a node that is

on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G2

2

2 1 2

2 1 A 1

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal. Stop once we find a node that is

on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G2

2

2 1 2

2 1 A 1 2

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal. Stop once we find a node that is

on a path to both goals.

First node in path to both goals reveals the wcd.

G1 5 4 5 G2

5 4 3 4 5

4 3 2 3 4

3 2 1 2 3

2 1 A 1 2

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal.

Marks nodes on optimal path to goal.
Stop once we find a node that is on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G1 4 5 G2

G1 4 3 4 5

4 3 2 3 5

3 2 1 2 3

2 1 A 1 2

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal.

Marks nodes on optimal path to goal.
Stop once we find a node that is on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G1 4 G2 G2

G1 4 3 4 G2

4 3 2 3 5

3 2 1 2 3

2 1 A 1 2

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal.

Marks nodes on optimal path to goal.
Stop once we find a node that is on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G1 4 G2 G2

G1 G1 3 4 G2

G1 3 2 3 5

3 2 1 2 3

2 1 A 1 2

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal.

Marks nodes on optimal path to goal.
Stop once we find a node that is on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G1 G1 G2 G2

G1 G1 3 4 G2

G1 3 2 3 5

3 2 1 2 3

2 1 A 1 2

Evaluate: Computing wcd

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal.

Marks nodes on optimal path to goal.
Stop once we find a node that is on a path to both goals.

First node in path to both goals reveals the wcd.

G1 G1 G1 G2 G2

G1 G1 3 G2 G2

G1 3 2 3 G2

3 2 1 2 3

2 1 A 1 2

Evaluate: Computing wcd

G1 G1 G1
G2

G2 G2

G1 G1 3 G2 G2

G1 3 2 3 G2

3 2 1 2 3

2 1 A 1 2

Inefficient when there are many optimal paths to each goal!

Naive algorithm
1. BFS to find optimal path to goals
2. Backtrack from each goal.

Marks nodes on optimal path to goal.
Stop once we find a node that is on a path to both goals.

First node in path to both goals reveals the wcd.

Evaluate: Computing wcd

Latest split algorithm (high level)
● Create a new 2 agent planning problem, where agents:

○ Have a different goal
○ Can act separately or together

■ Can only act together in the beginning. Once
they split, they must act separately

■ Encouraged to act together with a smaller cost
● Optimal solution for new problem yields the wcd path

○ Wcd = time when agents decided to split

G1 G2

A1
A2

C > C

Evaluate: Computing wcd

Latest split algorithm
● Extend planning problem as:

○ Extend state space with the position of each agent
○ Extend action space with:

■ Independent actions for each agent - a1 and a2
■ Joint actions - a12
■ Split

○ Cost function C’ such as:
■ C’(a1) = C’(a2)
■ C’(a12) = 2C(a) - eps

● Empirical evaluation shows latest split is significantly more
efficient than naive algorithm

G1 G2

A1 A2

Optimize: Reduce wcd
Given a planning problem and the possible
goals, how to reduce wcd?

Approach:
● Disallow the execution of some actions

in some states

G1 G2

I

Removes (I, UP)

Formally:
● Planning problem D
● , set of pairs (s, a) --- action a disallowed in state s
● new problem with disallowed state-action pairs
● Goal:

Optimize: Reduce wcd

Optimize: Reduce wcd

Exhaustive search
● Each node represents a set
● Start with empy set
● For each node,

○ Compute wcd and optimal costs of achieving each goal
● Successors formed by concatenating each

state-action pair to set of previous node
● Search continues, increasing , until reaching:

○ Model with wcd = 0
○ No more nodes to explore

Result:
● for which wcd is minimized, and also smallest size.

Optimize: Reduce wcd

Pruned reduce
● Key insight: no point in removing actions not

belonging to a wcd path

● We can prune a lot of search branches
○ Only create successors for state-action pairs that

appear in the wcd path of parent node.

G1 G2

A

Empirical evaluation
Scenarios considered:

● Grid-navigation - simple navigation task
● Logistics - moving packages with trucks and airplanes
● Ipc-grid+ - complex navigation task
● Blockwords - block stacking

Empirical evaluation

Empirical evaluation

Empirical evaluation

K0, K1
K2 L2 GA

L0 GB

L4 GC

K3, K4 L1

L3

● Original domain:
○ Grab K2; Right; Unlock L2; Right; Right; Right
○ Grab K2; Right; Unlock L2; Right; Bottom; Right; Right
○ Wcd = 4

● Modified domain
○ wcd = 0

I wanna know more about GRD!

Connection to GAIPS?
● João Ribeiro - Ad Hoc Teamwork

○ GRD as mechanism to speed up adhoc teamwork?

● Miguel Faria - Trajectory legibility
○ Traj. legibility and grd are dual problems? Sweet spot is hybrid approach?

● Robotics in general
○ World is typically built for humans. Could GRD help robots more easily understanding human

intentions?

More resources
https://www.cse.wustl.edu/~wyeoh/GRD-Tutorial.pdf

https://www.cse.wustl.edu/~wyeoh/GRD-Tutorial.pdf

Merry Christmas 🎄
We will see you in 2020!

