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Reinforcement Learning

QLearning to drive an 
autonomous vehicle.
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Donkey Car trained 
with Double Deep Q 
Learning (DDQN) in 
Unity Simulator.

Mastering Real-Time 
Strategy Game 
StartCraft II

http://www.mitchellspryn.com/2018/02/24/Automous-Driving-With-Distributed-Deep-Reinforcement-Learning.html
http://www.mitchellspryn.com/2018/02/24/Automous-Driving-With-Distributed-Deep-Reinforcement-Learning.html
https://flyyufelix.github.io/2018/09/11/donkey-rl-simulation.html
https://flyyufelix.github.io/2018/09/11/donkey-rl-simulation.html
https://flyyufelix.github.io/2018/09/11/donkey-rl-simulation.html
https://flyyufelix.github.io/2018/09/11/donkey-rl-simulation.html
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii


Reinforcement Learning

High Sample Complexity

● ~ 2700 episodes for solving 
Minicomputer Tug of War

● One million of episodes for 
solving Pommerman
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PlayGround: AI Research 
into Multi-Agent Learning

https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground


Challenge

Reinforcement Learning needs ways to accelerate learning
● Why not reuse the experience of another agent?
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Background

Environment

action

Agent

rewardstate

Rt+1
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Problem Statement and Scope

Transfer Learning

Single-Agent 
Transfer

Agents Teaching 
Agents

Value Function 
Transfer

Policy 
Reuse

Multi-task 
Learning

Human 
Feedback

Action 
Advising

LfD
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https://jinglescode.github.io/datascience/2019/06/30/reinforcement-learning-value-function/
https://jinglescode.github.io/datascience/2019/06/30/reinforcement-learning-value-function/
http://www.cs.cmu.edu/~mmv/papers/06aamas-policy-reuse.pdf
http://www.cs.cmu.edu/~mmv/papers/06aamas-policy-reuse.pdf
https://en.wikipedia.org/wiki/Multi-task_learning
https://en.wikipedia.org/wiki/Multi-task_learning
https://openai.com/blog/gathering_human_feedback/
https://openai.com/blog/gathering_human_feedback/
https://www.borealisai.com/en/publications/uncertainty-aware-action-advising-deep-reinforcement-learning-agents/
https://www.borealisai.com/en/publications/uncertainty-aware-action-advising-deep-reinforcement-learning-agents/
http://www.scholarpedia.org/article/Robot_learning_by_demonstration


Problem Statement and Scope

Teacher agent
Learner 
agent

instructions
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Problem Statement and Scope

Learner 
agent

● Reinforcement Learning agent
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Problem Statement and Scope

Teacher agent

● RL agent, automated agent 
following a different algorithm, or 
human 

● it may or may not be learning

● It is competent in the learner’s 
task, though it does not need to 
be more competent than the 
learner at all times
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Problem Statement and Scope
Instructions are:

● Information specialized to the 
task at hand

● Information interpreted and 
assimilated by the learner

● Information made available 
during training

● Information devised without 
detailed knowledge of the 
learner’s internal representations 
and parameters
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Problem Statement and Scope

Instructions are not:

● A reward shaping or a heuristic 
function built and made available 
before learning

Instructions examples:

● Demonstrations, action advice, 
scalar feedback
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State of the Art Solutions

Learner-DrivenTeacher-Driven
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Proposed Framework

TeacherLearner

Generate Behavior

Define query

Update Knowledge

Evaluate Utility

Define Instruction
Explicit

Explicit
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Learner 
Driven



Proposed Framework

TeacherLearner

Generate Behavior

Update Knowledge

Evaluate Utility

Define Instruction
Explicit Appropriate Timing

Implicit
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Teacher 
Driven



Behavior generation

● Random initialization
● Reusing previous knowledge 

(single agent transfer) TL

Generate Behavior
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Query Definition

● Query timing (When?)
● Teacher selection (To Whom?)
● Query construction (How? What?) TL

Generate Behavior

Define query
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Utility evaluation

Behavior observation - When to 
observe the learner’s behavior? (in 
Teacher-driven approaches)

Instruction timing - When to send 
instruction? What kind of 
instructions? (in both teacher and 
learner driven approaches)

TL

Generate Behavior

Define query Evaluate Utility
E
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Instruction definition

Instruction construction

● Action advice (e.g. rules)
● Demonstration 
● Natural language instruction
● Preferences
● Feedback (i.e. scalar values, 

preferences)

Interfacing and translating instruction

TL

Generate Behavior

Define query Evaluate Utility

Define Instruction

E
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Knowledge Update

TL

Generate Behavior

Upd. Knowledge

Define query Evaluate Utility

Define Instruction
E

E

● Receiving instruction: 
○ Is the instruction always 

available?
● Instruction reliability

○ Should the instruction be 
trusted?

● Knowledge merging
○ Depends by the type of 

instruction
○ Might be used for guiding 

exploration
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Application examples
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Application examples
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Challenge

inter-agent teaching

design appropriate inter-agent communication protocols, 
workable interfaces that consider differences in agent sensors 
and actuators, and reasonable strategies for translating 
knowledge if agents use different internal representations
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Open Problems

● How to simultaneously use multiple instruction types 

● How to adapt instructions to correct undesired behaviors, possibly 
placing importance on the behavior observation challenge 

● Instruction Reliability - How to explicitly consider that the query or the 
instruction might be corrupted or lost due to, e.g., a faulty 
communication channel
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Other Discussion Points

● Mutual Modeling 

○ How behavior observation lead to behavior summarization? 

● Curriculum Learning 

○ Teacher-Guided Curriculum Learning

● Adhoc Teamwork and Multi-task learning

● Multimodal Transfer Learning

○ Might cross-modality policy transfer be a way to explore how to 
simultaneously use multiple instruction types?

● Explainable AI and Transfer Learning

● Reinforcement Learning Informed by Natural Language - Human Learning
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Github repositories:

● Autonomous Driving Cookbook - Distributed Deep Reinforcement Learning for 
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● PlayGround: AI Research into Multi-Agent Learning
● Learning transferable cooperative behaviors in multi-agent teams

Online Articles:

● AlphaStar: Mastering the Real-Time Strategy Game StarCraft II - DeepMind Research 
● Intro to Game AI and Reinforcement Learning - Beginner tutorial offered on kaggle 
● Curriculum for Reinforcement Learning - great overview written by Lilian Weng, 

Roboticist for OpenAI - she has a lot of interesting articles on her blog, check it out! 

https://github.com/Microsoft/AutonomousDrivingCookbook/tree/master/DistributedRL
https://github.com/MultiAgentLearning/playground
https://github.com/sumitsk/marl_transfer
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
https://lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html#teacher-guided-curriculum
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Questions and Discussion
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● What does demonstrations mean in this framework? 
■ Demonstrations is considered an instruction type

● Why inter-agent transfer learning reduce the sample size?
■ By accessing to the knowledge of another agent, the learner might reduce 

the time the agent has to spend in collecting new samples
● How does the paper account for a setting with multiple teacher agents?
● How do we select the teacher?

○ With respect to Q-learning if the protocol is to communicate the state then 
perhaps the Teacher with the best expected return for that state should be the one 
answering the query no?
■ We might select by choosing the teacher that perform better - but we need 

to have access to the other agents behaviors.
● How can we address for the fact that the teacher agent might provide wrong instruction?



Questions and Discussion
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● Why can't the learner also inform the teacher to change its internal beliefs and learn from 
the environment?
○ We could address that using policy extraction for the learner's behavior in order to 

update the teacher's beliefs, not only about the learner itself, but also about the 
environment. 

● What is the learner perceiving? When will it direct a query to a teacher? When is the 
teacher confident enough to be assertive? 

■ The learner can either decode the encoded information that the teacher 
shares or receive additional scalar feedback from the teacher. The learner 
can start by querying the teacher depending on its confidence level for 
example. The problem of the teacher level of uncertainty needs to be 
addressed.



Thank you all for 
coming!
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