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Background: Sparse Rewards

Good strategy is to ignore the reward and focus
on exploration.

Divergent policy search methods focus on
exploring the space of possible policies.

e Population based algorithms
e The search is driven through a measure of
noveltyll, surprisel?! or diversity!l.
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Background: Novelty Search

Novelty search! performs the search in a hand designed low-dimensional
outcome space.
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Background: Novelty Search
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Designing the outcome space

Design of the outcome space and observer function
can be problematic.

o Huge amount of prior knowledge
o Designer induced bias
o Important features not always obvious

What can be done?



TAXONS

Evaluation

. . Population Environment
Autoencoder learns low-dimensional
features from last observation of trajectory Observations
E:0—F
D : F N U Repertoire Selection AutoEncoder
e Feature space is the outcome space Training

e Encoder is the observer function

Task Agnostic eXploration of
Outcome space through Novelty and
Surprise
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TAXONS: Novelty and Surprise

Policy selection done through:

Novelty
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Random choice between the two.!2

[1] Gravina, Daniele, Antonios Liapis, and Georgios N. Yannakakis. "Surprise search for evolutionary divergence." arXiv preprint arXiv:1706.02556 (2017).
[2] Stephane Doncieux and Jean-Baptiste Mouret. “Behavioral diversity with multiple behavioral distances”. In: 2013 IEEE Congress on Evolutionary

Computation. IEEE. 2013, pp. 1427-1434



TAXONS: training of AE
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Experiment setup
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https://docs.google.com/file/d/1a6upouziHC9oj4gi7kKPx1KfIuAzMARh/preview
https://docs.google.com/file/d/1Qm5SCfC9vguXEOQ-NfH9cpyumvNbopmm/preview

Experimental setup

e TAXONS: our method using both novelty and surprise
e TAXOS: our method using only surprise
e TAXON: our method using only novelty

e NT: our method, in which the autoencoder is not trained

e NS: vanilla novelty search, calculates novelty on the ground truth final position
of the robots (for the Maze and And) and of the box (for the Kuka)

e RNS: novelty search in which the outcome descriptor is a random 10D vector

e PNS: novelty search in which the novelty is calculated on the policy parameters

e RS: random search in which the policies are all randomly generated
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Conclusions

e Autonomously building the low-dimensional outcome space from
high-dimensional observations reduces the amount of information needed at
design time

e Combining two evaluation metrics makes the exploration process more
robust

e No reward signal is needed

e Policies found can the be used later to solve tasks given in the environment

Main assumption: the last observation is enough to characterize the behavior of a
policy
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Thanks!

Get the paper! m—l .' >
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