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Abstract

As robots become a more common reality, they should be prepared to interact and

collaborate with humans in their daily tasks. It becomes increasingly more challenging

to pre-program a robot to deal with the multitude of contexts and tasks it faces when

deployed. The ability of a robot to learn new tasks from demonstration is, therefore,

a fundamental skill that robots should necessarily possess. These two competencies

(learning from demonstration and collaborating with human users) are not disjoint and

are anchored on the interaction between the robot and the human user.

The research in this thesis addresses several fundamental skills required of a robot

in order to perform complex manipulation tasks in collaboration with a human user.

Throughout the thesis, we represent robot motions as dynamic movement primitives

(DMPs) or combinations thereof. Basic movements are learned from demonstrations

provided by human users and stored in a library. The thesis discusses how to build

new basic movements given the demonstrations from a user, how to combine them

into novel, complex movements, and how to use the library of known movements to

recognize observed movements. The contributions of the thesis are threefold:

• An end-to-end framework that enables a robot to observe movements demonstrated

by a human user; break these down into “atomic movements” that are then stored in

a library; compose these atomic movements into longer, more complex movements

that are then optimized to achieve a given goal; execute the resulting movement

while ensuring obstacle avoidance in real-time.

• An approach for recognition and prediction of observed movements. Given a

library of previously learned movements, the proposed approach observes a partial

movement of a human user. It matches it to the movements previously learned,

with no need for time alignment. It can then predict the remainder of the user’s

movement. We illustrate the application of this approach in scenarios where the
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robot uses the predicted user’s movement to move and assist the human user

proactively. We also propose an extension of the basic approach described above

to compound movements corresponding to compositions of the movements in the

robot’s library.

• An approach that enables the consideration of multiple independent manipulators,

extending our end-to-end framework to consider, for example, robots with multiple

arms. Our framework enables the joint optimization of the motion of the different

manipulators towards more complex motions.

We validate the proposed frameworks and methods both in simulation scenarios—

designed to highlight the different capabilities of our methods—as well as in the

real-world scenarios involving the Baxter robot.

Keywords: Robot Learning ⋄ Movements Manipulation ⋄ Robot Interaction ⋄
Dynamic Movement Primitives ⋄ Recognition and Prediction.
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Resumo

À medida que os robôs se tornam uma realidade cada vez mais comum, devem estar

preparados para interagir e colaborar com humanos nas diversas tarefas que estes reali-

zam no seu dia-a-dia. Assim, torna-se cada vez mais desafiante pré-programar um robô

para que este lide com a variedade de contextos e de tarefas com que eventualmente se

irá deparar. A capacidade de um robô aprender novas tarefas a partir de demonstrações

é, por isso, uma habilidade fundamental que os robôs devem necessariamente ter. Estas

duas competências (aprendizagem por demonstração e colaboração com utilizadores

humanos) não são disjuntas mas assentam na interação entre o robô e o utilizador.

Esta tese aborda várias das competências fundamentais que permitem a um robô

executar tarefas de manipulação complexas em colaboração com um utilizador humano.

Ao longo desta tese, o movimento do robô é representado como primitivas de movimento

dinâmicas (dynamic movement primitives, ou DMPs) ou combinações destas. Movi-

mentos básicos são aprendidos a partir de demonstrações fornecidas por utilizadores

humanos e armazenados numa biblioteca de movimentos. Assim, a tese aborda como

construir novos movimentos básicos a dadas demonstrações de um utilizador; como

combinar diversos movimentos básicos em novos movimentos complexos, e como utilizar

os movimentos na biblioteca para reconhecer movimentos observados. Esta tese tem,

assim, três contribuições principais:

• Uma abordagem end-to-end que permite a um robô observar movimentos demons-

trados por um utilizador; decompôr estes movimentos em “movimentos atómicos”

que são guardados numa biblioteca; compor movimentos mais longos e complexos

a partir destes movimentos atómicos, otimizando-os para um dado objectivo;

executar o movimento resultante, evitando obstáculos que surjam em tempo de

execução.
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• Uma abordagem para o reconhecimento e previsão de movimentos observados.

Dada uma biblioteca de movimentos previamente aprendidos, a abordagem pro-

posta observa um movimento parcial executado por um utilizador. É feita a

correspondência deste movimento parcial aos movimentos previamente aprendidos,

sem necessitar de qualquer alinhamento temporal. Além disso, a abordagem

proposta permite a previsão do restante movimento do utilizador. Ilustra-se a

aplicação da abordagem em cenários nos quais o robô usa a previsão do mo-

vimento do utilizador para proativamente se mover e assistir o utilizador. É

também proposta uma extensão da abordagem básica, descrita anteriormente,

para movimentos compostos, correspondendo à composição de movimentos na

biblioteca do utilizador.

• Por fim, é proposta uma abordagem que permite considerar múltiplos manipu-

ladores independentes, estendendo a abordagem end-to-end acima descrita por

forma a considerar, por exemplo, robôs com múltiplos braços. Esta abordagem

permite a otimização conjunta do movimento de diferentes manipuladores, visando

movimentos mais complexos.

As abordagens propostas e os métodos considerados são avaliados tanto em cenários de

simulação—desenhados de forma a realçar as diferentes capacidades dos métodos—bem

como em cenários reais com um robô Baxter.

Palavras-chave: Aprendizagem para Robôs ⋄ Manipulação de Movimentos ⋄
Interação Robô ⋄ Reconhecimento e Previsão ⋄ Primitivas Motoras Dinâmicas.
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Introduction
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As robots become a more common reality, their applicability broadens. Consequently,

it becomes increasingly more challenging to pre-program a robot to deal with the

multitude of contexts and tasks it faces when deployed. The ability of a robot to learn

new tasks from demonstration is, therefore, a fundamental skill that robots should

necessarily possess [115].

There is a vast literature on learning from demonstration [8, 66]. It is possible,

for example, to consider learning from a demonstration at the task level, where the

learner seeks to infer the goal of the demonstration and adopt it as its own [16, 109].

Conversely, it is possible to address learning from demonstration at the motor resonance

level [10, 33], where the learner simply seeks to replicate the motor behavior observed

from the demonstration. Our work lies somewhere in the middle and considers learning

from the demonstration as learning how to perform and combine “atomic actions”,

referred to as motion primitives—or, when disregarding perception issues, simply as

motor primitives [76, 81].

In this work, we use demonstrations from the user to build a library of abstract

atomic actions that are then combined to perform complex motions. Throughout the

thesis we adopt the formalism of dynamic motor primitives [39] to represent such

abstract atomic actions. DMPs are robust to perturbations and can be easily learned

from demonstrations. Additionally, modulation (i.e., performing the same motion to

different end-points) can easily be achieved by changing some of the driving terms of

the underlying dynamical system.

Besides learning new movements, one of the essential aspects of human-robot

collaboration is the ability of the robot to recognize what the human partner is doing

and respond accordingly. In human-human collaboration, each person observes and

“intuitively” recognizes/predicts the partner’s motion, allowing the person to act in

the best possible way. Humans are naturally flexible concerning a partner’s actions

and adapt, fostering a high-level collaboration and inter-partner trust. The key for

collaboration is to understand the task and the intentions of the partner, which often

consists of recognizing/predicting the goal of the movement. However, recognizing the

goal of an observed movement early during its execution is a difficult problem in robotics;

our work also addresses such problem, i.e., movement recognition and prediction.

Given the aforementioned library of previously observed movements, we recognize a
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Learning Adaptation

Recognition
This thesis

Figure 1.1: Positioning of the thesis contributions.

partially observed trajectory among those in the library, predicting its (unobserved)

target point. The fact that our approach does not require the full trajectory to be

observed is fundamental, as it can be used in run-time for actual human-robot interaction

scenarios.

Finally, the robot needs to adapt and adjust its motion and behavior to new

surrounding circumstances, not losing track of the primary task that it must perform.

This work also considers the challenge of adaptation during task execution, in case the

robot encounters changes to the conditions used during learning [120]. The robot also

needs the ability to accommodate more complex tasks than those it is taught to do

[113]. Specifically, the robot should be able to reuse its knowledge from one task to

another, or from one environment to another.

The contributions of our thesis thus lie at the intersection of motion learning, motion

recognition and motion adaptation, as highlighted in Fig. 1.1. We contribute novel

models and methods to endow a robot with fundamental skills to successfully engage in

collaborative tasks with human users. Human-robot collaboration requires the robot

to learn new complex motions and adapt its knowledge to new conditions to succeed.

Besides that, it is crucial that the robot is able to recognize the observed movements of

a human user to respond correctly.

1.1 Problem Statement

From all the above, the central research question addressed in this thesis is the following:
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How can a robot possessing a previously learned repertoire of primitive movements

execute complex manipulation tasks, possibly in collaboration with a user?

We address the above research question by considering the following research challenges:

• How can a robot, endowed with a library of pre-learned primitive movements,

address complex tasks that require the composition, adaptation and optimiza-

tion of such primitive movements to address changes to the environment, while

accommodating for the possibility of obstacle avoidance at execution time?

• How can a robot, endowed with a library of pre-learned primitive movements,

recognize a movement by observing only a fraction thereof, predicting the endpoint

of such movement?

• How can a robot, endowed with a library of pre-learned primitive movements,

recognize a complex movement consisting of a sequence of primitive movements?

• Finally, how can a robot, endowed with a library of pre-learned primitive move-

ments, generate multiple simultaneous coordinated robotic movements, adapting

and optimizing those in the library, to complete one collaborative task?

The contributions of the thesis arise from addressing each of the above challenges

individually.

1.2 Thesis Contributions

Figure 1.2 summarizes the thesis main contributions, showcasing their relation. At the

core of our contributions is a library of primitive movements (shown in the figure as “DMP

library”). This library is enriched with new movements learned from demonstration,

and plays a central role in movement recognition and generation.

Summarizing, the main contributions of this thesis are:

• An end-to-end approach to learning and decomposing user demonstrations into

DMPs, and then optimizing and combining the resulting DMPs to perform

complex motions. Our framework comprises a library of DMPs and a set of

different modules for (i) segmenting a demonstration provided by a human user,

abstracting the computed sub-trajectories into new DMPs and adding them to the
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Figure 1.2: Overview of the thesis contributions.

library; (ii) a greedy algorithm that, given a goal point, combines the DMPs in the

library into a single complex motion that is then optimized according to provided

criteria (length of trajectory, obstacle avoidance, etc.); (iii) a module that, during

execution, monitors the existence of obstacles and reshapes the trajectory to avoid

them in run-time. This contribution is described in Chapter 4 and can be found

in Kordia and Melo [52].

• A novel movement recognition method that, given a library of previously observed

movements, identifies a partially observed trajectory from among those in the

library, predicting its (unobserved) target point. The fact that our approach does

not require the full trajectory to be observed is fundamental, as it can be used in

run-time for actual interaction scenarios. We also contribute an extension of our

recognition method to compound movements. These contributions are described

in Chapter 5 and have previously been published in Kordia and Melo [54] and
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Kordia and Melo [53].

• An extension of our end-to-end framework, consisting of an approach to optimizing

and coordinating multiple movements, to be executed simultaneously by multiple

manipulators in a coordinated fashion. From a library of single trajectories, a

coordinated trajectory is built and optimized to perform a coordinated task. This

contribution is described in Chapter 6.

1.3 Document Outline

The remainder of the document is structured as follows. Chapter 2 provides an overview

of fundamental concepts for our work—such as dynamic movement primitives and

the covariance matrix adaptation-evolution strategy (CMA-ES) algorithm. Chapter 3

discusses related work. Chapter 4 presents our first contribution: an end-to-end

approach for building complex movements from a library of learned primitive movements.

Chapter 5 addresses the problem of movement recognition, introducing our second

contribution. Chapter 6 addresses the problem of optimizing and coordinating multiple

DMPs under constraints for complex coordinated manipulation tasks. The document

concludes in Chapter 7 with a discussion of the main conclusions and highlighting some

directions for work beyond that in this thesis.
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This chapter provides an overview of background concepts used throughout the the-

sis. Most notably, we provide an overview of dynamic movement primitives, discuss

optimization using CMA-ES, and introduce the concept of critical points in a trajectory.

2.1 Dynamic Movement Primitives

Dynamic movement primitives (DMPs) are a popular representation for movements

used in robot motion. The motivation for adopting DMPs as a movement representation

is related to the numerous works relying on DMPs [114]. DMPs have a simple and

rigorous mathematical formulation, ensure robustness to external perturbations and

flexibility to adapt the motions to different tasks. A DMP consists of a stable nonlinear

system with a force term that shapes the trajectory of the system and which can easily

be used to adapt complex motions with the guarantee of reaching the desired target

[114].

Formally, a dynamic movement primitive [37, 38] is a representation of a smooth

trajectory using a stable dynamical system. A one-dimensional DMP corresponds to

the nonlinear system of equations

ÿ(t) = αy(βy(yref − y(t))− ẏ(t)) + f(x(t)), (2.1a)

ẋ(t) = αxx(t), (2.1b)

where y(t) is the state of the DMP and x(t) is the so-called phase variable. In the

formulation above, (2.1a) is known as the transformed system, while (2.1b) is known

as the canonical system. Under a suitable choice of αy, βy and αx, y(t) → yref and

ẏ(t) → 0 as x(t) → 0.

The DMP (2.1) behaves as a spring-damp system, as illustrated in Fig. 2.1. The

particular shape of the trajectory by which y(t) → yref depends on the force function f ,

which is usually represented as the linear combination of a set of basis functions,

fw(x) =

∑N
n=1wnΨn(x)∑N
n=1Ψn(x)

x. (2.2)

The weights wn, n = 1, . . . , N, can now be adjusted to yield a smooth trajectory between

y(0) and yref . For example, we can have periodic DMPs by selecting a the basis functions
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y − yref

f
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βy

Demo

Figure 2.1: Depiction of the dynamical system used as the basic representation of a
dynamic motion primitive. A DMP is a damped spring system, where the state of the
system, y, represents the quantity of interest (robot position, joint position, etc.). The
forcing function f is used to control the shape of the trajectory to match that provided
by an expert demonstration.

Ψn to be periodic on x. Conversely, by selecting Ψn to be non-periodic, we obtain

general non-periodic motions—in what we refer to as a discrete DMP.

The standard basis functions consist of Radial Basis Functions (RBFs) of the form

Ψn(x) = exp{−hn(x− cn)
2},

where cn is the center of the nth basis function, and hi its width.

In the context of robot motion, each degree of freedom of the robot is controlled by

an individual one-dimensional DMP, and synchronization is achieved through a shared

canonical system. The use of a canonical system instead of a synchronized clock ensures

that the resulting system is time-homogeneous, which in turn brings advantages in

terms of control.

The canonical system provides the phase for the system, and enables the manipulation

of time during the execution of the DMP [37]. The standard formulation is that in

(2.1b), corresponding to an exponentially decaying phase variable. However, other

alternatives have been proposed that seek to mitigate the fast drop in the phase variable

observed in this formulation.

For example, Kulvicius et al. [58] proposed a sigmoidal decaying phase to combine

DMPs using overlapping kernels. Using a sigmoid function instead of the exponential

function prevents the velocity of each DMP from reaching zero prematurely, which is

advantageous when combining multiple DMPs. In fact, with using sigmoidal functions,

the average velocity of the system can be kept approximately constant during the
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transition from one DMP to the next, allowing the following DMP to resume from that

velocity. Using a sigmoidal decaying function, the canonical system takes the form

ẋ(t) = − αx exp{αx(T − t)/∆t}
1 + exp{(αx(T − t)/∆t)2}

where αx controls the steepness of the sigmoidal function and ∆t is the sampling rate.

Finally, the transformed system can be augmented with an additional component

used to accommodate (smooth) shifts in the target/reference position. Such component

can be described as a first-order dynamical system

ẏref(t) =


∆t
T
(y0 − y∗) if t ≤ T

0 otherwise,
(2.3)

with y0 and y∗ representing the initial and final target positions.

2.1.1 Properties of DMPs

We adopt DMPs to represent robot motion for the many appealing properties that such

representation entails.

• Stability: The DMP system (2.1) consists of a second-order differential equation

driven by a force term f(t) that controls the “shape” of the trajectory. The

parameters of the second-order equation, αy, βy and αx are selected or learned

to guarantee that the dynamical system is critically damped and thus stable. A

system that results from the incorporation of a group of subsystems (such as the

robot in which each degree of freedom moves according to a DMP), sequentially or

in parallel, is stable if these subsystems are in turn stable [65]. As a consequence,

the DMP system is stable as a whole.

• Invariance Properties: The DMP is a general dynamical system; it can be

used to recreate a learned motion but also to modulate the motion to a new goal

point, which originally consisted of the last state of the reference demonstration

of the learned motion, yref . The DMP representation enables such modulation

while maintaining the overall shape of the trajectory [118].
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• Multiple Degrees of Freedom: The tasks we consider in robotic applications

involve multiple degrees of freedom (DoFs)—for example, corresponding to the

different joints of the robot. As previously discussed, the use of DMPs with

a shared canonical system and individual transformed systems for each DoF

generates a “coordinated” motion that is stable and which relies on the canonical

system as a “central clock” [117].

Besides the advantages listed above, DMPs also offer other appealing properties

for the challenges addressed in this thesis. Unlike more complex models (e.g., neural

networks), DMPs can be easily optimized by adjusting the weights of the basis functions

defining the force function. In particular, it is possible to use optimization to adapt

DMPs to new environments and even new tasks (as we do in this thesis). They can be

learned from a single trajectory, meaning that they are extremely data efficient, unlike

other more complex models such as neural networks.

However, DMPs also have some disadvantages. For example, DMPs are deterministic

models that do not consider uncertainty, unlike other models such as probabilistic

movement primitives [97]. Additionally, adaptation to difficult environments may

significantly deteriorate the shape of the resulting movement, which will bare little

resemblance with the original DMP movement. Our approach in Chapter 4 seeks to

address this limitation, to some extent, by considering the composition of multiple

DMPs.

2.1.2 Learning from Demonstration

Learning a DMP from demonstration consists of computing the weights wn, n = 1, . . . , N ,

for the forcing function f such that the DMP trajectory matches an observed movement

(a demonstration) as closely as possible [39, 91].

Let ξ = {y0, . . . , yM} denote a target trajectory, observed in some finite set of

points T = {t0, . . . , tM}. Let {ẏm,m = 1, . . . ,M} and {ÿm,m = 1, . . . ,M} denote the

corresponding first and second derivatives at those time points. We want to compute

f such that the trajectories of the system (2.1) are such that y(tm) = ym, ẏ(tm) = ẏm

and ÿ(tm) = ÿm as much as possible, for m = 1, . . . ,M . Since, from (2.1),

f(x(t)) = ÿ(t)− αy(βz(yref − y(t))− ẏ(t)),
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Figure 2.2: Basig interaction in black-box search.

we compute, for each tm ∈ T ,

fm = ÿm − αy(βz(yref − ym)− ẏm),

with yref = yM . Such computation yields a dataset {(tm, fm),m = 1, . . . ,M} and we

can now use standard supervised learning to compute the weights w of the forcing

function. For example, using locally weighted regression [11, 116], we compute the

weights w1, . . . , wN that minimize the loss

L(wn) =
M∑

m=1

N∑
n=1

Ψn(tm)(fm − wnx)
2.

We compute the weights that minimize the locally weighted quadratic error criterion as

it is a weighted linear regression problem:

wn =
xTΨnf

xTΨnx
, (2.4)

with

x =


x(t1)

...

x(tM)

 , Ψn =


Ψn(t1) . . . 0

... . . . ...

0 . . . Ψn(tM)

 , f =


f1
...

fM

 .

2.2 CMA-ES

In executing complex tasks, we may eventually want to optimize the movement of the

robot to meet some optimality criterion—often imposed either by the environment or

by the task itself.

Black-box optimization (BBO) algorithms work as depicted in Fig. 2.2: they query

the value of the objective function, J , at different query points, w. The values J(w)

are then used to pick new query values and the process repeats. In our work, we use
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BBO algorithms to optimize trajectories represented as DMPs, namely by adjusting

the weights of the force function controlling the DMP.

Our choice of BBO is driven by the specific nature of the problems considered in

this thesis—namely, the optimization of trajectories. Our search domain (the space of

weights) is high-dimensional; the objective function is highly nonlinear and often even

discontinuous (for example, when considering obstacles). In light of all these challenges,

we adopt a specific BBO algorithm known as covariance matrix adaptation evolutionary

strategy [31], or CMA-ES. CMA-ES can be used to optimize a function that is not

known in advance, but which can be evaluated at any desired query points. CMA-ES

belongs to a large family of evolutionary strategy algorithms that seek to optimize the

objective function while minimizing the number of required function evaluations.

For the sake of concreteness, let us suppose that we are interested in maximizing a

real-valued objective function J defined over RN . At each iteration i, CMA-ES proceeds

by:

1. Sampling:

• Sample K points {wi,k, k = 1, . . . , K} from a multivariate Gaussian, wi,k ∼
Normal(µi, σ

2Σi), with µi ∈ RN and Σi ∈ RN×N ;

2. Evaluating:

• Compute J(wi,k) for k = 1, . . . , K;

• Select the best K0 samples from {wi,k, k = 1, . . . , K};

3. Adapting:

• Update the mean µi to the weighted average of the best K0 samples from

{wi,k, k = 1, . . . , K} selected in the previous step;

• Update the covariance matrix Σi to increase the likelihood of previously

successful search steps.

Figure 2.3 illustrates a possible evolution of CMA-ES. The figure shows how the

samples tend to concentrate around the maximum of the target function (the circular

concentric lines correspond to level-sets of the objective function J). Several recent

works have further extended its applicability and properties [1, 32, 125].
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Figure 2.3: Evolution phases of of search process using Covariance Matrix Adaptation-
Evolution Strategy, or CMA-ES (image adapted from [127]).

Algorithm 1 CMA-ES algorithm [12].
Require: K,K0, cσ, cc, ccov, dσ, {αk, k = 1, . . . , K0}
Require: µ0 ∈ RN , σ0 ∈ R+

1: Initialize Σ0 = I, pc = pσ = 0, i = 0
2: while not terminate do
3: for k = 1, . . . , K do
4: Sample wk ∼ Normal(µi, σ

2
iΣi)

5: Compute J(wk)

6: Sort w1, . . . , wK according to J(wk), with wk:K denoting the kth best sample
out of K

7: Set

µi+1 = µi +

K0∑
k=1

αk(wk:K − µi)

8: Set pσ = (1− cσ)pσ +
ρ
σi

√
1− (1− cσ)2Σ

− 1
2

i (µi+1 − µi), where 1/ρ =
√∑K0

k=1 α
2
k

9: Set
σi+1 = σi exp

{
cσ
dσ

( ∥pσ∥
E∥Normal(0, I)∥ − 1

)}
10: Set pc = (1− cc)pc +

ρ
σi

√
1− (1− cc)2(µi+1 − µi)

11: Set

Σi+1 = (1− ccov)Σi +
ccov
ρ2

pcp
T
c +

cµ
σ2
i

K0∑
k=1

αk(wk:K − µi)(wk:K − µi)
T (2.5)

12: Set i = i+ 1

13: return µi
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Pseudo-code for CMA-ES is provided in Algorithm 1. It receives, as parameters,

the number of samples per generation, K, the number of samples used for updating

the mean, K0, with K0 < K (typically, K0 ≤ K/2), and a number of constants used in

the covariance matrix update (cσ, cc, ccov and dσ). It also receives as parameters the

weights α1, . . . , αK0 used in the update of the mean.

As outlined above, the mean is updated as a convex combination of the K0 best

samples (lines 6 and 7). The covariance matrix update (lines 10 and 11), on the other

hand, comprises several main components:

• The weighted covariance of the best samples—corresponding to the last term in

(2.5); this term focuses the distribution towards more promising regions of the

search space.

• A bootstrapping term—corresponding to the first term in (2.5); this term helps to

ensure that Σi+1 retains rank N , by using information from previous estimates,

Σi.

• A cumulation term—corresponding to the second term in (2.5); pc tracks successive

updates to the mean, and is, therefore, called an evolution path. The cumulation

term is a rank 1 term that accounts for the general “direction” that the algorithm

has moved.

Besides the covariance matrix Σi, CMA-ES also uses a step-size σi that is updated as

the algorithm progresses (lines 8 and 9). The step-size is used, among other things, to

avoid that the samples collapse too soon. Its update makes use of a conjugate evolution

path, pσ, which is compared with the direction-independent length, E∥Normal(0, I)∥.

Using CMA-ES in optimization has benefits in that this algorithm doesn’t need vast

parameter tuning [1] and is suitable for working with robotic tasks; the robotic problem

task generally has a loftier performance using BBO than using Reinforcement Learning

[124].
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ÿ
(t
)

h
(t
)

(a) Critical points and segmentation of a simple
1D trajectory.

(b) Critical points and segmentation of a 3D
trajectory.

Figure 2.4: Illustration of the segmentation module using critical points.

2.2.1 Constrained CMA-ES

This method extends to the CMA-ES method for constrained optimization problems.

Suppose that we want to optimize a function J : RP → R, while ensuring that

hj(w) ≤ 0, j ∈ {1, . . . ,m},

for some set of functions hj : RP → R. The above formulation is quite general, in

that it also allows for the consideration of equality constraints of the form g(w) = 0,

simply by requiring, simultaneously, that g(w) ≥ 0 and g(w) ≤ 0. In our settings,

the constraints will typically arise from the coordination required between the two

manipulators, although other constraints may also be considered.

At each iteration of CCMA-ES, the algorithm samples a number of tentative points

and verifies whether these points verify the constraints. If it does, it proceeds as in

standard CMA-ES. If not, the new points are used to align the covariance matrix with

the violated constraints, forcing the algorithm to produce samples that eventually verify

all constraints.

To describe the algorithm in further detail, let us again consider the three steps

outlined in the high-level description of CMA-ES, in page 16. CCMA-ES keeps a fading

record vj ∈ RP for each constraint hj, j = 1, . . . ,m. These records are updated to

trace (with forgetting) which constraints are violated by the different samples, and to

update the covariance matrix so that it remains aligned with the constraint surfaces.
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CCMA-ES can then be summarized as follows [9].

1. Sampling:

• Sample K points {wi,k, k = 1, . . . , K} from a multivariate Gaussian, wi,k ∼
Normal(µi, σ

2Σi), with µi ∈ RP and Σi ∈ RP×P ;

2. Verifying constraints and resampling:

• Update records vj for which hj is violated for at least one sample wi,k;

• Adjust covariance matrix Σi according to the records vj;

• Re-sample the points that violate constraints and repeat, until no violations

are observed;

3. Evaluating:

• Compute J(wi,k) for k = 1, . . . , K;

• Select the best K0 samples from {wi,k, k = 1, . . . , K};

4. Adaptating:

• Update the mean µi to the weighted average of the best K0 samples from

{wi,k, k = 1, . . . , K} selected in the previous step;

• Update the covariance matrix Σi to increase the likelihood of previously

successful search steps.

For each point wi,k such that hj(wi,k) > 0, vj is updated as

vj = (1− cv)vj +
cv
σ
(wi,k − µi), (2.6)

where cv is an adjustable scalar for fading rate. Moreover, writing

aj(w) =

1 if hj(w) > 0,

0 otherwise,
a0(w) =

m∑
j=1

aj(w),

The covariance matrix is updated according to

Σi = Σi −
β

a0(wi,k)

m∑
j=1

aj(wi,k)
vjv

T
j

∥vj∥2
. (2.7)
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In a nutshell, CCMA-ES is obtained from CMA-ES (Algorithm 1) by including

an intermediate step where all samples are checked against all constraints and, if a

violation is detected, the covariance matrix is instantly adjusted and a new sample

generated. This process is repeated until no constraints are violated, ensuring that the

solution obtained by CCMA-ES verifies all constraints [7].

2.3 Critical Points

We conclude by introducing the concept of critical point of a trajectory, which plays a

key role in several of the contributions of this thesis. It is indispensable to use critical

points in our work, as they were relied upon in the segmentation process because they

are points in the path that contain essential and sensitive information and provide

the general shape of the path. It also benefits alignment in online observation while

observing a part of the trajectory. It also saves time as it shortens the search and

comparison process on critical points instead of examining all track points.

Given a trajectory y(t), with t ∈ [0, T ], a critical point is a point that lies between

two segments of the trajectory, each corresponding to a “homogeneous” movement, in a

sense. We follow Meier et al. [83] and identify critical points as minima in velocity and

acceleration. In particular, letting

h(t) = ∥ÿ(t)∥2 + ∥ẏ(t)∥2, (2.8)

where ẏ(t) is the velocity of the trajectory, we choose the local minima of h(t) as

critical points. Figure 2.4 illustrates the process of choosing the critical points in some

simple trajectories. In Chapter 4, we use critical points to segment long trajectories;

in Chapter 5 we use critical points to perform movement recognition. We defer to

Chapter 3 the justification for using critical points to determine the segments comprising

a given trajectory.
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Chapter 3

Related work
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In this chapter, we provide a survey of the work most directly related to the thesis,

framing our contributions in the landscape of existing research. We also discuss how our

work builds on and improves existing work. The discussion of related work is organized

into different subsections, roughly corresponding to the different areas in which our

work contributes.

Section 3.1 provides a (necessarily narrow) overview of noteworthy works involving

human-robot collaboration, which can be seen as the overarching motivation for our

research. Sections 3.2 and 3.3 discuss several existing approaches that address each of the

individual components of our framework for complex movement generation (Chapter 4)

and coordinated movement generation (Chapter 6). Our main contribution, in this

context, is the combination of these different modules into a unified end-to-end framework

for robot motion segmentation, representation, combination, and optimization.

Finally, Section 3.4 discusses the literature on trajectory recognition and prediction,

relevant for our work in Chapter 5. In this line of work, our contribution is a novel

method for trajectory recognition and target prediction that circumvents the need for

temporal alignment.

3.1 Collaboration with Robots

In this section, we discuss several works that address collaboration between humans

and robots. Although our work does not consider actual scenarios where robots work

with or interacting with humans, the research problems addressed herein—and outlined

in Chapter 1—are all concerned with fundamental skills expected of a robot that is

prepared to interact and collaborate with humans. The present discussion of related

work discusses a number of works featuring scenarios where the work of this thesis could

have a meaningful impact.

⋄

As robots enter our lives, we—as researchers in robotics—need to promote/facilitate

the collaboration between humans and robots [126]. Such collaboration involves not only

understanding the mechanisms of collaboration, but also understanding its challenges, its

impact on the working environment, and the tasks in which collaboration can take place.
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In parallel, it also involves developing robotic platforms that can accommodate all these

factors while carrying out new and complex tasks [27]. Natural human limitations—

often accentuated by external factors such as health, physiological condition, and the

surrounding environment—highlight the relevance of collaboration between humans

and robots. Robots can assist humans in their daily activities, fostering consistency

and quality, and minimizing the impact of changing human or environmental factors

on the performance of the human [95]. But for robots to join in and participate of

everyday human activities, we must provide them with both the hardware and software

necessary for them to succeed in new tasks and acquire new knowledge, as non-expert

users cannot, in general, program a robot to do so.

The ability of a robot to learn from demonstration [8, 66] provides a natural

means to succeed in new tasks and acquire new knowledge and one which a non-

expert user can generally use [115]. Learning from demonstration has been widely

investigated in the robotics literature, and different approaches rely on different inputs

from the human demonstrator (e.g., teleoperation, kinesthetic teaching, etc.) [8, 66].

However, at a higher level, the ability of a robot to recognize movements performed by

a human user as movements already known by the robot, or the ability of the robot to

predict/infer the end-goal of such movements is a fundamental skill that can push the

paradigm of learning from demonstration one step further. Collaborative tasks between

humans and robots, for example, also highlight the importance of a robot being able to

recognize the movement of human collaborators and predict their end-goal. Motivated

by such scenarios of human-robot collaboration, in Chapter 5 we address the problem

of movement recognition and prediction. We consider how a robot can leverage its prior

knowledge to recognize a movement that it has seen before—either on its own or as

part of a complex trajectory.

There are different methods to address recognition problems, depending on the

nature of the recognition itself. For example, distinguishing gestures requires access to

gesture signs (as samples) that can be used, for example, to train a recurrent neural

network [90]. As another example, to recognize sounds (instruction commands), we can

use a hidden Markov model (HMMs) [108], which also requires the pre-existing training

samples. In yet another example, Luo et al. [68] used unsupervised learning to learn

Gaussian Mixture Models to recognize a trajectory and Gaussian mixture regression to
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predict the target of the trajectory. Much like the previous methods, Luo et al. [68] also

requires many samples and a training phase. Our contribution sets itself apart from

such data-intensive approaches as we build on a set of pre-learned movement primitives,

and recognition is done directly on top of such builtin knowledge, without requiring an

explicit “training phase”.

Teaching a robot by demonstration, however, is not without its challenges. For

example, there is great interest in exploiting robots in space discovery. Robots can

do several tasks in space—like exploration—and help humans by carrying out the

most dangerous tasks. Therefore, the National Aeronautics and Space Administration

(NASA) designed several robots specifically for these tasks, such as Robonaut to assist

astronauts [30]. NASA recently sent Rover to Mars to explore and perform several

additional tasks [41]. Collaboration between robots and humans has also been explored

in industry [131], healthcare [100], assisted living [4], and other activities [85, 107].

Robots are used to increase performance consistency, or to operate in scenarios where

the conditions are harsh, dangerous, or unsuitable for humans. However, in all these

application areas, it may be challenging to provide an accurate demonstration to teach

a robot, particularly since the conditions that the robot will encounter at execution

time may be difficult to foresee at demonstration time. The robot should, therefore, be

able to leverage its prior knowledge (for example, movements it has previously learned)

and adapt them to environments and circumstances that differ from those for it was

originally programmed. In Chapter 4 we propose a framework that allows a robot to

leverage its prior knowledge—i.e., movements it has learned before—and compose them

and optimize them to its current circumstances.

More broadly, leveraging the collaboration between humans and robots raises many

important issues [21]. The safety of humans is still, perhaps, the most crucial one, and

having a robot engage in a collaborative task with a human must ensure safety for the

human [131]. For this reason, Merckaert et al. [84] impose constraints on the controller

of a robot operating in a dynamic environment to achieve collaboration between humans

and robots while ensuring human safety. The paper measures the effectiveness of the

proposed approach in terms of collaboration—both related to humans and robots—by

reporting the task execution time and the energy consumed by the robot.

However, in human-robot collaboration, other indicators are essential, such as the
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emotional and cognitive components of behavior, speaking, and communication [22, 28].

Designing robots for collaboration with humans involves reasoning about these indicators

both in terms of hardware and software. For example, Chandrasekaran and Conrad

[21] discuss the types of robots and their embodiment, which may vary depending on

the tasks they are designed for and the nature of the people they will collaborate with

to accomplish their goals. The medical robots that perform surgical operations have

shapes closer to the doctor’s hands with high control capabilities, accuracy and comfort,

and they have specialized communication methods to collaborate with doctors [73], or

even they use robotic machines to support disabled people in physical activities [136].

We also note the difference between robots dedicated to rescuing and firefighting [79]

with social robots that communicate and interact with humans [13]. Taking such robot

diversity into consideration, in this thesis we adopt the widely applicable representation

framework of dynamic movement primitives. Although our application scenarios focus

on manipulation tasks, the ideas presented herein can be more broadly applicable and

are not specific to a robotic platform.

In collaborative tasks, team members work together to accomplish a particular goal.

Such teams may be composed of humans and robots, possibly more than one robot or

more than one human. Collaboration towards the common goal requires coordinated

actions between the members according to the stages of task completion and their skills.

Usually, the skills of team members are complementary to each other to accomplish the

required task [14]. In human-robot collaborative tasks, the human mainly defines the

goal of the task. The robot needs to know or understand the human’s intentions, which

can be communicated by the human to the robot, either explicitly or implicitly. In

the case of explicit communication, humans can use speech, gesture, actions, or haptic

signals, for example, and the robot requires interpretation abilities [90]. In the case of

implicit communication, the robot needs to predict the human’s intentions, so the robot

requires prediction abilities [14] that, as mentioned above, we address in Chapter 5.

In collaborative tasks, the uncertainty about the surrounding environment and its

dynamics, as well as the complexity of some movements, change between tasks and

among peers. For the robot to overcome such changes, it must adapt during task

execution. Machine learning can be used as an effective toolset to reduce the impact of

the aforementioned changes. Using supervised learning, unsupervised learning [17], or
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reinforcement learning [42], robots can learn how to adapt to humans and complete

its task [14]. Reinforcement learning (RL) is particularly relevant for adaptation [132].

The optimization method used in the thesis, CMA-ES (Chapters 4 and 6), can be

seen as an form of RL that performs direct policy optimization in a model-free setting.

Previous works used, for example, deep reinforcement learning to train a robot how

to collaborate with humans [see the works of 25, 110], although such approaches were,

again, data-intensive.

It is also possible to teach the robots how to collaborate using imitation learning,

which will save a significant effort in the training phase [40]. After learning, the

robots can improve their behaviors during the task using interactive learning [86].

Teaching a robot can also rely on augmented reality (AR) technologies. AR enhances

communication between humans and robots by combining the physical and virtual

worlds. It can be used both to train the robot and design scenarios that can be difficult

to deploy just using the real world. There are many benefits to using AR in human-robot

collaboration (HRC); for more details, we refer to the work of Green et al. [30]. The

previous reviews show the importance of our thesis and our contribution to the field we

are searching in collaborating with robots.

Before finishing this section, it is important to establish what we mean by collabo-

ration, cooperation, and coordination, as these are central concepts appearing in the

context of joint tasks involving multiple agents (such as human-robot collaborative

settings). These terms define the types of relation between the actors in the joint task,

as well as their functional layout in terms of the task.

If all actors share the same objectives, and there is a common outcome for the task,

we refer to such situation as a collaborative task. In such situation, all actors “own”

the task. Conversely, in a cooperative task, there is one “owner” for the task; the other

actors may have distinct objectives but still provide help or a service to the “task owner”

(i.e., they cooperate) [51]. Finally, coordination usually refers to collaborative situations,

but where the main focus is on the process of action/subtask selection. In a sense,

coordination can be seen as as a “lower-level” collaboration [51].

⋄

So far, we discussed the importance of human-robot collaboration, and introduced
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some important challenges that arise in the context of such collaboration. In the

continuation, we discuss existing work on each of the challenges addressed in the thesis,

beginning with movement processing (segmentation, combination, etc.).

3.2 Movement Processing

The contributions of this thesis—as depicted in Fig. 1.2 (page 6)—build heavily on a

library of pre-learned movements, represented as dynamic movement primitives. The

library is used for movement generation (Chapters 4 and 6), movement recognition, and

prediction (Chapter 5). This section discusses works on movement segmentation—used

to build novel primitive movements from demonstration—and movement combination—

used to build novel complex movements from simpler ones.

3.2.1 Segmentation

Movement segmentation approaches can be roughly divided into three families of

methods [133]. Boundary detection approaches rely on the acceleration, velocities, and

curvature of the movement to detect segment start and end points [80, 111].

Sliding window methods, in contrast, scan the whole trajectory, splitting it in

overlapping windows, where each window is then classified as belonging to one of several

possible movement types. Segmentation is then obtained by joining together consecutive

windows classified as belonging to the same movement type [26, 43, 44]. Sliding window

methods are generally computationally intensive and cannot be used at training time

(i.e., when movement classification is not yet available).

A third type of segmentation methods are grammar concatenation approaches, which

use dependence structures (such as hidden Markov models, HMMs, or conditional

random fields, CRFs) to model the transition dynamics between movement segments to

detect segmentation points. For example, Lv and Nevatia [69] use HMMs, and Morency

et al. [88] use CRFs as the underlying structure used to detect segmentation. While

less computationally expensive than sliding window methods, grammar concatenation

approaches typically require large amounts of data to learn the dependence structures

used for segmentation.

The segmentation method used in this thesis falls into the first category, and relies on
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the detection of critical points, as defined in Chapter 2. Critical point-based movement

segmentation provides several important benefits for the applications envisioned in this

thesis [133]:

• Unlike grammar concatenation approaches, it does not require training data,

using only information directly available in the movement itself. Such property

renders critical point-based segmentation particularly suitable in the context of

Chapter 4, where segmentation is used to learn new primitive movements from a

demonstration;

• Unlike sliding window methods, it is simple and computationally efficient, making

it suitable for real-time applications such as movement recognition (addressed in

Chapter 5.

Considering the more specific context of learning from demonstration, several

approaches have been proposed for movement segmentation, which can also be classified

as belonging to one of the families discussed above.

For example, Meier et al. [82] segment complex movements into a sequence of simpler

movements by recognizing individual segments of the larger trajectory as instances of

the movements in a given library of DMPs. Meier et al. [83] use the idea of critical points

to segment an observed movement and then perform recognition. Both approaches use

the movement features to determine the segment boundaries, and roughly fall into the

first category above.

In another work, closer to the category of grammar concatenation approaches,

Niekum et al. [94] propose the use of a Bayesian non-parametric model (an auto-

regressive hidden Markov model) to describe the observed demonstration, and use the

estimated latent discrete states to segment the trajectory into different sub-trajectories.

Each sub-trajectory is then represented as a DMP and used to build a library that can

latter be used for planning.

Our approach in Chapter 4 also uses the trajectories provided by the demonstrator

to build a library of DMPs that can then be used for planning. Our segmentation

approach builds on the one proposed by Meier et al. [83], in that we use velocity and

acceleration information to determine critical points, used for segmentation.
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3.2.2 Combining Movements

One of the benefits of using motor primitives is the fact that by combining multiple

motor primitives, we can create one larger motor primitive to perform a complex task

[115].

We can look at motion combination from at least two different perspectives. On the

one hand, motions can be generated by mixing motor primitives. For example, Mulling

et al. [89] propose an approach that learns how to build mixtures of motor primitives

to more effectively hit a moving table tennis ball. Their work proposes the mixture of

motor primitives (MoMP) method that learns how to combine multiple DMPs from

a library, in order to achieve complex tasks. Much like our approach in this thesis,

the MoMP method requires a library of movement primitives and, at execution time,

it builds new movements that depend on the external stimuli. They employ a gating

network to generate weights for each motor primitive in the library, and these weights

control the generation of the resulting movement.

On the other hand, complex motions can be built by sequencing motor primitives

[57, 58, 92]. For example, Kulvicius et al. [58] propose a simple approach in which two

DMPs can be combined sequentially in a smooth manner by adding a common term

that drives both DMPs in the vicinity of the transition points.

Pastor et al. [99] proposed merging DMPs depending on the DMP velocity values.

They define a threshold for the velocity; when the first DMP velocity is on this threshold,

their approach initiates the next DMP. This yields a sequence of DMPs that, however,

can lead to discontinuous movements that seem erratic.

The method of Kober et al. [50] requires the definition of an intermediate velocity

and an intermediate target to combine two DMPs. This method is used to reach the

target at a particular velocity, so they modify the DMP form to achieve this purpose.

It is used for some movements like hitting the ball, where the movement should reach

the ball position at a specific velocity to accomplish its goal. So they determine an

intermediate velocity, which is reached at the end of the first DMP and will be the

starting velocity of the second DMP.

In Chapter 4 we combine DMPs following Kulvicius et al. [58], because the resulting

movement will be smooth and without any discontinuities, and does not require the

computation of intermediate velocity terms.
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3.3 Trajectory Optimization

In this work, we describe the robot motion using dynamic movement primitives (DMPs).

DMPs are one among different ways to represent movement primitives, and are con-

venient in that they yield smooth motions that can be easily learned and modulated,

as discussed in Chapter 2. Such representation is also convenient as they allow the

combination of different MPs, with parallel or sequential execution, to carry out complex

tasks [62, 97].

There are other alternative representations for movement primitives—for example,

probabilistic representations that capture how likely a given trajectory is under a

movement primitive. Probabilistic movement primitives (ProMPs) are also easily learned

and modulated using standard probability manipulation operations. They can also be

combined into new primitives, taking advantage of the common representation [97].

In many scenarios, however, we may want to optimize a particular movement

after being learned by demonstration. Such optimization can be done using standard

reinforcement learning approaches. For example, Peters et al. [103] proposed the natural

actor-critic algorithm, which has found significant application in robot learning [49, 102].

Bhatnagar et al. [15] further discuss natural actor-critic algorithms and their relative

advantages.

Other approaches use gradient-based reinforcement learning to adapt/adjust pre-

learned robot movements [130], but a significant volume of work has considered the use

of more general black-box optimizers to adjust the parameters of pre-learned movements

[34, 112, 119]. For example, Heidrich-Meisner and Igel [34] use black-box optimization

to find the parameters of a trajectory that can maximize a fitness function evaluating

different measures of quality of a given trajectory. We refer to Stulp and Sigaud [123]

for a comparative view of different approaches to robot movement optimization. In this

thesis, we adopt the CMA-ES (Covariance Matrix Adaptation Evolutionary Strategy)

algorithm for trajectory optimization [82].

3.3.1 Optimize and Coordinate Multiple DMPs

Many complex manipulation tasks require coordinated action from multiple robots,

which in turn requires synchronization and coordination at the motor level, if the task
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is to be successfully completed [98]. For example, in robotic assembly lines, several

robotic manipulators operate in a coordinated fashion to complete their assigned task,

such as welding or assembling a part [2]. As such, the problem of coordinated control

has been widely investigated in the literature [59, 64, 104, 135].

Other examples can be found in locomotion, where the movement of the multiple

legs of a robot must be adequately synchronized and coordinated to ensure successful

movement of the robot. Movement in locomotion are often rythmic and can be generated

in a synchronized fashion using central pattern generators [36], a concept borrowed from

the theory of motor control in animals [78].

However, as robots move from industrial environments and labs into our homes and

everyday lives, it becomes increasingly important that they are able to learn new tasks

from non-expert users. As argued in Section 3.1, learning from demonstration has been

proposed a fundamental skill expected of robots for everyday use [8].

In Chapter 6 we are interested in tasks that require the coordinated movement

of two manipulators, and in which the movement to be performed by the robot has

previously been taught by demonstration. We consider the situation where the user may

not have the ability of providing a demonstration for the two manipulators. This can

be the case, for example, if the two manipulators are complex and difficult to handle

simultaneously by a single user. Instead, the robot is taught the basic movement in

a single manipulator through kinesthetic teaching, and must then determine how to

adapt the learned movement to the task at hand, involving the coordinated movement

of two manipulators. The original movement taught by demonstration by the human

user is represented as a DMP [39], which is then optimized and executed synchronously

by the two manipulators taking into consideration the specific task constraints. The

DMPs canonical system acts as a common phase signal, ensuring synchronization [114].

Like our work, several previous approaches take advantage of DMPs shared canonical

system to facilitate coordination and synchronization. As an example, DMPs have

widely been used as central pattern generators [91]. In a different work, Kormushev et al.

[56] propose an approach where a coordinated movement represented as a single DMP

is initially learned by demonstration and then optimized using reinforcement learning.

Their approach uses a coordination matrix that ensures that no mis-coordinations are

introduced in the optimization problem. Colomé and Torras [23] extend the previous
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approach to problems with many dimensions, using linear dimensionality reduction to

render the optimization more sample efficient.

In Chapter 6 we build on the framework from Chapter 4 and consider manipulation

tasks involving two manipulators.1 Our approach is related to the aforementioned works

that perform optimization on top of a DMP learned by demonstration. Importantly,

unlike those approaches, the DMP learned by demonstration is only used to define the

shape of the movement, and not to provide an initial, coordinated approach [5, 23, 55].

Instead, we take advantage of the natural symmetry in the two manipulators to execute

the same motion in both manipulators, and use a constrained optimization approach to

ensure coordination. In this sense, our approach is also related to classical control-based

approaches that relied on constrained optimization to ensure coordination [2, 135], as

well as path-planning-based approaches to coordinated movement [129].

3.3.2 Obstacle Avoidance

Realistic environments are variable and subject to many changes. Since we expect

robots to work with us in realistic environments, their operation is directly affected by

these diverse conditions and restrictions. Among these changing conditions, fixed and

moving elements act as obstacles for the robot. The robot must avoid them and ensure

that its basic tasks are completed without collision or damage. The process of avoiding

collision must be transient and, if possible, not end or change the tasks assigned to

the robot. All of the above require a system that can dynamically adapt to changing

environmental variables.

Hoffmann et al. [35] propose a modification to the differential equation of the DMP

by adding a term to velocity and position dynamic equations. The new velocity is

computed applying a rotation matrix on the current velocity. The rotation matrix,

in turn, is designed to modify the DMP to prevent hitting an obstacle, based on

the angle between the velocity vectors of the current DMP and the obstacle. This

approach operates with a point-mass obstacle, which is unsuitable to work in realistic

environments, where the obstacle is not properly represented as a point-mass. To use

such approach in our work, we ought to add a considerable safety margin to avoid any

1We note that, although we do not explore such a setting in this work, the proposed approach could,
in principle, be extended to scenarios involving more than two manipulators.
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possible collision, which is inappropriate.

Khansari-Zadeh and Billard [46, 47] propose a related method that computes a

modulation matrix, which modifies the DMP to avoid the obstacles. The modulation

matrix is computed in real-time and updates the DMP during the execution. Because

using a modulation matrix is practical and efficient during execution time, we use it in

our work in Chapter 4.

3.4 Recognition and Prediction

One of the essential challenges in human-robot collaboration is the ability of the robot

to recognize what the human partner is doing and move accordingly. In human-human

collaboration, each person observes and “intuitively” recognizes the partner’s motion,

allowing the person to act in the best possible way. Humans are naturally flexible

concerning a partner’s actions and are able to adapt, fostering high-level collaboration

and inter-partner trust [63].

For such high-level collaboration to be possible, robots must also recognize and adapt

to the observed movement of a human partner. Several works in the literature address

the problem of trajectory recognition in the context of human-robot interaction, and

many of these works use various forms of the hidden Markov model (HMM) [60, 96, 128].

However, such methods require large data-sets for training, which are costly to obtain

in human-robot collaboration scenarios. As an example, Yoon et al. [134] proposes an

approach to recognize gestures from video data. They describe a gesture with several

invariant features to transition, rotation, and scaling (e.g., location, velocity, angle

of motion) and use these data to build an HMM to recognize various hand gestures.

In another work, Black and Jepson [18] use a condensation algorithm to compute a

probability distribution over a set of models given the input trajectory. The distribution

is computed from the difference between the amplitude of the input and model motions,

after adequate time scaling. The computed distribution can then be used to combine

the prediction of the different models. The same approach was also tested in a face

recognition scenario to recognize facial expressions from facial motions [19].

Also related is the work of Kherallah et al. [48], where stroke movement is used

to recognize Arabic digits. In particular, the authors propose using Beta-elliptical

36



representations to describe the writing motion and then use a neuro-fuzzy system

for digit recognition. Maeda et al. [72] introduce interactive probabilistic movement

primitives (I-ProMPs) to represent collaborative human-robot motions. In this work,

the authors assume that all motions have a constant rate of change and, therefore, time

alignment can be achieved by simple scaling. This reduces recognition to the estimation

of the human action phase, circumventing the need for time alignment.

Dermy et al. [24] use a set of pre-learned motor primitives (MP) for recognition.

The use of an MP library is similar to our approach. However, unlike our work, the

authors assume that the observed movement is an exact match to one of the pre-learned

MPs, thus disregarding some critical challenges in motion recognition (such as time

alignment).

The I-ProMPs of Maeda et al. [71] represent collaborative trajectories between a

human and a robot by using a probabilistic model, capturing through standard regression

a Gaussian representation for both the human and robot trajectories. At recognition

time, the observed trajectory—corresponding to the human action—is used to compute

the corresponding robot trajectory by a simple probabilistic operation (conditioning).

However, in order to build a robust I-ProMP model, a rich set of demonstrations is

required. Their approach is also sensitive to speed variability. In Chapter 5 we propose

a novel approach that is robust to speed changes and, moreover, does not require the

observation of the entire human trajectory to compute the robot’s movement. Instead,

it uses a prediction made from the partial observation of the movement as the target

for the robot’s own movement.

Perhaps closest to our work is that of Pérez-D’Arpino and Shah [101]. In their

approach, they also use a library of learned movements and use time series analysis to

estimate the target of the observed motion. The estimation requires time alignment

of the observed trajectory to those in the library, which is achieved through online

dynamic time warping (DTW). Since this process is time-consuming, they use a parallel

architecture to perform the DTW with the different motions in the library. However,

they do not support target modulation, assuming that the observed motions are simply

perturbed versions of those in the library. Along the same lines, Mainprice and Berenson

[74] also perform recognition from a library of known movements. They use occupancy

for movement recognition, overcoming the need for time alignment but, once again,
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assuming that the observed motions are perturbed versions of those in the library.

Finally, other works have explored motion prediction for human-robot interaction.

Mainprice et al. [75] consider prediction in the context of a single task, to avoid

interference between the robot’s motion and that of the human. Prada et al. [105]

consider handover tasks, where the movement of the robot is adjusted in run-time to

that of the human.

In Chapter 5, we propose an approach for trajectory recognition and prediction

that, given a library of previously observed movements, identifies a partially observed

trajectory from among those in the library, predicting its (unobserved) target point.

The fact that our approach does not require the entire trajectory to be observed is

fundamental, as our approach can use it in run-time for actual human-robot interaction

scenarios. Our approach is also able to recognize modulated movements, i.e., movements

that share the shape of those in the library but which are aimed at a different target.

3.4.1 Compound Movement Recognition using DMPs

During infancy, humans build a “library” of new movements by learning to combine

simpler movements [45]. This method of learning complex movements allows humans

to learn how to carry out complex tasks. The ability to combine simple motions into

more complex ones has also been a topic of intense research in the robotics community

[58, 89, 92], and is also a key ability of our framework, as discussed in Chapter 4.

In Chapter 5, we address the problem of movement recognition and prediction,

considering not only single, primitive motions, but also compound motions. The ability

of a robot to break down a movement into its simpler components is fundamental for

recognition purposes: suppose the robot wants to replicate the observed movement

instead of learning the new movement from scratch. In that case, it can use simpler

movements already learned (and recognized by observation) and compose them to

perform a more complex one.

All works on recognition discussed in Section 3.4 assume that the observed trajectory

is atomic and corresponds (or is close) to one of a set of pre-learned trajectories. Such

methods are not designed to deal with compound trajectories. Some works do address

complex movement recognition, assuming that the observed movement is obtained as

the combination of complete simpler motions [24]. Maeda et al. [71] use a probabilistic
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model (I-ProMPs) to distinguish movements, whereby the observed path is approached

with the closest human action to it. Ma et al. [70] work at the task level: the observed

movements of the human body are divided into parts that may overlap. An algorithm

is built to capture these parts by extracting them from video frames. A bag-of-words

representation is then used to distinguish the partial movements, using the temporal

and spatial relationship between the parts.

Our proposed approach, discussed in Chapter 5, does not assume that the observed

motion is composed of full atomic movements. Instead, we accommodate the case where

the observed movement arises as to the composition of several movement segments,

possibly coming from different movement primitives. We assume that each such segment

is either the initial segment of a new movement primitive or the continuation of the

previous segment. Our method identifies whether the observed movement is new or

compound and predicts its most likely target, should the current movement be executed

to the end. We can use the recognition of the observed movement as the combination

of simpler movements in a framework for movement combination, and optimization

[58, 67, 122, 123].

⋄

Having provided a broad overview of the landscape of current research in the

different topics relevant to this thesis, in the following chapter we introduce to our first

contribution: an end-to-end framework to learn from demonstration, segment, compose,

and optimize movements.
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Chapter 4

Learning and Generating Complex

Robot Motions from Demonstration

41





This chapter describes an end-to-end framework that can learn and decompose complex

movements provided by a human demonstrator and generate new complex motions. Our

approach analyzes the demonstration by the human expert and uses geometric criteria to

decompose the observed movement into segments that are stored as dynamic movement

primitives (DMPs) in a library. Then, given a new environment configuration, our

system autonomously composes different motion primitives to construct an optimized

trajectory that meets the constraints imposed by the new environment. Our system

is therefore able to construct new DMPs to execute complex motions in environments

that differ from the one where the original motions were taught. Our approach is also

compatible with existing run-time obstacle avoidance approaches. We illustrate the

application of our approach both in simulation and with a Baxter robot.

The key contribution of this chapter is the system as a whole. The added value of the

proposed architecture is the combination of all the functionalities in a single framework

for learning and generating complex motions from human demonstrations. In addition,

the greedy approach proposed to compose atomic DMPs is of interest per se. The

use of DMPs greatly facilitates the interconnection of the different components of our

architecture, since DMPs are amenable to optimization [122], can easily be combined

to generate complex motions [58], and can be exploited to ensure the avoidance of

obstacles in run-time [46, 47]. Our framework comprises a library of DMPs and a set of

different modules for (i) segmenting a provided demonstration, abstracting the computed

sub-trajectories into new DMPs and adding them to the library; (ii) a greedy algorithm

that, given a goal point, combines the DMPs in the library into a single complex motion

that is then optimized according to provided criteria (length of trajectory, obstacle

avoidance, smoothness); (iii) a module that, during execution, monitors the existence

of obstacles and reshapes the trajectory to avoid such obstacles in run-time.

4.1 A Framework for Motion Decomposition, Learning

and Generation

Our framework is summarized in Fig. 4.1 and comprises several modules for motion

decomposition, learning and combination. Underlying all the modules is a common

representation of “atomic” robot motions—the dynamic motion primitive, or DMP.
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Figure 4.1: Overview of the proposed system architecture for end-to-end learning,
decomposing, optimizing and combining robot motions.

In the continuation, we discuss how the different modules of our system are built on

top of the DMP representation just described.

4.1.1 Segmentation

Given an initial demonstration {y(t), t = 0, . . . , T}, with y(t) ∈ RP for some P ≥ 1, we

segment the trajectory into multiple segments, each of which is then turned into one

DMP. To perform segmentation, we follow Meier et al. [83], where the segment points

consist of the critical points of the trajectory, and identify such critical points as the

minima of the function h(t) in (2.8) (Chapter 2, page 21). Therefore, after computing

h(t) for all t = 0, . . . , T , we compute local minima of h(t) and mark those points as

final points of a sub-trajectory and initial point of a new sub-trajectory.

After determining the set of sub-trajectories obtained from a demonstration, our

system builds one DMP for each sub-trajectory. The learning of the DMPs consists of

adjusting the weights of the force function so that the resulting trajectory matches the

demonstration as closely as possible [77]. The different learned DMPs are then stored

in the library for future use.
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4.1.2 Optimization

Given the library of learned DMPs, whenever the user provides the robot with a

new target, the robot must now use the learned DMPs to reach the new target while

accommodating potential changes to the environment configuration (e.g., new obstacles,

etc.). In order to do that, the robot builds a sequence of DMPs that may meet the

desired objectives (reaching the target, avoiding obstacles).

The identification of which DMPs can be used to reach a given target relies critically

on the robot’s ability to optimize a DMP to reach such target in light of environment

constraints. We adopt the Covariance Matrix Adaptation Evolutionary Strategy—or

CMA-ES—to that purpose. CMA-ES is a derivative-free optimizer that has been

successfully used in robot learning and reinforcement learning [67, 122, 123].

Given a target position y∗ and a set of M obstacles, {o1, . . . , oM}, we define the

objective function for evaluating the black-box output for the CMA-ES samples:

J =
T∑
t=0

[
cgoal∥y(t)− y∗∥2 + cvel∥ẏ(t)∥2 + cobst

M∑
m=1

I(y(t) ∈ om)

]
, (4.1)

where cgoal, cvel and cobst weight the relative importance of reaching the goal, avoiding

large velocities and avoid obstacles, and I(y(t) ∈ on) is a binary value that indicates

whether, at time step t, the trajectory y(t) hit obstacle on.

Given a learned DMP—encoded as an N -dimensional weight vector w that defines

the force term in the DMP representation—CMA-ES proceeds, at each iteration i, by

sampling a set of new candidate weight vectors, {wi,1, . . . , wi,K}, from a multivariate

Gaussian distribution centered around the current weight vector, µi, and with covariance

Σi. The trajectories resulting from each candidate weight vector wi,k, k = 1, . . . , K, are

evaluated according to the cost function J in (4.1), and a new weight vector µi+1 is

computed from the weighted mean of the candidate vectors. The covariance matrix

Σi is also adapted accordingly (we refer to Chapter 2 for further details on CMA-ES).

Figure 4.2 illustrates the result of the optimization process in a simple environment

with an obstacle and different targets.
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(a) (b)

Figure 4.2: Learning and optimization of simple DMPs from demonstration. A solid
blue line corresponds to a demonstration; red dashed-dotted lines correspond to the
modulated DMP to different targets. Since the DMP is unaware of the existence of
obstacles, the modulated trajectory goes through the obstacle. A blue dotted line
corresponds to an optimized DMP, given the shaded obstacles. CMA-ES is effectively
able to avoid the obstacle while reaching the target.

4.1.3 Combination

We now discuss the combination module in our framework. Such module can be broken

down in two components:

• A first component that selects from the library the DMPs to be combined;

• A second component that adjusts the selected DMPs to obtain a single, smooth

trajectory.

We describe each of these two components in detail.

Selecting the DMPs to Combine

Our approach greedily selects a sequence of DMPs that drives the robot from an initial

state y0 to a target state y∗ while respecting the constraints imposed by the environment,

as illustrated in Figure 4.3. The selection process relies critically on the optimization

approach described in Section 4.1.2 and works as follows.

Let y0 denote the origin of the desired motion, and y∗ the desired target. Using

CMA-ES, we optimize each DMP in the library to move from y0 to y∗ while respecting
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Objective

Reachable space with P0

DMP P0

Best point reachable with P0

Figure 4.3: Greedy approach to determine which DMPs to combine in order to achieve
a new target, while accommodating a new environment configuration.

the constraints imposed by the environment. The best DMP—in terms of the associated

cost J—is then selected. If the target is reached the process concludes. Otherwise, the

ending point of the selected DMP is set as the new origin and the process repeats until

the target is reached.

Combining Multiple DMPs

Once a sequence of DMPs is identified that yields a combined trajectory from y0 to the

target y∗, it is necessary to combine these DMPs together to yield a novel trajectory, as

smooth as possible. We adopt the approach of Kulvicius et al. [58].

Given the sequence {m1, . . . ,mD} of DMPs, selected as described above, the com-

bined trajectory runs for an extended time-frame

T ′ =
D∑

d=1

Td,

where Td is the length of the dth selected DMP. The forcing term for the combined

trajectory is now composed from N ×D basis functions, where basis function Ψn,d is

now a Gaussian kernel centered around

cn,d =


T1

T ′ · n−1
N−1

if d = 1

Td

T ′ · n−1
N−1

+ 1
T ′

∑d−1
ℓ=1 Tℓ otherwise,
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with a width

σn,d = σn
Td
T ′ ,

where σn is the width of the original basis function Ψn. The extended set of basis

functions now spans the whole time frame T ′ and the corresponding widths ensure some

level of overlap which, in turn, leads to a smoother resulting trajectory. The weight

associated with each basis function Ψn,d is the nth weight of the dth DMP.

Finally, we also modify (2.3) to reflect the dynamics of the successive (intermediate)

targets as

ẏref(t) =


∆t
Td
(y0,d − y∗d) if

∑d−1
ℓ=1 Tℓ ≤ t ≤ ∑d

ℓ=1 Td,

0 otherwise,

where y0,d and y∗d represent the origin and target of the dth DMP. The resulting combined

motion is a novel (complex) DMP which can also, in turn, be optimized using the

approach described in Section 4.1.2.

4.1.4 Execution-time Avoidance of Moving Obstacles

Finally, during trajectory execution, it is possible to adapt run-time obstacle-avoidance

approaches such as the one of Khansari-Zadeh and Billard [46]. The general idea is

that the dynamics of the DMP are modified by a dynamic modulation matrix M that

locally changes the shape of the DMP trajectory to avoid the moving obstacle.

Formally, let us write the DMP as a first-order dynamical system, yielding the

following equivalent formulation:

ż0(t) = − αx exp{αx(T
′ − t)/∆t}

1 + exp{(αx(T ′ − t)/∆t)2} , (4.2a)

ż1(t) = z2(t), (4.2b)

ż2(t) = αy(βy(z3(t)− z1(t))− z2(t)) + f(z0(t)), (4.2c)

ż3(t) =


∆t
Td
(y0,d − y∗d) if

∑d−1
ℓ=1 Tℓ ≤ t ≤ ∑d

ℓ=1 Td,

0 otherwise,
(4.2d)

where z0(t) = x(t), z1(t) = y(t), z2(t) = ẏ(t) and z3(t) = yref(t). The dynamical system
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in (4.2) takes the general form

ż(t) = f(z(t), t),

and describes the unmodified DMP movement. In the presence of an obstacle o, the

trajectory of the system is described by the modified dynamical system

ż(t) =M(z, o)f(z(t), t),

where M is the aforementioned modulation matrix.

Given an obstacle o centered at zo, let z̃ = z − zo for z ∈ RP , and let G(z̃) = 1

denote an implicit representation of the obstacle boundary, where G is assumed to be

a smooth function G : RP → R.1 In other words, a point z̃ ∈ RP such that G(z̃) < 1

lies in the interior of the obstacle; while a point z̃ ∈ RP such that G(z̃) > 1 lies in free

space. Moreover, given a point z̃b in the boundary of the obstacle, let n(z̃b) denote the

normal vector to the obstacle at z̃b, given by n(z̃b) = ∇zG(z̃b).

The modulation matrix M is computed at an arbitrary point z̃ in free space by

defining a deflection hyperplane that is orthogonal to the vector n(z̃)—defined for vectors

z̃ in free space as n(z̃) = ∇zG(z̃). A basis for such deflection hyperplane is the set

{eq(z̃), q = 1, . . . , P − 1}, with each vector eq defined component-wise as

eq,p(z̃) =


−∂G(z̃)

∂zq
if p = 1;

∂G(z̃)
∂z1

if p = q ̸= 1;

0 if p ̸= 1 and p ̸= q.

The modulation matrix can now be decomposed as

M(z̃) = E(z̃)D(z̃)E−1(z̃), (4.3)

where

E(z̃) =
[
n(z̃) e1(z̃) . . . eP−1(z̃)

]

1As in the work of Khansari-Zadeh and Billard [46], we assume convex smooth obstacles.
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and

D(z̃) =


λ1(z̃) 0

. . .

0 λP (z̃)

 .
The values λp are defined as

λp(z̃) =

1− 1
|G(z̃)| if p = 1;

1 + 1
|G(z̃)| otherwise.

and control the amount of deflection that the original trajectory suffers as a function of

how close it is to the center of the obstacle.

The dynamic modulation matrix M can now be computed—as a function of z̃(t)—

from (4.3) to warp the trajectories of the system at run-time away from the obstacle.

Additionally, as discussed in [46], it is possible to adjust both the reactivity of the

deflection and the “safety margin” around the obstacle through two simple adjustments

during the computation of M . Specifically, we can take η ∈ RP such that ηp ≥ 1, p =

1, . . . , P , and use the modulation matrix

M(z̃) = E(z̃η)D(z̃η)E
−1(z̃η),

where z̃η is the vector obtained from z̃ by setting its pth coordinate to z̃eta,p = z̃p/ηp.

The scaling of z̃ by η effectively “inflates” the object o, and we can use η to control the

desired safety margin. On the other hand, we can instead consider

λp(z̃) =

1− 1
|G(z̃)|1/ρ if p = 1;

1 + 1
|G(z̃)|1/ρ otherwise.

The positive parameter ρ controls the “reactivity” of the deflection process: larger values

for ρ further extend the deflection induced by the obstacle.

4.2 Experiments

We now illustrate our framework both in simulated and real trajectory generation. Our

results showcase the ability of our framework to generate complex motions from learned
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(a) (b) (c)

Figure 4.4: Several runs of CMA-ES in a cluttered environment. The trajectories are
generally unable to reach the target (the red square).

DMPs. We illustrate both the performance of the individual modules and of the system

as a whole.

4.2.1 Learning Simple DMPs from Demonstration

We start by showcasing the process of learning a simple DMP from demonstration.

Figure 4.2a illustrates the DMP resulting from a simple 2D demonstration. In the

example, the dashed line corresponds to the DMP learned from the solid line. If we

change the target of the DMP, the resulting trajectory will maintain the same overall

shape, while ending in the desired target, but it will unable to avoid the obstacle.

We note, however, that although the DMP illustrated in Fig. 4.2a was learned in the

presence of an obstacle (corresponding to the gray circle), it contains no information

regarding such obstacle; therefore, if modulated to a target across the obstacle, the

resulting trajectory will not avoid the obstacle, as illustrated in Fig. 4.2b.

The use of CMA-ES readily handles such situation. By including obstacle information

in the cost function J , CMA-ES departs from the learned DMP and construct a new

DMP trajectory that is able to successfully reach the target and avoid the obstacles, as

illustrated in Fig. 4.2b.

4.2.2 Composition of DMPs for Cluttered Environments

Although CMA-ES is able, to some extent, to address the constraints imposed by the

environment to the DMP trajectories, in very cluttered environments it may not be

enough. Figure 4.4 illustrates several cases in which CMA-ES was unable to attain the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.5: Successful examples where combined DMPs reached the target position.
Result is depicted in geometric simulation and using the Baxter simulator. (a)-(c)
Geometric simulation environment layout; (d)-(f) Execution in geometric simulation
environment; (g)-(i) Baxter simulation environment layout; (j)-(l) Execution in Baxter
simulation environment. The DMP library contains five Dmps.
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(a) (b)

Figure 4.6: 3D environment: Successful examples where combined DMPs reached the
target position. (a) Result in geometric simulation. The green circle and red square
correspond to the start and end points, respectively. (b) Setup for the real-world
experiment using the Baxter robot.

target position due to the constraints imposed by the environment.

In contrast, our approach is able to successfully generate trajectories that reach the

target while avoiding the obstacles, as illustrated in Figs. 4.5 and 4.6a.

Figure 4.7 illustrates the impact of each individual component of the framework on

the performance as a whole. Our framework has succeeded in all environments and

conditions, while the alternatives (that do not consider at least one of the components

in the framework) either could not reach the target or could not avoid the obstacles and

get a safe path to the target. In the experiment, the DMP library contains four DMPs.

We note that the combined trajectory can be further optimized (again with CMA-ES)

to obtain a yet smoother trajectory. Figure 4.8 showcases the trajectory resulting from

applying CMA-ES to the combined trajectory.

Finally, we illustrate in Fig. 4.9 the dependence of our approach on the optimization

module. In particular, we depict the results obtained by using a different number of

iterations and step-size during the combination process. As evidenced in the plots,

running CMA-ES for a larger number of generations allows for “straighter” trajectories;

similarly, an adequately selected step-size provides good exploration for the environment

(Fig. 4.9).
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(a) (b)

(c) (d)

Figure 4.7: Examples where our approach could successfully combine multiple DMPs
to reach the target position in different environments and different conditions. The
solid blue line corresponds to the result of our approach. The dashed line features no
optimization (just combination); the red dashed-pointed line is a single DMP without
optimization; the blue-pointed line is a single DMP with optimization. The green
circle and red square correspond to the start and end points, respectively. (a), (b), (c)
depict different environment configurations. (d) depicts the resulting trajectory in the
environment (c) when optimization is stopped early. The DMP library contains five
Dmps.

4.2.3 Execution-time Obstacle Avoidance

During the execution of a trajectory, it may happen that the robot needs to accommodate

a moving obstacle. For example, during the interaction with a human user, the user

may move and the robot should be careful to avoid hitting the user. In other words,

the robot should treat the user as a “moving obstacle” and adjust its motion to the

motion of the human.

As discussed in Section 4.1, our framework accommodates one such module, that

addresses precisely the avoidance of obstacles at execution time. We illustrate in

Fig. 4.10 a sequence of frames in which the trajectory executed by the robot is slowly

adjusted to avoid the obstacle.
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(a) (b)

Figure 4.8: Application of CMA-ES to the combined trajectory. (a) Upon applying CMA-
ES to the combined trajectory (depicted with a solid line), we obtain the significantly
smoother dashed trajectory. The green circle and red square correspond to the start and
end points, respectively. (b) Position and velocity profiles for the optimized combined
trajectory. The dashed red line indicates the point at which the two original DMPs
were put together.

Finally, we also applied our framework in the Baxter robot, as illustrated in Fig. 4.6b.

In the experiment, the robot must transfer the blue object to the right side of the

obstacle, having only been taught how to move its arm in the absence of obstacles.

Once again, Baxter is able to successfully move the blue object without knocking down

the obstacles (see also supplementary video).

4.3 Concluding Remarks

In this chapter, we described a novel end-to-end framework to learning and generating

complex motions from a library of “atomic” actions (DMPs) learned by decomposing

a demonstration from a human expert. Our approach relies critically on the robot’s

ability to optimize a DMP’s trajectory to reach a target while complying with the

environment constraints. Our approach is also able to accommodate execution-time

obstacle avoidance. Although our results involve relatively simple domains, they are,

nevertheless, illustrative of the potential of our proposed approach.

Our research also opens important research questions. Given the library of move-

ments that the robot has available, can the robot recognize a movements from such

library upon observing it? Going one step further, in light of the robot’s ability to

combine the different movements in the library, is the robot able to recognize a sequence
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(a) 25 CMA-ES generations. (b) 50 CMA-ES generations.

(c) 250 CMA-ES generations. (d) 300 CMA-ES generations.

(e) 100 generations. (f) 150 generations.

(g) 200 generations. (h) 300 generations.

Figure 4.9: Dependence of the combined trajectory on the number of iterations for (a)-
(d) smaller step-size; (e)-(h) larger step-size. The green circle and red square correspond
to the start and end points, respectively. The DMP library contains five Dmps.
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Sequence of frames showing execution-time obstacle avoidance. The dashed
blue line corresponds to the optimized trajectory, and the green circle and red square
correspond to the start and end points, respectively. The yellow square represents an
obstacle that is moving leftwards, eventually colliding with the optimized trajectory.
The sequence of red dots corresponds to the actual trajectory executed by the robot.
Note that, as soon as the obstacle is out of the way, the robot resumes its initially
planned trajectory.

of such movements upon observing it? In the next chapter, we address precisely these

questions.
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Chapter 5

Recognition and Prediction Using

Dynamic Movement Primitives
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This chapter describes an approach for (a) recognizing an observed trajectory from a

library of pre-learned motions; (b) predicting the target position of such trajectory;

and (c) recognizing compound movements. We use critical points from the observed

trajectory to time-align it with those in the library. To match the observed trajectory

with those in the library, we compare the changes in velocity orientation between

consecutive critical points. The proposed approach is computationally light and, as

such, can be performed at execution time. As for the prediction, we adopt a similar

approach: after matching the observed trajectory to one in the library, we use the latter

to predict the target point, modulating it to match the observed trajectory. We then

discuss the application of these key ideas in the recognition of compound movements.

Both recognition and prediction approaches are probabilistic and, as such, provide a

measure of certainty/uncertainty in the recognition/prediction process. Such a measure

of uncertainty is important in tasks involving human-robot collaboration, as it allows

the robot to decide when it is sufficiently certain to act, conditioned on the estimated

trajectory. We illustrate our approach both in simulation and in a human-robot

interaction scenario involving the Baxter robot.

Our proposed approach comprises two steps: in a first step, we rely on the notion of

critical points [83] for time alignment and recognition. In particular, we compare the

observed trajectory with those in the library at only those critical points, thus avoiding

more computationally intensive time alignment procedures (such as DTW) or too

stringent assumptions (such as linear time scaling between the observed trajectory and

those in the library). We compute the probability of the observed trajectory given each

movement in the library assuming a maximum entropy model, and use the probabilistic

representation to assess the level of certainty of the system on the recognition. Target

prediction is then computed from the expected target of the different motions in the

library.

To recognize compound movements, we build on the previous recognition framework

and assume that each segment in the observed trajectory is either the initial segment

of a new primitive or the continuation of the previous segment. Then, given a partial

trajectory, our method can predict the most likely next target—i.e., the end-point of

the movement currently being executed, if the latter is executed to the end. Using an

effective search tree, our approach can run at execution time and provide an efficient way
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for action recognition and prediction, which has applications in interaction scenarios.

5.1 Recognition and Prediction Using Critical Points

We address the problem of observing a (partial) trajectory and recognizing it as being

part of one of a set of movements in a library, each represented as a DMP. Once the

DMP that best matches the observed trajectory is identified, we want to predict the

end-point of the trajectory. We consider each of the two problems (recognition and

prediction) separately.

5.1.1 Recognition

Ideally, our approach to recognition should be able to accommodate trajectories that

differ from those in the library in the (linear and angular) velocity of execution, and

changes in the time scale and target. We therefore adopt a representation that is

invariant to those transformations.

As seen in Chapter 2, given a trajectory y0:T = {y(t), t = 0, . . . , T}, critical points

are defined as minima of the function

h(t) = ∥ẏ(t)∥2 + ∥ÿ(t)∥2.

In other words, the minima of h above correspond to “inflection” points of the trajectory.

Such critical points were already used in Chapter 4 as suitable candidates for trajectory

segmentation (also following the work of Meier et al. [83]).

In this chapter, we describe a segment between two critical points by its velocity

and orientation changes. The orientation is defined in a 2D environment using a single

angle, a velocity angle. In other words, given a trajectory y0:T with critical points

τ0, . . . , τM+1, we compute

• The velocity, v(τm) = ẏ(τm), at each of the critical points;

• The orientation, θ(τm), at each of the critical points.

Segment m, between critical points τm and τm+1, is then described by the tuple

s(m)(y0:T ) =
(
δ(m)
v (y0:T ), δ

(m)
θ (y0:T )

)
, m = 0, . . . ,M,
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where

δ(m)
v (y0:T ) = v(τm+1)− v(τm)

and

δ
(m)
θ (y0:T ) = θ(τm+1)− θ(τm).

By considering a trajectory only at critical points, we overcome the need for explicit

time alignment. Additionally, to render the representation invariant to rotations, scaling

and target, we define the normalized segment representation

s̄(m)(y0:T ) =
(
δ̄(m)
v (y0:T ), δ̄

(m)
θ (y0:T )

)
, m = 1, . . . ,M.

with

δ̄(m)
v (y0:T ) =

δ
(m)
v (y0:T )

δ
(0)
v (y0:T )

,

δ̄
(m)
θ (y0:T ) =

δ
(m)
θ (y0:T )

δ
(0)
θ (y0:T )

.

A trajectory y0:T = {y(t), t = 0, . . . , T}, with critical points τ0, . . . , τM+1 is thus

summarized as a sequence

S(y0:T ) = {s̄(m)(y0:T ),m = 1, . . . ,M}.

Now given a library of N trajectories represented as DMPs, {yn, n = 1, . . . , N}, let

S(yn) = {s̄(m)(yn),m = 1, . . . ,Mn}

denote the summarized representation of yn. Given an arbitrary (partial) trajectory

y0:t, described by the summarized representation

S(y0:t) = {s̄(m)(y0:t),m = 1, . . . ,M∗},

we compute the error between segment m of y0:t and yn as

ϵ(m)
n =

∥∥δ̄(m)
v (yn)− δ̄(m)

v (y0:t)
∥∥+

∥∥∥δ̄(m)
θ (yn)− δ̄

(m)
θ (y0:t)

∥∥∥ .
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Observed
trajectory

Predicted
trajectory

Anticipatory
movement

Uncertainty

Figure 5.1: Prediction and anticipatory movement. The robot observes part of a
trajectory and, using the information in its library, predicts the full trajectory and its
target. Once the uncertainty regarding such prediction goes below some threshold, the
robot can then move in an anticipatory fashion the predicted target.

Finally, we define the recognition error of DMP yn to be

En =
M∗∑
m=1

ϵ(m)
n . (5.1)

We note that, if Mn < M∗, then we define ϵ(m)
n ,m > Mn, to take a constant large value.

Finally, we associate with each DMP yn a probability

ωn = Pr(yn | y0:t) =
exp(−En)∑N
ℓ=1 exp(−Eℓ)

, (5.2)

indicating the probability that it was DMP yn to yield the partial trajectory y0:t.

5.1.2 Prediction

The purpose of prediction is to infer the target position of an observed movement.

Prediction is useful, for example, in the context of human-robot interaction, as it allows

the robot to adjust its movement to that of the human user by predicting the target

and timing of the later (see Fig. 5.1). Such anticipatory behavior will foster successful

collaboration between robot and human, closer to that observed between humans.

We discuss two distinct approaches to prediction. The first is based on the critical

point information already used for recognition (Section 5.1.2), while the second relies

on the formalism of dynamic motion primitives (DMP) to estimate the target of the

motion (Section 5.1.2).

⋄
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Prediction occurs at run-time, as we make successive observations of the trajectory,

and uses the output of the recognition approach described in Section 5.1.1. Let y0:t

denote a partial trajectory, observed up to time step t, and let wn(t) denote the

probability

ωn(t) = Pr(yn | y0:t),

computed as described in Section 5.1.1. In other words, as we observe larger portions of

the trajectory y0:t1 , y0:t2 , . . ., we compute a sequence of probabilities {ω(t1), ω(t2), . . .},
where each ωn(t) is computed from y0:t and we write ω(t) to denote the vector with

nth entry given by ωn(t).

The predicted trajectory at each time step t, ŷ0:T , can now be computed as a

weighted combination of the trajectories predicted from the movements in the library as

ŷ0:T =
N∑

n=1

ωn(t)ŷn, (5.3)

where ŷn is the prediction from the nth trajectory in the library. The predicted target

of the trajectory corresponds to ŷ(T ). The uncertainty in the prediction can also be

computed by computing the (co)variance of the prediction at each point ŷ(t) of ŷ0:T as

Σ(t) =
N∑

n=1

ωn(t)(ŷ(t)− ŷn(t))
T (ŷ(t)− ŷn(t)).

It is worth noting that the longer we observe the trajectory y0:t, the more reliably our

approach will be able to estimate the probabilities ωn(t), n = 1, . . . , N , and the more

accurate the prediction in (5.3) will be.

In the continuation, we discuss two ways of computing the predictions ŷn according

to the movements in the library.

Prediction using Position Ratios

In this method, we again use critical point information to compute the predicted

trajectory. In particular, given the partial trajectory y0:t, let τm denote the last observed

critical point. Let yn denote a movement in the library, and define

δ̄y(yn) =
yn(τM+1)− yn(τm)

yn(τm)− yn(τ0)
. (5.4)
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We rely on the simple intuition that, if the movement y0:t that we have observed is,

indeed, a partial execution of yn, then the ratio in (5.4) remains constant and we have

that
y(τM+1)− y(τm)

y(τm)− y(τ0)
= δ̄y(yn).

Therefore, we can compute the prediction

ŷn(τM+1) = y(τm) +
y(τm)− y(τ0)

yn(τm)− yn(τ0)
· (yn(τM+1)− yn(τm))

Such predictions are then combined using (5.3).

Target Prediction Using the DMP Equations

In this method, we rely on the representation of trajectories as dynamic motion primitives

(DMPs) and use the DMP parameter information (from both the observed trajectory

and the DMPs in the library) to build our prediction. From the observed trajectory we

can compute the parameters of DMP by using information regarding the starting point,

target point (which is unknown), the velocity or the acceleration. The parameters from

the DMP are the weights, the canonical system, the basis functions and the constants

α and β [39].

Let yn denote a trajectory/DMP in the library. We need to select one point from

the observed trajectory and apply the DMP equation in this state. We select the last

observed critical point, τm, to recover the canonical system variable (x) as

x = exp
(
αx
m

M
τ
)
,

Where αx is a constant of the canonical system, M is the number of critical points, τ is

a time-scaling factor, m is the selected critical point [6].

We must now compute the weights of the basis functions for the DMP yn, wi,n, and

the value of those basis functions at the computed canonical state, ψi(x). The dynamic

equations of the DMP at the selected critical point become [39]

ÿn = αy(βy(g − yn)− ẏn) +

∑
i ψi(x)wi,n∑

iwi,n

x(g − yn(τ0)),

66



where αy, βy are constants and g represents the target. Letting

A =

∑
i ψi(x)wi,n∑

iwi,n

,

we can isolate the target (g) to get our prediction

g = ŷn(τM+1) =
ÿ + αyẏ + αyβyy + Axy(τ0)

Ax+ αyβy
(5.5)

Applying the approach above to all the DMPs in the library, we get a set of predictions

ŷn(τM+1), n = 1, . . . , N , which again can be combined using (5.3).

5.1.3 The Threshold

In real life, humans do not need to wait for a partner to finish its movement to take the

decision and start their own action, or watch all of the companion’s trajectory to start

the next required task. Likewise, we should have our robot act when there is sufficient

data to know with some confidence what the movement of the user will be. In our

approach, we allow for some margin of error and define a threshold (ϵ) such that, if the

level of uncertainty in the observed trajectory’s target is below the threshold, the robot

will move. The threshold driving such decision translates the notion of “acceptable

error”, in terms of the robot’s ability to recognize the movement/DMP generating the

observed trajectory.

To verify the level of (un)certainty in the recognition we compute the entropy H(t)

of the distribution {ω1(t), . . . , ωN(t)} after each critical point,

H(t) = −
∑
n

ωn(t) logωn(t).

When the entropy falls below some pre-defined threshold ϵ, the robot moves towards

the predicted target. Using a weighted combination for predicting the target makes our

method robust to small differences, poor execution, or noise. Moreover, if the observed

trajectory was not from the library, our method can still leverage all the DMPs in

the library to somehow predict the target, which provides our method reliability and

stability.
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5.1.4 Extending Recognition for 3D Trajectories

The approach described so far was designed with 2D trajectories in sight. However, the

fundamental ideas can be extended to 3D settings as follows.

A segment m in a trajectory y0:T (i.e., the part of the trajectory between critical

points τm and τm+1) is described by the normalized segment representations s̄(m)(y0:T ,

and contains information regarding:

• The change in linear velocity in the current segment relative to the change in

linear velocity in the initial segment, δ̄(m)
v ;

• The change in orientation of taking place in the current segment with respect to

the change in orientation in the initial segment, δ̄(m)
θ .

When considering a 3D trajectory, the definition of δ̄(m)
v remains fundamentally

unchanged: it measures the change in linear velocity in the current segment relative to

the change in linear velocity in the initial segment.

Extending the δ̄(m)
θ to 3D requires a little more care. When considering 2D trajecto-

ries, the change in orientation δ(m)
θ = θ(τm+1)− θ(τm), used to compute δ̄(m)

θ , can seen

as a rotation of an angle δ(m)
θ about an axis orthogonal to the movement plane. When

considering 3D movements, a change in orientation can still be interpreted as a rotation

of an angle δ(m)
v , but now about some axis u(m).

We can now extend our recognition approach to 3D by now considering that a

trajectory y with critical points {τ1, . . . , τM} is summarized as a sequence

S(y) = {s̄(m)(y),m = 1, . . . ,M},

with

s̄(m)(y) = (δ̄(m)
v (y), δ̄

(m)
θ (y), u(m)(y)),

and defining the error between segment m of two trajectories y and y′ as

ϵ(m) =
∥∥δ̄(m)

v (y)− δ̄(m)
v (y′)

∥∥+
∥∥∥δ̄(m)

θ (y)− δ̄
(m)
θ (y′)

∥∥∥+
∥∥u(m)(y)− u(m)(y′)

∥∥ .
Using the above definitions, it is now possible to extend the ideas in Sections 5.1.1

and 5.1.2 to 3D trajectories.
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5.2 Compound Movement Recognition Using DMPs

We now build on the recognition framework of Section 5.1 and extend it to handle

trajectories comprising multiple segments from possibly different movements. We assume

that each segment in the observed trajectory is either the initial segment of a new

primitive or the continuation of the previous segment. Then, given a partial trajectory,

our method can predict the most likely next target—i.e., the end-point of the movement

currently being executed, if the latter is executed to the end. Using an effective search

tree, our approach can run at execution time and provide an efficient way for action

recognition and prediction, which has applications in human-robot interaction scenarios.

We validate our approach both in simulation and in a human-robot interaction scenario

involving the Baxter robot.

5.2.1 Recognition and Prediction of Compound Movements

We address the problem of movement recognition, when the observed movement is

possibly a compound trajectory comprising segments from multiple simpler movements.

We henceforth refer to these simpler movements as primitive movements. The purpose of

our approach is to recognize the individual components forming the observed movement,

out of a library of pre-learned (primitive) movements. We assume that each segment in

the trajectory is either (i) the initial segment of a possibly different primitive movement;

or (ii) the continuation of the previous primitive movement. We consider a segment to

be the part of a trajectory lying between two critical points.

Besides recognition, we are also interested in predicting the endpoint of the observed

trajectory. Unfortunately, since the trajectory can be formed by an arbitrary number

of segments coming from different primitive movements, it is not possible to predict,

beforehand, the endpoint of the movement—unless if we know exactly how many and

which segments compose the trajectory. As such, we instead predict the most likely

end-point for the current primitive movement, assuming that it is performed all the way

to the end.

Our approach is extending our work to consider partial trajectory recognition and

prediction. Much like in that work, our method relies on the identification of the critical

points extracted from the observed trajectory, comparing them with the corresponding
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critical points in the trajectories in the library.

Motion Recognition

We can interpret our previous approach as deploying a “sequence search”: at each

critical point, the current “sequence of segments” is compared with each movement in

the library, and recognition thus consists of identifying the movement in the library

that best matches the observed “sequence”.

In our proposed approach, we instead build a search tree. The depth of the tree

corresponds to the number of observed segments, and each node corresponds to a

primitive movement in the library. The search tree is built as follows:

• Each node of the tree has as many children as there are primitive movements in

the library plus one.

• The children corresponding to the primitive movements in the library represent

the situation where the current segment is the initial segment of the respective

primitive movements.

• The additional child represents the situation where the current segment is a

continuation of the current primitive movement.

• Each node in the tree is associated with a segment error, as defined in (5.1).

Figure 5.2 shows an example of a possible search tree for the case where the movement

library contains only 3 primitive movements. By using the search tree, we can now

determine the sequence of primitives that minimizes the total cost. After each new

critical point is discovered, the tree grows a level in depth and the node values are

computed.

Note that our approach considers the several possible cases: that the current segment

corresponds to the beginning of a new primitive movement; or that the current segment

is the continuation of the previous primitive movement. Additionally, to discourage the

search process from excessively switching between movement primitives, we add a small

cost of c to all the nodes corresponding to changes in the movement primitives.

To render searching the tree a more efficient process, in our approach we do not grow

the complete tree simultaneously. Instead, we expand only the nodes corresponding
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Figure 5.2: Example of a search tree. Each node is associated with a segment of a
primitive movement in the library, and contains the error associated when comparing
the current segment with the primitive movement segment corresponding to that node
(the numbers in the nodes).
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Movement y1 Movement y2

Observed movement:

τ0

τ1

τ2

τ0

τ1

τ2

τ0

τ1

Step 1

Predicted endpoint

τ0

τ1

Step 2

τ2

Predicted endpoint

τ1

Step 3

τ2

Predicted endpoint
τ3

Movement library

Figure 5.3: Example of what the prediction process looks like. After observing a segment
and recognizing to which primitive movement such segment “belongs”, we predict the
endpoint as the endpoint of the corresponding primitive movement.

to the path with the smallest average cost per node. While this heuristic for growing

the tree still leads to the expansion of some unnecessary nodes, it is significantly more

efficient than performing a full breadth-first search.

Motion Prediction

As previously discussed, the observed trajectory can be formed by an arbitrary number

of segments coming from different primitive movements. As such, it is not possible

to predict, beforehand, the endpoint of the complete movement. In our approach, we

predict the most likely end-point for the current primitive movement, assuming that it

is performed all the way to the end.

The prediction process uses the basic approach described in Section 5.1.2. At each

critical point, after associating the most recent segment with a segment from one of

the primitive movements in the library, we compute the endpoint of such primitive

movement as the predicted endpoint of the trajectory, using (5.5). The process is

illustrated in Fig. 5.3.
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5.3 Experiments and Results

In this section, we test our proposed approach both in simulation and with the Baxter

robot. Specifically, we test our proposed approach in two scenarios. The first is when

our method tries to recognize a simple trajectory, and the second is when our method

tries to recognize a compound trajectory.

5.3.1 Experiments with Simple Trajectories

We start by testing our proposed framework for recognition of simple trajectories. We

conducted three different experiments, each of which is intended to show the effectiveness,

accuracy, and features of the proposed approach.

The first experiment illustrates the recognition process during the discovery of new

critical points and the accuracy of the prediction of the target point. The second

experiment illustrates the scalability of our approach when the library contains a

large number of primitive movements. Finally, the fourth experiment showcases the

application of our approach in a real world scenario featuring the Baxter robot.

In the first two experiments, we use a 2D geometric simulation environment. The

library contains trajectories stored in the form of DMPs. A trajectory is gradually

observed, and our approach performs recognition and prediction in runtime.

Recognition

As we observe successive critical points in the trajectory, the recognition module has

more trajectory information and the movement in the library identified as most likely

to produce the observed trajectory can change. In other words, as more critical points

are observed in the trajectory, some of the movements in the library are deemed more

likely to have produced such trajectory while others are deemed less likely.

Figure 5.4a shows the recognition results for a library of 5 DMPs in two dimensions,

as we observe a larger percentage of the trajectory. We depict the evolution of the

weights ωn, n = 1, . . . , 5, as we observe successive critical points. We can observe when

a new critical point is observed, as the plot abruptly changes at those points—critical

points are most informative to identify the movement producing the observed trajectory.

In the example, the library includes 4 movements similar to the one being observed
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Figure 5.4: Weight and entropy evolution during the recognition process, as larger
portions of the trajectory are observed.

and one very different movement. The weights associated with the similar movements

approach 1, while the weight associated with the different movement steadily decreases.

In Fig. 5.4b we can also observe a steady decrease in the entropy after observing

approximately 20% of the trajectory. However, the fact that several DMPs are similar

to the target movement implies that the entropy does not go to zero.

Prediction

As the trajectory to be predicted unfolds and new critical points are observed, the

recognition module is able to provide more accurate identification of the library move-

ment that best explains the observed trajectory. The identified movement can then be

used to predict the target of the observed trajectory, following the approaches discussed

in Section 5.1.2.

Figure 5.5 showcases how the prediction evolves as a larger portion of the trajectory

is observed. We depict the uncertainty in each of the two coordinates (x and y): The

solid line corresponds to the evolution of the predicted target, ŷ(τM+1); the shaded area

depicts the variance in the prediction.

We can observe the improvement in prediction, as the variance of the predicted

targets decreases as additional critical points are observed. From this figure, we

can observe sharp changes at the critical points, since the available information for

recognition changes significantly at these points. This observation supports our claim
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(b) Prediction of the target y coordinate.

Figure 5.5: Uncertainty in the prediction of the target for the two dimensions of the
trajectory. The solid line corresponds to the mean predicted target, ŷ(τM+1), while the
shaded area corresponds to the variance in the prediction.

that critical points indeed provide useful information for recognition. We can also

observe how the uncertainty in the prediction decreases significantly, as more of the

trajectory is observed.

Figure 5.6 shows the evolution of the prediction as new critical points are observed.

We can see how the distribution area changes and gets smaller as we increase the

observed part of the trajectory, until finally arriving at the target point (the mean of

this distribution).

Uncertainty and Anticipatory Movement

While observing the trajectory, a key question is: when can the robot take the decision

and start its response? As discussed before, the robot will make the decision when

the possibility of failure is small, or when there is little variation between the possible

predictions considered by the robot. In terms of our approach, this translates into

the situations where the distribution of the predicted targets has small variance. By

computing the entropy of the recognition weights, we can have an estimate of the

uncertainty in our predictions. As discussed in Section 5.1.2, we adopt a threshold

ϵ and allow the robot to act in an anticipatory manner if the entropy is below such

specified threshold. In our experiments, the threshold value is constant and was selected

experimentally [3].

Figure 5.4b depicts how the entropy in the prediction evolves as we observe larger
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Figure 5.6: Illustrative example of the prediction process, as larger portions of the
trajectory are observed by the predictor. The red dot corresponds to the mean prediction
and the ellipsoid to the corresponding variance.

portions of the trajectory. The point where the robot can initiate its anticipatory action

will be when the entropy reaches a small value.
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Figure 5.7: The errors in recognition and prediction for the 25 observed trajectories,
as a function of the observed trajectory. The solid lines depict the mean error values,
while the shaded area depicts the variance in these errors.

Accuracy

To illustrate the robustness of our framework, we run a statistical study to check the

recognition and prediction and know the accuracy of our approach evolves as larger

portions of a trajectory are observed.

The tests in the previous experiments were obtained with a single observed trajectory

while fixing the number of DMPs in the library to 5 DMPs. We now consider a

more extensive library comprising 85 distinct DMPs. We then performed 25 different

trajectories from this library, each generated from one DMP in the library but modulated

to different targets and execution speeds. We compute the error in recognition and

prediction as the different trajectories unfold and report the mean error and error

variance as a function of the percentage of trajectory observed.

Figure 5.7 depicts the results of this study. The solid lines represent the mean error,

while the shaded areas correspond to the variance in the observed prediction/recognition

error.

As can be observed from the plot, both the recognition and prediction error quickly

converge to zero, as does the variance in the prediction. This establishes the ability of

our approach to identify and predict the target of an observed trajectory.

77



20 30 40 50 60 70 80 90 100
Percentage of observed trajectory

0.000

0.005

0.010

0.015

0.020

0.025
Re

co
gn

iti
on

 e
rro

r

10 DMPs

20 DMPs

30 DMPs

40 DMPs

50 DMPs

60 DMPs
70 DMPs

80 DMPs

90 DMPs

100 DMPs

10 DMPs
20 DMPs
30 DMPs
40 DMPs
50 DMPs
60 DMPs
70 DMPs
80 DMPs
90 DMPs
100 DMPs

(a) Recognition accuracy.

20 30 40 50 60 70 80 90 100
Percentage of observed trajectory

2

1

0

1

2

3

4

Pr
ed

ict
io

n 
er

ro
r 10 DMPs

20 DMPs

30 DMPs
40 DMPs

50 DMPs
60 DMPs

70 DMPs

80 DMPs

90 DMPs

100 DMPs

10 DMPs
20 DMPs
30 DMPs
40 DMPs
50 DMPs
60 DMPs
70 DMPs
80 DMPs
90 DMPs
100 DMPs

(b) Prediction accuracy.

Figure 5.8: The errors in recognition and prediction for 10, 20, 30, 40, until 100 observed
trajectories within a 100 DMP library. The solid lines depict the mean error values,
while the shaded area depicts the variance in these errors.
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Figure 5.9: The errors in recognition and prediction at a specific point from 10, 20, 30,
40, until 100 observed trajectories within a 100 DMP library.

To further assess the performance of our recognition approach, we investigate the

dependence of the performance on the size of the library. Figure 5.8 illustrates the

recognition and prediction errors observed for different sizes of the DMP library. Each

line corresponds to the average error over 10 DMPs selected randomly from the library,

as the size of the library from 10 to 100 DMPs. Although larger libraries tend to lead

to larger initial recognition errors, we can observe that in all cases the recognition error

quickly decreases. the plot clearly shows, Our method can still recognize the trajectories

and predict their target points within different sizes of libraries.

Figure 5.9 offers a different view of the same results, showcasing the average

recognition and prediction errors after observing 50% of 10 DMPs selected at random

from the library—this time as a function of the size of the library. We cannot observe a

clear trend, suggesting that our approach scales well to libraries of different sizes.
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Figure 5.10: Illustration of the human-interaction scenario considered in this chapter,
where baxter moves in anticipation to the user to fill the cup that the user is aiming
for.

Implementation in the baxter Robot

We now describe the application of our proposed approach in a human-robot interaction

scenario involving a baxter robot. In this task, the human user approaches one of

the cups in the table (Fig. 5.10a). Upon realizing which cup the human is reaching,

baxter performs an anticipatory move towards such cup, “pouring” water in that

cup (Fig. 5.10b). We use the recognition and prediction approaches described in

Sections 5.1.1 and 5.1.2.

Figure 5.11 depicts a sequence of frames that illustrate the our approach at work in

the actual robot. The DMPs in the robot library correspond to the motions represented

in the table in different colors. While the initial motion of the user could head to any

of the red, orange or green cups, the robot remains still, as its uncertainty regarding

the target is above the specified threshold. However, as soon as the user’s hand moves

past the common segment of the three movements, the robot immediately identifies

the movement as belonging to the DMP that leads to the orange cup, and initiates the

corresponding anticipatory motion, succeeding in “serving” the orange cup before the

user actually reaches it.
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Figure 5.11: Successive frames depicting the movement of the user towards the orange
cup. When it becomes clear to baxter that the target is the orange cup, the robot
initiates its own anticipatory movement. At the point indicated by the black arrow, the
robot moves to the anticipated target position.

5.4 Experiments with Compound Trajectories

We now describe the experiments conducted to test our proposed framework for recog-

nition of compound trajectories. We now conducted four experiments that illustrate

the main features of our proposed approach for compound movement recognition.

As in the previous section, our first experiment features the recognition process; the

second experiment illustrates the ability of our method to recognize the components

forming the observed trajectory, and how these are used to predict the endpoint of the

trajectory. The third experiment illustrates the scalability of our approach when the

library contains a large number of primitive movements. Finally, the fourth experiment

showcases the application of our approach in a real world scenario featuring the Baxter

robot.

Recognition

We start by illustrating the ability of our approach to perform recognition when the

observed trajectory comprises segments from multiple primitive movements. Figure 5.12a

shows the results observed when there are 6 DMPs in the library, and the observed

trajectory is comprised of segments from the different trajectories. We note that,

for some DMPs, the recognition weights may first decrease, as the system identifies

another primitive as the most likely, and then increase, because the system decides
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Figure 5.12: Weight and entropy evolution during the recognition process, as larger
portions of the trajectory are observed.

that better recognition is attained by switching to that particular primitive movement.

The converse is also observed: the weight of some primitives first increases, as that

primitive is the best to explain the observed movement, and then decrease, as switching

to another primitive offers better recognition.

The algorithm updates the recognition weights every time a new critical point from

the observed trajectory is discovered. Prediction can take place at any moment during

the recognition phase; the best moment depends on the task, environment, and how

much precision is required of the prediction.

To facilitate the analysis of the performance, we depict in Fig. 5.12b the evolution of

the entropy in the recognition weights. We immediately note that the recognition process

is slower if the observed trajectory is the composition of more than one movement,

compared with a trajectory comprising a single movement. In fact, comparing the

results in Fig. 5.12b with the results of the recognition using a single trajectory, in

Fig. 5.4b, we note that the entropy decreases more slowly in Fig. 5.12b. This is due to

the fact that, after the currently observed trajectory, we still consider the possibility

that the current trajectory may not yet be over and, as such, there may be new primitive

movements following the current trajectory. Hence, as we observe new critical points,

there is always some level of uncertainty regarding the prediction that is only resolved

as the trajectory concludes.
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Figure 5.13: Uncertainty in the prediction of the target for the two dimensions of the
trajectory. The solid line corresponds to the mean predicted target, ŷ(τM+1), while the
shaded area corresponds to the variance in the prediction.

Prediction

We also tested the ability of our approach to predict the target point of the observed

trajectory. We depict in Fig. 5.13 the evolution of our prediction as more critical points

are observed.

Note how the prediction approaches towards the target point, and the uncertainty

decreases with the discovery of new critical points. Also, as seen in Fig. 5.12b, the

entropy decreases slowly, which affects the prediction. The prediction process needs to

observe the last part of the monitored trajectory to reach the last DMP in the chosen

configuration and obtain a correct prediction, so slower convergence is to be expected.

Accuracy

We now test the ability of our approach to deal with large movement libraries. We

compute the recognition error, given by |ωmax − ω∗|, with ωmax is the weight associated

with the most likely DMP sequence, and ω∗ is the weight for the real DMP sequence

corresponding to the observed trajectory. We also compute the prediction error, given

by ∥ŷ(τM+1)− y(τM+1)∥, where ŷ(τM+1) is the predicted endpoint and y(τM+1) is the

actual endpoint.

In Fig. 5.14 we can see the average prediction and recognition errors averaged over

25 different trajectories, composed from segments of movements from a library of 85
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Figure 5.14: The errors in recognition and prediction for the 25 observed trajectories,
as a function of the observed trajectory. The solid lines depict the mean error values,
while the shaded area depicts the variance in these errors.

primitive movements.

It is apparent from the figure that, while the prediction error decreases steadily

(the trajectory approaches its endpoint, so the prediction errors tend to decrease), the

recognition error fluctuates significantly, due to the fact that when a new segment is

observed, the cost for changing the primitive motion generating a segment leads the

search algorithm to, sometimes, “delay” the shift to a different primitive.

Improving the Knowledge of the Robot

We illustrate a practical application of our approach, where we recognize the letter “P”

using a library of number trajectories (or parts thereof). Note, for example, that “P”

can be formed by composing the movement for number “1” and part of the movement

for number “3” (see Fig. 5.15).

Similarly, the output resulting from observing the trajectory for “B” would be three

consecutive partial paths: “1” followed by half of “3” twice.

Experiment with Robot

In this experiment, Baxter is initially shown the movements of the Pawn (one step

forward on the board) and the King (one step sideways on the board) in chess. Baxter

then observes a human user performing the movement of the Knight (two steps forward

and one step sideways). The Knight’s movement can be seen as a composition of

two consecutive movements from the Pawn, and Baxter successfully recognizes the
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DMP3

DMP4

DMP5

(a) DMPs library. (b) Observed trajectory.

DMP1

DMP2

(c) Recognised DMP.

Figure 5.15: Recognizing the “P” letter using two learned DMPs in the DMPs library,
which contains normalized trajectories, where the trajectory in 5.15b is constructed
using the first DMP and the second one.

(a) (b)

Figure 5.16: Illustration of the human-interaction scenario considered in this section,
where baxter succeed in anticipation to the user complex motion.

movement as the composition of the two simpler movements.

Baxter stores a Pawn’s trajectory, presenting a one-step movement as a DMP.

During the experiment, Baxter observes the human arm holding the Knight and

discovers that the Knight’s movement consists of two DMPs each one presents Pawn’s

movements. Consequently, Baxter can save a Knight’s movement as a sequence of two

Pawn movements by changing the second one’s direction and target.

Baxter could now use the identified sequence of movements to replicate the Knight’s

movement using, for example, our framework.
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5.5 Concluding Remarks

We present a simple yet robust method for recognizing and predicting the target of an

observed trajectory. Our approach is applicable within the DMP framework without

requiring an exhaustive comparison of all the trajectory points, considering only the

critical points. Considering critical points alleviates the need for accurate time alignment

and significantly decreases the computational burden associated with recognition and

prediction. Moreover, as we noted in our discussion, often observing intermediate

positions in the trajectory provides little additional information that can significantly

help in recognition or prediction, as it does not add unique data that can make changes

in the validation. In contrast, critical points provide unique data that contributes

significantly to disambiguate between the different movements in the library, thus

allowing efficient recognition and prediction.

We then extended our approach to consider also situations where the robot observes

a trajectory, predicts its goal, and identifies the sub-trajectories that compose it. Our

method works without training or prior knowledge of the observed trajectory and relies

only on the movements in its library. The library serves as an initial knowledge base of

the robot but can be improved as more trajectories are observed.

Our work is robust to changes in the observed trajectory compared to the original

DMPs in the library, as it relies on comparing the ratios of change of velocity and

angle, dealing efficiently with rotations, modulations, and scaling of the trajectory.

Our approach uses critical points for efficient and effective trajectory identification,

alleviating the need for time alignment. Our approach assumes that each segment in

the observed trajectory is either the initial segment of a movement in its library or the

continuation of the previous movement. Then, given a partial trajectory, our method

is able to predict the most likely next target—i.e., the end-point of the movement

currently being executed, if the latter is executed to the end. By using an effective

search tree, our approach is able to run at execution time and provide an efficient way

for action recognition and prediction.

Our statistical study illustrates the accuracy of this method in recognition and

prediction—our results clearly illustrate the close relationship between the performance

in terms of prediction and the recognition accuracy: correct recognition leads to accurate

85



prediction.

Finally, our approach is computationally efficient and can perform a recognition

task in execution time, a key feature given its relevance in human-robot interaction

tasks like that presented in our experiments.
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Chapter 6

Coordinated Optimization of Multiple

DMPs
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This chapter addresses the last research challenge of the thesis—namely, how can a

robot, endowed with a library of pre-learned primitive movements, generate multiple

simultaneous coordinated robotic movements, adapting and optimizing those in the

library, to complete one collaborative task? The work in this chapter can thus be seen

as a follow-up to the work in Chapter 4 that now considers collaborative task and the

existence of multiple robots/manipulators. Specifically, we extend the framework in

Chapter 4 to accommodate coordinated execution of multiple DMPs in robots with

multiple manipulators or—alternatively—multiple robots with a single manipulator.

We investigate mechanisms to jointly optimize multiple DMPs to perform one task in a

coordinated fashion. The joint trajectory is built from initial DMPs learned for a single

manipulator, and its optimization must comply with task-specific constraints.

In previous chapters, we focused our discussion on scenarios in which the task to

be executed consisted of a single movement. This was the case in the framework of

Chapter 4 as well as the recognition/prediction approach in Chapter 5. But many

practical tasks impose the need for collaborative tasks. For example, moving a big or

awkward object may not be possible for a single robot, but it may be possible for two

or more robots working in parallel, as long as they act in a coordinated fashion. In this

chapter we consider this exact problem, of having multiple robots act in a coordinated

fashion to solve a common task.

The consideration of multiple actors has the important advantage of significantly

simplifying certain tasks that are complex to accomplish by a single robot, but which a

group of robots can solve in a coordinated manner in a manner that is simpler, more

accurate, more robust, and less prone to errors. The simpler the tasks, the higher, the

more successful, and the more accessible and reliable the degree of cooperation will be.

It is important to note that the problems considered in this chapter do not include

tasks that require breaking it down into sub-tasks that each robot can perform inde-

pendently, as often happens in multi-robot settings [61]. Instead, we are concerned

with tasks that require the execution of simultaneous movements in a coordinated and

synchronous manner, while still taking into consideration the conditions and constraints

of the environment. Such situations are common, for example, in robotics [87] and

games [106].

Several approaches exist that address the problem of coordinating multiple motions.
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For example, Stavridis and Doulgeri [121] address the problem of assembling two parts

where—instead of using a manipulator to just hold one part steady and the second

to assemble the second part—both manipulators move to render the assembly easier.

The movement of the two manipulators is described using a dynamical system; the

trajectories of the system are then adjusted to ensure that the task constraints are

verified. Constraints include the desired position for the parts to be assembled, as well as

the obstacles in the environment that should be avoided. There are two key differences

from our work. First, an initial movement for both manipulators is provided upfront,

which is then optimized using a hierarchical quadratic programming approach. In our

work, we depart from a single-manipulator movement that is then used to construct

the motion of both manipulators; additionally, following our approach in Chapter 4, we

adopt a BBO instead of a quadratic programming optimizer.

Gams et al. [29] use iterative learning control (ILC) to learn a coupling term that

limits two DMPs to enforce coordination. Given two DMPs, Gams et al. [29] define

one DMP as the “leader” and the other as the “follower”. The follower is constrained by

the leader to ensure successful completion of the task. This requires that the leader

DMP be already provided in such a way that successful task completion is possible. In

contrast, our method optimizes both movements simultaneously to comply with the

task constraints.

Nemec et al. [93] propose an approach for bimanual robots that engage in cooperative

task with humans. The motion for the robot is taught by demonstration and stored

as a (bi-manual) DMP. At execution time, the robot stiffness is initially set to allow

the robot to comply with the human motion—i.e., the human “retains” control of the

task. With successive executions, the robot gradually “takes control” from the human,

by adjusting the stiffness of the movement execution. They propose speed-scaled DMPs

as an extension to DMPs that allows for compliant execution. In the continuation, we

present our own approach for collaborative tasks that need the coordinated movement of

multiple robot arms. We again DMPs as the base representation for robot movements,

and assume that our robot(s) have access to a library of pre-learned movements. Then,

given a new environment configuration and a new task, our approach autonomously

builds a set of optimized trajectories that consider and meet the constraints imposed

by the task and the new environment. Our system can generate and optimize multiple
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Demonstration

{y(1), . . . , y(T )}
Learned DMP

y0:T

Task specification

(goal, constraints)

CCMA-ES

Optimized joint DMP

Figure 6.1: Pipeline for the proposed approach.

coordinated movements from a single movement learned from a demonstration in an

environment different from the execution environment. We illustrate the application of

our approach both in a simulated environment and in a (simulated) Baxter robot.

6.1 Coordinated Trajectory Optimization

The pipeline for the proposed approach is illustrated in Fig. 6.1. Following the general

approach in Chapter 4, we collect a (single manipulator) demonstration from a human

user that is then used to build a DMP (or a library thereof). Then, given the specification

of a task (goal, constraints), we use the movements in the library to generate and

optimize a joint DMP, providing the desired trajectory for the multiple manipulators.

The environment in which the task is carried on (obstacles, environment layout) may

differ from where the demonstration was originally provided, and we leave it to the

optimizer to adjust the DMPs accordingly.

6.1.1 CCMA-ES for Coordinated Motion Generation

We adopt, as the optimizer, a variation of CMA-ES known as constrained CMA-ES, or

CCMA-ES. This method is discussed in Chapter 2 for constrained optimization problems.

We formulate the problem of coordinated motion as a constrained optimization problem,

where the task and environment define the objective function (as in Chapter 4), and the

constraints ensure coordination between the multiple DMPs being optimized. While

different approaches exist for constrained optimization of DMPs [20], we follow up on
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our approach from Chapter 4 and adopt CCMA-ES.

In the context of our work, CCMA-ES 2.2.1 is used to generate/optimize the weights

of the force function describing the motion of the two manipulators. Given a specific

task—typically described by a target configuration for the robots’ movements—and a

set of constraints that the motion of the two manipulators must verify—for example,

the two end-effectors must maintain a constant distance—our approach proceeds by:

• Modulating the original DMP for each of the two manipulators target position.

As a result, we obtain a single DMP (y10:T , y
2
0:T ) that describes the motion of the

two manipulators, synchronized by a shared canonical system.

• Optimizing the joint DMP parameters (the weights of the corresponding force

function) while ensuring that the constraints are verified.

For example, we can optimize two DMPs to allow a robot to move a rigid object of

length D by solving the constrained optimization problem

minimize
w1,...,wN

J(y10:t, y
2
0:T ) (6.1a)

subject to ∥y1(t)− y2(t)∥ = D, t = 0, . . . , T, (6.1b)

where J is the objective function (4.1), used in Chapter 4 (see page 45). We note that

obstacles in the environment can be incorporated either into the objective function

J or as actual constraints. We note also that the DMP used to generate the original

movement for the two manipulators can be obtained by combining several simpler

DMPs, following Chapter 4. This means that the overall framework enables the robot

to generate complex motions in different environments while verifying task-specific

coordination constraints.

Moreover, for moving obstacles, we can also apply the method described in Chapter 4,

applying the same modulation matrix on both DMPs—as depicted in Fig 6.2. When

the moving obstacle is close to the coordinated DMPs, we build the modulation matrix

M for the DMP closest to the obstacle and apply it to both DMPs at the same state.
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Moving obstacle

y10:T

y20:T

Figure 6.2: Application of the modulation matrix to the two DMPs, y1 and y2, to avoid
a moving obstacle.

Figure 6.3: Initial DMP used in the experiments, generated using the framework from
Chapter 4. The green circle and red square correspond to the start and endpoints.

6.2 Experiments and Results

We now illustrate the application of our method both in simulation and using the Baxter

robot. We start by presenting results in simulation, where we show, side-by-side the

results obtained in a geometric simulator and in the more realistic Baxter simulator.

6.2.1 Simulation Results

We start by using the approach in Chapter 4 to generate an initial DMP that successfully

navigates the environment. The resulting DMP is shown in Fig. 6.3. Note that the gap

between the obstacles is relatively wide, so the optimization algorithm can easily find a
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(a) Joint DMPs optimized to achieve a target
configuration while maintaining the distance be-
tween the two manipulators constant. The cor-
ridor width is longer than the object length by
double its length.
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(b) Joint DMPs optimized to achieve a target
configuration while maintaining the distance be-
tween the two manipulators constant in an envi-
ronment with a narrower passage. The corridor
width is smaller than the object length by 4 unit
scales.

Figure 6.4: Optimized joint DMPs in two configurations of the environment—the
original configuration and a configuration with a narrow passage. The green circles and
red squares correspond to the start and endpoints.

path that leads the movement from the initial position (the green circle) to the target

position (the red square).

We then ran our proposed approach in the same environment, imposing a restriction

where the distance between the two DMPs must be maintained constant. The task

consists of moving a rigid object of length D from one place to another. To succeed in

this task, the two manipulators must be coordinated to ensure that the object does

not fall or hit any obstacle in the environment. Therefore, a constraint is placed on

the optimization process to enforce a fixed distance between the two endpoints of the

robotic arms. The environment still retains the two obstacles separated by a corridor.

The goal is to optimize the two DMPs describing the motion of the two arms to allow

for safe crossing of the corridor.

The resulting trajectories are depicted in Fig. 6.4a. As the plot shows, the optimizer

is able to successfully drive both DMPs from the initial position (green circles) to

the target position (red squares), maintaining the distance between the two DMPs

and avoiding the obstacles. Figure 6.4b shows the result of our approach in a second

environment, now featuring a narrower passage. In order to comply with the obstacles
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(b) Constraint violation during execution.

Figure 6.5: Value of the objective function and constraint during the execution of the
movement in Fig. 6.4b.

in the environment and the constraints imposed by the task, the trajectories are much

less smooth than the ones in Fig. 6.4a.

Figure 6.5 shows the value of the objective function and the constraint as the

movement progresses, in the environment from Fig. 6.4b. We can see that the DMPs

steadily approach the target (the value of the objective function steadily approaches

0). We can also see some jumps in the objective function, when the DMP approaches

the obstacles in the middle of the environment. Similarly, the constraint remains

approximately 0 throughout the trajectory except in those same points, where the

constraints exhibit some small violations.

Finally, we also compare our approach with an approach where the DMPs are

jointly taught but where constraints are not considered during the optimization [5].

The resulting trajectories are shown in Fig. 6.6, where we now explicitly showcase

the different time steps, for easier inspection of whether the constraints are verified

or not. When the learned DMPs are optimized to address environment restrictions

(such as obstacles), but no task constraints are enforced to ensure coordination, the

resulting DMPs may violate such constraints, even if the original joint DMP is learned

by demonstration ensuring that the constraints are met—in the example, the original

joint DMP was demonstrated in the environment with larger gap, so the constraints

were easily verified in the demonstration. In contrast, our approach adapts to the new

obstacle configuration while ensuring that the constraints are verified.

We also compared our work with the approach of Gams et al. [29], encountering

similar difficulties—namely, the inability to include new environment information when
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(a) Our method can enforce the task constraints
to pass through the tiny corridor and achieve a
collaborative task.

(b) The task constraints are not observed in the
optimized movement, although they were present
in the learned movement.

Figure 6.6: Comparison of our approach with an approach not enforcing constraints
[5]. Green and blue circles represent different points along each DMP. The red squares
correspond to the endpoint, and the naive bar between the two points represents the
object that needs to be transferred using two optimized DMPs. The right figure shows
the violation of the constraints on the distances between both corresponding states
inside the path. While in the left figure, all corresponding states are following the
constraints of the task under the environmental conditions. The corridor width is
smaller than the object length by 4 unit scales.

adjusting the motion. Our approach includes the environmental information obstacles

inside our cost function that evaluate the samples compatible with the task conditions

and constraints. Also, the need for human annotation to determining the leader and

follower DMPs restricts the outcome of this method, since it may prevent the algorithm

from finding specific solutions.

We conclude by showcasing the same results now using the Baxter simulator.

Figure 6.7 shows different snapshots of the resulting trajectory, where the vertical

obstacles reproduce the layout of the environment in the previous geometric simulation.

using the joint DMPs computed by our approach, the robot was able to complete the

task and bypass the obstacles successfully.

6.2.2 Robot Experiments

We also applied our work in the physical Baxter robot, where the task was, once again,

to move a solid object (a “stick”) between two pre-specified positions using Baxter’s two
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(a) (b)

(c) (d)

Figure 6.7: Snapshots of the Baxter simulator executing the trajectories generated
by our approach to accomplish a coordinated task. Our approach could successfully
optimize two DMPs for Baxter’s arms to achieve a collaborative task that imposed
constraints on the trajectory. Baxter needs to transfer an object between two positions.
The green circles and red squares correspond to the start and endpoints.

arms.

Figure 6.8 illustrates the path executed by Baxter, showcasing the movement

executed by the robot when the gap between obstacles is broad, allowing the robot

to successfully carry the stick across the pass without significant adjustment of the
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.8: Baxter uses its two arms by coordinating its DMPs to do the task of
transporting an object through a path that can accommodate this object’s size. The
corridor width is longer than the object length by 4 unit scales.
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trajectories. The constraints allow the robot to go through the pass without colliding

with the obstacles, while coordinating the two DMPs governing the individual motion

of each arm.

In Figs. 6.9 and 6.10 we showcase two views of the movement executed by Baxter

when the passage is significantly reduced. With the narrow passage between the

obstacles, Baxter must change the orientation of the stick in order to successfully pass

through. The figures show two distinct views (captured with different cameras) of the

same trajectory. We notice that—unlike in the first scenario, where the DMPs could be

used almost unchanged—in this setting the robot required a more significant adjustment

of the joint DMP in order to go through the path without colliding with the obstacles,

while maintaining the distance between the two end effectors.

6.3 Conclusions

In this chapter, we contributed a novel approach for movement generation in collaborative

tasks that require more than one robot arm to complete, using a single initial DMP that

is then optimized to operate in the environment. Our approach builds on the framework

of Chapter 4 to build an initial DMP already taking the environment into account;

this DMP is then used to build the joint DMP that is then optimized to match the

task-specific constraints. All DMPs are optimized together to accomplish the desired

collaborative task and ensure successful coordination.

Our method is also amenable to further optimization, to overcome the increasing

difficulty imposed by the obstacles while maintaining the synchronization of the indi-

vidual DMPs, thus efficiently transferring a demonstrated movement to novel scenarios

involving multiple robots/arms. Besides that, our results show the ability to adapt to

both different environment changes and the task conditions.

Our research also opens exciting avenues for future work. For example, it would

be interesting to find a way to optimize and coordinate multiple DMPs to bypass

moving obstacles while maintaining collaborative task performance. The approach

briefly discussed in Section 6.1.1 could be a starting point, but some experimental

validations are necessary to assess whether the deformation imposed by the modulation

matrix indeed maintains the trajectories within the constraints. Besides, the approach
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Figure 6.9: Baxter uses its two arms by coordinating its DMPs to do the task of
transporting an object through a tiny path that cannot accommodate this object’s size
without hitting obstacles.The corridor width is smaller than the object length by 4 unit
scales.
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Figure 6.10: Another view of the Baxter experiment is when Baxter uses its two arms
by coordinating its DMPs to transport an object through a tiny path that cannot
accommodate its size without hitting obstacles. The corridor width is smaller than the
object length by 4 unit scales.
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proposed does not specifically consider the constraints, and it would be interesting to

extend the modulation-based approach to indeed enforce those constraints.
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Chapter 7

Conclusion and Future Work
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This chapter concludes the thesis, bu summarizing the main contributions and high-

lighting some directions for future work.

7.1 Overview

We addressed the general problem of endowing a robot with the ability to execute

complex manipulation tasks in collaboration with human users, building on a previously

learned repertoire of primitive movements. Specifically, we addressed the above research

problem from three different perspectives:

• First, we looked into the composition, adaptation, and optimization problem of

primitive movements to yield complex movements. In this context, we contributed

an end-to-end approach to learning and decomposing user demonstrations into

DMPs and then optimizing and combining the resulting DMPs to perform complex

motions. One important role of our proposed framework is to increase the acquired

knowledge of the robot, namely by incorporating the process of acquisition of

the repertoire of primitive movements into the overall framework of movement

learning and generation.

To this purpose, we look at the information provided by the trajectories critical

points to break down demonstrations provided by humans into smaller, more

homogeneous segments. It is the segments thus identified that are incorporated

into the movement library.

• We then considered the problem of movement recognition and prediction, given

a library of pre-learned primitive movements. In this context, we contributed a

novel movement recognition method that, given a library of previously observed

movements, identifies a partially observed trajectory from among those in the

library, predicting its (unobserved) target point. The fact that our approach does

not require the full trajectory to be observed is fundamental, as it can be used

in run-time for actual human-robot interaction scenarios. We also extended this

approach to accommodate the recognition of compound movements.

Much like our first contribution, we again rely on the information provided by

the trajectories critical points, comparing the observed trajectory and the known
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trajectories precisely at these points. By considering the relative changes in the

trajectory between critical points, we attain a process of recognition that is robust

to scaling, rotation and modulation.

• Finally, we addressed the problem of optimizing multiple DMPs toward the

coordinated execution of compound movements. In this context, we extended our

framework for optimizing and combining pre-learned movements to now consider

tasks requiring the execution of multipl, simultaneous trajectories by different

manipulators in a coordinated fashion.

There are several key “ingredients” supporting the research in this thesis. The

first—a core component in all our contributions—is the use of a library of pre-learned

movements. The movements in the library can be both factory-programmed and

movements learned by the robot from demonstrations provided by users, and are used

to generate novel complex movements as well as to recognize movements observed by

the robot. The use of this library as a core component of our contributions serves two

important purposes in the wider vision of the thesis. On the one hand, the fact that the

trajectories generated by our robot build on previously learned trajectories enables some

degree of customization that may be harder to ensure using a pure planning approach.

Specifically, the movements of the robot will—as much as the task and environment

allow—follow the movements taught by the user. On the other hand, although the

tasks considered herein all consist of movements from an initial configuration to a final

configuration, the library of atomic actions can be seen as a discrete action space that

can fit into a hierarchical architecture for planning and decision making in more complex

scenarios.

A second key ingredient is the use of dynamic movement primitives to represent

the motions performed by the robot. DMPs offer several important advantages that

we abundantly rely on. The representation power, easy modulation, and robustness

to perturbations are well-documented properties of DMPs [114]. However, for our

purposes, DMPs are also amenable to optimization using black-box optimizers such as

CMA-ES and CCMA-ES, and can be combined in a sequential manner, ensuring that

the resulting movement is still smooth.

A third key ingredient is the use of critical points. We use critical points for

segmenting demonstrations into smaller, more homogeneous movements that are then
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incorporated into our movement library; however, even more fundamentally, we use

critical points for movement recognition. The ability of a robot to recognize and predict

observed movements is a core skill that any robot interacting with humans should

possess; the ability to predict what a user is trying to do can greatly contribute for an

effective and intelligent interaction between robots, or between robots and humans. The

proposed approach leverages the information available at critical points to predict and

make quick decisions during execution. In recognizing compound movements, we also

make use of critical points to determine whether the current segment is the beginning

of a new movement or the continuation of the previous movement.

It is worth mentioning that—although we do not do it—our recognition framework

could easily be used to prune the DMP library for redundant movements, if the need for

such pruning arises. Additionally, the ability of our approach to recognize compound

movements can also be leveraged to replicate observed complex movements without

prior training, simply by matching the sequence of observed movements to those in the

library and composing them using the framework in Chapter 4.

7.2 Summary of Contributions

Summarizing, the main contributions of this thesis are threefold:

• An end-to-end approach that allows a robot to take as input user demonstrations

and break these down into DMPs that are then stored in a library of “atomic

actions”. Then, when faced with a novel task, the proposed framework combines

and optimizes the DMPs in the library to allow the robot to generate novel

complex motions in possibly unseen scenarios. This contribution was published in

Kordia and Melo [52].

• A movement recognition method that, given a library of known movements,

identifies a partially observed trajectory as one of those in the library, using the

outcome of the recognition process to then predict the target of the movement. We

also contribute an extension of our recognition method to compound movements.

These contributions were previously published in Kordia and Melo [54] and Kordia

and Melo [53].
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• An extension of our end-to-end framework that considers scenarios involving

multiple simultaneous and coordinated movements. Given a library of individual

trajectories, a coordinated trajectory is built and optimized to perform a coordi-

nated task. This contribution is currently being prepared for submission at the

2023 IEEE International Conference on Robotics and Automation.

7.3 Thesis Publications

The work in this thesis led to the following publications:

1. A. Kordia and F. Melo. “An end-to-end approach for learning and generating com-

plex robot motions from demonstration.” In Proc. 16th International Conference

on Control, Automation, Robotics and Vision, pp. 1008-1014, 2020.

2. A. Kordia and F. Melo. “Movement recognition and prediction using DMPs.” In

Proc. 2021 IEEE International Conference on Robotics and Automation, pp. 8544-

8550, 2021.

3. A. Kordia and F. Melo. “Compound movement recognition using dynamic move-

ment primitives.” In Proc. EPIA Conference on Artificial Intelligence, pp. 456-468,

2021.

4. A. Kordia and F. Melo. “Optimizing and coordinating multiple DMPs under

constraints for complex manipulation tasks.” To be submitted to the 2023 IEEE

International Conference on Intelligent Robots and Systems IROS.

7.4 Future Work

In this work, we relied on the representation of movement with DMPs. It is possible

to take advantage of the features of other models to represent movement, such as the

mix between two ProMPs movements to implement a part of a movement as in the

framework of Chapter 4.

In Chapter 4, we teach a robot how to build a complex trajectory from several

simpler trajectories in the library. However, although the robot may be able to devise a

complete trajectory for the task at hand, parts of the execution may be more critical
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than others, and we may want to take into consideration that the robot may be able

to perform certain movements more reliably than others. It could be important for

the robot to be able to autonomously evaluate the reliability of the execution of the

trajectory as a whole and, identify parts that may require enhancements, be rebuilt,

or further optimized. As such, an interesting avenue for future research could be the

partial optimization/reconstruction of the trajectory.

Another important feature of the approach proposed in Chapter 4 is the fact that

we build complex movements using a greedy approach. It could be interesting, on one

hand, to analyze some of the theoretical properties of such choice; on the other hand, it

could be interesting to consider alternative heuristics (for example, beam search) that

may strike a compromise between optimality and computational efficiency.

Another important aspect that is worth exploring is related with the fact that—all

throughout the thesis—we worked in Cartesian space. In other words, we considered

the trajectories of the end-effector, to a great extent disregarding the kinematics of the

robot. While most of our contributions can be naturally extended to work in joint space,

there are a number of aspects that we do not consider and which are very relevant even

for the scenarios considered in this thesis. For example, in the process of optimization,

the kinematic limitations of the robot should be considered. An interesting avenue for

future research would be to also consider—in the optimization process—the possibility

of self-collisions. This is a particularly relevant problem when considering multiple

manipulators, since each manipulator is, naturally, an obstacle that the other should

take into account in the optimization process.

Overall, the contributions of the thesis provide a unified framework for learning,

generating and recognizing complex movements building on prior knowledge of the

robot, providing robots with a set of important skills that can open the door for wider

deployment of robots in our everyday lives and richer interaction between robots and

human users.
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