
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Multi-agent reinforcement learning under wealth

inequality and diversity in risk

Ramona Merhej

Supervisor: Doctor Francisco João Duarte Cordeiro Correia dos Santos

Co-Supervisor: Doctor Francisco António Chaves Saraiva de Melo

Doctor Fernando Pedro Pascoal dos Santos

Thesis approved in public session to obtain the PhD Degree in

Computer Science and Engineering

Jury final classification: Pass with Distinction

2023





UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Multi-agent reinforcement learning under wealth

inequality and diversity in risk

Ramona Merhej

Supervisor: Doctor Francisco João Duarte Cordeiro Correia dos Santos

Co-Supervisor: Doctor Francisco António Chaves Saraiva de Melo

Doctor Fernando Pedro Pascoal dos Santos

Thesis approved in public session to obtain the PhD Degree in

Computer Science and Engineering

Jury final classification: Pass with Distinction

Jury
Chairperson: Doctor José Manuel da Costa Alves Marques, Instituto Superior Técnico, Universidade

de Lisboa

Members of the Committee:

Doctor Francisco João Duarte Cordeiro Correia dos Santos, Instituto Superior Técnico,

Universidade de Lisboa

Doctor Patrick Mannion, School of Computer Science, University of Galway, UK

Doctor Julian Garcia Gallego, Monash Data Futures Institute, Monash University, Australia

Doctor Rui Miguel Carrasqueiro Henriques, Instituto Superior Técnico, Universidade de Lisboa

Doctor Joana Carvalho Filipe de Campos, Instituto Superior Técnico, Universidade de Lisboa

Funding Institution

EU Horizon 2020 - grant 76595

2023



Abstract

Global risks are problems entailing potential and lurking disasters that may materialize if not properly

governed. These include the climate change problem, carrying the menace of extreme weather

events, or pandemics bearing the possibility of a health crisis. Managing global threats effectively

requires a collective action by a population whose individuals are likely arranged in smaller groups of

interaction. Achieving collective action necessitates high levels of cooperation and coordination among

the participants. Despite the urgency of reaching collective action, humans often have difficulties

achieving cooperation and converge to sub-optimal and defective solutions. The collective risk dilemma

abstracts this problem into an n-player social dilemma occurring within a larger population. Here,

agents may contribute or not to a common pool to reduce their chances of future losses. Using this

model, game theory analyzed and clarified the difficulties involved in this problem. We advance the

literature on this topic by introducing and investigating the impact of wealth inequality and risk

diversity on the aforementioned system.

We model binary diversities in wealth, risk exposure, and risk assessment, and develop a novel

analytical analysis of the game based on class-coordination, where agents of a same wealth or risk

class play the same policy. We complement this analysis with social simulations using populations of

independent reinforcement learners. We draw our conclusions on the global effects of heterogeneity

by evaluating 1) the global population target achievement rate, 2) the total population contributions,

and 3) the remaining population welfare after engaging in a collective risk dilemma. Additionally,

we examine the result of heterogeneity on fairness and equality in the population, by assessing the

distribution of the same enumerated measures among agents of different wealth and risk classes.

Compared to homogeneous populations, our research reveals that both wealth inequality and

risk diversity can hinder cooperation, increase disaster occurrences, and augment collective losses.

We demonstrate that averaging out and discarding internal heterogeneity between agents can cause

significant inaccuracies in the model outcome. Importantly, several contrasting dynamics are observed

when comparing cooperation distribution between class-coordinated populations and independent

reinforcement learners. Class-coordination always ensures higher target achievement, but can facilitate

free-riding of rich agents on poor agents’ contributions, especially in large group interactions. On the

other hand, in RL populations, cooperation is primarily assured by rich agents. Additionally, we find

that wealth inequality further exacerbates long term inequality, causing rich agents to become richer

and poor agents to become poorer. Risk exposure diversity can also engender wealth inequality in a
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population with an initial equal wealth distribution. A bias in group assortment—i.e., high probability

that agents from the same risk class play together—can mitigate these unfavorable consequences. The

opposite is true for diversity in risk assessment which only generates inequality when combined with

a bias in group assortment. Finally, self-interested class-coordination can achieve socially optimal

outcomes in the presence of wealth inequality, but is insufficient in the presence of risk diversity.

Our work is instructive for individuals hoping to better understand social dynamics and human

behaviors in the face of critical dangers, as well as for governments and policy makers interested in

managing and regulating these risks. Our results suggest that taking wealth inequality into account can

help the design of effective policies aiming at leveraging cooperation in large group sizes, a configuration

where collective action is harder to achieve. We show that risk diversity offers novel opportunities

to design financial incentives, which can improve cooperation, target achievement and global welfare

beyond the levels obtained in the absence of diversity. Our findings also highlight the need to align

risk perceptions among agents and implement diversity-based incentive policies in order to improve

collectives’ abilities to avoid future catastrophic events.

Keywords: Game theory ⋄ Collective risks ⋄ Heterogeneity ⋄ Collective action ⋄ Cooperation
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Resumo

Os riscos globais são problemas que envolvem desastres potenciais e à espreita que podem se materializar

se não forem devidamente governados. Isso inclui o problema da mudança climática, que carrega

a ameaça de eventos climáticos extremos ou pandemias com a possibilidade de uma crise de saúde.

Gerenciar ameaças globais de forma eficaz requer uma ação coletiva de uma população cujos indivíduos

provavelmente estão organizados em grupos menores de interação. Alcançar a ação coletiva requer

altos níveis de cooperação e coordenação entre os participantes. Apesar da urgência de alcançar a

ação coletiva, os humanos muitas vezes têm dificuldades de cooperação e convergem para soluções

subótimas e defeituosas. O dilema do risco coletivo abstrai esse problema em um dilema social de

n-jogador que ocorre dentro de uma população maior. Aqui, os agentes podem contribuir ou não para

um pool comum para reduzir suas chances de perdas futuras. A partir desse modelo, a teoria dos

jogos analisou e esclareceu as dificuldades envolvidas nesse problema. Avançamos a literatura sobre

este tema introduzindo e investigando o impacto da desigualdade de riqueza e diversidade de risco no

referido sistema.

Modelamos diversidades binárias em riqueza, exposição ao risco e avaliação de risco, e desenvolvemos

uma nova análise analítica do jogo com base na coordenação de classes, onde agentes de uma mesma

riqueza ou classe de risco jogam a mesma política. Complementamos essa análise com simulações

sociais usando populações de aprendizes de reforço independentes. Tiramos nossas conclusões sobre

os efeitos globais da heterogeneidade avaliando 1) a taxa de realização da meta da população global,

2) as contribuições totais da população e 3) o bem-estar da população restante após se envolver em

um dilema de risco coletivo. Adicionalmente, examinamos o resultado da heterogeneidade sobre justiça

e igualdade na população, avaliando a distribuição das mesmas medidas enumeradas entre agentes de

diferentes classes de riqueza e risco.

Em comparação com populações homogêneas, nossa pesquisa revela que tanto a desigualdade

de riqueza quanto a diversidade de risco podem dificultar a cooperação, aumentar as ocorrências

de desastres e aumentar as perdas coletivas. Demonstramos que calcular a média e descartar a

heterogeneidade interna entre os agentes pode causar imprecisões significativas no resultado do modelo.

É importante ressaltar que várias dinâmicas contrastantes são observadas ao comparar a distribuição

de cooperação entre populações coordenadas por classe e aprendizes de reforço independentes. A

coordenação de classe sempre garante maior alcance de metas, mas pode facilitar o carona de agentes

ricos nas contribuições de agentes pobres, especialmente em interações de grandes grupos. Por outro
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lado, nas populações de RL, a cooperação é assegurada principalmente por agentes ricos. Além disso,

descobrimos que a desigualdade de riqueza exacerba ainda mais a desigualdade de longo prazo, fazendo

com que os agentes ricos se tornem mais ricos e os agentes pobres mais pobres. A diversidade de

exposição ao risco também pode gerar desigualdade de riqueza em uma população com uma distribuição

inicial de riqueza igual. Um viés no sortimento do grupo – ou seja, alta probabilidade de que agentes

da mesma classe de risco joguem juntos – pode mitigar essas consequências desfavoráveis. O oposto é

verdadeiro para a diversidade na avaliação de risco, que só gera desigualdade quando combinada com

um viés no sortimento do grupo. Finalmente, a coordenação de classe auto-interessada pode alcançar

resultados socialmente ótimos na presença de desigualdade de riqueza, mas é insuficiente na presença

de diversidade de risco.

Nosso trabalho é instrutivo para indivíduos que desejam entender melhor a dinâmica social e

os comportamentos humanos diante de perigos críticos, bem como para governos e formuladores de

interessados em gerenciar gerenciar e regular esses riscos. Nossos resultados sugerem que levar em conta

a desigualdade de riqueza pode ajudar a desenhar políticas efetivas que visem alavancar a cooperação

em grandes grupos, uma configuração onde a ação coletiva é mais difícil de alcançar. Mostramos

que a diversidade de risco oferece novas oportunidades para criar incentivos financeiros, que podem

melhorar a cooperação, o alcance de metas e o bem-estar global além dos níveis obtidos na ausência de

diversidade. Nossas descobertas também destacam a necessidade de alinhar as percepções de risco

entre os agentes e implementar políticas de incentivo baseadas na diversidade, a fim de melhorar as

habilidades dos coletivos para evitar futuros eventos catastróficos.

Palavras-chave: Teoria do jogo ⋄ Riscos coletivos ⋄ Heterogeneidade ⋄ Ação coletiva ⋄ Cooperação
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Introduction
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In this chapter, we present the urgency and the challenges involved in several real life global threats

and expose the additional difficulties introduced with heterogeneity among agents. In this context,

we present the research questions addressed in this thesis, and explain the general structure of the

document through a plan for the following chapters.

1.1 The challenges of managing global risks

The World Economic Forum publishes annually, a report on global risks [219]. Among the most

concerning risks are climate change, biodiversity loss, extreme weather, as well as societal division and

economic fragility. While some of these threats are on the verge of becoming unavoidable, individual

and collective behaviors can still be adapted to avoid disastrous outcomes. This requires cooperation

and coordination between a large number of agents, from citizens to policy-makers. Environmental,

societal, economic, geopolitical, and other foreseeable collective risks require collective efforts—whether

on a regional, national or international level—for successful resolutions of the problems and avoidance

of crises.

While it is evident that large collective efforts are needed to avoid these disasters, people, institutions

or countries remain reluctant to cooperate. In fact, history abounds with examples of failed risk

avoidance and inefficacy in reaching collective action. Notably, the human race has faced two world wars,

several economic crises, and serious environmental damage. This failure happens because collective

action poses serious cooperation and coordination challenges that are often difficult to overcome.

First, cooperation in such contexts entails a social dilemma: the best individual outcome would

occur if others contribute to the collective good and risks are averted without one’s intervention.

Second, on top of a cooperation dilemma, collective risks pose coordination difficulties. This is known

as the problem of many hands (PMH) and occurs in interactions with a large number of players

where individual accountability and moral responsibility become diluted [208]. The negligent behavior

becomes even more prominent when actions are not directly harmful but only cause the risk of a harm

[207]. The selfish reasoning, and the shifting of responsibility onto others, configures the so-called

tragedy of the commons [82]. The tension within individuals/entities created by the urgent need of

cooperation, the individually rational choice to defect, and the uncertainty about future outcomes,

makes decision making non-trivial [10, 11, 108].

Moreover, solving real world collective action problems presents additional challenges related with

multiple sources of heterogeneity across societies. In climate action negotiations, wealth inequality

and contribution capacity of the involved countries, as well as their differences in assessing risk, makes

reaching a unified target more difficult. In relation with the COVID-19 crisis, the containment and

control of the virus requires a mass cooperation in following the prescribed, yet costly, safety measures

(e.g., wearing a mask, getting vaccinated, using a tracing app, staying at home etc.) and becomes

further problematic when people have different convictions and different health conditions. Similarly,

the resolution of conflicts through peaceful negotiations can become tougher in the presence of an

asymmetrical military power. Likewise, solving social inequalities, such as income disparity, or food
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and water crises, remains complicated, as doing so does not benefit all classes equally.

The collective risk dilemma (CRD) is a simple game metaphor that tries to capture the challenges

involved in averting global risks [137]. In a CRD, agents decide how much of their wealth to contribute

to a common pool in order to avoid the risk of a future disaster. The future disaster is only avoided

with certainty if the agents manage to collect contributions above a given target threshold. If the

target is not achieved, all agents are subject, with a given risk probability, to a disaster modeled by

large losses in wealth, independently of whether they contributed or not.

In this context, we wish to understand how adaptive humans make their choice of cooperating or

not in the face of such threats. Animated by the heterogeneity in human societies and the apparent

repercussions it can have on human behaviors in managing common risks, we extend in our work, the

standard CRD game, by introducing two different systemic agent heterogeneities: wealth inequality

and risk diversity. We begin with a thorough static and analytical strategy analysis of the game,

also referred to as a game theoretical analysis. Then, using reinforcement learning to model human

decision-making dynamics, we design social simulations that answer the following research questions:

1. What are the consequences of individual heterogeneities in wealth and risk on populations’

attempts in avoiding collective risks?

2. What behavioral differences are observed in populations of adaptive reinforcement learners

compared to populations of statically reasoning agents? And how do these echo on the overall

well-being of a population?

3. What solutions or mechanisms can be designed and introduced in a population to overcome the

challenges posed by heterogeneity?

As such, the contributions of this thesis are a result of two large studies on wealth heterogeneity and

risk heterogeneity in collective risk dilemmas. The studies advance the literature of game theory with

novel static analyses of the CRD with heterogeneous agents. They also contribute to our understanding

of human behaviors and the emerging dynamics in complex systems by highlighting the impact of the

two considered heterogeneities on agents’ cooperation, ability to avoid disasters, and overall welfare.

Both examinations reveal significantly negative repercussions of heterogeneity on all evaluation metrics.

The studies additionally investigate the evolution of inequality under collective risks, and show that

inequality can be aggravated and even newly created in the presence of collective risks. Moreover, the

studies identify contrasting dynamics between adaptive RL agents and coordinated, statically reasoning

agents. Finally, they unveil novel opportunities for designing cooperation mechanisms that we exploit

by investigating zero-sum financial incentives. We find that financial incentives can overcome the

challenges of initial diversity and increase cooperation, achievement, and welfare beyond the levels

obtained in the absence of diversity.

The work we present has been published at the 20th and 21st international conference on Autonomous

Agents and MultiAgent Systems (AAMAS) [131, 133], and in the Journal of Artificial Intelligence

Research (JAIR) [134]. Parts of the work have also been presented at the CooperativeAI workshop at
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the 35th conference on Neural Information Processing Systems (NeurIPS) [132], and the Adaptive and

Learning Agents workshop (ALA) at the 20th AAMAS conference [130].

1.2 How to read the thesis

The thesis is divided into seven chapters.

Chapter 1 is a concise overview of the research presented in this work. It provides a succinct

motivation for investigating collective risk dilemmas and outlines the major research questions addressed

in the following chapters.

Chapter 2 adds a contextual background to the investigated problem, and explores in technical

details, cooperation and coordination challenges in social dilemmas. It also reviews the literature on

1) collective risks, 2) heterogeneity in collective risks, 3) agents modeling, and 4) cooperation and

coordination challenges in reinforcement learning.

Chapter 3 is the foundation for two following chapters. It details the methods implemented to

model the collective risk dilemma and the agents’ learning dynamics. It also introduces a novel game

theoretical analysis of the game, and describes comprehensively the selected evaluation methods.

Chapters 4 and 5 present the main findings we make in our quest to answer our research questions.

The two chapters are self-contained and can be read in any pleasing order.

Chapter 4 investigates the impact that wealth inequality has on populations facing collective risks. It

finds that wealth inequality, in general, makes coordination and cooperation more challenging, resulting

in detrimental effects on target achievement, overall welfare, and equality. Additionally, it highlights

some contrasting consequences of wealth inequality in populations of reinforcement learners compared

to populations of coordinated and statically reasoning agents. The main findings of this chapter have

been published at the 20th international conference on Autonomous Agents and MultiAgent Systems

[133], and in the Journal of Artificial Intelligence Research [134].

Chapter 5 follows a similar structure as Chapter 4 but focuses on the effect of risk diversity. It shows

that, similar to wealth inequality, risk diversity has damaging consequences on target achievement and

welfare, and can sometimes even generate wealth inequality in populations with an initial homogeneous

wealth distribution. The main findings of this chapter have been published at the 21st international

conference on Autonomous Agents and MultiAgent Systems [131], and in the Journal of Artificial

Intelligence Research [134], and presented at the Cooperative AI Workshop at 35th Conference on

Neural Information Processing Systems (NeurIPS) [132].

Chapter 6 discusses potential extensions and limitations of our work, and thereby provides several

avenues for future work.

Chapter 7 summarizes the major contributions of the thesis and lists the most relevant findings

made. It concludes our work by suggesting some real life application of our research, and a selection of

resulting future research questions.

Appendix A explores a new research avenue on peer-exchanged rewards in reinforcement learning

as a means of overcoming cooperation challenges among heterogeneous agents. The work has been
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presented at the Adaptive and Learning Agents workshop (ALA) at the 20th AAMAS conference [130].

The appendix is self-contained, although the relevance of the approach may become more apparent

after a full lecture of the thesis.

Finally, Appendix B lists the publications and communications that resulted from this thesis.

In the next chapter, we provide a more technical overview of cooperation and coordination challenges

in social dilemmas, and revisit relevant state-of-the-art literature.
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Research context
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In this chapter we present the general fields concerned with the study of games, and particularly social

dilemma games. We also review related literature on 1) collective risks, 2) heterogeneity in collective

risks, 3) agents modeling, and 4) cooperation and coordination challenges in reinforcement learning.

2.1 Contextual background

Collective risk dilemmas are a class of specific games, known as social dilemmas, involving conflicts

between individual and global interests. Social dilemmas present unique cooperation and coordination

challenges making them the central interest of game theory.

Game theory is a field that focuses on solving games using thorough strategy analysis. Generally,

games are defined by a set of possible strategies for every player, and a payoff function specifying

the reward each player receives for each possible joint strategy or combination of players’ strategies.

Importantly, game theory proposes to solve such games under two important assumptions. First, the

game is fully known, i.e., agents are aware of all agents’ possible strategies, as well as all possible

agents’ payoffs. Second, in light of this knowledge, agents make rational decisions, i.e., decisions that

maximize their potential payoff. Starting from simple games with only two players and two strategies,

the discipline identifies game conditions that give rise to cooperation and coordination challenges,

despite significant social benefits in adopting cooperative and coordinated behaviors. The games

presenting such challenges are classified as social dilemmas.

Cooperation problems emerge from a misalignment of individual and collective interests generated

by specific tensions in the payoff function [121]: while mutual cooperation is always preferred over 1) a

unilateral cooperation, 2) a mutual defection or even 3) an equal probability of unilateral cooperation

and defection, agents have trouble converging to this solution as either greed or fear drives them to

defect to either exploit their peer or protect themselves from exploitation. As a result, both agents

end up with an outcome they had preferred to avoid.

Perhaps, the most famous of cooperation problems is the prisoner’s dilemma game represented in

Table 2.1. It is common in game theory to represent the payoffs of a 2-player game by a table where

the row and column entries represent respectively the strategies of the first and second agent, and

where every cell holds a tuple with the payoffs of the two agents for each possible combination of their

strategies.

Table 2.1: Payoff matrix of the prisoner’s dilemma game

Strategies C D
C (0, 0) (−3,+2)
D (+2,−3) (−1,−1)

To solve the prisoner’s dilemma, game theory proceeds by identifying every agent’s best response to

any possible opponent strategy. When the opponent chooses to cooperate (strategy C), then a player’s
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best response would be to defect (strategy D), yielding a reward of +2, as opposed to a reward of

0 when choosing to cooperate. Similarly, when the opponent chooses to defect, then a player’s best

response would be to defect, ensuring a payoff of −1, as opposed to −3 when choosing to cooperate.

Therefore, if agents are rational and aware of the game’s structure, i.e., all possible strategies and their

payoffs, they will choose to defect. The joint strategy (D,D) in the prisoner’s dilemma is known as a

Nash equilibrium. It is a point from which none of the agents can deviate alone and still increase their

payoff. Generally, a Nash equilibrium occurs at the intersection of best responses, and is therefore the

rational choice to be made.

However, by converging to the Nash equilibrium, i.e., to mutual defection, the payoff of the two

players is sub-optimal and both players end up in a state less beneficial than mutual cooperation,

receiving a payoff of −1 for (D,D) instead of 0 for (C,C). Simply put, rationality prohibits agents

from selecting a mutually beneficial solution and leads therefore to cooperation challenges.

Coordination problems on the other hand, can occur both when personal and common interests are

aligned or non-aligned. An example of coordination challenges with non-aligned interests, is the battle

of the sexes represented in Table 2.2. Here, a man and a woman need to make plans for the evening.

The woman has a preference for a night out at the opera, while the man would rather watch some

football. If the two players disagree on what to do, then they will do nothing and receive the lowest

possible payoff that is 0. If the players agree to go to the opera, then the woman is most pleased with

a payoff of +3, while the man is less happy, obtaining a payoff of +1. The exact opposite occurs when

the players agree to watch football. The battle of the sexes accepts two Nash equilibria: (opera, opera)

and (football, football). Neither the man, nor the woman, can deviate from those equilibria without

increasing their losses.

Table 2.2: Payoff matrix of the battle of the sexes game

Strategies opera football
opera (3, 1) (0, 0)

football (0, 0) (1, 3)

When personal and common interests are aligned, coordination problems can rise if beneficial

joint actions are rare or hard to discover. The stag hunt game represented in Table 2.3 is a classic

illustration of coordination challenges with aligned interests.

Table 2.3: Payoff matrix of the stag hunt game

Strategies stag hare
stag (5, 5) (0, 3)
hare (3, 0) (3, 3)

The best possible outcome for the two players occurs when both coordinate and mutually decide

to hunt a “stag” which secures them a high reward of +5. Yet, while the strategy “stag” has the

potential of maximizing payoff when the opponent coordinates, it also involves stronger losses when
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the opponent does not. When an agent chooses to hunt a stag, the expected payoff depends largely on

the opponent’s strategy. If the player is lucky and the opponent chooses to hunt a stag as well, then

a large payoff of +5 is secured. However, if the opponent chooses to hunt a hare instead, then the

player is left with nothing or 0. Contrarily, when an agent chooses to hunt a hare, it is sure of always

obtaining a reward of +3, independently of what the opponent chooses to play. As such, strategy “hare”

is also known as a safe action.

As a result, the game presents two possible Nash equilibria from which no player can deviate alone

while increasing their payoff. The two Nash equilibria are (stag, stag) and (hare, hare). The presence

of two equilibrium points creates a dilemma between opting for safety, also called the risk dominant

equilibrium and represented by (hare, hare), or taking a chance to maximize profit, also called the

payoff dominant equilibrium and represented by (stag, stag). Often, this leads individuals to adopt the

safer behaviors and results in so-called coordination failures.

Moreover, coordination problems can further increase in complexity as the number of players or

strategies increases. Table 2.4 depicts a 2-player game with one safe action “F” resulting in a constant

payoff 0, and five payoff maximizing strategies, “A” to “E”, resulting in a payoff of +1 when the opponent

matches the selected strategy, but incurring a loss of −1 otherwise. Here, the game presents six Nash

equilibria: (A,A), (B,B), (C,C), (D,D) (E,E), and (F,F). Even when none of the agents chooses the

safe action “F”, the large number of payoff maximizing actions or Nash equilibria, that agents need to

coordinate on, increases their chances of failure and hence is an additional motivation to opt for the

safe strategy. The coordination problem that rises from a multiplicity of Nash equilibria is known as

the equilibrium selection problem [83].

Table 2.4: Payoff matrix of a 2-player cooperative game with coordination challenges

Strategies A B C D E F
A (1, 1) (−1,−1) (−1,−1) (−1,−1) (−1,−1) (−1, 0)
B (−1,−1) (1, 1) (−1,−1) (−1,−1) (−1,−1) (−1, 0)
C (−1,−1) (−1,−1) (1, 1) (−1,−1) (−1,−1) (−1, 0)
D (−1,−1) (−1,−1) (−1,−1) (1, 1) (−1,−1) (−1, 0)
E (−1,−1) (−1,−1) (−1,−1) (−1,−1) (1, 1) (−1, 0)
F (0,−1) (0,−1) (0,−1) (0,−1) (0,−1) (0, 0)

In addition to the equilibrium selection question, the best response analysis suggested by game

theory, increases quickly in complexity and becomes impractical in larger and more complex games.

For instance, many real life problems occur between an arbitrary number n of players, all belonging

to a larger population. They admit a large or even continuous set of possible strategies, involve

non-linearities and uncertainties and a more complex entangling of cooperation and coordination

problems. The exponentially increasing number of possible strategy combinations makes a best response

analysis intractable. Furthermore, full knowledge of the game may not always be at hand. In larger

games, the payoff function may not always be explicit from the start and instead needs to be discovered

by the agents. This has often restricted the discipline of game theory to simple matrix games, also

called normal form games.
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Empirical game theory presents a solution to the impracticality of classical game theory when

dealing with complex games, where knowing, enumerating, or analyzing all strategies is impossible.

The lack of complete and exhaustive knowledge about the game, necessitates the switch from static

agents analyzing all strategy combinations, to adaptive agents slowly improving their strategy based

on feedback and experience collected in their interactions. As the name suggests, the discipline relies

on empirical meta-games [203]. Policy-space response oracle (PSRO) is a generalized algorithm for

performing such an analysis [110]. Given a complex game with possibly infinite policies, PSRO deals

with a normal form sub-game, i.e., a game that can be expressed using a payoff table. The sub-game is

also known as the meta-game, and is only defined over a subset of the possible strategies. Starting with

a single strategy per player, the algorithm iteratively expands the meta-game using two main steps.

First, a “meta-solver” computes an optimal distribution over each player’s available subset of strategies.

Second, given the meta-strategy profile, a best-response is computed for each agent. The new response

is added to the set of available strategies in the meta-game, and the new missing values in the payoff

table are filled using game simulations. The algorithm stops when the new meta-strategies are already

in the set of available strategies, i.e., when the meta-game cannot be expanded anymore.

We note that, similar to game theory, the goal of empirical game theory is to define and then

find optimal equilibrium points. By correctly choosing the type of meta-solver and best-response

calculator, the PSRO algorithm can converge to a Nash equilibrium in 2-player zero-sum games [110].

Adaptations of the algorithm also exist for zero-sum intransitive games [14]. These include games

like rock-paper-scissor, where strategy preference ordering creates a circle instead of a line [94]. For

instance, paper is preferred over rock and rock is preferred over scissor. A transitive game would imply

that paper is preferred over scissor, while in the intransitive game, the preferences form a loop, and

scissor is preferred over paper. Specific variations of the PSRO also exist for general-sum games [127].

The field additionally presents advances in defining new equilibrium points. α-Rank is a novel and

tractable solution, merging ideas from Markov games and evolutionary dynamics, that overcomes the

selection problem of multiple Nash equilibria in n-player games [150]. Again, adjustments are necessary

to the PSRO algorithm for converging to α-Rank solutions [140].

Both game theory and empirical game theory provide insightful and compelling information on the

dynamics of a game. However, they often fail in describing human behaviors as experimental studies

have in fact shown that humans often make far from rational choices [65, 73, 121, 185].

Behavioral game theory is yet another field of study complementing game theory where the goal

is not to find the most rational decision, but instead to predict human decisions [220]. Therefore, the

research questions that behavioral game theory addresses are extensions to the research questions of

classical game theory. For instance, behavioral game theory proposes to examine how an equilibrium

emerges in a game, rather than determining the most beneficial equilibrium [30]. Experimental studies

have shown that, except in very simple games, people do not mentally reason and construct an

equilibrium, but only reach one after some process of trial-and-error [74]. The process of trial and error

is also known as learning. Accordingly, and akin to empirical game theory, behavioral game theory
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investigates games through the mindset of adaptive learning agents, as opposed to statically reasoning

agents.

In the context of behavioral game theory, the sophistication of agents learning dynamics is restricted

to plausible assumptions about human learning [44]. In line with psychological learning literature, these

include simple reinforcement dynamics where agents select an action proportionally to the payoff they

received when playing it in a similar game in the past. More cognitively demanding learning dynamics

assume that agents have a perfect memory and respond to all the strategies their opponent played in

the past. This paradigm is also known as fictitious play and is often referred to as belief learning in

behavioral game theory, as agents construct a belief about what their opponent might play based on

the formerly observed opponent strategies. Another commonly used algorithm in behavioral game

theory is experienced-weighted attraction learning (EWA), proposing a combination of reinforcement

and belief learning dynamics [29]. We emphasize that collective risks involve intricate dynamics, and

engage a large number of players in simultaneously cooperation and coordination challenges. In this

context, we believe that simple learning dynamics, not knowledgeable about all previous strategies and

learning dynamics of one’s peers are most realistic.

In our work we contribute to the field of game theory by presenting a novel analytical study of the

collective risk dilemma with heterogeneous agents, as well as to the field of behavioral game theory, by

using social simulations with reinforcement learners to predict and understand human behavior in the

face of common threats. In the next section, we review the literature on topics we deem pertinent for

our work.

2.2 Related work

Our work investigates the consequences that heterogeneity among agents can have in the face of

collective threats. First, we discuss examples of real life global risks and, from behavioral economics

and sociology, available findings that highlight the relevance of the problem in human interactions.

Second, we explore state-of-the-art results on heterogeneity in collective action games. Following, we

present the different agent modeling alternatives. Finally, considering that collective risks require high

degrees of coordination and cooperation, we examine, from the literature of multi-agent reinforcement

learning, the causes of cooperation and coordination failure.

2.2.1 Collective Risks

Global risks are potential crises that threaten the well-being and the common welfare of the human

race. They concern economic, environmental, geopolitical, societal or even technological risks [219].

Examples include global warming, pandemics, large-scale conflicts, nuclear proliferation, etc. Although

the risk categories are diverse, they all share a common property: no global risk can be prevented

without substantial collective cooperation and coordination. The underlying challenges of managing

collective threats are revealed in 45 interviews with experts from a German municipality [87]. In

addition to administrative efforts, citizens’ cooperation and engagement is found to be imperative for
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effective governance of collective risks.

While the urgency of collective threats is uncontested, the successful avoidance of such disasters

is non-trivial and can often be allocated to the prevailing of self-interests—whether individual or

institutional—that de-emphasize the collective interest [98]. An experimental study investigated the

differences in attitudes of people with respect to personal risk and others’ risk [24]. The authors confirm

that own risk is far more decisive than others’ risk, even in ordinarily other-regarding participants. In

fact, players only regard others’ interests when their own payoffs are at no risk.

The difficulty in reaching collective action in the face of a common risk has also been established in

an experimental setting simulating the dangers of climate change [137]. The study reports that under

high risk, only half of the groups succeed in reaching a target sum that avoids further losses. Social

representation theory focuses on the societal or collective understanding of problems [126]. In that

context, an empirical field study found that only groups who had previously experienced collective

risks, and in particular earthquakes, adopted a practical representation of the problem that is deemed

necessary for the emergence of risk mitigation behavior [79]. Similar inferences are drawn from a

long-term social dilemma experiment, where only exposure to higher risk lead to the formation of

strong cooperative social norms [190].

The complexity of solving collective problems is also visible in the studies corroborating the need

for communication among participants. A game experiment revealed that communicating sentiment

significantly improves the outcome of the game as groups with communication capability earnestly

contribute to target achievement even under increasingly difficult settings [217]. Moreover, in the

presence of communication, a reduction in the frequency of free-riders is affirmed. A framed field game

experiment noted similar conclusions when studying the impact of communication among Ethiopian

farmers in the face of the risk of a collective crop disease [50]. Interactive communication about

management strategies enhanced collective action, but interestingly, the opposite was found when only

knowledge of other farmers’ practices was revealed.

The dangers of collective risks do not only materialize in the costs of potential disasters but can also

negatively affect the development of public goods. Field experiments in 118 small-scale rice-producing

communities, attest that climate change can obstruct investments in local public goods [35].

In addition to the potential damages when failing to govern collective risks, the problem brings

about inequality concerns. By extending a behavioral ecological model of animal foraging to humans, a

game theoretical analysis examined how humans distribute their resources among foraging activities and

risk-monitoring activities [103]. The equilibrium only requires a subgroup to engage in risk-monitoring

activities, allowing the rest of the agents to focus on purely selfish pursuits. Experimental studies

endorse the theoretical predictions and expose distinctive behavioral patterns among participants. The

outcomes of the game confirm that contributions consistently originate from the same prosocial players,

allowing for exploitation by free-riders [55, 103, 217]. Remarkably, a study on the dangers of inequality

verifies that inequality itself is indeed a collective risk [157]. The paper examines the collective risks

generated by wealth inequality and social immobility, and finds similarities between the dynamics of

inequality and those of the climate change problem.
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The inherent difficulty of managing global risks and their potentially self-nurturing aspect requires

a precautionary society. However, current institutional structures often regard precaution as an

obstruction to progress [98]. This leads to pessimistic projections regarding the sustainability of the

human race and calls for an engagement of various disciplines—from sociology, to behavioral economics,

or even computational social sciences—to provide predictions and solutions to lurking threats [12].

Particularly, the integration of heterogeneity and complexity in the computational models is key for

understanding human behavior [138]. The governance of collective risks requires the understanding of

individual behaviors and the resulting collective practice [179].

We contribute to this end by presenting social simulations. We resort to large populations of

self-regarding individuals facing a collective risk dilemma. Individuals simultaneously revise their

choices through reinforcement learning. This framework allows investigating the consequences of

distinct classes of heterogeneity among agents on emerging behaviours. Next, we explore from the

literature, the potential effects of heterogeneity on groups facing collective risks.

2.2.2 Heterogeneity in collective risks

Most global risks that humanity faces, such as the climate change, the COVID-19 pandemic, nuclear

weapons, etc. require a collective action from possibly heterogeneous parties. In the context of the

climate action problem, countries of different wealth and different assessment of the gravity of the

situation need to cooperate and plan global solutions. In the context of the COVID-19 pandemic,

countries that perceive differently the dangers of a pandemic spread, and people with different

vulnerability levels to the virus need to cooperate to limit its spread. In this section, we review the

literature on heterogeneity in collective risks and focus primarily on wealth inequality and risk diversity.

Wealth inequality

Wealth inequality is an uncontested reality in our human society that affects the relative monetary

contribution capacity of people, cities, or countries, towards achievement of a desired goal. For instance,

in the face of the COVID-19 pandemic, wealth inequality across countries, resulted in vaccine inequality,

aggravating further the global crisis [193]. Another cross-country analysis revealed that the income

inequality also results in an inequality in the number of cases and deaths rates [52].

In addition to the impact of wealth distribution on the contribution capacity, other studies suggest

that it may also affect subjective components in actors, such as, their risk aversion [16]. Consequently,

wealth inequality has been a subject of interest for many theoretical and experimental studies concerning

collective risks. In fact, wealth inequality has been, in itself, described as a collective risk [157].

In collective risk dilemmas and under evolutionary game theory (EGT) dynamics, wealth inequality

was found to help in achieving cooperation if rich/poor individuals can imitate each other regardless

their wealth category, but can otherwise be strongly detrimental [211]. It was also found that rich

individuals contribute more than poor ones who only choose to cooperate if all rich players are

cooperators [36, 215].
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However, experimental data did not always confirm these predictions and rich individuals were

found to under-contribute while poor individuals over-contributed [36]. Another experimental study

showed that wealth inequalities make cooperation and hence success harder to accomplish [194]. Still,

contrasting conclusions are made in yet another experimental study where wealth inequality was not

found to lower contributions at all [26].

Wealth inequality has also been studied in other collective action dilemmas, such as the continuous

public goods game. This is a non-threshold game where agents need to join efforts to create a common

good instead of avoiding a common disaster. In that context, and under evolutionary game theory,

strong inequality in wealth, productivity and benefits are found to inhibit cooperation [86].

Furthermore, numerous studies identified correlations between wealth and awareness of global

problems—in particular the climate change problem—and the perceived danger of those problems.

Heterogeneity in wealth can translate to a heterogeneity in awareness and risk perception. The data

however is not consistent across all surveys as some find that the poor are more concerned with the

environment than the rich [61, 77], while others come to opposite conclusions and find that national

wealth creates a cultural shift that increases environmental awareness [72, 97]. Finally, another study

finds that rich countries tend to be more aware of the climate change problem, but are simultaneously

less afraid of the potential consequences it can have [117].

In light of these findings, an experimental study combined asymmetries in wealth and risk (where

rich players were at a lesser risk of facing disasters than poor players), and observed a collapse in

cooperation with tragic consequences [27]. We hypothesize therefore that risk diversity can also have a

major impact on populations facing collective risks. Next, we present from the literature, the general

impact of the risk factor in CRDs, as well as evidence of the presence of risk diversity in real life

societies.

Risk diversity

In collective risk dilemmas, the risk of losing one’s assets in case of failure to achieve the target has a

significant impact on an agent’s readiness to cooperate, and as a result, a major impact on the global

well-being of the system. In both experimental and theoretical analyses under EGT dynamics, a higher

risk translates into a higher willingness of the agents to cooperate and to contribute, and consequently

may help in escaping the tragedy of the commons, a state where a spread of selfish behaviors in a

population eventually leads to more harm than if everyone had adopted costly but socially beneficial

actions [137, 169, 171].

As seen earlier, the introduction of wealth or other inequalities can also alter and influence agents’

promptness to cooperate [86]. We argue that risk diversity is another heterogeneity worth studying in

populations facing collective risks. In combination with wealth inequality, it was already found to have

disastrous consequences [27]. While, to the best of our knowledge, no theoretical study on collective

risks has investigated the emerging dynamics under risk diversity, it prevails in real life global threats.

Importantly, the effective occurrence of global risks in the future can only be approximately

estimated, and not accurately measured. As a result, actors make their decision based on how likely
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they believe a disaster to occur. Diversity in global risk assessment is therefore quite common [219]. A

survey of 119 countries, confirmed significant variance in public concern and risk assessment of the

global climate change problem [111]. They found that the diversity in risk assessment mainly resulted

from a diversity in education and fundamental understanding of the climate change problem between

countries, or additionally from a diversity in the actual perception of local temperature changes.

Dilemmas involving a common risk also exist in collective insurance arrangements, where hetero-

geneity can result from Different levels of risk-exposure to natural hazards could obstruct effective

collective insurance arrangements [175].

Similarly, the recent COVID-19 pandemic led to the segregation of people and the distinction

between people at normal risk and those at increased risk for severe illness from COVID-19. The World

Health Organization identified medical conditions that can increase the risk of getting seriously ill [1].

Other governmental units such as the Occupational Safety and Health Administration (OSHA) of the

United States Department of Labor has classified jobs into four potential risk exposure levels: very

high, high, medium, and lower risk [3]. The Organization for Economic Co-operation and Development

(OECD) published a document urging governments to support the most vulnerable people [2] and

several other studies on that subject have been published in different countries [17, 151, 206]. Risk

diversity is therefore a fundamental feature taken into account by countries when elaborating their

safety measures and preventive policies. Risk assessment diversity on an individual level, also translates

into behavioral diversity and safety measure compliance [196]. Dilemmas involving a diversity in risk

also exist in collective insurance arrangements, where parties can be at different levels of risk-exposure

to natural hazards [175].

We identify a lack of papers investigating risk heterogeneities despite the significant impact that the

risk factor has on cooperation, and the ubiquity of risk diversity in real life interactions. We address

this gap and investigate the consequences that risk diversity has on populations facing collective risks.

2.2.3 Agent-based modeling of collective risk dilemmas

The emerging behaviors of large populations engaging in collective risk dilemmas have generally

been studied using evolutionary game theory (EGT) [5, 169, 171, 173, 175, 210, 211, 215]. Under

evolutionary dynamics, agents modify their behavior through social-based learning. In fact, in EGT,

strategies are learned through imitation of others based on relative performance, a process aptly

referred to as social learning. In this context, if individuals face a cooperative dilemma, defectors

are always better off than cooperators, and, as a result, will be imitated by others and their choice

will spread throughout the population [146, 202]. Recently however, reinforcement learning has been

used as an alternative to evolutionary game theory to model the adaptive dynamics of populations

facing collective risks [56]. As opposed to EGT, reinforcement learning is an individual-based learning

paradigm. Here, agents aim at maximizing their own absolute return disregarding comparisons with

others’ returns.

The potential contrasting particularities of social and individualistic learning can echo on the

selected strategies of the agents. In two distinct studies for example, agents play the same game
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but follow respectively evolutionary (social) and reinforcement learning (individualistic) dynamics

[176, 178]. While the effect of key parameters remains similar, agents converge to dissimilar strategies

depending on the learning paradigm. Individual and social learning can also alter the role of complex

networks in coordination dilemmas [209]. Nonetheless, several relevant equivalences can be shown

among the two learning paradigms [20, 22, 91, 204, 209].

In our work, we choose to focus on reinforcement learning dynamics in CRDs, a choice motivated

by several factors. First, the sharing of information regarding other agents’ performance, necessary for

evolutionary learning, may not always be at hand in real life. This is particularly relevant in the case

of large populations. Second, reinforcement learning dynamics are significantly less explored in the

context of CRDs than are evolutionary dynamics. We believe that our study could therefore contribute

to the literature on CRDs, by revealing novel and complementary dynamics, unknown in the realm of

EGT. Third, our objective is to model human behavior in the face of collective risks, and reinforcement

learning, has been previously shown to successfully model human behaviors in other social dilemmas

[64].

In this context, we are given the choice of modeling agents either as joint-action learners or as

independent learners. In the former, agents learn collectively a joint-action. To this end, agents are

required to be aware of all other agents’ actions as well as their learning dynamics. We believe this

configuration to be unsuitable for modeling human learning in large populations where such knowledge

is often not available. Moreover, the computational complexity of joint-action learning increases

exponentially with the number of players, making it not only unsuitable for modeling human actors,

but also impractical.

On the other hand, an independent learner only learns personal actions. The approaches to model

independent reinforcement learners can further be divided between gradient-based independent learners

and non-gradient based independent learners, as suggested in a survey on dynamics of multi-agent

learning [20]. The former set of algorithms requires a well-defined differentiable objective function

and knowledge of other agents’ policies, an assumption we find inadequate when modeling human

decision-making. We therefore resort to the latter class of independent learners, i.e., non-gradient

based learners. Given the absence of additional constraints to single reinforcement learning, classical

RL algorithms such as Q-learning [218], Policy Hill Climbing (PHC), Hedge [9], or Continuous Action

Learning Automata (CALA) [197], can be directly adopted. Nonetheless, the literature abounds with

RL algorithms designed specifically for the multi-agent setting. These include, but are not limited

to, the Roth-Erev algorithm [168], WoLF-PHC [23], Frequency Adjusted Q-learning [102], Lenient

Frequency Adjusted Q-learning [19], optimistic exploration Q-learning [43], Regret Matching [84], or

Counterfactual Regret Minimization [229]. While most of these algorithms have been designed to reach

specific equilibria, the Roth-Erev algorithm was designed and shown to effectively describe human

behaviors in social dilemmas [168]. The authors argue that this is a result of its capturing of two

distinct characteristics of human learning: the law of effect that encourages previously successful

actions [198], and the power law of practice that makes learning and adaptation slower with experience

[143].
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Therefore, and while all aforementioned algorithms are viable candidates, we choose to model

human decision making using the Roth-Erev algorithm with the goal of understanding the behavioral

differences between homogeneous and heterogeneous populations in the face of collective risks, and

how these behavioral differences echo on the overall well-being of the population. We note that the

convergence points can possibly vary under different learning dynamics. However, this remains out of

the scope of our work and we refer the interested reader to a survey on the qualitative differences of

various learning dynamics [20].

2.2.4 Cooperation and coordination challenges in reinforcement learning

The objective of our work is to highlight the consequences of heterogeneity on the cooperative aptitude

of a population facing collective risks. As such, we use RL as a means to model human actors.

Nonetheless, we believe that the results we show can be valuable for research on cooperative capabilities

in multi-agent reinforcement learning, a very active topic of research [49]. We therefore present some

established cooperation challenges in MARL and the respectively designed solutions.

While n-player non symmetrical social dilemmas and games with mixed-motives are abundant in

the real world, cooperation in multi-agent reinforcement learning has mainly focused on 2-player games.

A study on sequential social dilemmas with deep RL [112], identified coordination sub-problems that

prevent proper cooperation of agents. Coordination problems in MARL are quite common and are not

only restricted to social dilemmas [129]. One of the reasons for coordination difficulty in MARL is

the non-stationarity of the opponent and the simultaneous policy updates of the players [15, 20, 201].

Suggested solutions try to increase agents’ understanding of the opponent’s dynamics and leverage these

to achieve higher cooperation [90]. One algorithm proposes predicting the opponent’s policy changes

before computing the agent’s policy gradient [225]. Another alternative suggests differentiating through

the variations of the opponent to actively shape their learning [68]. A third solution incorporates

both policy prediction and opponent shaping to increase stability while simultaneously escaping saddle

points [114]. Modeling and learning the latent intent of an opponent is useful in repetitive games to

select policies guaranteeing favorable future interactions [223].

Alternative solutions to increase cooperation in MARL focus on enabling communication capacities

between agents. Communication can take several forms. For example, agents may communicate by

sending messages [32, 71], sharing intentions [106] or experiences [42], advising actions [149] to one

another etc. Enriching agents with communication capabilities has shown to improve performance

[42, 71], speed up learning [42, 71, 149] and enhance coordination [106, 149]. Implementing a centralized

critic with decentralized actors is another form of indirect communication and information sharing

among agents that can increase performance and cooperation [13, 69, 119]. However, in cooperative

environments, a centralized approach can learn inefficient policies with only one agent active and

the other being “lazy”. This happens as the second agent is discouraged from learning because

its exploration would hinder the first agent’s success and lead to worse team reward [189]. Value

decomposition addresses this problem by learning to decompose the team value function into per-agent

value functions and thus transforms a complex learning problem into local, more readily learnable

19



sub-problems [125, 164, 165, 186, 189].

A third set of solutions for overcoming cooperation difficulty in RL introduce conditional commitment

in agents’ policies. One example is an algorithm designed to always asymptotically behave as a Tit-

for-Tat strategy by learning simultaneously a cooperative and a selfish Q-function and alternating

between them to avoid exploitability [99].

Finally, solutions modifying agents’ motivations can be seen as institutional solutions [49]. Notably,

in MARL, intrinsic rewards can be engineered and added to environmental rewards to help agents

solve a sub-problem of the game and facilitate the emergence of coordination [116, 180].

We note that the advised solutions for increasing cooperation in MARL settings focus on 2-player

games. Major computational challenges still inhibit the scaling of these algorithms to n-player games.

Additionally, most solutions are developed to increase cooperation in purely cooperative settings. We

propose a non-symmetrical n-player social dilemma. We describe the emergent behaviors of simple

reinforcement learners in these settings. In the context of reinforcement learning, our work contributes,

not by proposing novel algorithms for solving social dilemmas, but by identifying novel cooperation

and heterogeneity challenges in large RL populations facing collective risks.

In the following chapters, we inspect how different systemic inequality levels between independent RL

agents impact the social welfare of the system and influence overall cooperation levels. We contribute

to the literature on collective risks by exploring new types of heterogeneity that have not yet been

studied, and to the literature on multi-agent reinforcement learning, by exploring n-player social

dilemma games and determining emerging and new RL cooperation challenges that have not yet been

identified.
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Chapter 3

Methods
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We propose to answer our research questions using on one hand social simulations with reinforcement

learners, and on the other hand, game theory fundamentals. We dedicate this chapter to define the

methods used for our analysis. We begin by describing the dynamics of the n-player collective risk

dilemma. After that, we specify the learning algorithm of the RL agents. Then, we construct the static

solutions against which we evaluate the learned policies. Finally, we explain our evaluation metrics

and present the details of the computer simulations.

3.1 Game definition

Formally, in a population of finite size Z, we allocate for every player an initial endowment b. Players

are then sampled into groups of size N to play CRDs. Every player must choose to either invest

nothing or a fraction c of their endowment to a common pool. The benefits gained by investing in

the common pool are modeled by the increased chances of avoiding an otherwise risk of probability r.

Should the players manage to jointly collect a sum greater than a target threshold t, then the disaster

is avoided with certainty. Otherwise, with the disaster probability r, all players lose a fraction p of

whatever they have left of their initial endowments. At the end of the game, player i who started with

an initial endowment b is left with

bifinal =

 (1− ci)b if the disaster was avoided,

(1− ci)b− p(1− ci)b if it wasn’t.
(3.1)

where ci represents the binary choice of either contributing 0 or a fraction c of the initial endowment

to the pool (ci ∈ {0, c}).

In game theory, a game is usually defined by its payoff matrix that represents the benefits of a joint

action for a given player. While the game’s risk r and disaster impact p determine objectively the

resulting wealth of an agent, in real life, the (perceived) benefit, often called utility, of such an outcome

is not necessarily equivalent or even linear to said outcome. A loss of $1000 is not equally damaging

to a millionaire as it is to a minimum wage salary employee. The log-utility function has been used

in economy to capture this diminishing marginal utility [154]. It assumes that a loss of 70% of one’s

possessions, for example, is equally painful for any individual even if, with different initial wealth,

the losses are not equal in absolute value. Under a log-utility function, the payoffs of the game are

expressed as the difference in the log of agents’ wealth before and after a game was played. Hence, a

successful game costs xC = log
(
b−cb
b

)
= log(1−c) for a cooperator and xD = log

(
b
b

)
= 0 or nothing for

a defector. Similarly, we can derive that a failure of avoiding the disaster costs x̄C = log(1−c−p(1−c))

for cooperators and x̄D = log(1− p) for defectors. The goal of each player i is to find a probabilistic

strategy π∗
i —representing the probability of player i choosing to cooperate—that maximizes the payoff.

Table 3.1 summarizes the payoff matrix of the game.

We recall that social dilemmas rise from a misalignment of individual and collective interests

generated by specific tensions in the payoff function [121]. More precisely, mutual cooperation should

always be preferred over a unilateral cooperation and over a mutual defection. However, there should
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Table 3.1: Payoff matrix of the collective risk dilemma based on player’s action and the outcome of the
game.

Strategy Disaster avoided Disaster faced
C xC = log(1− c) x̄C = log(1− c− p− pc))
D xD = 0 x̄D = log(1− p)

also always be either greed or fear that drives agents to defect to either exploit their peers or protect

themselves from exploitation. In our game, a disaster is faced with probability r if the group fails to

achieve the target threshold. A total cooperation always results in target achievement while a total

defection always results in failure of target achievement. As such, mutual cooperation yields a payoff

xC = log(1− c), whereas mutual defection yields with probability r a payoff x̄D = log(1− p) and with

probability 1−r, a payoff xD = 0. To satisfy the conditions for a social dilemma, xC > (1−r)xD+rx̄D

which implies that r > log(1−c)
log(1−p) . Additionally, the threshold t needs to be lower bounded by the

contribution of a single cooperative agent t > cb, otherwise such a unilateral cooperation would also

avoid the disaster and hence be as good as a mutual cooperation. Moreover, to incentivize agents to

defect, the threshold needs to be achievable with less than a total cooperation t < Ncb, otherwise

agents would have no motivation to free-ride.

In addition to abstracting a large number of urgent global risk problems, the CRD model presents

compelling computational properties: the introduction of the threshold results in a non-linear payoff

function while the risk factor adds stochasticity and uncertainty to the n-player population game.

In different chapters of our work, we increase the complexity of the presented game by introducing

different forms of heterogeneities among the players. However, we restrict heterogeneity to a binary

class diversity. In other words, we split our population into two disparate classes. Differences exist

between agents of different classes, but within the same class, agents are homogeneous.

We propose to train populations of reinforcement learners to play the described social dilemma. In the

following section, we define the agents’ dynamics by describing the selected learning algorithm.

3.2 Agent learning algorithm

To study the dynamics of cooperation under reinforcement learning, we train a population of independent

RL learners with the Roth-Erev algorithm [168]. By independent learners we mean that the RL agents

do not model the presence of other players and perceive the emerging dynamics as part of their

environment’s dynamics. Prior to any interaction, every agent i has an initial propensity to cooperate

or defect, determined by the values of a propensity vector qi,0 =
[
qi,0(C), qi,0(D)

]T
. The propensity

vector is updated with every learning interaction. At the end of game k, agent i, according to the

selected action A and the received return x, updates the propensity vector as

qi,k(A) = (1− ϕ)qi,k−1(A) + x,

qi,k(¬A) = (1− ϕ)qi,k−1(¬A),
(3.2)

24



where ¬A represents the non-chosen action and ϕ is a forgetting parameter that inhibits the propensities

from growing to infinity.

We train agents of a population asynchronously using the update rule (3.2). The procedure is

summarized in Algorithm 1. At every learning step k, a group of N agents is selected randomly from

the population of Z agents. The agents in the group engage in a collective risk dilemma. Every player

i in the group chooses one of the available actions following probabilities pi,k−1 that are derived by

normalizing the propensity vector qi,k−1. Since payoffs are negative or zero, we use the soft-max

function to normalize the propensity vector. At any step k of the learning process, player i will select

action A with probability

pi,k−1(A) =
exp(qi,k−1(A))∑

A′∈{C,D} exp(qi,k−1(A′))
. (3.3)

The selected actions and the game risk factor r determine whether or not the game is successful (i.e. if

agents avoided the disaster). The payoffs for each agent are calculated according to Table 3.1 after

which all agents in the group update their propensity vectors. This is repeated for a total of K learning

steps. Since the algorithm does not guarantee that all agents are chosen equally as many times, we

define K ′, the minimum number of learning steps that every agent needs to have performed before

training is done. After K total learning steps, if some agent still has not performed at least K ′ updates,

then training continues until this condition is satisfied.

Algorithm 1: Roth-Erev RL algorithm in an adaptive population with asynchronous updates
of propensities.

Init: K total number of learning steps, K ′ minimum number of updates per agent
for i← 1 to Z, population size do

qi(0)←random initialization;
ui ← 0 /* tracks number of learning steps per agent */

for k ← 1 to K do
1. sample random group G of size N ;
2. sample actions Ai ∼ pi,k−1 for i ∈ G (Eq. 3.3);
3. evaluate game success;
4. calculate payoff of i ∈ G (Tab. 3.1);
5. update qi,k (Eq. 3.2);
6. ui ← ui + 1 for i ∈ G;
7. umin ← min(u)

while umin < K ′ do
repeat steps 1. to 7.

The described algorithm allows for an easy implementation, and the emergence, of stochastic

policies that can be desirable in a CRD. In fact, when involved in a threshold game, every contribution

over the threshold is an unnecessary cost on society. A contribution of a fraction of the society can

thus be more beneficial than a contribution of the whole society and hence more cooperation is not

always advantageous. Implementing stochastic policies allows players to take turns in cooperating

and defecting, creating fairer contribution arrangements and possibly leading to egalitarian average

contributions over time.

Suppose, for example, a collective risk dilemma where 50% of the players need to contribute to
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achieve the target. Allowing the agents to follow stochastic strategies will distribute the responsibility of

achieving the target on different players at every round. Instead, having agents converge to deterministic

policies will establish players that either always cooperate or always defect and hence the same players

will always incur the cooperation costs while the others will always get to free-ride. Reinforcement

learning generally allows agents to learn such stochastic policies with no need to pre-define a set of

discretized possible stochastic strategies to select from.

To identify the strengths and weaknesses of independent reinforcement learning in collective action

dilemmas, we propose to compare the learned solutions against a baseline of pre-defined static solutions.

In the next section, we define two such solutions: a selfish solutions, and a social solution.

3.3 Static study

We wish to determine how decision-making under individual-based learning compares to other rational

or socially optimal policies. To answer this question, we also study our game from a static perspective

to extract rational equilibrium points and total welfare maximizing solutions.

Since we do not examine inequality emerging from co-existence or within a class, but rather between

classes, we impose and pre-condition our solution points on absolute equality and fairness within a

given class. We only look at solutions where all players of the same class are forced to follow the

same strategy. In Chapter 4 we introduce wealth inequality and split our population between rich and

poor agents. We only evaluate solutions that assume that all rich players follow the same strategy

πR and all poor players follow the same strategy πP . Similarly, in Chapter 5 where we introduce risk

inequality, the population is split between agents at high risk and others at low risk. We suppose that

the former all follow the same strategy πH and the latter the same policy πL. This is also convenient

because the number of possible solutions grows exponentially with the size of the population. Even

for a small number of possible strategies per agent, the set of possible joint strategies can become

intractable if the population size is large.

3.3.1 Class-based Nash

In general, computing Nash equilibria in large, general-sum games poses computational challenges

[51]. To our best knowledge, most available algorithms for the n-player case, obtain solution points

for games where the payoff of a player is equal to the sum of the payoffs of its interactions with each

player in the game [139, 160]. This is not the case in our threshold game where the joint payoff is not

a linear combination of 2-player interactions. Therefore, in this work, we use the fact that the game is

symmetric for players from the same class, and impose absolute equality and fairness within a given

class. We then define a class-based Nash equilibrium where all players of the same class are forced to

follow the same strategy. This allows us to transform our game into a 2-person matrix game.

The details for extracting the class-based Nash equilibrium points under different inequalities are

given in their respective chapters in Sections 4.2.1 and 5.3.1.

26



3.3.2 Class-based maximum welfare

We continue to impose absolute equality and fairness within a given class and evaluate the total

secured welfare of a population for different combinations of strategies. We define as the Social Welfare

Maximizing solution, the combination of class-based strategies that minimizes the total losses in

welfare of said population. Details are given for every type of inequality in its respective chapter in

Sections 4.2.2 and 5.3.2.

Having defined the game, the reinforcement learners dynamics, as well as the baseline policies to

which we compare them, we describe in the next section the exact evaluation metrics and computer

simulation details that we use throughout our subsequent studies.

3.4 Evaluation metrics and computer simulation

In this work, we provide two main studies investigating how different systemic inequality levels between

agents affect cooperation levels in the population and how these behavioral differences influence the

social welfare in the system. In Chapter 4 we start by analyzing how wealth inequality impacts the

success of a population in a CRD. Departing from previous work, here we also study explicitly the

effects of varying groups sizes. Next, in Chapter 5 we conduct a similar analysis, but now assessing the

impact of a risk exposure and risk perception diversity, together with the impact of group assortment

bias and the potential interests of using financial incentives.

The purpose of our work is to evaluate, using social simulations, the potential impact of wealth

and risk heterogeneity on our human society. As argument-ed earlier, reinforcement learners using

the Roth-Erev algorithm were shown to accurately predict human behaviors in the context of social

dilemmas. In both chapters, we begin therefore our investigations on populations of RL agents. In

conformity with other findings on independent RL agents, we identify coordination challenges that

hinder the effective success of the populations. The coordination difficulties in combination with the

heterogeneity, induce particular dynamics in the population that may not emerge in the absence of

coordination problems. As such, we complete our studies by investigating next the consequences of

the same inequality on class-coordinated and rational populations that we name class-based Nash

populations. After analyzing the effects of heterogeneity on RL and class-based Nash populations,

we present a short comparison of the two populations. While coordination is key to solving many

challenges of collective risk, it does not guarantee a socially optimal outcome. Accordingly, we conclude

both investigations on heterogeneity with a comparison between class-coordinated rationality and

class-coordinated sociality, i.e., class-based maximum welfare populations.

To summarize, to comprehensively evaluate the impact of a heterogeneity in the context of collective

risks, we present in each case four consecutive analysis:

1. A comparison of RL populations with and without the introduced inequality;

2. A comparison of class-based Nash populations with and without the introduced inequality;

3. A comparison of RL and class-based Nash populations presenting the introduced inequality;
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4. A comparison of class-based Nash and class-based maximum welfare populations presenting the

introduced inequality.

We note that several factors can be considered to measure the well-being of a population such

as fairness, wealth, diversity, education etc [39, 62, 213]. In our work, every comparison is assessed

based on three main criteria: 1) the probability of achieving the target threshold, 2) the collected

contributions or cooperation levels, and 3) the remaining welfare after engaging in a CRD. We define

• η, also called the group achievement, as the percentage of groups in the population that achieve

the target. We show the mean value of η in a population, as well as the percentage of successful

agents in each class when applicable;

• π, also called the policy, as the probability of an agent to select the action “cooperate” when

engaging in a CRD. We show the mean policy for homogeneous populations, or the mean policies

of each class of agents for heterogeneous populations;

• ρ, also called the achieved contribution, as the ratio between the collected contributions and the

maximum possible total contributions such as

ρ =
π1Z1b1 + π2Z2b2

Z1b1 + Z2b2
, (3.4)

where indices 1 and 2 represent the binary classes in the heterogeneous population, e.g., class

1 corresponds to poor/low-risk and class 2 corresponds to rich/high-risk agents; πi, Zi and bi

denote, respectively, the average policies or cooperation probabilities, the number of agents,

and the initial wealth of the agents in class i, i = 1, 2. The numerator computes the collected

contributions while the denominator computes the maximum possible contributions in the case

of total cooperation, i.e., π1 = π2 = 1. For homogeneous populations, ρ = π;

• ζ, also called the secured welfare, as the ratio between the remaining wealth—after engaging in

a CRD, spending on contribution costs and potentially facing disaster losses—and the initial

wealth. Similar to η, we present the mean population value of ζ, as well as the average secured

welfare of each class of agents.

The three metrics considered provide a different perspective on the “success” of the population: the

collected contributions are a measure of cooperation in the population, while target achievement and

remaining welfare are variables we use to quantify the well-being of the population. The distribution

of these performance metrics across the different wealth and risk classes provide information on the

fairness and diversity in the populations.

The policy π is computed directly for class-based Nash and class-based maximum welfare populations.

Exact details are given in the corresponding chapter of each introduced heterogeneity. On the other

hand, for all experiments using RL populations, the evaluation of π proceeds by allowing the agents

to train with Algorithm 1 for a total of K = 2, 500, 000 learning steps, while imposing a minimum

number of K ′ = 30, 000 learning steps for every agent. We sample qi,0(A) from a normal distribution
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N (µ = −10, σ = 1). This generates players with a slight random initial preference to defect or

cooperate such that loge

(
qi,0(C)
qi,0(D)

)
∼ N (µ′ = 0, σ′ = 2σ

µ ), according to the log domain transformation

of Katz [104]. The forgetting parameter is set to ϕ = 0.001. The values of π reported correspond to

the values observed at the end of the training period, averaged over 5 independent runs. Once π is

defined, ρ is easily computed from (3.4).

The computation of η and ζ is less straightforward. After evaluating π, for every experiment

configuration, we rollout and observe the outcome of a large number of games. In each game, we

split the population into groups of N players. In each group, agents, following the defined policies π,

either choose to cooperate or to defect. After action selection, we calculate the percentage of successful

groups in the population, i.e., groups that reach the target threshold, as well as the percentage of

successful players from each class of agents in heterogeneous populations. The values found represent

the group achievement η. Depending on the selected actions, we compute the cooperation expenses

of each class of agents and of the whole population. For groups that do not reach the threshold, we

additionally compute the costs of disaster occurrences. The sum of these costs allows us to evaluate

ζ, the percentage of remaining welfare in a population and in each class of agents. All metrics are

evaluated and averaged over 105 game roll-outs.

In the following, we denote the homogeneous population by P0, and its heterogeneous counterparts,

presenting respectively wealth inequality and risk diversity, by P1 and P2.

In this chapter we defined the dynamics of the collective risk dilemma, the algorithm of the reinforcement

learning agents, two baseline static solutions, and the details for all computer simulations and evaluation

metrics. In the following chapters, we introduce different agent heterogeneities and use the methods

from this chapter to uncover the impact they can have on populations facing collective threats.
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Chapter 4

Wealth inequality in collective risk

dilemmas
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In this chapter, we investigate the effects of wealth inequality on populations facing a collective risk

dilemma. We explain how we implement wealth heterogeneity and present the details for computing the

static solutions for that game configuration. We show results for both, simulations with reinforcement

learners, and outcomes under static solutions. The chapter is based on two publications: “Cooperation

between Independent Reinforcement Learners under Wealth Inequality and Collective Risks” [133], and

“Cooperation and Learning Dynamics under Wealth Inequality and Diversity in Individual Risk” [134].

4.1 Introduction of wealth inequalities

We consider a population of finite size Z of which a fraction zR is rich and holds a fraction wR of

the total riches W [211]. The remaining fraction zP = 1 − zR of the population is poor and holds

wP = 1 − wR of the riches. The total wealth held by the rich/poor is equally distributed within

the same wealth class. All poor players start with an equal initial endowment bP = W×wP

Z×zP
and

correspondingly all rich players start with the same endowment bR = W×wR

Z×zR
where wR and zR are set

such that bR > bP .

Individuals are sampled from the population and organized into groups of size N . Such groups can

contain 0, 1, ..., N rich individuals and N,N − 1, ..., 0 poor individuals respectively. The individuals

of the group now engage in a Collective Risk Dilemma. Participants can choose (with a certain

probability) to contribute a constant fraction c of their endowment to the collective pool to help achieve

a target threshold t. We set t to be proportional to the contribution fraction c and to the average

wealth in the population b = W
Z with a factor of proportionality M such that t = Mcb. The larger

the value of M , the harder it is to reach the threshold. If the overall amount of contributions in the

group is above that threshold, the target will be met and the disaster avoided. Otherwise and with a

common probability r — the risk of occurrence of the collective disaster — individuals in the group

will lose a fraction p of whatever they have. We assume that the players have a log utility function as

described in Section 3.1 and use the payoffs of Table 3.1.

4.1.1 Numerical values

Similar to previous work by Vasconcelos et al. [211], we consider a population of Z = 200 individuals.

The average wealth in the population is set to b = 1 yielding W = Z. The rich represent zR = 20% of

the population and hold wR = 50% of the total riches. Subsequently, rich agents begin the game with

an initial endowment bR = wR×W
zR×Z = 2.5b, while poor agents begin the game with an initial endowment

bP = wP×W
zP×Z = 0.625b. A contribution represents 10% of an agent’s wealth, i.e., c = 0.1. We define the

threshold t as a function of the average wealth b in the population. We set the target to be achievable

if at least M = N/2 agents in the group contribute, i.e., t = Mcb = Ncb/2. If the threshold target is

not achieved, agents lose an additional 70% of their remaining wealth, i.e., p = 0.7. We test varying

risk values r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, varying group sizes N ∈ {2, 4, 6, 8, 10, 20}. The chosen values

satisfy the conditions necessary for a social dilemma (see Section 3.1).
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4.2 Static study

Considering a binary wealth inequality among agents of a population facing collective risks, we derive

in this section the optimal policies for rich and poor agents under the assumption of complete class-

coordination. In other words, we pre-impose that all rich agents follow the same policy πR, and all

poor agents follow the same policy πP . From there, we define two optimal policies: a rational policy

with the goal of maximizing the welfare of a class of agents (the class-based Nash policy), and a social

policy with the goal of maximizing the total population welfare (the class-based maximum welfare

policy).

4.2.1 Class-based Nash

Consider a group of N − 1 individuals and denote by nR and nP , the number of rich and poor

individuals within this group respectively, where nR ∈ {0, 1, ..., N − 1} and nP = N − 1− nR. Let nc
R

be the number of rich players that actually contribute to the pool, i.e., nc
R ∈ {0, 1, ..., nR} and nc

P

be the number of poor contributors in the group, i.e., nc
P ∈ {0, 1, ..., nP }. Hence, a total number of

(nR + 1)× (nP + 1) different pool contributions are possible.

The probability PnR(nc
R, n

c
P ) with which each of these possible configurations occur in a group of

nR rich individuals follows a binomial law and depends on the cooperation probabilities πR and πP , of

rich and poor agents respectively. We have

PnR(nc
R, n

c
P ) =

(
nR

nc
R

)
π
nc
R

R (1− πR)
nR−nc

R

(
nP

nc
P

)
π
nc
P

P (1− πP )
nP−nc

P .

To the group of N − 1 players, let i be the N th player to join the group. Player i will now

choose to contribute with probability πR if rich, or with probability πP if poor. Denote by AD

the action of defecting and not contributing, by AC
R the contribution action of a rich individual

and by AC
P the contribution action of a poor one. Denote by SAD the set of configurations that

achieve the threshold without the need of i’s contribution. Mathematically, SAD = {(nc
R, n

c
P ) ∈

{0, 1, ..., nR}×{0, 1, ..., nP }|nc
RbRc+nc

P bP c ≥Mbc}. Identically, denote by SAC
P

the set of configurations

that can achieve the threshold if i contributes and is poor and by SAC
R

the set of configurations that

can achieve the threshold if i contributes and is rich. The probability of the group achieving the

threshold given that i chose action a ∈ {AD, AC
R, A

C
P } is given by the sum of the probabilities of the

events in SAD , SAC
P

and SAC
R

respectively.

PnR(t|a) =
∑

(nc
R,nc

P )∈Sa

PnR(nc
R, n

c
P ) (4.1)

Since the game is probabilistic, the probability of a player avoiding or not a disaster given that he
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chose action a are given by

PnR(success|a) = PnR(t|a) + (1− r)PnR(¬t|a)

PnR(failure|a) = 1− PnR(success|a)

We can now write the expected payoff functions for player i depending on whether that player is rich

or poor. Let HnR

R and HnR

P be the respective expected payoff functions of a rich and poor individual

involved in a game with nR rich players and where all rich follow strategy πR and all poor follow

strategy πP . The expected payoff of an agent depends on whether the game was successful or not and

on whether that agent contributed or not to the common pool. We have

HnR

R (πR, πP ) = πR[P
nR(success|AC

R)xC + PnR(failure|AC
R)x̄C ]

+ (1− πR)[P
nR(success|AD)xD + PnR(failure|AD)x̄D], (4.2a)

HnR

P (πR, πP ) = πP [P
nR(success|AC

P )xC + PnR(failure|AC
P )x̄C ]

+ (1− πP )[P
nR(success|AD)xD + PnR(failure|AD)x̄D], (4.2b)

where xC , x̄C , xD and x̄D are the payoffs described in Table 3.1.

Finally, since groups are sampled randomly, the expected payoff needs to account for the probability

of an agent to play in a group with nR rich individuals. For rich and poor players, this translates to

HR(πR, πP ) =

N−1∑
nR=0

(
ZR−1
nR

)(
Z−ZR

N−nR−1

)(
Z−1
N−1

) HnR

R (πR, πP ), and (4.3a)

HP (πR, πP ) =

N−1∑
nR=0

(
ZR

nR

)(
Z−ZR−1
N−nR−1

)(
Z−1
N−1

) HnR

P (πR, πP ) (4.3b)

respectively.

Both rich and poor players aim at maximizing their respective payoff functions HR and HP . A

Nash equilibrium (π∗
R, π

∗
P ) satisfies

HR(π
∗
R, π

∗
P ) ≥ HR(πR, π

∗
P ) ∀ πR ∈ [0, 1] (4.4a)

HP (π
∗
R, π

∗
P ) ≥ HP (π

∗
R, πP ) ∀ πP ∈ [0, 1] (4.4b)

We have thus transformed the general N-player game into a two-person matrix game (rich and

poor) in a larger action space. The joint poor player’s pure action set is AP = {0C, 1C, . . . , nPC}, i.e.,

0 to nP poor players may cooperate and similarly, the joint rich player’s is AR = {0C, 1C, . . . , nRC}.

We look for algorithms that search for equilibrium points in 2-player matrix games but find them

inapplicable to our game. In fact, the algorithms search for any optimal probability distribution over

the action space in the simplex [113]. Since joint actions in our game emerge from a combination of
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(a) r = 0.1 (b) r = 0.3 (c) r = 0.5

(d) r = 0.7 (e) r = 0.9

Figure 4.1: Best class-response lines of the rich and poor agents in a population interacting in groups
of N = 6 and facing collective risks of varying occurrence probability r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The
intersection points of the two lines represent the class-based Nash equilibria for each game configuration.

individual actions following πR and πP , the probability distribution over the joint action space needs

to follow a binomial distribution.

We therefore rely on a graphical method and discretize the domain of πR and πP into intervals

of length ϵ = 0.001. We calculate the corresponding payoff HR and HP over the space of possible

(πR, πP ). Referring to (4.3), we plot for every πP , R’s best response πBR
R , i.e., πBR

R for which the

expected payoff of a rich agent, HR(π
BR
R , πP ), is maximized, and similarly, for every πR, P ’s optimal

response πBR
P . The intersections of the hence formed lines represent class-based Nash equilibrium

points, i.e., strategies from which no class can deviate alone while increasing its payoff. We extract

these points for different game configurations, i.e., different risk values or group sizes. When several

such points exist, we opt for the most achieving one, i.e., the one that achieves the target more often.

We label this point the best class-based Nash equilibrium. We use the performance obtained under the

best class-based Nash equilibrium as the baseline to evaluate how rational the learned strategies with

our algorithm are.

Figures 4.1 and 4.2 present the best response lines of rich and poor agents, for different risk values

and group sizes respectively. The intersections of these lines define the class-based Nash equilibrium

points. In Figure 4.1a, two intersection points exist (πP = 0, πR = 0) and (πP = 0.15, πR = 0.573).

We name the second point the best class-based Nash point since it represents higher cooperation levels

and achieves the target more often than an always defecting population.
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(a) N = 2 (b) N = 4 (c) N = 6

(d) N = 8 (e) N = 10 (f) N = 20

Figure 4.2: Best class-response lines of the rich and poor agents in a population facing a collective risk
of probability r = 0.3 and interacting in groups of different sizes N ∈ {2, 4, 6, 8, 10, 20}. The intersection
points of the two lines represent the class-based Nash equilibria for each game configuration.

In the case of a homogeneous population, i.e., a population with a single class, we evaluate the

average payoff H(π) of the population when all agents follow policy π. In a group of n = N − 1 players,

the probability of having nc players cooperate follows a binomial law and depends on the probability π

of each agent cooperating. We have

P (nc) =

(
n

nc

)
πnc

(1− π)n−nc

. (4.5)

The probability of reaching the target threshold after the joining of the N th player, depends on the

chosen action a of that player, i.e.,

P (t|a = AD) =
∑

nc≥M

P (nc|π),

and

P (t|a = AC) =
∑

nc≥M−1

P (nc|π).
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(a) (b)

Figure 4.3: Mean payoff of agents in homogeneous populations facing collective risk dilemmas (a) of
varying risk probability and in interacting in groups of size N = 6, (b) of risk probability r = 0.3 and
interacting in groups of varying size N .

This results in a probability of success or disaster avoidance

P (success|a) = P (t|a) + (1− r)P (¬t|a). (4.6)

Finally, we can evaluate the average payoff of an agent in this population

H(π) = π[P (success|AC)xC + (1− P (success|AC))x̄C ]+

(1− π)[P (success|AD)xD + P (failure|AD)x̄D].

Figure 4.3 represents, for different game configurations, the mean payoff of a homogeneous popula-

tions as a function of the cooperation policy π. We define the class-based Nash equilibrium as the

policy maximizing the average payoff H for a given game configuration.

In the next section we define a new class-based policy: the class-based maximum welfare. The

objective of this policy is not to act rationally from the perspective of a class of agents, but rather to

act socially, maximizing the total wealth in the population.

4.2.2 Class-based maximum welfare

We follow a similar reasoning to the one used when extracting class-based Nash points. However, when

evaluating the expected return, we do not look at the relative cost a loss has on an individual, but

rather the absolute impact it has on the population.

We modify the value of the returns xC , x̄C , xD and x̄D in (4.2a) and (4.2b). A successful cooperation

from a rich agent costs the society xR
C = −cbR, whereas a successful cooperation from a poor agent

only costs the population xP
C = −cbP . Similarly, for the rich, we now have x̄R

C = −cbR − (1− c)pbR,

xR
D = 0 and x̄R

D = −pbR. And for the poor, x̄P
C = −cbP − (1− c)pbP , xR

D = 0 and x̄R
D = −pbP .
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(a) r = 0.1 (b) r = 0.3 (c) r = 0.5

(d) r = 0.7 (e) r = 0.9

Figure 4.4: Heat-maps representing a population’s total wealth after engaging, in groups of N = 6, in
a collective risk dilemma of varying risk levels r.

Equations 4.2a and 4.2b are replaced by (4.7a) and (4.7b).

HnR

R (πR, πP ) = πR[P
nR(success|AC

R)x
R
C + PnR(failure|AC

R)x̄
R
C ]

(1− πR)[P
nR(success|AD)xR

D + PnR(failure|AD)x̄R
D] (4.7a)

HnR

P (πR, πP ) = πP [P
nR(success|AC

P )x
P
C + PnR(failure|AC

P )x̄
P
C ]

+ (1− πP )[P
nR(success|AD)xP

D + PnR(failure|AD)x̄P
D]. (4.7b)

Now, using (4.3), we can build a heat-map with the average population wealth for every combination

of πR and πP . Figures 4.4 and 4.5 illustrate some of the heat-maps obtained for different risk values

and group sizes. Red colored areas represent solutions of high social welfare. We observe that the

higher the risk factor, the higher the potential losses in welfare (see the minimum indicated by the color

bars). Additionally, we can see how for the small risk value of r = 0.1, where the dilemma is broken,

the optimal strategy recommends no cooperation with πR = πP = 0. Here, the cost of cooperation on

the society is higher than the cost of the common risk. For higher risk values, we see the need for a

total cooperation from poor agents πP = 1., similarly to what was observed under class-based Nash

solutions.

4.3 Results

In the following we display the results obtained for populations of agents learning to play the game

introduced in Section 3.1 with the RL algorithm of Section 3.2.
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(a) N = 2 (b) N = 4 (c) N = 6

(d) N = 8 (e) N = 10 (f) N = 20

Figure 4.5: Heat-maps representing a population’s total wealth after engaging in a collective risk
dilemma of probability r = 0.3, and interacting in varying group sizes N .

After the learning phase, the strategies are evaluated based on the resulting population’s probability

of achieving the target threshold t. We refer to this probability as the performance or the overall

population achievement η. Given a game and a strategy for each player, i.e., a cooperation probability,

the population is split into groups of N players who, according to their strategies, each make a choice of

either cooperating or not. The percentage of successful groups that actually reach the target threshold

defines the overall population achievement η. The random value is evaluated and averaged over 106

simulations.

In the following, and for comparison purposes, we use two types of populations: P1 made of

heterogeneous agents as described in Section 4.1, and P2, a homogeneous population with an equal

initial wealth as P1.

4.3.1 Effect of wealth inequality on RL populations

To understand the consequences of wealth inequality in the context of a collective risk dilemma, we

compare key performance metrics of populations with and without wealth inequality, i.e., P0 and P1,

across different game settings of either varying risk factors r or varying group sizes N .

Wealth inequality and probability of risk occurrence

In a first experiment, we train the homogeneous population P0 and the population with wealth

inequality P1 to play a collective risk dilemma in groups of N = 6 agents and under varying risk factors

r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 4.6 shows the group achievement rates η, the achieved contributions

ρ, and the secured welfare ζ for the two populations. We also plot η, π and ζ for the different classes
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: RL populations performance with respect to the risk factor: In the first row, we
compare populations without inequality to populations with wealth inequality. We plot (a) the overall
group achievement rate η, (b) the percentage of achieved contributions ρ, and (c) the percentage
of remaining wealth in the populations ζ. In the second row, we take a closer look at the internal
dynamics in the populations and compare results for rich, poor and equal agents (i.e., agents from the
homogeneous populations). Again, we plot (d) the overall group achievement rate η, (e) the policy π
or the average cooperation probability, and (f) the percentage of remaining wealth ζ for each class of
agents. In all panels, shaded areas represent the standard deviation over 5 runs.

of agent within the populations.

First, as expected, Figure 4.6a shows that the performance of a population with and without

inequalities increases with the risk factor r. Agents feel a stronger urge to achieve the target if the

consequences of failure are larger. This result is also in accordance with those found under social

learning rules [211]. However, while under evolutionary dynamics and social learning, diversity has

proven to increase cooperation rates [170, 211], we find in Figure 4.6a that wealth inequality decreases

the overall achievement of a population for all risk values (P1 under-achieves with respect to P0).

This is in conformity with some experimental results [194], where wealth inequalities are found to

inhibit group achievement. This result also reinforces the different types of dynamics created by

individual-based learning (as in here) when compared to decision-making coupled with dynamics of

peer-influence [211], absent in our model.

Second, Figure 4.6b reveals that the drop in overall achievement rate for population P1 compared

to P0 is not caused by a reduction in total collected contributions. Populations with wealth inequality

collect similar pools of contributions as their homogeneous counterparts but can fail up to two times
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more often in achieving the target.

Third, we note that while higher risk results in higher group achievement, this does not translate

into higher secured welfare. In fact, Figure 4.6c shows that the secured welfare in the population

continuously decreases with the risk. While populations adapt to higher risks by increasing their

contributions and target achievement, they do not do that at a rate that effectively protects them from

the ever more probable disasters. When comparing homogeneous and heterogeneous populations, we

observe that the populations with wealth inequality, as a result of a decrease in group achievement,

also lose a larger amount of their wealth.

To better understand how the introduction of wealth inequality can reduce group achievement and

secured welfare despite consistent high contributions, we consider in Figure 4.6d the discrepancies in

target achievement for rich vs. poor agents. While rich agents achieve the target more often than

agents from homogeneous populations, poor agents that represent a majority of 80% of the population,

achieve the target significantly less often than both equal or rich agents which explains the observed

overall drop in Figure 4.6a.

Next, we examine the policies or average cooperation probability of rich, poor and homogeneous

agents. We observe in Figure 4.6e that in populations with wealth inequality, the main cooperators

are rich agents. Poor agents cooperate significantly less than rich agents and this gap in cooperation

increases with the risk. We confirm that these behaviors also persist under a linear-utility function,

suggesting that they are not a peculiarity of the chosen log-utility. While rich agents continue to adapt

to higher risk values by increasing their contributions, poor agents are less reactive to the risk (flatter

curve) and seem to stagnate for risk values greater than 0.5. This has detrimental effects on poor

agents and the population as a whole for two main reasons. First, the large number of poor agents in

the population (80%) makes it hard for all poor agents to interact in groups with rich agents, and

hence benefit from their cooperation and increased group success. In fact, for N = 6, 25% of the groups

in the population are purely poor groups. Second, the small share that a poor agent’s contribution

represents in terms of the target threshold, introduces higher coordination problems for this class of

agents. While a contribution by a rich agent represents 83% of the needed target, a contribution of a

poor agent only represents 20% of that same target. As such, the same collective dilemma requires

higher coordination from poor agents, e.g., 5 out of 6 poor players need to cooperate in a purely poor

group to achieve the target. With the learned cooperation rates of poor agents, for r = 0.3 for example,

95.5% of purely poor groups fail to reach the threshold. These are failures only suffered by poor agents

and explain the gap in achievement observed in Figure 4.6d. In terms of population achievement, a

95.5% failure of 25% of all groups implies an overall achievement drop of 24% and explains the drop

introduced by wealth inequality in Figure 4.6a.

Finally, Figure 4.6f shows that the achievement inequality introduced by wealth inequality generates

further wealth inequality at higher risk values. While the gap in target achievement is relatively

constant in Figure 4.6d, the difference in wealth losses is minimal for small risk values and increases

for larger ones. At high risk, the consequences of target achievement failure are more prominent.

We observe that poor agents lose significantly more than rich agents and deduce that the observed
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Figure 4.7: Resulting population wealth distribution among rich and poor agents after engaging in a
collective risk dilemma with varying risk values. Recall that before any contribution costs and disaster
losses, rich and poor agents each hold 50% of the overall population’s wealth. As the risk of disaster
occurrence increases, the consequences of differences in target achievement between the classes are
magnified. Poor agents lose more than rich agents (see Figure 4.6f) and own even less of the resulting
remaining wealth in the population. Rich agents become relatively richer and poor agents become
relatively poorer.

additional losses in population welfare introduced by wealth inequality in Figure 4.6c, are only incurred

by the poor agents. In terms of wealth distribution, this causes poor agents to become poorer and rich

agents to become richer. Figure 4.7 illustrates this phenomena by plotting the distribution of wealth

among rich and poor agents after engaging in collective risk dilemmas of varying risk values.

To conclude, our first findings suggest that wealth inequality decreases overall population achieve-

ment and secured welfare. However, not all agents suffer equally from these consequences. In fact,

compared to homogeneous populations, wealth inequality slightly increases target achievement and

welfare of rich agents while significantly decreasing achievement and welfare of poor agents. Wealth

inequality is an unstable state that results in increasingly higher inequalities.

Wealth inequality and group size

Group size has a considerable effect on overall population achievement, both in experimental studies

[217], as well as theoretical studies with evolutionary dynamics [85, 109, 153, 192]. Additionally,

we demonstrated under reinforcement dynamics how a group size of N = 6, combined with wealth

inequality, can increase coordination difficulties for poor agents and lead to a decrease in their wealth

and target achievement.

In a second experiment, we train the homogeneous population P0 and the population with

wealth inequality P1 to play a collective risk dilemma of risk r = 0.3 in varying group sizes of

N ∈ {2, 4, 6, 8, 10, 20}. Figure 4.8 shows the group achievement, the total contributions and the wealth

when engaging in different group sizes for the two populations and their corresponding classes of agents

(equal and rich/poor) in a collective risk dilemma of average risk r = 0.3.

Figure 4.8a shows that for populations without inequality, larger group sizes imply an increased

coordination difficulty and result in lower group achievements. In fact, group achievement of homo-

geneous populations decreases from 85% for N = 2 to around 40% for N = 20. This clear negative
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correlation between target achievement and group size is not observed for populations with wealth

inequality. For the tested values, populations with wealth inequality are relatively robust to varying

group sizes and always reach values of η ≃ 50%. As such, for smaller group sizes with less coordination

difficulties, homogeneous populations outperform populations with wealth inequality. However, as

their performance continues to decline, and that of populations with wealth inequality remains sta-

ble, we observe a cross-point after which populations with inequality outperform their homogeneous

counterparts.

Similar to results observed under varying risk values, Figure 4.8b confirms that the discrepancies in

target achievement between the two populations are not a result of differences in contributions. Both

populations collect similar pool contributions.

In Figure 4.8c we observe that the qualitative changes of the target achievement with respect

to the group size are mimicked in the wealth. This was not the case for varying risk values (Fig-

ures 4.6a and 4.6c) where higher group achievements for larger risk values still resulted in larger losses.

For a constant risk value, target achievement is highly correlated with the secured welfare.

When looking at the distributions of target achievement, cooperation and welfare between the

different classes of agents, we find again in Figure 4.8d that poor agents under-achieve with respect to

rich agents. However the difference in achievement decreases with larger group sizes. Larger group

sizes result in a better mixing of rich and poor players as the probability of sampling purely poor or

purely rich groups decreases. In the extreme case, when the group size is equal to the population size,

the group achievements of rich and poor agents become the same. We conclude that in populations

with wealth inequality, larger group sizes can decrease achievement inequalities without decreasing

overall population achievement.

From Figure 4.8e we understand why populations with wealth inequality under-achieve with respect

to homogeneous populations despite equal total contributions. While rich and poor agents each hold

50% of the wealth in the population, most of the contributions in the population come from rich agents.

Rich agents cooperate more than equal agents while poor agents cooperate less than equal agents. The

variations in cooperation are almost symmetrical among the two classes and result in population P1

collecting as many contributions as population P0. However, the rich agents who succeed more often,

represent only 20% of the population, while the poor agents who fail more often represent 80% of the

population. The symmetrical gains and losses in the contributions are translated into asymmetrical

gains and losses in target achievement. However, this effect is less prominent for larger group sizes

with higher mixing of rich and poor agents.

Finally, in Figure 4.8f we observe again, that the qualitative changes in target achievement are

mirrored in wealth changes. We note that wealth changes are smoother than target achievement

changes. This is because not meeting the target only results in disaster losses with a risk probability

r = 30%. A larger risk value would have caused more pronounced welfare losses for a similar target

achievement rate.

Overall, Figure 4.8 reveals the qualitative difference in the impact that the group size has on

populations with and without inequality. Yet, it does not explain the reason for this observed difference.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: RL populations performance with respect to the group size: In the first row, we
compare population P0 without inequality to population P1 with wealth inequality. We plot (a) the
overall group achievement rate η, (b) the percentage of achieved contributions ρ, and (c) the percentage
of remaining wealth in the populations ζ. In the second row, we take a closer look at the internal
dynamics in the populations and compare results for rich, poor and equal agents (i.e., agents from the
homogeneous populations). Again we plot (d) the overall group achievement rate η, (e) the policy π
or the average cooperation probability, and (f) the percentage of remaining wealth ζ of each class of
agents. In all panels, shaded areas represent the standard deviation over 5 runs.

While the risk factor increased group achievement for both populations, the group size induces two

very different dynamics. It decreases achievement for homogeneous populations but has an ambiguous

and non-monotonous impact on heterogeneous populations. We investigate how introducing wealth

inequalities can diminish the effect of the group size.

For N = 6, we saw that groups of purely poor agents that represented 25% of the groups in the

populations, almost never achieve the target, causing a significant drop in overall achievement. To

capture how group size modifies global target achievement, we present in Figure 4.9 a bar plot for N = 2,

N = 6 and N = 10, showing for each group size, the different possible group configurations and their

respective target achievement probability. For a group of size of N , we have N+1 different configurations

representing respectively groups with nR ∈ {0, 1, . . . N} rich agents and nP ∈ {N,N − 1, . . . 0} poor

agents. The first bar always represents purely poor groups. The width of the bars are proportional to

the probability of said group in the population, while the height represents the probability of target

achievement. For group sizes of N = 6 and N = 10, less than N + 1 bars are plotted. This is because

the corresponding groups are almost non existent in the population. The total area of the figure is
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Figure 4.9: Group achievement distribution: We explicit for different group sizes of (a) N = 2, (b)
N = 6, and (c) N = 10, the N + 1 possible group configurations with N,N − 1, . . . 0 poor agents and
their corresponding group achievements. The first bars always represent purely poor groups and are
the least performing groups in the population. The width of the bars are proportional to the frequency
of the groups in the population. As such, the area of the figure covered by the bar plots is proportional
to the overall population achievement. For N = 2, more than 60% of the groups are purely poor groups.
For larger group sizes, the mixing of rich and poor agents is more probable. Low performing purely
poor groups become less frequent. However, larger group sizes also increase coordination difficulty.
This is best seen in purely poor groups whose performance drops from 30% for N = 2 to 2% for N = 10.
In (d) we overlap the three group size configurations and observe that they all cover around half of the
figure area which explains the relatively stagnant group achievement of around 50% with respect to N
observed in Figure 4.8a.

equal to 1 and the fraction occupied by the bar plot represents the total population target achievement.

Looking at the first bar in each plot, we see that for N = 2, groups of purely poor agents achieve

the target with probability η = 30%. As N increases, coordination problems increase and purely poor

groups achieve the target less often. However, we also observe that the frequency of low performing

groups (the width of the bar) decreases with N . As N increases, opposite dynamics seem to be at play.

On one hand a better mixing of poor and rich agents decreases the probability of highly unsuccessful

poor groups, and on the other hand, increasing coordination difficulties make target achievement more

difficult. However, neither one these effects strictly outweighs the other. As such, when superposing the

different group configurations in Figure 4.9d, we see that despite not fully overlapping, all three settings

cover around 50% of the figure area. We deduce that the variations of the population achievement

are neither strictly increasing nor strictly decreasing with the group size. Different group sizes can be
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either a little more or a little less advantageous for the population. This explains the small fluctuations

observed around η = 50% in Figure 4.8a.

Our results highlight how, in large groups, wealth inequality can help escape strong coordination

difficulties and improve collective target achievement by allocating more control to a few rich agents.

On the other hand, when action is taken in smaller groups, wealth inequality can exclude the majority

of poor agents from collective success and result in an overall decline in achievement. We note that the

best way of solving collective risk dilemmas, is to work in small groups of homogeneous agents (P0 at

N = 2).

4.3.2 Effect of wealth inequality on class-based Nash populations

We have seen in the previous section, how in populations of in independent RL learners, wealth inequality

hinders target achievement of the poor, and as a result, decreases their welfare. We hypothesize that

this is a consequence of increased coordination difficulty among the poor agents. To distinguish between

the inherent consequences of wealth inequality, and the consequences related to particular weaknesses

of RL populations, we now evaluate the same population performance metrics used previously, for

class-based Nash populations facing collective risks. We consider the same populations P0 and P1, i.e.,

without inequality and with wealth inequality, across different game settings of either varying risk

factors r or varying group sizes N . However, we now suppose that the agents in these populations

follow the class-based Nash policies detailed in Section 4.2.2.

Wealth inequality and probability of risk occurrence

In a first experiment, we evaluate the performance of the two populations facing a collective risk

dilemma in groups of N = 6 agents and under varying risk factors r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 4.10

shows the group achievement rates η, the achieved contributions ρ, and the secured welfare ζ for P0

and P1, as well as η, π and ζ for the different classes of agent within the populations.

While in populations of RL agents, wealth inequality caused a decline in target achievement for

all risk values r ≥ 0.3, Figure 4.10a shows that populations of class-based Nash agents, whether

with or without wealth inequality, achieve similar target achievements for r ≥ 0.3. By acting in a

class-coordinated and rational manner, the challenges posed by wealth inequality on target achievement

can be easily solved. On the other hand, for r = 0.1, wealth inequality has no impact on RL populations

but causes a significant fall in target achievement for class-based Nash populations. We recall that for

r = 0.1, the costs of cooperation approach the costs of failure. As a result, agents can quickly become

indifferent to target achievement.

Interestingly, while both populations present similar target achievement rates, Figure 4.10b reveals

that population P1 with wealth inequality contributes significantly more than population P0 without

inequality. This is in conformity with the results found for populations of RL agents where for similar

contributions, populations with wealth inequality under-achieved with respect to populations without

wealth inequality. While under sufficient coordination, a high target achievement can be maintained

both with and without wealth inequality, doing so is more costly for heterogeneous populations than it
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Figure 4.10: Class-based Nash populations performance with respect to the risk factor:
In the first row, we compare class-based Nash populations without inequality to populations with
wealth inequality. We plot (a) the overall group achievement rate η, (b) the percentage of achieved
contributions ρ, and (c) the percentage of remaining wealth in the populations ζ. In the second row,
we take a closer look at the internal dynamics in the populations and compare results for rich, poor
and equal agents (i.e., agents from the homogeneous populations). Again, we plot (d) the overall group
achievement rate η, (e) the policy π or the average cooperation probability, and (f) the percentage of
remaining wealth ζ for each class of agents.

is for homogeneous populations. We can affirm that wealth inequality requires higher contributions for

similar target achievements. This also explains why for r = 0.1, when costs of cooperation approach

costs of failure, rational populations under wealth inequality choose not to pay the additional needed

contributions for target achievement and prefer to lose on group achievement.

Figure 4.10c confirms that for r = 0.1, despite the lower target achievement of P1, both populations

secure similar wealth fractions in the face of collective risks. As the risk increases, class-based Nash

populations almost always achieve the target and therefore mainly lose on cooperation costs. Since

the cost of cooperation is significantly small (10% of an agent’s wealth), the roughly 20% increase in

contributions observed in Figure 4.10b only translates to a loss of 2% in overall welfare.

Moving to the second row, Figure 4.10d shows that for r ≥ 0.3, both rich and poor agents achieve

the target with almost certainty, confirming again that the difficulty in target achievement experienced

by poor agents, can be overcome through strong unity and coordination. Nonetheless, in the face of

small risks (r = 0.1), poor agents display lower target achievements.

Figure 4.10e acknowledges the disadvantaged position of poor agents in the face of collective risks.
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Figure 4.11: Resulting population wealth distribution among rich and poor agents in a class-based
Nash population after engaging in collective risk dilemmas of varying risk probability. For all risk
values, the wealth distribution remains relatively constant.

For r ≥ 0.3, to ensure effective target achievement, poor agents need to always cooperate while rich

agents can achieve similar performances by only cooperating at a frequency of 70 to 90%. On the

other hand, for r = 0.1, poor agents cooperate less than rich agents. We observe the need for a sharp

increase in cooperation of poor agents from less than 20% for r = 0.1 to π = 100% for r = 0.3. This is

not the case for rich agents, where the increase in cooperation with the risk follows a smooth curve.

Finally, we note in Figure 4.10f that rich and poor agents secure similar amounts of their initial

wealth. In games where rich agents cooperate more, i.e., r = 0.1, poor agents secure slightly more of

their welfare, and the opposite is true in situations where poor agents cooperate more. Figure 4.11

visualizes the population wealth distribution among rich and poor agents in P1 after cooperation costs

and disaster losses. We find that the initial 50-50 wealth distribution remains relatively stable for all

risk values.

Wealth inequality and group size

In a second experiment, we evaluate the performance of the homogeneous population P0 and the

population with wealth inequality P1 when playing, under class-based Nash policies and in varying

group sizes of N ∈ {2, 4, 6, 8, 10, 20}, a collective risk dilemma of risk r = 0.3. Figure 4.12 shows

the group achievement, the total contributions and the wealth of the two populations and their

corresponding classes of agents (equal and rich/poor) for these game configurations.

We notice in Figure 4.12a that for larger group sizes, populations with or without inequality attain

similar group achievements and that for smaller group sizes of N = 2 or N = 4, populations with

inequality reach higher success levels than populations without inequality. This is in contrast to what

was observed for populations of RL agents.

Figure 4.12b confirms once again the need for higher contributions from populations with wealth

inequality to secure the similar levels of target achievement. However, the required increase in

contributions diminishes with the group sizes and eventually vanishes for N = 20.

Nonetheless, Figure 4.12c shows that, in the face of collective risks, populations without inequality

are capable of securing slightly more of their wealth than populations with wealth inequality.
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Figure 4.12: Class-based Nash populations performance with respect to the group size: In
the first row, we compare population P0 without inequality to population P1 with wealth inequality.
We plot (a) the overall group achievement rate η, (b) the percentage of achieved contributions ρ, and
(c) the percentage of remaining wealth in the populations ζ. In the second row, we take a closer look
at the internal dynamics in the populations and compare results for rich, poor and equal agents (i.e.,
agents from the homogeneous populations). Again we plot (d) the overall group achievement rate η,
(e) the policy π or the average cooperation probability, and (f) the percentage of remaining wealth ζ of
each class of agents.

Figure 4.12d verifies that, unlike RL populations, in class-based Nash populations, poor and rich

agents reach similar levels of achievement. In fact, poor agents even achieve slightly higher levels of

success.

The agents policies depicted in Figure 4.12e reveal distinctive cooperation dynamics. For the

smallest group sizes of N = 2 and N = 4, both rich and poor agents always cooperate. Recall that

for small group sizes, the probability of sampling purely poor groups is high. Moreover, for purely

poor groups of size N = 2 and N = 4, 2 and 4 poor agents respectively, need to cooperate to achieve

the target. As a result, poor players need to always cooperate. Similarly, rich players interacting in

groups of N = 2 or N = 4, are most likely interacting with poor players. Given that in a group of

size 2, one poor player cannot achieve the target alone, and that similarly, for a group of size 4, three

poor players cannot achieve the target alone, the rich player in these groups must always cooperate to

ensure the reaching of the target. As a result, both poor agents and rich agents always cooperate. As

the group size increases, poor agents whose contribution is small, continue to fully cooperate as the

costs of cooperation are smaller than the potential losses in the case of disaster occurrence. However,
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Figure 4.13: Resulting population wealth distribution among rich and poor agents in a class-based
Nash population after engaging in a collective risk dilemma of risk r = 0.3 in varying group sizes.
Larger group sizes cause rich players to becomes richer and poor players to become poorer.

as the group size increases, and for N = 6 for example, five out of six poor players’ cooperation is

enough for target achievement. Therefore, in a group of five poor and one rich agent, the rich agent

can exploit the poor agents’ cooperation and achieve the target without any contribution. Nonetheless,

groups of two rich and four poor, or three rich and three poor are still present in the population. To

account for these groups where poor agents’ cooperation is not enough for target achievement, rich

players continue cooperating, although at a lower frequency. This phenomena becomes more noticeable

as the group size increases. For N = 20 for example, a cooperation of 16 poor players is enough for

target achievement. This means that groups with 1, 2, 3 and up to 4 rich players can free-ride on poor

agents’ contributions for target achievement. Again, this behavior is in contrast to what we observe in

RL populations where rich players always cooperate more than poor players and where larger group

sizes decrease the cooperation gap between poor and rich players.

As a result of the free-riding enabled in larger group sizes, we see in Figure 4.12f how the wealth of

rich agents increases with the group size. While both wealth classes secure similar and high target

achievements, the contribution costs are mostly endured by the poor population. While higher risk

values caused an increase in wealth inequality for populations of reinforcement learners, Figure 4.13

affirms that larger group sizes are the cause for an increased wealth gap in class-based Nash populations.

4.3.3 Adaptive vs class-based Nash populations

In the previous sections we have compared on one hand, the performance of RL populations with and

without wealth inequality, and on the other hand, the performance of class-based Nash populations

with and without wealth inequality. The objective of these studies is to derive the impact that wealth

inequality can have on a population facing collective risks. In this Section, we investigate the differences

in performance of RL populations and class-based Nash populations under wealth inequality. We use

the same key performance metrics across different game settings of either varying risk factors r or

varying group sizes N .
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Figure 4.14: RL vs Class-based Nash populations performance with respect to the risk
factor: In the first row, we compare global performances of RL and class-based Nash populations with
wealth inequality. We plot (a) the overall group achievement rate η, (b) the percentage of achieved
contributions ρ, and (c) the percentage of remaining wealth in the populations ζ. In the second row,
we take a closer look at the internal dynamics in the populations and compare the performances of
rich and poor players in each population. Again, we plot (d) the overall group achievement rate η, (e)
the policy π or the average cooperation probability, and (f) the percentage of remaining wealth ζ for
each class of agents. In all panels, shaded areas represent the standard deviation over 5 runs.

Wealth inequality and probability of risk occurrence

In a first comparison, we show in Figure 4.14 the group achievement rates η, the achieved contributions ρ,

and the secured welfare ζ for the two populations in games of varying risk levels r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

We also explicit η, π and ζ for the different classes of agent within the populations.

We can clearly conclude from Figures 4.14a, 4.14b and 4.14c, that the class-rationality of class-based

Nash populations is key for ensuring higher group achievement and overall welfare in the population.

Figure 4.14d exposes how the poor agents are the main beneficiaries of the imposed coordination

within their wealth class. Their target achievement increases by at least 40% for all risk values r ≥ 0.3.

Interestingly, we observe that for a small risk value r = 0.1, where the dilemma almost fades, RL

agents achieve similar levels of success as class-based Nash agents.

Looking at the policies of rich and poor agents, we notice in Figure 4.14e that, for r ≥ 0.3, any

class-based Nash agent cooperates more than any RL agent. All RL agents suffer from coordination

challenges that inhibit class-rationality. However, the difference is particularly large when comparing

poor players: while poor RL agents are the least cooperating players, poor class-based Nash players
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Figure 4.15: RL vs class-based Nash populations performance with respect to the group
size: In the first row, we compare global performances of RL and class-based Nash populations with
wealth inequality. We plot (a) the overall group achievement rate η, (b) the percentage of achieved
contributions ρ, and (c) the percentage of remaining wealth in the populations ζ. In the second row,
we take a closer look at the internal dynamics in the populations and compare the performances of
rich and poor players in each population. Again, we plot (d) the overall group achievement rate η, (e)
the policy π or the average cooperation probability, and (f) the percentage of remaining wealth ζ for
each class of agents. In all panels, shaded areas represent the standard deviation over 5 runs.

are the most cooperating players.

Finally, Figure 4.14f confirms again that both wealth classes benefit from an increased coordination,

but that the main winners from such an imposed class-coordination are the poor players.

Wealth inequality and group size

For our second comparison, we show in Figure 4.15f the group achievement rates η, the achieved

contributions ρ, and the secured welfare ζ for the RL and class-based Nash populations in collective

risks of probability r = 0.3, played in varying group sizes N ∈ {2, 4, 6, 8, 10, 20}. We also explicit η, π

and ζ for the different classes of agent within the populations.

Figures 4.15a, 4.15b and 4.15c establish once again the overall benefits of class-coordination for a

population facing collective risks.

While the gap in target achievement for rich and poor RL agents only vanishes for larger group

interactions, Figure 4.15d it is consistently non-existent in class-based Nash populations.

However, the same does not apply to agents policies. Figure 4.15e shows how for group sizes of
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N ≤ 8, any class-based Nash agent cooperates more than any RL agent. However, as the group size

increases, rich class-based Nash agents free-ride on the contributions of their poor peers. Remarkably,

for N = 20, rich class-based Nash agents cooperate less than any RL agent. While larger group sizes

limit inequality in RL populations, they nurture and boost inequality in class-based Nash populations.

Figure 4.15f exhibits these contrasting dynamics. For larger group sizes, we observe an increasing

gap in welfare for class-based Nash populations and a decreasing one for RL populations. Nevertheless,

any class-based Nash agent secures more welfare than any other RL agent.

4.3.4 Class-based Nash vs class-based maximum welfare populations

We established the benefits and advantages of a class-coordinated rational population with respect

to a non-coordinated population of independent RL learners. The class-based Nash population is

class-rational, i.e., it considers a class of agents as a single entity, and selects the most profitable policy

for that particular class. While we have determined the high and almost certain target achievement of

such a policy, there is no guarantee that it represents the most desirable and social policy.

In this section, we compare the key performance metrics of class-based Nash populations to class-

based maximum welfare populations. Comparisons are performed for the same game configurations as

before, i.e., for N = 6 and varying risk levels r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and for r = 0.3 and varying

group sizes N ∈ {2, 4, 6, 8, 10, 20}. The results are shown in Figures 4.16 and 4.17 respectively.

For all game configurations, except for (N = 6, r = 0.1), class-based Nash policies are simultaneously

class-based socially optimal policies. Only minor and negligible differences are detected between the

two policies. However, for r = 0.1 (Figure 4.16), where the costs of cooperation approach the potential

costs of disasters, class-based Nash and class-based maximum welfare policies differ. Recall that the

class-based maximum welfare policy is extracted by maximizing the total wealth in the population. A

loss incurred by a rich or a poor agent is not weighted by that agent’s wealth, but simply considered in

its absolute value. A total defection results with probability r = 0.1, in a disaster of cost p× b = 0.7b.

As such, and on average, a cooperation costs c× b = 0.1b and a defection costs r × 0.7b = 0.07b. It is

clear now, that from a social perspective, a total defection is more profitable than any cooperation.

On the other hand, and for that same game configuration, two class-based Nash policies exist (see

Figure 4.1a). The first one is the same as the class-based maximum welfare policy, i.e., total defection,

and the second one, depicted in Figure 4.16 recommends some cooperation from poor and rich agents.

When finding class-based Nash policies, the costs of cooperation and disaster occurrence are weighted

by the agent’s initial wealth using a log-utility function. On average, a cooperation costs an agent

log(0.9) = −0.1, while a defection results in a mean loss of r× log(0.3) = 0.1 log(0.3) = −0.12. From a

class-perspective, the potential costs of a defection are slightly larger than the costs of cooperation and

present an incentive for cooperation. Nonetheless, the overall impact on the welfare of agents is rather

inconsequential, and both policies secure similar levels of welfare.
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Figure 4.16: Class-based Nash vs maximum welfare performance with respect to the risk
factor: In the first row, we compare global performances of class-based Nash and class-based maximum
welfare populations with wealth inequality. We plot (a) the overall group achievement rate η, (b) the
percentage of achieved contributions ρ, and (c) the percentage of remaining wealth in the populations
ζ. In the second row, we take a closer look at the internal dynamics in the populations and compare
the performances of rich and poor players in each population. Again, we plot (d) the overall group
achievement rate η, (e) the policy π or the average cooperation probability, and (f) the percentage of
remaining wealth ζ for each class of agents.

4.3.5 Nash vs class-based Nash

To conclude this chapter, we make a small note on the distinction between our defined class-based

Nash and the general Nash equilibrium. The general Nash equilibrium is a point where no agent can

increase its payoff by deviating alone from the chosen strategy. In other words, the Nash equilibrium

considers fully independent players with no pre-established coordination between them. It finds a

solution taking into account the game’s cooperation and coordination dilemmas. The class-based Nash

on the other hand supposes that the coordination problem within the same class of agents is somehow

pre-solved. No agent will ever deviate from a chosen strategy alone. Instead, all agents from the same

class, will move together in the same and coordinated manner. The class-based Nash reduces the

degrees of freedom and only solves the game’s cooperation dilemma.

As a result, class-based Nash and Nash equilibria may not always correspond to the same solution.

It is known that total defection is usually a Nash equilibrium for social dilemmas. This equilibrium

point was only found once for a particular game configuration with N = 6 and r = 0.1. However, as

mentioned previously, for r = 0.1, the costs of cooperation approach the potential costs of disaster
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Figure 4.17: Class-based Nash vs maximum welfare performance with respect to the group
size: In the first row, we compare global performances of class-based Nash and class-based maximum
welfare populations with wealth inequality. We plot (a) the overall group achievement rate η, (b) the
percentage of achieved contributions ρ, and (c) the percentage of remaining wealth in the populations
ζ. In the second row, we take a closer look at the internal dynamics in the populations and compare
the performances of rich and poor players in each population. Again, we plot (d) the overall group
achievement rate η, (e) the policy π or the average cooperation probability, and (f) the percentage of
remaining wealth ζ for each class of agents.

occurrence, making agents indifferent to target achievement and dissolving the underlying dilemma.

For all other game configurations, and as a result of moving or thinking as a unit, defection is less

desirable for an agent because it simultaneously implies a defection of the rest of its class. In all

class-based Nash strategies, if we fix Z − 1 strategies in the population and only allow one agent to

change its strategy, total defection is indeed the most profitable choice. This proves that the class-based

Nash points are not Nash equilibria.

Interestingly, if we do a similar study on the learned strategies for all tested risk values, i.e., if

we fix Z − 1 strategies in the population and only allow the Zth agent to change his strategy, total

defection is again the most profitable choice, both for homogeneous and heterogeneous populations.

Learned strategies are not Nash equilibria either. We hypothesize that the large size of the population

can make a convergence to Nash equilibria more difficult for adaptive agents. In a similar way to

the class-based update, if several agents in a population simultaneously increase their defection rate,

their next interaction may become less profitable as the increase in failure is not compensated by the

decrease in cooperation cost. The benefits of diverging alone from the learned strategy are not easily
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observed as others are also changing simultaneously. Learning with reinforcement learning in large

populations seems to help in escaping defective Nash equilibria.

4.4 Conclusion

In this chapter, we examined the challenges posed by wealth inequality on populations facing collective

risk dilemmas. We investigated the consequences of wealth inequality, both on reinforcement learning

populations and on class-coordinated rational populations.

To this end, we first define a new equilibrium point. We pre-impose full coordination and equality

within each wealth class by forcing all agents of a same class to follow the same policy. We then

develop a graphical method to extract a Nash equilibrium under this correlation factor. We call the

resulting point, the class-based Nash equilibrium.

Our results show that introduction of wealth inequality in populations of reinforcement learning

agents significantly decreases collective group achievement in small group sizes and for all risk values.

This result is aligned with existing empirical results obtained with behavioral experiments and the

same dilemma [194]. Additionally, we show that wealth inequality is an unstable state in that it feeds

on itself to generate further wealth inequality, particularly, under high risk circumstances. We also find

that the negative consequences of wealth inequality fade for large group sizes where wealth inequality

can actually be beneficial as it decreases coordination difficulties among agents.

However, the challenges posed by wealth inequality on populations of RL agents differ from the

challenges faced by class-based Nash populations. Under class-coordination and rationality, both poor

and rich agents are capable of ensuring high and almost certain target achievements. However, the

high coordination and cooperation of poor agents is susceptible to free-riding from rich agents. This

phenomena occurs notably in large group sizes. As such, under wealth inequality and class-rationality,

larger group interactions can instigate further inequality. Despite the potential vulnerability of class-

based Nash solutions, any class-based Nash agent secures more of its welfare than any RL agent.

Independent RL agents suffer from coordination challenges and are significantly less effective than

class-based Nash agents in achieving the target threshold. Moreover, we show that for all tested game

configurations, class-rationality is simultaneously the welfare maximizing solution. Nonetheless, it is

not always the most equitable solution.

Finally, we contribute by showing that populations of RL learners do not converge to Nash equilibria.

We observed that learning in a population of simultaneously learning agents can help in the avoidance

of total defective Nash solutions. Further studies exposing the role of the population size Z in the

learning process can be of value.

The findings we present can be exploited by policy makers to encourage, in cities or countries with

independent actors, larger interactions and a better mixing of people of different wealth classes, as we

have shown that this can have a positive effect in decreasing the wealth gap in a society or in halting

its amplification. Opposite strategies can be planned for interactions with coordinated actors, where

favoring small group interactions can potentially avoid the exploitation of the poor. Similarly, our
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results can guide the design of pro-social behaviors in AI agents presented with situations of inequality.

In the following chapter, we will examine a new type of heterogeneity, risk diversity, and the impact

it can have on populations facing collective risks.
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Chapter 5

Risk diversity in collective risk

dilemmas
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In this chapter, we examine risk diversity in populations facing a collective action dilemma. We begin

by distinguishing diversity in risk exposure and diversity in risk perception. Next, we explain how we

model risk diversity in a CRD and extract the static solutions for that setting. We investigate the

consequences of risk diversity on both, populations of reinforcement learners, and populations following

static solutions. Afterwards, we explore the conditions favoring assortment bias in a population

and leverage risk heterogeneity to propose financial incentives that can simultaneously increase a

population’s target achievement, global contributions and welfare. The chapter is based on two

publications: “Cooperation and Learning Dynamics under Risk Diversity and Financial Incentives”

[131], and “Cooperation and Learning Dynamics under Wealth Inequality and Diversity in Individual

Risk” [134], and a workshop paper: “Learning Collective Action under Risk Diversity” [132].

5.1 Diversity in risk exposure and diversity in risk perception

Before examining the consequences of risk diversity in the context of collective risks, we distinguish

between risk exposure and risk perception. While we believe, and later prove, this to be an element

of particular importance, previous social simulation or laboratory experimental approaches do not

differentiate the two concepts [56, 137, 169].

We define the risk exposure as the true probability of disaster occurrence when the target threshold

is not achieved. Risk exposure diversity is generally affected by objective parameters. In the face of

the COVID-19 pandemic, age or health status can create a true diversity in risk exposure [1]. Similarly,

in the face of the climate change problem, the geographic location of cities and countries can either

decrease or increase their risk of facing extreme weather [63]. We present in Figure 5.1, a map chart

taken from the “Global Climate Risk Index 2021” [63], and exposing the countries most affected by

extreme weather events between the years 2000 and 2019. A clear correlation between geographic

location and risk exposure can be noted, as countries in geographic proximity, often face similar risks

of extreme weather occurrences.

An essential feature of this graph, and of collective risks in general, is that the true risk of disasters

can only be accurately evaluated a posteriori to the disasters occurring. While the chart gives the exact

risk index of countries between the years 2000 and 2019, nothing guarantees that the distribution will

remain the same in the coming years. For instance, the report reveals that for some countries, such as

Puerto Rico and Myanmar, 90% of the losses and deaths happened in one year. An unexpected event

can therefore alter the currently presented results. Thus, in reality, a priori to the disaster occurrence,

the real risk of exposure to a threat is often not known and people or institutions behave according to

how likely they assess or perceive an imminent danger to be.

We therefore define the risk perception—or risk assessment—as the perceived probability of disaster

occurrence when the target threshold is not achieved. Unlike risk exposure diversity, risk perception

diversity is generally affected by subjective experiences. For instance, exposure to the media can

increase fear of COVID-19 [135, 214]. Likewise, a child growing in a climate aware environment, is

more likely to perceive large climate change threats [111].
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Figure 5.1: Figure taken from the “Global Climate Risk Index 2021” [63]. The chart represents a world
map and classifies countries according to their climate risk index, i.e., their risk of facing extreme
weather events. Darker colors indicate countries at higher risk of facing extreme weather, and gray
countries are countries with no available data.

To illustrate the notion of risk perception diversity, we show in Figure 5.2, map charts taken from

the article “Predictors of public climate change awareness and risk perception around the world” [111].

While climate change is a global problem, we observe in the first chart, that awareness of the existence

of this problem is not identical across all countries. Particularly, in developing countries, often less

than 50% of the population is conscious of the reality of the climate change problem. Interestingly,

awareness of climate change does not always seem related to the real exposure to extreme weather

events. In fact countries like India, Pakistan, and Afghanistan, exposed to some of the most serious

extreme weather events, only show very low awareness of the climate change problem.

Moreover, among the countries highly aware of the problem, such as Russia and Brazil, the

perception of the underlying threats of the climate change problem differ. While in Russia less than

50% of the people perceive the climate change as a serious threat, more than 90% of the people in

Brazil fear that climate change presents an urgent risk. Surprisingly again, the perception of the

urgency of the climate change problem, is not correlated with the true experience of extreme weather

events. In fact, Figure 5.1 unveils that Russia faces a greater risk from extreme weather events than

does Brazil.

As such, in the context of the collective risks, we distinguish between risk exposure and risk

perception. In the previous chapter, we assumed that agents perceived the true risk of exposure to

disasters.

5.2 Introduction of risk diversity

The fundamentals of the game remain unchanged with respect to Chapter 4. We maintain a population

of finite size Z with players that now begin with the same initial endowment b. Individuals are sampled
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Figure 5.2: Figure taken from “Predictors of public climate change awareness and risk perception
around the world” [111]. The first chart exhibits, for different countries, the percentage of people aware
of the existence of the climate change problem. The second chart reveals for the same countries, but
only among the people aware of the climate change, the percentage of those perceiving the climate
change as a serious threat. In both charts, darker colors indicate higher percentages.

into groups of size N and engage in a threshold public goods game. Participants can choose (with a

certain probability) to contribute a constant fraction c of their endowment to a collective pool to help

achieve a target threshold t that avoids a common disaster. Here too, the threshold t is chosen to be

proportional to the contribution fraction c, the average wealth b and M—a fraction of the total number

N of players in the group—such that t = Mcb. Agents are motivated to achieve the target as it is the

only way of avoiding with certainty a disaster. When the threshold is not achieved, the population is

split evenly into two groups: agents at high risk and agents at low risk. As such, the former group

represents a fraction zH = 50% of the population, and the latter a fraction zL = 50% of the population.

Given a population mean risk value r and a risk diversity value δ, agents at high risk face or perceive

a disaster with probability rH = r + δ while agents at low risk only face or perceive a disaster with

a risk probability of rL = r − δ. Whether agents effectively face disasters at a higher/lower risk, or
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falsely believe themselves to face disasters at a higher/lower risk, should not alter their policy. As

such, during training or policy computation (static study), we assume that at the end of a game, if the

target is not achieved, agents of high/low risk face a disaster with probability rH/rL. When such as

disaster occurs, the agent loses a fraction p of its remaining endowment b. The corresponding policy

chosen by the agents defines their probability of target achievement. However, it is the consequences

of target achievement (or not), i.e., the resulting welfare, that differs in the context of risk exposure

diversity and risk perception diversity.

In the presence of risk exposure diversity, we assume that agents are at effectively different risks

rH and rL. The remaining welfare for each class of agents is evaluated by assuming that in the case

of failure to achieve the target, agents at low risk only face disaster losses with probability rL while

agents at high risk face disaster losses with probability rH . In other words, agents play according to

their true risk of exposure.

In the presence of risk perception diversity, we assume that in the case of failure to achieve the

target, all agents face disasters with an equal and mean probability r. However, agents are not aware

of that risk, and play as if they were either exposed to higher risks rH , or to lower risks rL. Using the

policies learned under rH and rL, we evaluate the expected remaining welfare for each class of agents

by supposing that they face disaster losses with probability r. Agents with a high risk perception

over -estimate, while agents with a low risk perception under -estimate, the true danger of the collective

threat.

We maintain the same log utility function described in Section 3.1 and use the payoffs of Table 3.1.

5.2.1 Numerical values

We keep a population size of Z = 200 agents. All players, whether at high or low risk, begin with

an initial endowment b = 1, yielding W = Z. A contribution represents 10% of an agent’s wealth,

i.e., c = 0.1. The agents are involved in a game of N = 6. We define the threshold t as a function

of the average wealth b in the population. We set the target to be achievable if at least M = N/2

agents in the group contribute, i.e., t = Mcb = Ncb/2. If the threshold target is not achieved, agents

lose an additional 70% of their remaining wealth, i.e., p = 0.7. We proceed with two experiments: in

the first, we fix the diversity value to δ = 0.1 and test varying risk values r ∈ {0.1, 0.3, 0.5, 0.7, 0.9},

while in the second, we set the population risk value to r = 0.5 and vary the risk diversity value

δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. This allows us to better understand the impact of risk diversity for regimes

of high and low baseline risk (δ fixed and varying r) and also the impact of risk diversity in the form

of symmetric risk distribution (r = 0.5 and varying δ).

5.3 Static study

Considering a binary risk diversity among agents of a population facing collective risks, we derive

in this section the optimal policies for high and low risk agents under the assumption of complete

class-coordination. We pre-impose that all high risk agents follow the same policy πH , and all low risk
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agents follow the same policy πL. From there, we compute two optimal policies: a rational policy with

the goal of maximizing the welfare of a class of agents (the class-based Nash policy), and a social policy

with the goal of maximizing the total population welfare (the class-based maximum welfare policy).

5.3.1 Class-based Nash

Consider a group of N − 1 individuals and denote by nL and nH , the number of low and high risk

individuals within this group respectively, where nL ∈ {0, 1, ..., N − 1} and nH = N − 1− nL. Let nc
L

be the number of low risk players that actually contribute to the pool, i.e., nc
L ∈ {0, 1, ..., nL} and nc

H

be the number of high risk contributors in the group, i.e., nc
H ∈ {0, 1, ..., nH}. Hence, a total number

of (nL + 1)× (nH + 1) different combinations of group contributions are possible.

The probability PnL(nc
L, n

c
H) that each of these possible configurations occur in a group of nL low

risk individuals follows a binomial law and depends on the cooperation probabilities πR and πP , of

rich and poor agents respectively. We have

PnL(nc
L, n

c
H) =

(
nL

nc
L

)
π
nc
L

L (1− πL)
nL−nc

L

(
nH

nc
H

)
π
nc
H

H (1− πH)nH−nc
H . (5.1)

To the group of N − 1 players, let i be the N th player to join the group. Player i will now choose to

contribute with probability πL if at low risk or with probability πH if at high risk. Denote by AD

the action of defecting and AC the action of contributing. Denote by SAD the set of configurations

that achieve the threshold without the need of i’s contribution. Mathematically, SAD = {(nc
L, n

c
H) ∈

{0, 1, ..., nL}× {0, 1, ..., nH}|nc
Lbc+ nc

Hbc ≥Mbc}. Identically, denote by SAC the set of configurations

that can achieve the threshold if i contributes. The probability of the group achieving the threshold

given that i chose action a ∈ {AD, AC} is given by the sum of the probabilities of the events in SAD

and SAC respectively.

PnL(t|a) =
∑

(nc
L,nc

H)∈Sa

PnL(nc
L, n

c
H) (5.2)

Since the game is probabilistic, the probability that player i succeeds or fails in avoiding a disaster,

given that he chose action a is

PnL

L (success|a) = PnL(t|a) + (1− rL)P
nL(¬t|a) (5.3a)

PnL

L (failure|a) = 1− PnL(success|a), (5.3b)

for agents at low risk, and

PnL

H (success|a) = PnL(t|a) + (1− rH)PnL(¬t|a) (5.4a)

PnL

H (failure|a) = 1− PnL(success|a), (5.4b)

for agents at high risk.

We can now write the expected payoff functions for player i depending on whether that player is at
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low or high risk. Let HnL

L (πL, πH) and HnL

H (πL, πH) be the respective expected payoff functions of a

low and high at risk individual involved in a game with nL low at risk players and where all agents at

low risk follow strategy πL and all agents at high risk follow strategy πH . The expected payoff of an

agent depends on whether the game was successful or not and on whether that agent contributed or

not to the common pool. We have

HnL

L (πL, πH) = πL[P
nL

L (success|AC)xC + PnL

L (failure|AC)x̄C ]

(1− πL)[P
nL

L (success|AD)xD + PnL

L (failure|AD)x̄D], (5.5a)

HnL

H (πL, πH) = πH [PnL

H (success|AC)xC + PnL

H (failure|AC)x̄C ]+

(1− πH)[PnL

H (success|AD)xD + PnL

H (failure|AD)x̄D], (5.5b)

where xC , x̄C , xD and x̄D are the payoffs described in Table 3.1.

Finally, in this chapter, groups are sampled randomly. The expected payoff needs to account for

the probability of an agent to play in a group with nL individuals at low risk. For agents at low risk

and agents at high risk, this translates to

HL(πL, πH) =

N−1∑
nL=0

(
ZL−1
nL

)(
Z−ZL

N−nL−1

)(
Z−1
N−1

) HnL

L (πL, πH), (5.6a)

and

HH(πL, πH) =

N−1∑
nL=0

(
ZL

nL

)(
Z−ZL−1
N−nL−1

)(
Z−1
N−1

) HnL

H (πL, πH), (5.6b)

respectively.

Both players at low and high risk exposure aim at maximizing their respective payoff functions,

HL and HH . A Nash equilibrium (π∗
L, π

∗
H) satisfies

HL(π
∗
L, π

∗
H) ≥ HL(πL, π

∗
H) ∀ πL ∈ [0, 1] (5.7a)

HH(π∗
L, π

∗
H) ≥ HH(π∗

L, πH) ∀ πH ∈ [0, 1]. (5.7b)

Again, we rely on a graphical method and discretize the domain of πL and πH into intervals of

length ϵ = 0.001. We calculate the corresponding payoff HL and HH over the space of possible (πL, πH).

Referring to (5.6), we plot for every πH , L’s best response πBR
L , i.e., πBR

L for which the expected payoff

of an agent at low risk, HL(π
BR
L , πH) is maximized, and similarly, for every πL, H’s optimal response

πBR
H . The intersections of the hence formed lines represent class-based Nash equilibrium points. We

extract these points for different game configurations in each of our two scenarios: on one hand, for

different average risk values with a fixed risk diversity δ = 0.1 (Figure 5.3) and, on the other hand, for

different risk diversity factors and a fixed average risk factor r = 0.5 (Figure 5.4).
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(a) r = 0.1 (b) r = 0.3 (c) r = 0.5

(d) r = 0.7 (e) r = 0.9

Figure 5.3: Best class-response lines of agents at high risk, rH = r + δ, and low risk, rL = r − δ, in
a population facing collective threats of varying mean risks r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, presenting a
risk diversity of δ = 0.1, and interacting in groups of N = 6. The intersection points of the two lines
represent the class-based Nash equilibria for each game configuration.

5.3.2 Maximum social welfare

Similar to the case of wealth inequality, we are interested in the absolute impact a loss has on the

population. We use xC = −cb, x̄C = −cb− (1− c)pb, xD = 0 and x̄D = −pb in (5.5a) and (5.5b). Then,

using (5.6), we build a heat-map with the average population wealth for every combination of πL and

πH . Figure 5.5 illustrates some of the heat-maps obtained for different risk values and δ = 0.1, while

Figure 5.6 illustrates heat-maps obtained for different δ values and an average population risk factor

r = 0.5. Dark green colors represent solutions maximizing social welfare. We observe that the higher

the risk factor, the lower the maximum social welfare obtained (see color bars). Additionally, we can

see how for the small risk value of r = 0.1, where the dilemma is broken for low risk individuals, the

optimal strategy recommends no cooperation on their side with πL∗ = 0 Here, the cost of cooperation

on the society is higher than the cost of the common risk. In all cases, we see that individuals at high

risk are always recommended to cooperate more than those at low risk.

5.4 Results

We study the consequences of risk diversity for populations of agents learning to play the game

introduced in Section 3.1 with the RL algorithm of Section 3.2.
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(a) δ = 0.1 (b) δ = 0.2 (c) δ = 0.3

(d) δ = 0.4 (e) δ = 0.5

Figure 5.4: Best class-response lines of agents at high risk, rH = r + δ, and low risk, rL = r − δ,
in populations facing collective threats of mean risk r = 0.5, presenting varying risk diversities of
δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and interacting in groups of N = 6. The intersection points of the two lines
represent the class-based Nash equilibria for each game configuration.

(a) r = 0.1 (b) r = 0.3 (c) r = 0.5

(d) r = 0.7 (e) r = 0.9

Figure 5.5: Heat-maps representing the total wealth of a population with risk diversity δ = 0.1, after
engaging, in groups of N = 6, in a collective risk dilemma of varying risk levels r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

68



(a) δ = 0.1 (b) δ = 0.2 (c) δ = 0.3

(d) δ = 0.4 (e) δ = 0.5

Figure 5.6: Heat-maps representing the total wealth of populations with varying risk diversity δ ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, after engaging, in groups of N = 6, in a collective risk dilemma of mean risk
r = 0.5.

Similarly to our studies on wealth inequality, after the learning phase, the strategies are evaluated

based on the resulting population’s probability η of achieving the target threshold t. We estimate η

using a Monte Carlo method as explained in Section 4.3.

Studies are run both on heterogeneous populations with risk diversity and homogeneous populations

playing the same game and with an average risk factor equal to the one of the heterogeneous population.

5.4.1 Effect of risk diversity on RL populations

In the previous chapter we have looked at the consequences of wealth inequality on populations

involved in collective risk dilemmas of varying risk probability and group sizes. Here we investigate

the consequences of introducing a symmetrical risk diversity in the population. We present a study

comparing the effects of a constant small diversity δ = 0.1 for different risk values r, and a study

comparing small and large diversities in perception δ in a collective dilemma with constant average

risk r = 0.5.

Variations of mean probability of risk occurrence

In a first experiment, we train a population P2 with risk diversity δ = 0.1, to play a collective risk

dilemma in groups of N = 6 players, and under varying mean risk r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. During

the learning phase, half of the agents in P2 experience a low risk of rL = r − δ, while the other half

experience a risk of rH = r + δ. We compare the performance of P2 to the performance of our baseline

homogeneous population P0. In Figure 5.7, we plot achievement levels, contribution probabilities, and
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(a) (b)

(c) (d)

Figure 5.7: RL populations performance with respect to the risk factor: In the first row,
we compare populations without diversity to populations with symmetrical risk diversity of δ = 0.1.
We plot (a) the overall group achievement rate η, and (b) the percentage of achieved contributions
ρ. In the second row, we detail the same metrics for the respective agents in each population. That
is, agents at mean risk from the population without diversity and agents at high/low risk from the
population with risk diversity. We show in (c) the overall group achievement rate η, and in (d) the
policy π or the average cooperation probability. In all panels, shaded areas represent the standard
deviation over 5 runs.

agent policies of the two populations. Afterwards, in Figure 5.8, we present the resulting secured

welfare in the population and its distribution over the corresponding classes of agents (mean and

high/low risk). We examine the welfare in two cases: first, when risk diversity rises from a true diversity

in exposure to danger, and second, when risk diversity represents a mere difference in assessment of

one common and equal risk.

Similar to results found for homogeneous populations and populations with wealth inequality,

Figures 5.7a and 5.7b confirm that populations with risk diversity also increase their contributions and

hence their achievement in the face of larger risks r. Moreover, we observe no significant differences

in target achievement or contributions for homogeneous populations versus populations with risk

diversity for all values of r ≥ 0.3. For r = 0.1, populations with risk diversity contribute less and hence

achieve the target less often. This difference however does not seem to have an impact on the overall

secured welfare, both for situations with risk exposure diversity (see figure 5.8a), as well as situations

with risk perception diversity (see figure 5.8b). The slightly increased costs of disaster occurrence are

compensated by savings on cooperation costs.
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(a) (b)

(c) (d)

Figure 5.8: RL populations wealth with respect to the risk factor: In the first row, we compare
populations without diversity to populations with symmetrical risk diversity of δ = 0.1. We plot the
percentage of remaining wealth in the populations when risk diversity in a population is a result of (a)
an effective difference in exposure to risk among the agents, and (b) a false difference in perception or
assessment of the underlying risk. In the second row, we detail the same metrics for the respective
agents in each population and show the results for (c) diversity in risk exposure, and (d) diversity in
risk perception. In all panels, shaded areas represent the standard deviation over 5 runs.

In the second row of Figure 5.7, we look at the variations between the different classes of agents. In

Figure 5.7c, for r = 0.1, we only observe minor differences between agents at high and low risk, with

agents at high risk marginally achieving the target more often. Nonetheless, agents from homogeneous

populations fare better than both agents at higher and agents at lower risk. The differences in

achievement between the three classes of agents, vanish for higher risk.

For r = 0.1, the risk experienced by agents at low risk is non-existent, rL = r − δ = 0.1− 0.1 = 0.

As a result, in Figure 5.7d, agents at low risk never cooperate, and target achievement is the full

responsibility of agents at high risk. The lack of cooperation of half of the population explains the

observed drop in target achievement. However, while agents at high risk cooperate more than agents

at low risk, the induced differences in target achievement between the two classes are negligible. Again,

the differences observed for r = 0.1, fade for higher baseline risk.

Akin to results found in the previous chapter for homogeneous population and for populations with

wealth inequality, Figures 5.8a and 5.8b show that while achievement and contributions increase with

the risk, the increase is not sufficient to spare the population with risk diversity from the increasing

costs of disaster occurrences. The response of RL populations to increasing risk is maladjusted. While
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the overall welfare in a population remains the same in the case of risk exposure or risk perception

diversity, its distribution in the population presents notable differences. In Figure 5.8c, under an

effective diversity in exposure to risks, agents at low risk of facing disaster consistently secure a larger

share of their initial welfare. With a risk exposure of rL = r − 0.1, agents start with no risk at all for

r = 0.1, securing the entirety of their initial wealth. As the mean risk increases, agents at low risk

spend larger amounts of their wealth on cooperation costs and face larger potential disaster losses.

As a result, their remaining welfare decreases for larger risk. On the other hand, agents at high risk

rH = r + 0.1, seem to be unmoved by higher risk. For all values of 0.1 ≤ r ≤ 0.9, agents lose around

15% of their initial wealth. We define γ = rH−rL
r , as a measure of the strength of the diversity with

respect to the mean risk. For low values of mean risk, the relative difference in experienced risk γ,

is large. As a result, agents at high risk are left alone in their pursuit for target achievement. They

endure larger cooperation costs to compensate the lack of interest of agents at low risk. Additionally,

their efforts are less successful than homogeneous agents (see group achievement in Figure 5.7c), and

with higher chances of facing disasters, agents at high risk, suffer for r = 0.1, losses similar to the ones

suffered by homogeneous agents for r = 0.9. As the mean risk increases, agents at high risk receive

more support from agents at low risk in the the accomplishment of target achievement, improving

significantly their performance and requiring only small increases in cooperation. Subsequently, their

overall welfare remains robust for all mean risk values.

Contrarily, for a diversity in risk perception, we observe in Figure 5.8d, for r ≥ 0.3, that the

differences in secured welfare among the three classes of agents are negligible. For r = 0.1, the costs of

cooperation of agents with high risk perception outweigh the benefits of their slightly higher target

achievement. Here we note how agents with low risk perception manage to secure a higher fraction

of their wealth than agents with a high risk perception. Nevertheless, the gap in welfare is minimal

compared to the gap in welfare for populations with risk exposure diversity.

We can conclude that a small risk diversity is generally easily absorbed by a population of RL

learners, particularly when the mean risk in the population is high and the relative impact of the

diversity becomes imperceptible. Yet, while risk diversity does not seem to have a substantial impact

on overall population performance, diversity in risk exposure can create wealth inequality, especially

for weak mean risk values.

Variations of risk diversity

While the tested risk diversity of δ = 0.1 was effectively absorbed by the population for most baseline

risk values, we saw that for smaller risk, the impact of the diversity was more important. In a second

experiment we propose to fix the baseline risk value to r = 0.5, and test the impact of increasing

diversity factors δ. We plot in Figures 5.9 and 5.10, the group achievement, contributions, policies and

secured welfare of populations and their corresponding classes of agents with varying risk perception

diversities δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We recall that δ = 0 represents the homogeneous population

P0, while δ = 0.1 represents the population P2 from the previous section.

In Figure 5.9a, we see that higher risk diversity results in a decline in target achievement. This
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(a) (b)

(c) (d)

Figure 5.9: RL populations performance as a function of risk diversity: In the first row,
we look at the overall population performance when engaged in groups of N = 6 in a collective risk
dilemma of mean risk r = 0.5. We plot (a) the overall group achievement rate η, and (b) the percentage
of achieved contributions ρ. In the second row, we detail the same metrics for the agents at high/low
risk in such populations. We show in (c) the overall group achievement rate η, and in (d) the policy π
or the average cooperation probability. In all panels, shaded areas represent the standard deviation
over 5 runs.

phenomena can be explained by the drop in collected contributions visible in Figure 5.9b. Despite

constant mean risk, a growing diversity in the population can hinder the success of risk avoidance.

Figure 5.9c reveals a decline in target achievement for both classes of agents. However, the decline

is sharper for agents at low risk, creating a gap in achievement between agents at high risk and those

at low risk.

Nonetheless, the observed gap in achievement is modest compared to the divergence in agents

policies unveiled in Figure 5.9d. While agents at low risk reduce their cooperation from π ≃ 60% for

δ = 0, i.e., rL = r = 0.5, to π = 0 for δ = r = 0.5, i.e., rL = r − δ = 0, agents, at now symmetrically

increasing risk rH = r + δ, only moderately increase their cooperation. The asymmetrical decreases

and increases in cooperation despite symmetrical decreases and increases in experienced risk, explains

the overall drop in contributions and hence target achievement.

In terms of secured welfare, Figures 5.10a and 5.10b confirm that the drop in target achievement

translates into a drop in welfare. This is the case for risk exposure diversity, as well as risk perception

diversity; though risk perception diversity seems to have a slightly more negative impact on the

population welfare.
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(a) (b)

(c) (d)

Figure 5.10: RL populations wealth as a function of risk diversity: In the first row, we plot the
percentage of remaining wealth in the populations for (a) diversity in risk exposure, and (b) diversity
in risk perception. In the second row, we detail the same metric for the agents at high/low risk in each
population and show the results for (c) diversity in risk exposure, and (d) diversity in risk perception.
In all panels, shaded areas represent the standard deviation over 5 runs.

Anew, and similar to the observations made for varying mean risk values, risk exposure and risk

perception diversity present contrasting welfare distributions in the population, despite comparable

overall impact. Figure 5.10c reveals how under higher diversity in effective risk exposure, agents at low

risk, now at increasingly less risk of facing disasters, can save both on cooperation costs and disaster

losses, and see their secured welfare increase to 100% of their initial wealth for δ = r = 0.5, i.e., rL = 0.

On the other hand, agents at now increasingly higher risk, experience increasing cooperation and

disaster costs, and suffer from a decrease in welfare. Yet, the gains ensured by agents at lower risk

do not compensate the much larger costs suffered by agents at high risk. Here too, the asymmetrical

increases and decreases in welfare despite symmetrical decreases and increases in experienced risk,

explain the overall drop in population welfare.

The same outcome is not noted in cases with risk perception diversity. Here, the increased losses

in welfare suffered by the population, are equally distributed among agents with high or low risk

perception. Sensible agents with a high assessment of the underlying risks of the game, cannot

compensate for the lack of interest of agents with a low risk perception. Interestingly, the costs are

equally distributed among agents with high and low risk perception. Agents with a high risk assessment

spend more on cooperation costs than do agents with a low risk assessment. However, agents with a
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high risk assessment also face disasters less often than do agents with a low risk assessment. Overall,

both classes of agents endure similar losses that are larger than the losses endured by homogeneous

populations (δ = 0).

To conclude, we compare the effects of risk diversity to the effects of wealth inequality. Both risk

diversity and wealth inequality can reduce target achievement and overall welfare of a population.

However, the consequences they have on the distribution of the target achievement and welfare in

the population are not the same. We observe that only an initial wealth inequality results in target

achievement inequality between the two classes of agents. Neither risk exposure, nor risk perception

diversity generate large differences in target achievement. As a result of target achievement inequality

in populations with wealth inequality, poor agents, that face disasters more frequently, lose more of

their initial welfare than do rich agents. Therefore, an initial wealth inequality in the population,

results in increasingly higher welfare inequality when facing collective risks. Risk exposure diversity

also induces welfare inequality despite not causing target achievement inequality. For the same level of

achievement, agents with a high risk exposure, have a higher chance of facing a disaster and lose larger

amounts of their welfare. Only risk perception diversity does not result in welfare inequality.

5.4.2 Effect of risk diversity on class-based Nash populations

We have seen in the previous section, how in populations of in independent RL learners, risk diversity

reduces target achievement and overall welfare of a population. A clear cause for the realized losses, are

the asymmetrical changes in agents’ policies with respect to symmetrical changes in experienced risk.

The asymmetry is such that, for higher diversity δ, agents at low risk rL = r−δ, reduce their cooperation

more than agents at high risk rH = r + δ increase theirs. A possible explanation for the observed

behavior, is the increased coordination difficulty for target achievement among agents at high risk, in

the presence of ever more negligent agents at low risk. Coordination challenges can discourage agents

at high risk to increase their cooperation as the benefits of achieving the target are rarely experienced.

Similar to the case of poor agents in populations with wealth inequality, agents at high risk could

therefore get stuck in sub-optimal solutions. Removing coordination problems and imposing class-based

rationality, eliminated many harmful consequences of wealth inequality. To distinguish between the

inherent consequences of risk diversity, and the consequences related to particular weaknesses of RL

populations, we now evaluate the same population performance metrics used previously, for class-based

Nash populations facing collective risks. We repeat the same experiments as for RL populations

but suppose that the agents in these populations follow the class-based Nash policies detailed in

Section 5.3.1.

Variations of mean probability of risk occurrence

In the first experiment, we compare results for populations P0 without diversity and P2 with risk

perception diversity δ = 0.1 when engaging in a collective risk dilemma in groups of N = 6 players

and under varying mean risk r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. In Figure 5.11, we plot achievement rates,

contribution probabilities and the agents’ policies in the two populations. Then, in Figure 5.12, we
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Figure 5.11: Class-based Nash populations performance with respect to the risk factor: In
the first row, we compare populations without diversity to populations with symmetrical risk diversity
of δ = 0.1. We plot (a) the overall group achievement rate η, and (b) the percentage of achieved
contributions ρ. In the second row, we detail the same metrics for the respective agents in each
population. That is, agents at mean risk from the population without diversity and agents at high/low
risk from the population with risk diversity. We show in (c) the overall group achievement rate η, and
in (d) the policy π or the average cooperation probability. In all panels, shaded areas represent the
standard deviation over 5 runs.

display the consequences on the welfare, for both risk exposure and risk perception diversity.

Akin to populations of reinforcement learners, Figures 5.11a and 5.11b demonstrate that a low

diversity δ = 0.1 is easily absorbed by a population under sufficiently large mean risk. Only for r = 0.1,

when agents at low risk experience no risk at all, do we observe a drop in achievement and overall

contributions.

Whereas in RL populations, for r = 0.1, both agents at high and low risk under-achieved with

respect to homogeneous agents at mean risk, Figure 5.11c shows that in populations of class-based

Nash agents, agents at high risk suffer less from the indifference of their peers at low risk and manage

to attain the target as often as homogeneous agents. Only indifferent agents (at low risk), show a drop

in target achievement.

Although all agents attain similar target achievements, we see in Figure 5.11d that class-based

Nash agents at high risk significantly cooperate more than agents at low risk. Still, the difference

in cooperation decreases for larger mean risk, as the relative impact of the heterogeneity γ = rH−rL
r

decreases.
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Figure 5.12: Class-based Nash populations wealth with respect to the risk factor: In the
first row, we compare populations without diversity to populations with symmetrical risk diversity
of δ = 0.1. We plot the percentage of remaining wealth in the populations when risk diversity in a
population is a result of (a) an effective difference in exposure to risk among the agents, and (b) a
false difference in perception or assessment of the underlying risk. In the second row, we detail the
same metrics for the respective agents in each population and show the results for (c) diversity in
risk exposure, and (d) diversity in risk perception. In all panels, shaded areas represent the standard
deviation over 5 runs.

Figure 5.12 indicates that, for class-based Nash populations, the consequences of a low risk exposure

diversity, or a low risk perception diversity, on overall welfare and its distribution in the population,

are similar. Overall, populations with and without diversity secure similar levels of welfare (see

Figures 5.12a and 5.12b).

In terms of welfare distribution, for r ≥ 0.3, since the target is attained with almost certainty,

agents at mean, low, or high risk, only lose whatever they spend on cooperation costs. Since agents

at low risk consistently contribute less than homogeneous agents, who in turn contribute less than

agents at high risk, they also consistently lose less than homogeneous agents, who in turn lose less

than agents at high risk. Figures 5.12c and 5.12d confirm these conclusions. Only for r = 0.1, do we

find differences in wealth distribution between risk exposure and risk perception diversity. In fact, for

r = 0.1, agents at low risk significantly under-achieve with respect to mean and high risk agents. As is

clear in Figures 5.12c, their failure to achieve the target has no impact on their welfare when they are

at a truly low and non-existent exposure to risks (rL = 0.1− 0.1 = 0). However, when risk diversity

emerges merely from a false assessment of the underlying risk, agents at low risk lose part of their
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Figure 5.13: Class-based Nash populations performance as a function of risk diversity: In
the first row, we look at the overall population performance when engaged in groups of N = 6 in a
collective risk dilemma of mean risk r = 0.5. We plot (a) the overall group achievement rate η, and
(b) the percentage of achieved contributions ρ. In the second row, we detail the same metrics for the
agents at high/low risk in such populations. We show in (c) the overall group achievement rate η, and
in (d) the policy π or the average cooperation probability. In all panels, shaded areas represent the
standard deviation over 5 runs.

wealth due to disaster occurrences (see Figure 5.12d).

Variations of risk diversity

In the second experiment, we examine the performance of class-based Nash populations presenting

varying risk diversities and playing, in groups of size N = 6, a collective risk dilemma of mean

risk r = 0.5. In Figures 5.13 and 5.14, we plot the group achievement, contributions, policies and

secured welfare of populations and their corresponding classes of agents for risk diversity values of

δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

We recall that introducing wealth inequality in a population of reinforcement learners results in

a decline in target achievement. However, under class-based Nash policies, populations with wealth

inequality manage to overcome the challenges of this heterogeneity and demonstrate similar target

achievement levels as homogeneous populations. Conversely, in the presence of risk diversity, class-

coordinated rationality is not enough to sustain high levels of achievement. We observe in Figure 5.13a

that group achievement drops from η ≃ 100% for homogeneous populations to η ≃ 65% for δ = 0.5.

The loss in achievement despite elimination of all class-coordination challenges, suggests that a novel
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Figure 5.14: Class-based Nash populations wealth as a function of risk diversity: In the first
row, we plot the percentage of remaining wealth in the populations for (a) diversity in risk exposure,
and (b) diversity in risk perception. In the second row, we detail the same metrics for the agents
at high/low risk in each population and show the results for (c) diversity in risk exposure, and (d)
diversity in risk perception. In all panels, shaded areas represent the standard deviation over 5 runs.

type of difficulty emerges in population presenting risk diversity.

Figure 5.13b confirms that the drop in achievement is a result of a reduction in total population

contributions.

When examining separately the performances of agents at high and low risk in Figure 5.13c, we can

affirm that indeed, risk diversity has a negative impact on both classes of agents. Nonetheless, high

risk agents manage to succeed more often, creating an ever increasing gap in achievement between the

two classes.

The superior performance of agents at high risk can be attributed to their stronger cooperation,

obvious in Figure 5.13d. As risk diversity increases, agents at low risk rL = 0.5− δ, lose interest in

target achievement and start lowering their cooperation. Agents at high risk compensate for this drop,

with an equal and symmetrical increase in cooperation on their side. This remains possible for δ ≤ 0.2,

after which cooperation from agents at high risk saturates. This explains why, for δ ≤ 0.2, achievement

and population contributions remain relatively stable. However, as δ increases, agents at low risk

continue lowering their cooperation, but their behavior cannot be neutralized by agents at high risk,

who are already fully cooperating. Consequently, the population experiences the observed losses in

achievement and contributions.
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Figures 5.14a and 5.14b suggest that risk perception diversity can be more dangerous for class-based

Nash populations than risk exposure diversity.

As always, the distribution of wealth in the population differs substantially for exposure diversity

and perception diversity. We note in Figure 5.14c, that stronger risk exposure diversity increases

the welfare of agents at low risk and decreases the welfare of agents at high risk. Eventually, for

large enough δ, the losses endured by agents at high risk outweigh the gains of agents at low risk,

explaining the drop in overall population welfare. The dynamics of risk perception diversity on the

other hand, produce less divergence in the population. In Figure 5.14d, both agents with low and high

risk perception, ultimately lose in welfare. Interestingly, the rationality of agents at high risk and their

compensation for the weak cooperation of agents at low risk, allows for natural free-riding. By strongly

saving on cooperation costs, and still profiting for high target achievements, agents with a low risk

perception generally secure more of their initial welfare.

We have discussed in detail the consequences of risk diversity on both populations of reinforcement

learners, as well as populations following class-based Nash policies. In the next section, we present a

comparison of the two populations.

5.4.3 Adaptive vs class-based Nash populations

In the previous sections we compared the performances of populations without diversity to those of

populations with increasing risk diversity. We explored the question in the context of RL populations as

well as class-based Nash population. Here, we take the populations with risk diversity from each section,

and compare for similar risk diversity, the performance of reinforcement learners to the performance of

class-based Nash players. We show results for the same experiment settings.

Variations of mean probability of risk occurrence

In the first experiment, we fix a risk diversity of δ = 0.1, and compare for increasing baseline risk

r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, the behaviors of populations of reinforcement learners versus populations of

class-based Nash players. In Figure 5.15, we plot achievement rates, contribution probabilities and

the agents policies in the two populations. Then, in Figure 5.16, we display the consequences on the

welfare, for both risk exposure and risk perception diversity.

We see in Figure 5.15a that class-coordinated and rational populations succeed significantly more

in achieving the target than do populations of independent reinforcement learners. This verifies once

again the benefits of high coordination in the face of collective threats.

Figure 5.15b also reveals that class-based Nash populations significantly contribute more than

reinforcement learners, which explains the resulting higher achievement.

We confirm in Figure 5.15c that the population features remain true for all agents regardless of

their risk class. In fact, any class-based Nash agent attains the target more often than any RL agent

does. Under both dynamics, agents at high risk are more successful than agents at low risk. However,

the worst performing class-based Nash agents, i.e., agents at low risk, perform better than the best

performing RL agents, i.e., agents at high risk.
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Figure 5.15: RL vs class-based Nash populations performance with respect to the risk
factor: In the first row, we compare populations without diversity to populations with symmetrical
risk diversity of δ = 0.1. We plot (a) the overall group achievement rate η, and (b) the percentage of
achieved contributions ρ. In the second row, we detail the same metrics for the respective agents in
each population. That is, agents at mean risk from the population without diversity and agents at
high/low risk from the population with risk diversity. We show in (c) the overall group achievement
rate η, and in (d) the policy π or the average cooperation probability. In all panels, shaded areas
represent the standard deviation over 5 runs.

The higher success of class-based Nash populations can be attributed to the significantly higher

cooperation of agents at high risk. Figure 5.15d shows a clear gap in cooperation between agents at

high risk from RL populations and those from class-based Nash populations. For low mean risk r, low

risk agents from both populations exhibit similar behaviors. Still, class-based Nash agents at low risk

react more efficiently to higher mean risk and quickly increase their cooperation to levels even higher

than those of high risk RL agents.

Despite larger cooperation costs spent by class-based Nash population, the resulting higher success

in target achievement spares them large disaster losses. As such, we find in Figures 5.16a and 5.16b

that, in the presence of risk exposure or risk perception diversity, class-based Nash populations realize

lower losses in welfare than do RL populations.

Generally, for all baseline risk r, Figures 5.16c and 5.16d, reveal that class-based Nash agents at

high/low risk secure higher welfare than their respective RL counterparts. Only in the presence of

risk perception diversity with mean risk r = 0.1 (see Figure 5.16d), does the excessive cooperation of

class-based Nash agents at high risk result in slightly larger welfare losses compared to RL players.
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Figure 5.16: RL vs class-based Nash populations wealth with respect to the risk factor: In
the first row, we compare populations without diversity to populations with symmetrical risk diversity
of δ = 0.1. We plot the percentage of remaining wealth in the populations when risk diversity in a
population is a result of (a) an effective difference in exposure to risk among the agents, and (b) a
false difference in perception or assessment of the underlying risk. In the second row, we detail the
same metrics for the respective agents in each population and show the results for (c) diversity in
risk exposure, and (d) diversity in risk perception. In all panels, shaded areas represent the standard
deviation over 5 runs and the abbreviation “cb” stands for class-based.

Additionally, in the face of increasing risk r > 0.3, any class-based agent eventually achieves higher

welfare than any RL agent.

We established the advantages of class-coordination and rationality in the face of increasing mean

risk values. Next, we present a similar study for constant mean risk and increasing diversity.

Variations of risk diversity

We determined the benefits of class-based Nash policies with respect to RL policies when populations

presenting a risk diversity δ = 0.1, engage in collective risks of various mean risk values r. We found that,

the advantages of class-based policies are particularly visible for higher baseline risk r > 0.3. In this

section, we fix the mean risk r = 0.5, and contrast the behaviors of RL to class-based Nash populations

for different values of risk diversity δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. We plot in Figures 5.17 and 5.18, the

group achievement, contributions and secured welfare of populations and their corresponding classes of

agents.

Figures 5.17a, 5.17b, and 5.17c, all speak for the absolute dominance of class-based Nash policies.
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Figure 5.17: RL vs class-based Nash populations performance as a function of risk diversity:
In the first row, we look at the overall population performance when engaged in groups of N = 6 in a
collective risk dilemma of mean risk r = 0.5. We plot (a) the overall group achievement rate η, and
(b) the percentage of achieved contributions ρ. In the second row, we detail the same metrics for the
agents at high/low risk in such populations. We show in (c) the overall group achievement rate η, and
in (d) the policy π or the average cooperation probability. In all panels, shaded areas represent the
standard deviation over 5 runs.

Figure 5.17d unveils the higher cooperation of high/low risk agents from class-based Nash populations

compared to high/low risk agents from RL populations. Nevertheless, the higher performance in terms

of achievement and cooperation for class-based populations, comes with an increase in class-divergence.

Both the gaps in achievement, as well as in cooperation between agents at high/low risk, are more

substantial in populations of class-based Nash players.

Figures 5.18a and 5.18b demonstrate again the efficacy of class-based Nash solutions. The benefits

are most noticeable in Figure 5.18a, in the presence of strong risk exposure diversity δ = 0.5.

Surprisingly, while class-based Nash policies show stronger divergences in policies and achievement,

the same is not true for the distribution of welfare in the presence of risk exposure diversity. We find

in Figure 5.18c that, while higher risk exposure diversity leads to higher welfare divergences for both

populations, this gap in secured welfare is larger for RL populations.

The opposite is true in Figure 5.18d with risk perception diversity. While the costs of facing

collective risks are equally distributed among all agents in a reinforcement learning population, class-

based Nash policies allow for an efficient free-riding of agents at low risk who, by saving on cooperation

costs and profiting from high achievements, secure more welfare than agents at high risk. Nevertheless,
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Figure 5.18: RL vs class-based Nash populations wealth as a function of risk diversity: In
the first row, we plot the percentage of remaining wealth in the populations for (a) diversity in risk
exposure, and (b) diversity in risk perception. In the second row, we detail the same metrics for the
agents at high/low risk in each population and show the results for (c) diversity in risk exposure, and
(d) diversity in risk perception. In all panels, shaded areas represent the standard deviation over 5
runs and the abbreviation “cb” stands for class-based.

the larger gaps in welfare for class-based Nash populations in the presence of risk perception diversity

are moderate in comparison with the larger gaps in welfare for RL populations in the presence of risk

exposure diversity.

Overall, we find that a coordination between agents of a same risk class presents considerable

advantages that outweigh some of its minor drawbacks, such as, the increased opportunity of free-riding

for agents at low risks. Next, we examine the social aspect of rational and selfish class-based solutions.

5.4.4 Class-based Nash vs class-based maximum welfare populations

We illustrated the interest of class-based Nash policies compared to independently learned RL policies

in populations facing collective risk. Despite the clear performance improvements, there is no guarantee

that the class-based Nash policy acts in the best interest of the overall social welfare. While selfishness

is removed within a risk class of agents, it can still emerge between the two types of risk classes. In

this section, we compare the key performance metrics of class-based Nash solutions to class-based

maximum welfare solutions whose objective is to find class-policies that maximize the total welfare in

a population.
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Figure 5.19: Class-based Nash vs class-based maximum welfare populations performance
with respect to the risk factor: In the first row, we compare populations without diversity to
populations with symmetrical risk diversity of δ = 0.1. We plot (a) the overall group achievement rate
η, and (b) the percentage of achieved contributions ρ. In the second row, we detail the same metrics
for the respective agents in each population. That is, agents at mean risk from the population without
diversity and agents at high/low risk from the population with risk diversity. We show in (c) the
overall group achievement rate η, and in (d) the policy π or the average cooperation probability. In all
panels, shaded areas represent the standard deviation over 5 runs and the abbreviation “cb” stands for
class-based.

Variations of mean probability of risk occurrence

In the first part of the study, comparisons are performed for a fixed risk diversity δ = 0.1, and varying

mean risk r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. All results are plotted in Figures 5.19 and 5.20.

Figures 5.19a, 5.19b, and 5.19c confirm that class-based Nash policies ensure similar achievements

and contribution levels as class-based maximum welfare policies. Yet, interestingly, we find in

Figure 5.19d that focusing only on maximizing total population welfare results in stronger internal

divergence between agents at high and low risk. The cooperation gap between agents at high and low

risk is in fact smaller in class-based Nash populations than class-based maximum welfare populations.

Figure 5.20 reinforces the same conclusions. While class-based maximum welfare policies marginally

secure more welfare under risk perception diversity (see Figure 5.20b), they always entail stronger

welfare gaps between agents at high and agents at low risk. This remains true under risk exposure

diversity (see Figure 5.20c) and risk perception diversity (see Figure 5.20d).

In conclusion, while the differences between class-based Nash and class-based maximum welfare
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Figure 5.20: Class-based Nash vs class-based maximum welfare populations wealth with
respect to the risk factor: In the first row, we compare populations without diversity to populations
with symmetrical risk diversity of δ = 0.1. We plot the percentage of remaining wealth in the
populations when risk diversity in a population is a result of (a) an effective difference in exposure to
risk among the agents, and (b) a false difference in perception or assessment of the underlying risk. In
the second row, we detail the same metrics for the respective agents in each population and show the
results for (c) diversity in risk exposure, and (d) diversity in risk perception. In all panels, shaded
areas represent the standard deviation over 5 runs. For readability, we use the abbreviations “cb” for
class-based, “welf” for welfare, “exp” for exposure, and “perc” for perception.

policies are limited, the results do raise the concern of whether simply maximizing the overall welfare,

necessarily represents the best outcome for a population. Other concerns such as inequality, can

potentially mask the benefits of higher wealth.

Variations of risk perception diversity

In the second part of the study, we compare for a fixed risk r = 0.5, and varying risk diversity

δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, the performances of class-based Nash and class-based maximum welfare

policies. We show all results in Figures 5.21 and 5.22.

The conclusions made in the previous section based in results with a small risk diversity δ = 0.1,

and varying risk levels r, only remain valid for δ < 0.3. Above that, the flaws of class-based Nash

policies slowly surface. Figure 5.21a openly shows how, through a social attitude, populations can

easily overcome the challenges associated with risk diversity. Class-based maximum welfare policies

exhibit high and almost constant target achievement for all levels of risk diversity.

Figure 5.21b indicates that, the improved target achievement is guaranteed through sustained high
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Figure 5.21: Class-based Nash vs class-based maximum welfare populations performance
as a function of risk diversity: In the first row, we look at the overall population performance
when engaged in groups of N = 6 in a collective risk dilemma of mean risk r = 0.5. We plot (a) the
overall group achievement rate η, and (b) the percentage of achieved contributions ρ. In the second
row, we detail the same metrics for the agents at high/low risk in such populations. We show in (c)
the overall group achievement rate η, and in (d) the policy π or the average cooperation probability. In
all panels, shaded areas represent the standard deviation over 5 runs and the abbreviation “cb” stands
for class-based.

contribution levels, regardless the intensity of the internal population risk diversity.

Subsequently, class-based maximum welfare policies reduce the diversity in achievement among

agents. We note in Figure 5.21c how agents from social welfare maximizing populations, whether at

high or low risk, obtain similar target achievement levels. The same cannot be said for class-based

Nash populations.

We see in Figure 5.21d, that class-based maximum welfare solutions continuously necessitate

the cooperation of agents at low risk. While agents at low risk, in both populations, reduce their

cooperation with higher diversity, the decrease in cooperation is a lot softer in class-based maximum

welfare populations. Agents at low risk, continuously support their peers at high risk in the task of

target achievement.

The benefits of a social attitude are also evident when examining the overall population welfare.

Figure 5.22a on risk exposure diversity, and more particularly, Figure 5.22b on risk perception diversity,

validate the financial advantages of class-based maximum welfare solutions.

In addition to higher overall welfare, we notice in Figure 5.22c that class-based maximum welfare
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Figure 5.22: Class-based Nash vs class-based maximum welfare populations wealth as a
function of risk diversity: In the first row, we plot the percentage of remaining wealth in the
populations for (a) diversity in risk exposure, and (b) diversity in risk perception. In the second row,
we detail the same metrics for the agents at high/low risk in each population and show the results for
(c) diversity in risk exposure, and (d) diversity in risk perception. In all panels, shaded areas represent
the standard deviation over 5 runs. For readability, we use the abbreviations “cb” for class-based, “welf”
for welfare, “exp” for exposure, and “perc” for perception.

solutions reduce wealth inequality between agents at low and high risk exposure. By requiring

cooperation from agents at low risk, class-based maximum welfare solutions slightly reduce their

welfare. However, this reduction allows almost twice as high an increase in welfare for agents at high

risk.

In the case of risk perception diversity, Figure 5.22d attests that both agents at high risk, as well

as agents at low risk, can benefit from adopting a social attitude. Indeed, as risk diversity increases,

the welfare of both classes of agents increases.

Recall that, in the presence of wealth inequality, adopting class-based Nash strategies or class-

based maximum welfare strategies, resulted in no notable difference in target achievement or welfare

distribution (see Section 4.3.4). Simply solving class-coordination, while maintaining a rational and

selfish class objective, was enough to simultaneously ensure optimal social welfare. Class-based Nash

strategies continue to be effective in ensuring a socially optimal outcome for low risk diversity levels.

However, we have demonstrated that for higher risk diversity, a social attitude that considers, not only

one’s class’ interest, but also the overall population well-being, is necessary to ensure lower wealth

inequality and higher population welfare.
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With this study, we conclude our investigation on the effects of risk diversity in populations facing

collective risks. We find that, low risk agents often free-ride on the contributions and efforts of high

risk agents. This occurs because agents at high risk and agents at low risk often engage in collective

risk dilemmas together, i.e., they interact in the same group. On the other hand, in populations with

wealth inequality, the large number of poor agents often restricted them to play games with purely

poor partners, a factor that limited the benefits they can draw from interactions with rich agents. In

light of these dynamics, we explore the effects of an assortment bias in populations with risk perception

or risk exposure diversity.

5.5 Effect of assortment bias with risk diversity

The risk of facing a disaster as a consequence of global warming is dependent on the geographic location

of people. As a result of geographic closeness, people at similar risk interact more often with each

other. Equivalently, people at high risk of developing serious illness from COVID-19, often interact

with others at similar high risks (e.g., in retirement homes), while children, or people at low risk of

developing serious symptoms from COVID-19, are often surrounded by other low at risk children (e.g.,

at school, playgrounds, etc.). Similar patterns can be observed for risk perception diversity where

individuals of similar intellectual knowledge and risk awareness are more likely to interact with each

other. Therefore, risk diversity and interaction patterns favoring same risk-class agents often co-occur.

We introduce an assortment bias that privileges agents from a same risk class to interact in a same

group. Recall that without any sampling bias, each class of agents represents 50% of the population.

We assume that agents with a sampling bias perceive other agents of the same class as more frequent

than they actually are. We denote this perceived frequency as α where 0.5 ≤ α ≤ 1. We use the

perceived frequency α to compute a bias weight β for agents of a same class, and β̄ for agents of

opposite classes. The bias weight represents the ratio between the perceived frequency of a class in a

population and its effective weight in the population (here 50%). We have

β =
perceived weight of same class in the population
effective weight of same class in the population

=
α

0.5
(5.8)

and respectively

β̄ =
perceived weight of opp class in the population
effective weight of opp class in the population

=
1− α

0.5
. (5.9)

As such, we have β̄ = β = 1 for no assortment bias or β̄ < 1 < β for settings with assortment

bias. To implement the assortment bias in our training algorithm, we modify the group sampling

approach in Algorithm 1 (step 1.) and replace it by the procedure described in Algorithm 2. We begin

by randomly sampling an agent i from the population. Agent i then defines a weight vector w that

allocates for every agent j ̸= i in the population, a weight bias β if that agent belongs to the same risk

class, and β̄ if that agent belongs to the opposite risk class. The weight vector is normalized and used

to sample N − 1 agents that will interact with player i in the collective risk dilemma.
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Algorithm 2: Sampling with assortment bias.

Init: α, perceived frequency of same class agents,
Sample random agent i;
Calculate β, β̄ (Eq. 5.8 and 5.9);
Initialize weight vector w← 0;
for j ← 1 to Z and j ̸= i do

if j same class as i then
wj = β

else
wj = β̄

Normalize w: w← w/|w|;
Sample random group G′ ∼ w of size N-1 ;
Return : group G = G′ ∪ {i}

(a) (b)

(c) (d)

Figure 5.23: Variations of performance with respect to assortment bias: The first row
corresponds to the population P ′

2 with risk diversity δ = 0.3. We plot for agents at high and low risk
(a) the average group achievement, (b) the learned cooperation policy, and The second row displays
the same metrics for the population P ′′

2 with risk diversity δ = 0.5 and shows (c) the average group
achievement, and (d) the learned cooperation policy. α = 0.5 represents a sampling with no assortment
bias, while α = 1 represents a sampling setting where agents only interact with other agents of a same
risk class. In all panels, shaded areas represent the standard deviation over 5 runs.

We run simulations on two RL populations with different degrees of risk diversity, P ′
2 with δ = 0.3

and P ′′
2 with δ = 0.5, and evaluate the group achievement, cooperation probability and secured welfare

of agents from high and low risk classes under different assortment biases α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.}.

We display the results in Figures 5.23 and 5.24.

In both cases, for δ = 0.3 and δ = 0.5, stronger assortment bias results in a stronger achievement
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Figure 5.24: Variations of welfare with respect to assortment bias: The first row corresponds
to the population P ′

2 with risk diversity δ = 0.3. We plot for agents at high and low risk, the secured
welfare for (a) risk exposure diversity, and (b) risk perception diversity. The second row displays
the same metrics for the population P ′′

2 with risk diversity δ = 0.5 and shows the welfare for (c) risk
exposure diversity, and (d) risk perception diversity. In all panels, shaded areas represent the standard
deviation over 5 runs.

divergence between the two classes of agents (Figures 5.23a and 5.23c). This is so despite relatively

constant cooperation policies with respect to the assortment bias (Figures 5.23b and 5.23d). Stronger

assortment bias allows agents at high risk, that continuously cooperate more than agents at low risk,

not to be hindered by the indifference of their low risk peers. Interacting more in groups of agents

with similar goals, allows them to better achieve the target. On the other hand, agents at low risk,

interacting mostly with equally uninterested agents, achieve the target less often.

The consequences that assortment bias has on welfare differs greatly under risk exposure or risk

perception diversity. The results in Figure 5.24 are qualitatively the same for risk diversity δ = 0.3

and δ = 0.5, though stronger risk diversity intensifies the emerging trend.

Figures 5.24a and 5.24c unveil how, under risk exposure diversity, assortment bias can actually

reduce the inequality in the population. Agents at high risk, now facing disasters less often, increase

their welfare. In parallel, agents at low risk, remain little affected by the decrease in their target

achievement, as their probability of facing disasters is low. We observe a convergence of the two welfare

lines. Assortment bias under risk exposure diversity can abstract some COVID-19 safety measures, such

as visiting restrictions in care homes. Strict visiting rules and limitations aim to minimize interactions

between—probably less careful—agents at low risk and the more vulnerable elderly.
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While cooperation costs remain constant for both agent classes across all assortment arrangements,

the disaster losses increase for agents with a low risk perception (due to lower target achievements)

and decrease for agents with a high risk perception (due to higher target achievements). We observe a

divergence in secured welfare in Figures 5.24b and 5.24d which, similarly to wealth inequality, causes

agents with a high risk perception to become richer, and agents with a low risk perception to become

poorer.

We note that while stronger risk diversity only induced small inequalities in target achievement

between the two classes (Figure 5.9c), the effects are magnified with the introduction of an assortment

bias. Yet, for a same assortment bias α, the population P ′′
2 with higher risk perception diversity

(δ = 0.5), generates stronger class divergences and inequalities.

The results we show under assortment bias validate the need to distinguish between risk exposure

and risk perception diversity before defining any risk governance strategies.

5.6 Financial incentives

Achieving cooperation in a multi-player collective risk social dilemma is challenging. The introduction

of risk diversity among participants augments the problem with additional challenges. While agents at

high risk of facing a disaster are highly motivated to achieve the target, agents at a lesser risk, may

not feel the same urge. The indifference of agents at low risk makes the target harder to achieve for

agents at high risk. Under risk perception diversity, aligning agents’ risk assessment through education

is decisive for effectively achieving collective action.

However, we have seen earlier that under risk exposure diversity, a social attitude regarding other

peers’ interests is necessary to improve achievement and welfare. Unfortunately, more often than not,

convincing people to act altruistically is impractical. Because the game itself offers little incentive for

selfish agents at low risk to cooperate, we investigate how a financial motivation from agents at high

risk can drive disinterested agents to cooperate. We explore financial incentives (FI) as a zero-sum

transfer of a reward from agents at high risk to agents at low risk. The peer-rewards should align the

motives of agents at different risk levels and ensure cooperation among agents with originally different

interests.

In this section, we do not focus on how financial incentives among peers can emerge in a self-

organized way, but rather study the benefits of the existence of a pre-arranged agreement between the

two classes. We detail below the design of the financial incentives and the conditions for a transfer to

occur.

In a group of N participants engaging in a CRD, let NH be the number of agents at high risk, and

NL = N −NH , the number of agents at low risk. We use the superscript to indicate cooperative and

defective agents. That is, out of NL agents at low risk, we have NC
L cooperators and ND

L = NL −NC
L

defectors. The same notation can be applied to agents at high risk. After an interaction, if the target

threshold is achieved, agents at high risk will transfer a fraction of their wealth to cooperating agents

at low risk as a reward to motivate cooperative actions. To outbalance cooperation costs, every agent
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at high risk will contribute a fraction f = 2c of the original endowment, i.e., twice the cooperation

cost, to a pool dedicated for financial incentives. The collected sum (2cb×NH) by agents at high risk

is then equally distributed among NC
L cooperators at low risk.

Agents at high risk who started with an initial endowment b, will end the game with

bHfinal =

b− cb− 2cb if they cooperated,

b− 2cb if they defected.
(5.10)

On the other hand, agents at low risk who started with an initial endowment b, will finish the game

with

bLfinal =

b− cb+ 2cbNH

NC
L

if they cooperated,

b if they defected.
(5.11)

Again, agents receive as payoffs the difference in the log of their wealth before and after an

interaction.

If the target threshold is not achieved, no rewards are transferred and agents receive the payoffs of

the original game of Section 3.1.

We uncovered how risk exposure diversity can decrease overall contributions in a population, reduce

target achievement, and result in unnecessary losses in resources. Here, we take the extreme case of

r = δ = 0.5 where cooperation, threshold reaching and total welfare are at their minima. We examine

how financial incentives (FI) can improve on each of the three criteria. We train a population of RL

agents of average risk r = 0.5 and risk diversity δ = 0.5, to play a CRD with additional financial

incentives. In this setting, agents at low risk face no risk at all (rL = r− δ = 0). Defection from agents

at low risk is not motivated by free-riding but by an indifference towards target achievement.

We observe in Figure 5.25a that financial incentives can significantly increase group achievement

from 27% to 96%. The almost certainty with which the population meets the target, cannot be achieved

by a unilateral cooperation of agents at high risk. Figure 5.25b plots the cooperation levels of agents at

high and low risk in settings with and without financial incentives (FI). While agents at low risk never

cooperate in the original setting, financial incentives actively motivate them to do so. We observe a

switch from total defection to total cooperation. Meanwhile, this allows agents at high risk to reduce

their cooperation from 58% to around 50% and save on cooperation costs.

While financial incentives increase group achievement, they are costly actions for agents at high risk.

In Figure 5.25c we plot the average welfare of each class of agents, with and without financial incentives.

Through increased target achievement and avoidance of disasters, agents at high risk increase their

secured welfare from ζ = 49% to 91%. Yet, the increased wealth is only possible if agents at high

risk reward their peers at low risk. Almost half of the gained wealth is spent on financial incentives

which eventually reduces the total welfare to ζ = 72%. Nevertheless, despite the costs of financial

incentives, the final secured welfare of agents at high risk remains higher than the secured welfare

without financial incentives.

Next, we examine the consequences of financial incentives on agents at low risk. Without financial
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(a) (b) (c)

Figure 5.25: (a) Overall group achievement for populations engaging in a CRD of average risk r = 0.5
and risk diversity δ = 0.5 with and without financial incentives (FI). We observe a clear rise in target
achievement with financial incentives. (b) The corresponding cooperation rates learned by agents at
high and low risk in each case. Financial incentives positively encourage agents at low risk to cooperate.
This allows agents at high risk to cooperate a little less and save on cooperation costs. (c) Welfare
of agents at high and low risk as well as the total welfare of the population in situations with and
without financial incentives. In the case of financial incentives, we plot for agents at high and low risk,
both the secured welfare before and after reward transfer. Thanks to higher cooperation from agents
at low risk, agents at high risk face disasters less often and secure more of their initial welfare (from 49
to 91%). This is only possible if they sacrifice a fraction of that wealth (in light color) and transfer
it to agents at low risk. Meanwhile, agents at low risk who now cooperate more, incur cooperation
costs and their welfare drops (from 100 to 90%). This is compensated by the new received incentives
from agents at high risk (hatched dark color). Both agents transferring financial incentives and agents
receiving them in exchange for cooperative contributions manage to increase their wealth. Financial
incentives create a new win-win equilibrium.

incentives, agents at low risk, to minimize cooperation costs, almost never cooperate. Since they are at

no risk of facing disasters, their wealth remains untouched (ζ = 1). With financial incentives, agents

consistently cooperate and lose on average c = 10% of their wealth decreasing ζ to 90%. However, this

is supplemented by incentives from agents at high risk which in turn increases their welfare to new

highs of 109% of their initial wealth.

From a population’s perspective, financial incentives are internal exchanges of rewards. Although

no wealth is actively produced, financial incentives create new pro-social equilibria, leading to overall

increased gains in welfare (from 74 to 90%).

Our results confirm the powerful advantages of zero-sum financial incentives in a population facing

collective risks under risk diversity. Financial incentives can mitigate and overcome the challenges

imposed by risk exposure diversity such as the decrease in target achievement, cooperation and secured

welfare. Moreover, financial incentives not only recover from risk diversity, but also improve on settings

without diversity. Figures 5.9a and 5.9d show that populations without risk diversity (δ = 0), achieve

the target threshold with probability η = 80% and an average cooperation π = 60%. Financial

incentives enhance these performances and achieve the target at a rate of η = 96% and an average

cooperation of π = 75%. While risk diversity decreases cooperation and target achievement, one

can profit from risk heterogeneity to design incentive schemes which foster levels of collective success

and contributions that are even higher than those obtained in the absence of heterogeneity. Yet, the
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collective benefits do not completely abolish the internal inequalities in the population. Considerable

differences in cooperation and secured welfare still exist between the two classes. This raises the

challenge of designing incentives that can attain even higher levels of fairness and equality within a

population.

5.7 Conclusion

We presented a novel study on the challenges posed by risk diversity on populations facing collective

risk dilemmas. In a first experimental layout, we assessed the impact of diversity in risk on the

chances of collective success in population of reinforcement learners. We observe that high diversity in

experienced risk can severely hinder achievement and decrease overall contributions and welfare for all

agents. As diversity increases, cooperation levels of agents at high and low risk respectively increase

and decrease. However, while the change in risk is symmetrical between the classes, the changes in

cooperation are not. The asymmetry is always such that the increase in cooperation of one class is

smaller than the accompanied decrease in cooperation of the other class. This raises significant target

achievement difficulties.

In conformity with results from Chapter 4, we find that changes in target achievement cannot be

directly mapped to changes in welfare. We show that for larger mean risk, welfare can decrease despite

increased target achievement. Depending on the application, it can be relevant to consider the target

achievement or the total welfare as a measure of the effectiveness of a strategy, or even search for

compromise solutions in between.

Moreover, our results suggest that the overall welfare losses for risk perception diversity are

larger than the losses for risk exposure diversity. Here, the introduction of mechanisms to level risk

assessment is key to improve group achievement and limit free-riding. The results can be used by

world organizations or authorities to argument the need for a world wide aligned awareness of the risks

associated with the climate change problem. As highlighted in other works, education can prove crucial

to ensure a homogeneous assessment of the risks involved in collective action failure [111]. Our work

also affirms the need for knowledge transfer and communication capabilities in AI agents to ensure

effective multi-agent cooperation in the presence of conflicting beliefs across agents. Nonetheless, we

find that risk perception diversity, by itself, and unlike risk exposure diversity or wealth inequality,

does not generate further welfare inequality among agents as all agents suffer equally from the resulting

losses.

On the other hand, risk exposure diversity creates a divergence in secured welfare among agents at

low and high risk. Moreover, we observe an asymmetry in the corresponding welfare gains and losses

among the two classes. Agents at high risk lose more welfare because of disaster occurrences than

agents at low risk gain from reduced disaster exposure and cooperation costs. Hence, the asymmetry

always results in net population losses.

In another study, we examined whether class-based Nash policies were effective in surmounting

the challenges posed by risk diversity. We recall that, class-based Nash policies adequately solved the
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main challenge introduced by wealth inequality, i.e., coordination. We find that, while significantly

more effective than RL populations, class-coordination and rationality in the presence of strong risk

diversity is not enough for ensuring high target achievement, minimal welfare losses, or even minimal

welfare inequality.

Only class-based maximum welfare policies, solving simultaneously the problem of coordination

and selfishness, present overall satisfactory results.

Additionally, in this chapter, we inspected the impact of an assortment bias on the performance of

a population with risk diversity in the face of collective threats. We conclude that stronger assortment

bias can level welfare inequalities in the presence of risk exposure diversity, but has the opposite effect

in the presence of risk perception diversity.

Finally, we propose to leverage risk exposure heterogeneity using financial incentives that can

simultaneously increase target achievement, global contributions and the welfare of both agents

at high and at low risk. Moreover, the achieved performances are higher than the ones obtained

in homogeneous populations. However, we note that while financial incentives can raise global

performance of heterogeneous populations above those of similar homogeneous populations, they do

not fully eliminate inequalities in the population. Designing financial incentives that promote higher

fairness and equality in a population can be an interesting topic for future works.

In the next chapter, we present a thorough discussion on the limitations of our work, on possible

extensions, and on open questions that it raises.
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Chapter 6

Discussion
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In this chapter we discuss limitations and possible expansions of our research. We recall from the related

work section that our work touches on four topics: the collective risk dilemma game, heterogeneity in

CRDs, agent modeling, and cooperative capabilities in RL. The discussion in this chapter remains in

line with these research directions, as we categorize our considerations into the same four topics. While

several extensions and even combinations of extensions of our work can be considered, we recommend

that these be first implemented sequentially, as the complexity of the system may result in inexplicable

outcomes and hence un-exploitable results.

6.1 The collective risk dilemma

We begin in this section by proposing two extensions to the collective risk dilemma game to better

reflect the real life dynamics of managing global risks.

6.1.1 Mitigation and adaptation strategies

In the face of collective threats, people and institutions simultaneously plan mitigation and adaptation

policies [142]. Mitigation policies, mitigate or reduce the likelihood of a disaster occurring. In the

CRD presented, this translates to increasing the target achievement η to ensure disasters do not occur.

Adaptation policies on the other hand, adapt to the possible scenario of a disaster occurring and intend

to reduce the resulting impact, cost, or damages of such an event. In the game studied, this would

translate to decreasing the cost of disaster occurrence p.

The collective risk dilemma, as defined in the literature, investigates cooperation as a form of

mitigation policies. Often, the impact of a disaster p is not even explicitly modeled, and instead agents

are assumed to lose all their remaining endowment in case of disaster occurrence [137].

While we do not, in our work, examine varying levels of disaster impact, we believe that modeling

this variable is crucial for two main reasons. First, we recall from the first chapter that real life global

risks comprise a wide range of problems, from digital inequality to weapons of mass destruction. It is

clear that not all common risks present the same potential dangers. Therefore, for the collective risk

dilemma (CRD), as modeled, to be representative of all types of common risks, it is relevant that the

cost of a disaster occurrence be a variable parameter.

Previous work not modeling the impact p, often consider the probability of disaster occurring, i.e.,

r, to be representative or proportional to the associated danger of the risk. We argue that this may

not always be true and present in Figure 6.1, the global risk landscape as presented in Figure II of

the global risk report [219]. On a two-dimensional chart, various global risks are ranked according to

their likelihood (increasing when moving from left to right) and their impact (increasing when moving

upwards). We observe that while many risks lie on the diagonal, indicating a positive correlation

between likelihood and impact, many risks do not follow this trend. For instance, weapons of mass

destruction are of the most impactful risks we face, yet they are simultaneously the least likely to

occur.

Distinguishing explicitly between impact (in our work, p) and likelihood (in our work, r) is therefore
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Figure 6.1: The global risk landscape as presented in Figure II of the global risk report [219]. Global
risks can vary in their likelihood and their potential impact.

necessary for a more inclusive representation of real life risks. Second, the collective risk dilemma

investigates collective contribution towards avoidance of a common risk. However, as mentioned earlier,

in real life, actors do not solve collective risks through mere mitigation policies, but simultaneously

invest in adaptation policies, e.g., building flood defenses or planning for heatwaves. We argue that

studies investigating cooperation in collective risks as a form of adaptation policies—where agents

contribute to decrease the impact p—are pertinent and complementary to the current literature.
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Importantly, contributions towards mitigation of risks and contributions towards adaptation to

risks, are likely to occur on different scales of agreements. While effective mitigation of the climate

change problem may require the cooperation of all or almost all countries, adaptation policies are

often more local projects, organized by cities or states, and rarely extend beyond the borders of a

given country. The decision of executing an adaptation plan can potentially even be fully centralized,

not subject to cooperation or coordination failures. Consequently, the success of contributions with

adaptation purposes is less doubtful than the success of contributions for mitigation purposes.

In this context, extensions of the collective risk dilemma, offering agents not two, but three choices

of actions: a) defecting, b) investing in mitigation policies to reach the target, and c) investing

in adaptation policies to reduce the impact of a disaster, can be relevant. Separating the scale of

agreements of the two cooperating actions, i.e., the group size of each interaction, as well as the costs

of those actions, can further reveal interesting dynamics on the investment strategies and expense

allocations of agents across different collective risk managing policies.

In summary, we argue that the collective risk dilemma, as studied in the literature of game theory,

can be additionally generalized to represent larger sets of real life problems and solutions. We propose

1) the explicit modeling of disaster costs, 2) the definition of a game where cooperation aims at

reducing the impact of a disaster, and 3) the possible co-existence of cooperative mitigating actions

and cooperative adaptation actions. The third point presents a first argument for our next discussion:

the enlarging of the so-far binary action space.

6.1.2 Binary action spaces

Both experimental, as well as theoretical studies, model the cooperative dilemma entailed in collective

risks as a binary decision. Agents are given the choice of either not contributing, or contributing a

pre-determined amount of their wealth towards target achievement. The model, though convenient

because of its simplicity, fails to capture the more complex real life interactions in collective risks. The

conclusions we deduce using the proposed model may not be representative of the entirety of the real

life interplay present in collective risks.

For starters, instead of a fixed amount, real life dynamics allow actors to contribute flexible amounts

of their wealth. Individuals and countries are free to invest any chosen sum to promote green energy,

reduce CO2 emissions, improve energy efficiency of buildings and infrastructures, etc. A more realistic

model of collective risks would entail several cooperative actions of different engagement levels or

intensities, or, possibly continuous actions allowing agents to contribute any preferred percentage of

their initial endowment.

Moreover, as discussed in Section 6.1.1, solving collective risks in real life involves more than

mitigation policies modeled by agents’ target achievement. Policy makers responsible of managing

global threats, tackle the problem with a multitude of simultaneous strategies. Particularly, concerned

parties can choose to invest in adaptation policies instead of mitigation policies or divide their

investments between mitigation and adaptation policies. We note that adaptation policies, such as

building a dam against floods, are less effective in solving the climate change problem. However, they
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present short term attractive solutions, as their efficacy in reducing the impact of extreme weather

events is certain and does not depend on the choices of other actors. Mitigation policies on the other

hand, aim to completely remove the danger of collective risks, yet, their efficacy is uncertain and

depends largely on the cooperative willingness of other actors in the population. Augmenting the

action space with binary, multiple or even continuous adaptive-cooperation actions is key to capture

the real life dilemma of investing in short term, less effective, but more certain adaptation policies, or

long term, effective, but uncertain mitigation policies.

Mitigation and adaptation policies can also expand over time and space. Contributions towards

the reduction of CO2 emissions, or the establishment of urban cooling centers to plan for heatwaves,

are not punctual cooperative actions, and instead require a series of sequential actions that define

the chosen policy. In that context, the black and white distinction between cooperative and defective

policies ceases [112]. A policy can simultaneously be cooperative on some levels and defective on others.

For instance, building a dam constitutes a great source of green water energy, but the reservoirs behind

the dam can lead to higher greenhouse gas emissions [167].

Additionally, group arrangements in collective risks models are often formed randomly. This may

not always be the case, particularly for repeated interactions where agents would possibly want to

avoid non-achieving groups [40]. Group or partner selection is therefore another action dimension that

can add a new layer of complexity to the game. Partner selection has in fact been investigated in

the context of collective risks with homogeneous agents [172, 173]. Here, partner selection is mainly

affected by the previous success of an agent’s group, and the previous cooperativeness of the potential

partners. Exploring partner selection in heterogeneous populations can reveal interesting findings on

the role of homophily in group arrangements, and the naturally emerging assortment bias.

Furthermore, we also expect that remunerations and punishments [78, 188], as well as communication

channels [53, 106] may add sophistication and realism to the model and can help in understanding the

emergence of cooperation in the face of collective risks.

Finally, we note that while actors may perform different actions simultaneously, the group size

or the scale of each action’s impact may vary. For instance, communication and the implementation

of adaptation policies may be local, while mitigation efforts may be more global. A general model

of collective risks should support different and simultaneous scales of interactions for different and

simultaneous types of actions. In the next section, we propose new types of heterogeneity that we see

relevant in the context of CRDs.

6.2 Heterogeneity in collective risk dilemmas

In this section we expose a limitation of our wealth inequality modeling, explore a novel heterogeneity

among agents, and discuss more sophisticated ways of implementing general heterogeneity.

102



6.2.1 Real world vs modeled wealth inequality

In Chapter 4, we analyzed the impact of wealth inequality in a population where 20% of the agents

held 50% of the total riches. We chose these numbers to align our work with similar previous studies

using evolutionary dynamics. However, real world data is far more alarming than our considered

scenario. In fact, the world inequality report of 2022, reveals that 20% of the world population holds

85% of the total wealth [4]. Repeating our study using the real world wealth distribution is important

to confirm our findings.

Additionally, our study suggests that the degree of wealth inequality in a population can increase in

the presence of collective risks. Simulating levels of wealth inequality that are higher than the current

levels of wealth inequality, is decisive in assessing the long term consequences of today’s inequality.

Furthermore, for a deeper understanding of the impact of wealth inequality on populations facing

collective risks, a sweep over several varying levels of wealth inequality is indispensable.

Finally, we find it interesting to repeat our study with a population of Z = 195 agents (each

representing a different country), and allocate to each agent an endowment proportional to the ratio

between its country’s GDP and the world’s total GDP. Comparing the results of such a study to the

results of our study in Chapter 4, would be key to evaluate the robustness of our method.

6.2.2 Heterogeneity in impact

We have discussed in Section 6.1.1 how adaptive actions or plans can restrict the impact of a disaster

occurrence. For instance, building dams can protect in the event of floods, and switching to drought-

resistant crops can cap the losses in livestock productivity in the face of prolonged shortages in the

water supply [205].

Adopting effective adaptation policies requires the conviction of policy and decision makers as

well as sufficient funds to finance such projects. Diversity in convictions and available budget can

therefore translate to diversity in disaster impact. Concretely, a set of interviews with different social

actors identify in the Netherlands alone, six different viewpoints on what adaptive actions to prioritize

[212]. Moreover, a cross-country survey has confirmed that while rich countries are more aware of the

climate change problem, they are also better prepared and therefore less concerned with its potential

consequences than are poor countries [117].

Modeling an initial population diversity in impact p, is relevant to examine the effect it can have

on collective motivation towards target achievement. Additionally, diversity in impact can possibly

generate new, or amplify already existing, inequalities in welfare. We have seen in Chapter 4 that

even for identical disaster impacts, wealth inequality can get magnified in the occurrence of collective

risks. We argue that the identified negative consequences of wealth inequality can potentially be

underestimations of the real life repercussions of wealth inequality. We encourage therefore comparisons

of studies on diversities in impact, diversities in wealth, and more realistically, simultaneous diversities

in welfare and impact.
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6.2.3 Single type and binary class heterogeneity

In this work we modeled a binary population heterogeneity in wealth and risk. While our results reveal

significant impact of heterogeneity on cooperation, target achievement and welfare, we note that real

life heterogeneity is more intricate and complex than a binary class division.

For instance, wealth inequality is believed to follow a Pareto distribution [101, 107]. The Pareto

distribution is a continuous distribution whereby X% of the wealth is held by Y% of the population.

In our model, we assumed that 50% of the wealth is held by 20% of the population. Importantly, the

Pareto distribution is fractal and scale invariant [182]. As opposed to our model in which all poor/rich

agents were equally poor/rich, the Pareto distribution states that the 50 − 20 wealth distribution

remains true within each wealth class. This means that within the 20% of rich agents, 50% of the total

rich agents’ wealth is held by 20% of the richest rich agents. This property remains true at all scales.

While a binary heterogeneity is convenient for a first, simple and clear analysis of the dynamics of

wealth inequality, the substitution of this model by a more realistic and representative distribution

may be critical for more accurate problem predictions.

Similarly, diversity in risk perception or exposure to collective risks is more fine grained than

our suggested binary model. Figure 5.1 and 5.2 for example, both use five risk classes. We have

shown that, given a fixed average risk, populations with one risk class (homogeneous) or two risk

classes (heterogeneous) reveal distinct dynamics. The results therefore do not exclude the possibility

of different results for populations of 3, 4, or n classes, or even continuous risk distributions. The

choice of the granularity of the intervals representing different risk classes can have an impact on

the observed results. We note that in our work, we compared two populations of equal mean risk

but different standard deviations. While the homogeneous population has a risk standard deviation

σ = 0, the binary heterogeneous population has a risk standard deviation σ = δ. Risk distributions of

equal mean but different standard deviations produce different dynamics in the face of collective risks.

However, the standard deviation or the second moment may not be the only significant statistic worth

studying. The third moment measuring the skewness or non-symmetry of distributions could also

affect the outcome of populations facing collective risks. For instance, only a minority and not half of

the population is at high risk of suffering severe illness from COVID-19. A proper investigation on the

impact of the granularity of risk classes and the different distribution statistics requires meticulous

work and considerable simulations and remained therefore out of the scope of our work.

Finally, the binary risk and wealth heterogeneity were explored independently. Every performed

simulation in Chapter 4 and 5 presented a single type of heterogeneity. However, many real life

perception or exposure to collective threats is often correlated with the wealth status of countries or

individuals. Additionally, wealth inequality also generates an inequality in how prepared countries are

to face imminent threats. Diversity in preparedness to global risks can be seen as a diversity in risk

impact (p). The three heterogeneities co-exist in the real world and can rarely be separated. Poor

countries are less aware of the climate change problem [111]. Rich countries are more prepared to face

extreme weather events and therefore perceive smaller risks [117]. GDP inequality among countries
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creates vaccination and health care system inequalities which translate to higher COVID-19 death

rates among poor countries [52, 193]. Studying different heterogeneities separately helps determine

and distinguish their different effects on cooperation, target achievement and welfare. Nonetheless,

in the context of large complex systems, the impact of two simultaneous heterogeneities may not be

entirely deduced by looking at the impact of each distinct heterogeneity alone. We encourage future

studies on heterogeneity to complement the results we show by exploring a combination of simultaneous

diversities. In the next section we deliberate the possible choices and available extensions to agent

modeling.

6.3 Agent modeling

In this section we explore reasonable refinements to the proposed agent model. We consider modifications

to the agents’ decision-making process, to their action evaluation measures, and their policy improvement

dynamics. We also explore the concept of multi-objective learning.

6.3.1 Decision-making, evaluation and policy improvement

Adaptive agents generally reach their final policy through a trial and error process consisting of three

repeating steps. In the context of a task or game, agents select an action, evaluate the utility of

their choice, and accordingly modify their action selecting policy. In our work, agents select actions

proportionally to the cumulative reward they received in the past when choosing said actions. They

then evaluate the utility of their choice using the difference in the log of their wealth before and after

the action was played. Afterwards, they use the computed value to update their propensity vector,

which modifies their action selection probability in the next round.

Modifications to this agent model can be performed on all three steps. First, our model leaves

as unexplored several important decision-making constraints that may interact in non-trivial ways

with wealth inequality and risk diversity. Agents in our work are indifferent to group configurations

and make their decision independently of the number of rich/poor or high/low risk agents in their

group. Observing and exploiting this information could help agents make smarter choices. Moreover, in

repetitive games, recognizing previously cooperative or defective peers is useful for making well-informed

decisions. In this context, actors can adopt conditional behaviors based on the past contributions of

other group or class members [55, 56, 99]. Properly exploiting additional environmental data may

require agents to have more sophisticated intellectual capabilities. The level-k model abstracts the

reasoning complexity of an actor by defining by the number of iterated thinking steps the individual

takes before making their decision [141, 187]. Level-0 agents are the least sophisticated actors, following

a random policy or simple heuristics. Level-1 players try to maximize their expected return assuming

a level-0 opponent. Generally, a level-k player will play a best response against a level-k − 1 player.

By reasoning about an opponent’s reasoning, the level-k model successfully predicts human behavior

in some games with symmetric information and strong coordination motive [181]. Yet, the predictive

power of the model is not robust across all settings. Depending on the application, it is appropriate to
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make plausible assumptions about agents’ memory and cognitive skills. Additionally, individuals may

have a social form of intelligence. They could follow social norms [34, 177, 190], form coalitions [95],

or have the chance to commit with particular choices, being monitored and sanctioning if they do not

abide by their pledges [33, 80].

Defining the exact utility agents extract from playing a given action is a challenging problem. We

abstracted agents’ utility in the collective risk dilemma by a monetary log-utility. The logarithmic

utility is a utility function introduced the first time by Daniel Bernoulli in 1738 to model a diminishing

marginal utility [18]. As explained in Section 3.1, under log-utility the impact of monetary losses and

gains is relative to one’s initial wealth. Wealthy individuals are less affected by a loss of x welfare

units than are poor individuals. The logarithmic utility function is also characterized as a risk averse

utility. If given the choice between a certain return of value E and uncertain return of expected

value E, e.g., a 10% chance of receiving 10E and a 90% chance of receiving nothing, a risk averse

agent prefers the certain outcome. On the other hand, a risk seeking agent prefers the uncertain

outcome, while a risk neutral agent is indifferent as to which return they receive. Mathematically, risk

averse agents have concave utility functions, risk seeking agents have convex utility functions, and

risk neutral agents have linear utility functions. While the hypothesis of risk aversion is widely used

in economics, e.g., in portfolio management, research in psychology confirms that some individuals

have risk seeking attitudes [92]. Risk attitudes have also been shown to be correlated with gender,

where men are more risk seeking than women [28]. Exploring cooperation in collective risks with risk

seeking agents instead of risk averse agents or a combination of risk averse, risk seeking, and risk

neutral agents, would complement our findings and perhaps result in more accurate predictions on

human behaviors in the face of collective risks. Moreover, in human societies, different degrees of

risk aversion may be observed, that the logarithmic utility fails to abstract. The power or isoelastic

utility [81] solves this problem and captures the Arrow–Pratt coefficients of risk aversion [7, 158]. The

complexity of a population’s utility in the face of CRDs can further be increased by considering agents

with varying magnitudes of risk aversion/seeking attitudes. The literature on utility functions proposes

numerous other types of utility functions, to capture observed human preferences. We list for example

research on rank dependent utilities that model the observed human over-weighing of low-probability

events [38, 118, 159] Despite the progress in utility function modeling, the complete understanding of

human utility remains an unresolved problem. For instance, framing a same problem in different ways

produces different decision outcomes [115]. Additionally, for utility functions with several parameters,

estimating a single parameter using empirical data, requires researchers to make assumptions about

the remaining dependent parameters and lowers the accuracy of such estimates [155].

While it is difficult to accurately model human monetary utility, the problem becomes more intricate

when trying to capture the observed, harder to quantify, human social utilities. Experimental studies

prove that players often additionally care about equality, fairness, their social image, guilt-aversion,

etc. [31]. The hyper-rational choice is a behavioral model in which actors think about profit or loss of

other actors in addition to their personal profits [8]. Nonetheless, human preferences seem to exhibit

complex subtleties. For example, experiments show that players tend to better accept inequality when
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generated by a computer instead of a human opponent [21].

Moving away from behavioral game theory, we find that learning models often incorporate different

types of utility. Some reinforcement learning algorithms, inspired by psychological theories, abstract

the observed human preference for novelty, and integrate a utility for curiosity [60, 152]. Actions or

policies demonstrating curiosity are compensated with intrinsic rewards. Similarly, in another work,

influential actions are valued using intrinsic rewards [100]. Evolutionary algorithms [184] on the other

hand capture the utility of relative performance. For a specie to survive the natural selection process,

it must not necessarily perform well, but simply perform better than its competitors. The utility of an

agent’s action, strategy, or policy, is given by a relative fitness metric of all engaged players.

The proper mapping of utility functions is an inconceivably complex and intricate problem that

remained out of the scope of our work. While a lot of advances have been made, we find that utility in

the context of collective risk dilemmas is rarely explored. We believe that future investigations in this

direction are valuable to the literature on utility functions, collective risk dilemmas, and behavioral

economics.

When inspecting how agents modify their policy, we can distinguish different types of update

rules. Reinforcement learning, as the name suggests, reinforces previously successful actions and hence

gradually improves the agent’s policy. Several variations to the classic update rule are proposed to

promote exploration [199], leniency [19], cooperation [43], etc. Choosing the model that best fits

human adjustment in collective risks remains an open question. On the other hand, in social learning,

i.e., under evolutionary dynamics, instead of improving the policy gradually, agents simply copy

another more successful peer’s policy. Agents forget their policy and improve by simply imitating and

adopting an already existing better policy. Future work can explore heterogeneity in policy update

rules among agents facing collective risks or investigate new update rules combining simultaneous ideas

from imitation and reinforcement learning. Finally, we note that in our work, agents began with a

random policy with no initial preference to either cooperation or defection. This is not always the case

in real world situations. Here, data suggests that people and even children can transfer previously

acquired knowledge across problems that share a common underlying structure [25]. Transfer learning

is a very popular research area and we refer the interested reader to thorough surveys on transfer

learning in RL [195], transfer learning in deep RL [227], and transfer learning in multi-agent RL [47].

In this section, we provided numerous possible modifications to the agent learning model. Par-

ticularly, we suggested that players optimize at the same time a selfish monetary utility as well as

a social utility. We recall that in social dilemmas, the selfish and social utilities are incompatible.

Optimizing multiple conflicting objectives requires more sophisticated dynamics than optimizing a

single objective. In the next section, we justify why collective risk dilemmas can be an interesting

domain for multi-objective learning.

6.3.2 Multi-objective learning

Multi-objective learning concerns agents with multiple and conflicting goals. The management of

collective risks in real life is a valid application for such multi-objective planning. First, the yearly
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global risk report by the world economic forum confirms the variety of global risks that need to be

governed simultaneously [219]. Since funds are generally limited, any investment to support a given

cause, e.g., biodiversity, necessarily implies a compromise on another cause, e.g., pandemics. Moreover,

we saw in Section 6.1.1 that the effective management of a global risk calls for simultaneous mitigation

and adaptation policies. Again, limited funds require a trade-off between the two solutions. Even

in the case of infinite or sufficient funds, mitigation and adaptation policies can still be conflicting.

In the context of managing extreme weather events, a dam is a great means to adapt and minimize

the impact of floods but the linked reservoirs cause greenhouse gas emissions that increase the risk of

extreme weather events, making it a bad means to mitigate the global risk.

In addition to the challenges of finding in the real world a purely cooperative action, akin to the

one used in the collective risk dilemma game model, several other properties of the problem necessitate

a multi-objective perspective. First, in the face of large potential risks, it can be relevant to not

only optimize for the average or expected outcome, but also, for example, for the worst case scenario.

This is referred to as risk-sensitive decision making and can be modeled as a multi-objective problem

[124]. Several so-called risk measures can be defined [89], and we refer the interested reader to a

comprehensive survey on safe reinforcement learning [75].

Second, since collective risks can have significant consequences on a population’s well-being,

accountability of policy makers and hence interpretability of their chosen strategies in necessary. When

making AI-aided decisions, quantifying the impact of different objectives on each other and explaining

the trade-offs of different policies can only be achieved using explicit multi-objective learning [224].

Third, the studied CRD with heterogeneity among agents and sustained inequality provides a

pertinent domain for optimizing social utilities such as altruism, fairness and equality. Again, this

requires policy makers to reason about multiple returns and choose an appropriate fairness criteria, e.g.,

maximizing the smallest return or minimizing the differences in returns. Fair policies have therefore

been investigated in the context of multi-objective learning [183].

We believe that the described reasons make a compelling case for multi-objective learning in CRDs.

We refer the interested reader to more exhaustive surveys on the topics of general multi-objective

learning [88, 166] and multi-agent multi-objective learning [161]. We note that other non-conventional

approaches have been proposed for solving multi-objective RL. One solution consists of viewing the

problem of multi-objective RL with concave utility as a mean field game and hence solving it using mean

field games algorithms [76]. As was evident throughout our work, reinforcement learners suffer from

major cooperation challenges when facing collective risks, and heterogeneity only further aggravates

the difficulties. In the next section we propose new cooperative capabilities for RL agents that we

deem appropriate for this setting.

6.4 Cooperative capabilities

In this section we examine how financial incentives and peer rewards can be leveraged in heterogeneous

or conflicting environments to help agents reach cooperative solutions.
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6.4.1 Financial incentives

Financial incentives have been studied as a means to prevent free-riding and promote cooperation

among agents facing collective risks. A study on CRDs, finds that positive incentives are essential

to initiate cooperation when the perception of risk is low while negative incentives are instrumental

to maintain cooperation [78]. A similar investigation suggests that a local sanctioning scheme with

pure rewards is the optimal incentive strategy to maximize cooperation when facing common risks

[188]. While the previous studies focus on rewards among homogeneous agents in a symmetrical game,

a game theoretical analysis and an experimental study on wealth inequality in climate agreements,

showed that financial incentives from rich to poor countries increase global contributions and reduce

net emissions [58].

Financial incentives in the form of peer-rewards rewards also promote cooperation in public goods

games [156, 191]. Analogous research showed that institutional rewards likewise stimulate cooperation

[45, 59, 221]. Additionally, in an experimental setting of the repeated public goods game, peer-rewards

were proven to maintain public cooperation and lead to higher total earnings [163]. Rewards, sanctions,

and financial incentives in general, are a means to influencing opponents or peers’ actions and choices.

As seen in Section 2.2.4, the literature on multi-agent reinforcement learning has generally studied

influential behaviors in agents using communication channels or influential game actions [68, 71, 223].

Yet, some studies have revealed preliminary empirical success in implementing rewarding channels

between agents. The introduction of decaying peer-rewards during training, was empirically proven to

be effective in avoiding the tragedy of the commons in a resource appropriation setting [120] and in

increasing the chances of converging to a pro-social equilibrium in a Stag-Hunt game [216].

While influencing the reward of an opponent has not been thoroughly investigated in MARL,

recovering or optimizing a reward structure is at the center of interest of many single agent RL problems.

Inverse reinforcement learning (IRL) for example, tries to recover the reward function that could be

a prior for a given optimal policy or set of trajectories [145]. AutoRL and evolution strategies (ES)

have also been used to explore and evolve different reward functions with the goal of finding the one

that facilitates the learning of a predefined task [41, 67]. Moreover, in some adversarial RL problems,

an attacker aims to poisons a learner’s reward function with the goal of enforcing a predefined target

policy on that learner [162, 226]. Reward shaping is another research field interested in transforming

the reward structure to facilitate learning without altering the optimal task policy [128, 144, 222].

Reward shaping has been proven effective in multi-agent learning, leading self-interested agents towards

social solutions [122]. Similar results are observed in multi-objective learning where reward shaping

can improve both learning speed and the quality of the desired Pareto-dominating solution [123].

The literature on rewards and punishments in social dilemmas, recognizes financial incentives as

an instrument to influence an opponent by prohibiting free-riding. In our work we identify a novel

purpose for financial incentives emerging from the challenges raised by diversity in risk exposure.

Under such diversity, an agent at low risk of facing a disaster can choose to defect, not to free-ride on

the contributions of others, but simply because of an indifference towards target achievement. For
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an agent at low risk, if the threshold is not met, the chances of facing a disaster are low. If the

cost of cooperating is equal to or higher than the cost of failing, an agent can lose interest in target

achievement. For instance, vaccinated individuals with low probability of facing severe illness from

COVID-19 can feel discouraged to follow unpleasant safety measures. Nevertheless, a vaccinated person

can still be contagious, and the selfish behavior can have dangerous consequences for other people at

high risk. From a climate action perspective, people in different locations can be at different risks

of facing extreme weather, forest fires, floods, etc., and therefore can experience different levels of

motivation to achieve climate agreements. We show how financial incentives can provide a new solution

for aligning interests among heterogeneous agents, rather than only a way of discouraging free-riding.

Encouraged by the proven positive potential of peer-rewards in MARL and social dilemmas, we

present a preliminary algorithm at the workshop on adaptive and learning agents (ALA), for agents to

learn to reshape peers’ reward functions and goals to move from conflicting dynamics to conforming

and cooperative ones [130]. The novelty in our approach is that 1) the influence of the opponent and

the alignment of interest is done through a reward channel, 2) the reward used for opponent shaping

is learned and not handcrafted and 3) no apriori knowledge of the optimal opponent target policy is

needed. We refer the interested reader to Appendix A that reprints the full paper. Despite weaknesses

and limitations in our preliminary algorithm, such as sensitivity to variance and initial conditions,

we encourage future research on reward exchanges or peer sanctioning in multi-agent reinforcement

learning and believe that interesting economical interactions may emerge. In this context, it is also

interesting to investigate the differences between rewards given by humans, constructed systematically

or learned by reinforcement learners.

In this chapter we reviewed the limitations and possible extensions of the model we used for

answering our research questions. We also showed how our results can be exploited by cooperative AI

and proposed peer-rewards as a new cooperative capability for RL agents. In the next chapter, we

wrap up our work by revisiting our major contributions and proposing potential applications.
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Chapter 7

Conclusion
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In this chapter we conclude our work by highlighting our primary contributions and discussing potential

applications.

7.1 Contributions

In this work, we presented a thorough investigation of the consequences of wealth and risk heterogeneity

for populations facing collective risks using analytical studies and social simulations. We are aware

of the simplicity of our models, particularly when compared with the complexity of the problems

mentioned. The models we used constitute caricatures of human conflicts and learning dynamics. On

the other hand, the simplicity of these models makes them generally suitable for a broad spectrum of

cooperation problems emerging at different scales and levels of complexity. We recall from Chapter 1,

that the objective of this document is to answer three main research questions:

1. What are the consequences of individual heterogeneities in wealth and risk on populations’

attempts in avoiding collective risks?

2. What behavioral differences are observed in populations of adaptive reinforcement learners

compared to populations of statically reasoning agents? And how do these echo on the overall

well-being of a population?

3. What solutions or mechanisms can be designed and introduced in a population to overcome the

challenges posed by heterogeneity?

Below we summarize the contributions made to this end.

• We propose an analytical solution for the N -player collective risk dilemma game occurring within

a larger population of size Z ≥ N , and presenting up to two classes or types of agents. Our

solution is based on perfect class coordination where agents of a same class necessarily play the

same policy. We detail this analysis and the solutions for each of the cases of wealth inequality

(Section 4.2) and risk diversity (Section 5.3). For each case, the analysis is completed for both

self-interested and social agents. The solutions are therefore referred to as the class-based Nash

and the class-based maximum welfare solution respectively. The method we propose can easily

be adapted to other types of binary agent classes.

• While most studies on collective risks measure the success of a population using the level of

target achievement η, we base our evaluation on an additional measure: the remaining welfare ζ

(Section 3.4). We show that higher achievement η does not always translate to higher welfare ζ

(Chapters 4 and 5). Our findings prove the usefulness of the suggested measure and encourage

future work to consider both criteria for a more complete assessment of the consequences of

collective risks.

• We complemented the literature on wealth inequality in collective risks—generally studied from

the perspective of evolutionary game theory—by presenting an examination of the impact of the
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risk value and the group size using the class-based analytical solution, and social simulations with

independent reinforcement learners (Chapter 4). In this context, our main findings comprise:

– Under higher risk, homogeneous and heterogeneous RL populations attain the target more

often, but still incur larger losses in welfare. The increases in achievement are not enough

to compensate the increased losses of ever more likely disasters.

– Despite similar contributions, RL populations with and without inequality secure different

levels of target achievement and remaining welfare. Wealth inequality is particularly

detrimental in smaller group sizes, but this effect weakens and even reverses for sufficiently

large group sizes.

– For RL populations, the best performance in terms of target achievement and secured welfare

is achieved by homogeneous populations playing in small group interactions requiring little

coordination.

– For all tested configurations with RL populations, rich agents cooperate more than poor

agents. The trend strengthens for larger risk and weakens for larger group sizes. The

opposite holds for most experiments with class-based Nash populations where poor agents

cooperate more than rich agents. Here, the phenomena decreases for larger risk and increases

for larger group sizes.

– Homogeneous RL populations achieve lower performance for larger group sizes due to greater

coordination difficulties. Heterogeneous RL populations with wealth inequality are more

robust to these coordination challenges and achieve similar performances for all tested group

sizes.

– For RL populations facing a collective risk, wealth inequality can generate further wealth

inequality, especially for higher risk values. The effect however weakens for larger group sizes.

Opposite dynamics are observed for class-based Nash populations where wealth inequality

only generates more inequality in larger group sizes.

– Class-coordinated rationality can maintain high target achievement levels and welfare for

all risk values and group sizes, with or without wealth inequality. Nonetheless, for smaller

group sizes, populations with wealth inequality require higher contribution levels to sustain

similar performance levels.

– In the presence of wealth inequality, class-based Nash populations reach higher target

achievement levels and secured welfare than RL populations. In smaller groups, their

policies also generate fewer wealth inequality. However, the opposite becomes true for larger

group sizes where class-based Nash solutions boost wealth inequality.

– For all tested settings under wealth inequality, class-based Nash populations achieve similar

performance metrics as class-based maximum welfare populations.

• We addressed a gap in the literature on risk diversity in CRDs (Chapter 5). Our contribution to

this domain is twofold.
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◦ We present a study on the impact of the mean risk and the magnitude of risk diversity using

the class-based analytical solution and social simulations with independent reinforcement

learners.

◦ While the term “risk” is generally used indistinctly to refer to both risk perception and risk

exposure, we explicitly differentiate the two concepts. We establish the necessity of this

distinction and confirm that risk exposure and risk perception diversity result in major

differences in welfare and welfare distribution in the population, particularly in the presence

of assortment bias.

Our main findings on the impact of risk diversity include:

– Similar to populations with wealth inequality, RL populations with risk diversity achieve

the target more often for higher baseline risk. Again, the results do not transfer to the

secured welfare that decreases despite higher achievement. RL agents do not sufficiently

adapt to higher risks.

– Neither RL nor class-based Nash populations manage to overcome the challenges of risk

diversity. We find that stronger risk diversity decreases target achievement and overall

welfare. Interestingly, only risk exposure, and not risk perception, diversity introduces an

inequality in welfare distribution.

– The unfavorable impact observed on populations with risk diversity compared to homoge-

neous populations fades with higher baseline risk.

– Despite not fully overcoming the difficulties introduced by risk diversity, class-based Nash

populations ensure higher levels of target achievement and welfare, as well as a more

equitable distribution of wealth in the presence of risk exposure diversity.

– Unlike the case of wealth inequality, under high risk diversity, class-based Nash populations,

i.e., class-coordinated and self-interested agents, under-perform compared their social

counterparts, i.e., class-based maximum welfare populations. We find that under risk

diversity, social solutions guarantee higher target achievement and overall population

welfare.

– The consequences of assortment bias in group sampling vary substantially in the presence

of risk exposure versus risk perception diversity. In the former case, an assortment bias

decreases the inequality in wealth distribution, while in the latter, inequality increases. The

tendency is heightened with higher values of risk diversity.

• We introduced a novel function for the use of financial incentives. While most of the literature on

social dilemmas views financial incentives as a means to inhibit free-riding, we show that it can

also be used to align agents’ incentives in heterogeneous settings. Here, financial incentives help

overcome all of heterogeneity’s challenges, and even leverage the presence of risk diversity to

achieve a performance higher than the one observed in homogeneous settings. In this context, we
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also suggested a preliminary RL algorithm that learns to use peer-rewards to increase cooperation

between agents with decoupled or conflicting interests.

• We presented a detailed discussion on potential extensions to the modeling of collective risk

dilemmas and showed how our findings can profit research on cooperative AI.

In the next section, we examine possible applications that can benefit from the contributions of

this thesis.

7.2 Applicability

It is uncontested that humans use a kind of trial and error process to learn and adapt to their

environment. However, for complex tasks, society has managed to speed up the process through

information sharing and education. As such, a new engineer does not need to build several unsteady

bridges or buildings before designing a solid one. Education is particularly imperative in high risk

situations where errors can be fatal or necessitate long periods of time to recuperate from. For example,

humans do not learn to drive a car through a purely error and trial process. Instead, they receive

robust theoretical education and practical supervision. Similarly, most humans learn about poisonous

plants through books instead of experience. Collective risks are another high risk domain affecting not

a singular individual but a whole community at once. Learning to manage collective risks through pure

trial and error is therefore unwise. Nuclear weapon managing errors can easily eradicate a whole city.

Observing the outcome of a strategy without concretely carrying it out, can help avoid catastrophic

consequences. In addition to answering to a scientific curiosity of understanding human behavior, our

work provides crucial information about potential dangerous outcomes in a safe and fully simulated

environment. Potential applications and real life threats that can benefit from our findings include:

• Pandemics: In the face of pandemics, such as the COVID-19 crisis, governments and policy

makers can adopt a wide range of policies. How to best sustain the economy, the educational

system, the health care system, etc., depends largely on the internal structures of each country

or state. The population density of a city, the interaction patterns of its individuals, its wealth

distribution, and the potentially resulting inequality in access to effective health care, all influence

the optimal strategy to implement. The complexity and the entanglement of the different

parameters make simple and straightforward predictions impossible. Governments can resort to

social simulations to make more informed decisions [46]. We showed in our study that, when

agents are at different risk exposure levels, e.g., healthy and unhealthy people in the face of

COVID-19, mitigation policies like wearing face masks, keeping safe distances, etc., are less

effective (the target achievement drops). This is analogous to predicting a faster spread of

the disease as the population at low risk is reluctant to cooperate, making the problem harder

to solve for the remaining population at high risk. Here, our results demonstrate the urgent

implementation of proper adaptation measures, e.g., increasing hospital capacity, to prepare for

the increased likelihood of a disaster occurrence. Our work can be viewed as a a first step for
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such studies and provides tangible proof (and a baseline model) on the importance of effectively

modeling the possible heterogeneities and group arrangements of each society.

• Climate action: Climate change and the spread of a viral disease differ mainly in their disaster

occurrence horizon. While the failure of containing the spread of COVID-19 and its consequences

can be measured and felt on a daily basis, climate change occurs on a longer horizon. The

true aftermaths of climate change are unknown, but simulations provide alarming predictions

regarding links to extreme weather events [93], as well as potential impacts on health [200]

and economic [54] risks. Knowledge about the potential dangers motivates countries to enforce

climate action laws. Our results however suggest that agents may not sufficiently contribute even

when knowing the true risk of a disaster. Mitigation policies therefore, must still be accompanied

by adaptation policies to alleviate the damages of possible disasters. However, the most alarming

setting occurs if people perceive a risk lower than the real risk. We already found that agents do

not contribute enough with higher risks. A further reduction in contributions because of a false

sense of security can be highly dangerous. The education sector plays a crucial role in teaching

and building climate aware behaviors in younger generations [6, 111]. Because agents contribute

more but not sufficiently more with higher risk, another conceivable solution would be to increase

risk perception. Convincing people that they’re at a higher risk than they actually are, can

incite them to contribute more and better avoid disaster losses. We also believe that behavioral

simulations like our work, can be used to increase personal responsibility and awareness about

the importance of individual cooperation. Because education and knowledge only propagate

slowly in time, in the face of an imminent danger, ideas from our findings on financial incentives

can be applied. For instance, financial incentives from countries perceiving a high climate change

danger to countries not assessing the emergency, can be a fast and practical way of increasing

global contributions and mitigating the problem.

• Financial markets: Financial crises are a recurring event in the global markets. Self-interested

banks or financial institutions are tempted to make quick profits to the detriment of long term

economic stability. Similar to the climate change problem, the fatality of such selfish strategies

are only observed years later. So-called financial bubbles can build and eventually burst causing

long-term financial disasters [136]. The global recovering from financial disasters is a slow process

and often results in the bankruptcy of some of the largest financial participants [228]. The

damage caused by greedy financial market players often affects those same institutions. Using

social simulations to predict the crash that can occur from defective behaviors can motivate

concerned parties to collaborate on more sustainable goals. Additionally, the data can be used to

guide governmental units in implementing adequate sanctions and regulations.

Other conceivable domains of application involve the management of war triggering events such as

nuclear weapons, geopolitical interests, oil and gas resources, etc. Alternatively, our work can help in

solving societal problems, such as inequality, by guiding the design of urban policies and mechanisms

that mitigate segregation based on wealth.
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Lastly, we believe that our work can be applied to pro-social computing, a relevant research

avenue where the combination of behavioral experiments and theoretical work may lead to valuable

insights on cooperation among humans, but also in populations comprising humans and machines

[174]. In the context of collective risks, our findings under risk diversity for example, suggest that

cooperation cannot be enforced using communication, retaliation or other classical solutions that

increase cooperation in symmetrical social dilemmas. Future approaches may consider the inclusion of

agents with predetermined behaviors, and test how these individuals can profit from diversity to nudge

others to behave more cooperatively [57].

7.3 Future Work

We provided in Chapter 6 a detailed discussion on possible future work avenues, either derived from a

limitation of the current work, or inspired by specific results we observed. We propose here a selection

of future research questions that emerged from this thesis.

• Learning human utility functions: The literature on behavioral game theory, and general

utility theory, proves the intricacy of the human utility function. Neural networks have proven

to be excellent in modeling non-linear and complex functions. Instead of hand-crafting human

utility functions, how can we leverage state-of-the-art machine learning techniques to learn from

real life data, a mapping of the true human utility function? How can we leverage developments

in interpretability and explainability of machine learning models to advance our knowledge about

the relevant variables involved in making this prediction?

• Interpretability of more complex models: Despite the strong progress and increase in

computation capability observed in the past years, models of real life problems remain limited in

complexity. This is because additional complexity often significantly reduces the interpretability

and intelligibility of the results, yielding the gains from accuracy futile and in vain. Before

extending our model to incorporate missing real-life components, resources should be devoted to

advance our ability in disentangling convoluted dynamics and better interpret complex systems.

While a model needs not to be accurate, only useful, we believe that for equal interpretability,

increased accuracy necessarily increases the model’s usefulness.

• Social cooperative incentives: In this work we modeled agents with monetary utility, where

the choice of cooperating or not was motivated by the resulting expected future wealth in each

case. In this context, we showed that financial incentives can be an effective means to increase

cooperation from non-engaged agents. However, we also argued in Chapter 6 that humans care

about more than monetary value, and additionally regard social features that can be either

altruistic, such as equality and fairness, or selfish, such as their relevant performance or status

among their peers. Under social motivation, what mechanisms can be designed to encourage

effective cooperation among agents?
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• Designing coordinating institutions: Collective risks and other situations requiring collective

action from a large number of actors, not only suffer from cooperation problems, but also

coordination challenges. Our findings prove the efficacy of pre-imposed class-coordination in

increasing target achievement and welfare in a population. How can coordination be promoted

among independent, often not directly communicating people, to improve our effectiveness in

avoiding and governing collective problems? How can artificial agents be used and designed to

establish coordinating institutions in a society?
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This chapter is a reproduction of the workshop paper “LIEF: Learning to Influence through Evaluative

Feedback” presented at the Adaptive and Learning Agents (ALA) workshop at the 20th international

conference on Autonomous Agents and MultiAgent systems (AAMAS), and briefly discussed in

Section 6.4.1. We propose a multi-agent reinforcement learning framework where rewards are not only

generated by the environment but also by other peers in it through inter-agent evaluative feedback.

We show that the method allows agents to effectively learn how to use this feedback channel to

influence their peers’ goals and move from independent or conflicting objectives to more coinciding

and concurring ones. We advance with this in the field of cooperative reinforcement learning; not by

aiding agents in increasing performance in an already cooperative environment, but by giving them a

tool to transform antagonistic environments into cooperative ones.

A.1 Introduction

In reinforcement learning (RL) an agent learns a task through trial-and-error from feedback received

from its environment. Generally, depending on the state and action of the agent, a feedback in the form

of a positive or negative reward is attributed. This feedback, defined by a reward function, is the most

succinct, robust, and transferable definition of the task [144]. In multi-agent reinforcement learning

(MARL), several agents interact with each other and with the environment to solve a common or

disparate tasks (i.e., they have a common or disparate reward functions). In the general case, defined

as a Markov Game, both the reward function of an agent as well as the transition function of the

environment, can have explicit dependencies on the joint action of all agents. The expected return of

an agent depends on the policy it follows as well as the policies of all its peers [147]. We note however

that, although agents influence the performance of one another, they do not alter the structure of the

reward function itself.

Additionally, in the multi-agent setting, other more direct interaction mechanisms can be present

between agents. Many MARL algorithms integrate and allow communication between the agents.

Communication can take several forms. For example, agents may communicate by sending messages

[71], sharing intentions [106] or experiences [42], advising actions [149] to one another etc. Integrating

such feedback has shown to improve performance [42, 71], speed up learning [42, 71, 149], enhance

coordination [106, 149] etc. Nonetheless and again, in all of the above, this type of feedback does not

alter other agents’ task or reward function which remains defined by the environment only.

However, in real-life situations, punishments and remunerations are widely used. This additional

reward function is generated by the humans and not the environment itself. It is particularly seen

when the environment presents conflicting goals to its agents or incentives for exploitation. Consider

as an example the taxing system, the healthcare system or other public goods. In all of these examples,

the systems themselves are unstable and entice exploitation. Fines and sanctions are put in place

by the state to modify the dynamics and make exploitation and fraud less desirable and encourage

and stabilize socially beneficial behaviors. These measures incite people to diverge from what would

have otherwise been their optimal strategy. Remunerations are also a mean of influencing others’
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behaviors. For instance, when the number of users sending funds over the bitcoin blockchain exceeds

the number of transactions that can be processed, users encourage miners to validate their transaction

by remunerating them with higher transaction fees. Likewise, some business owners use cash, store

credit, discounts etc. to encourage their customers to recommend them to other friends. Remunerations

also appear in personal relations, education or other similar interactions. Despite their effectiveness,

both sanctions and remunerations are costly to implement and the benefits extracted from them need

to outweigh their costs.

While cooperative behaviors in an opponent can sometimes be encouraged without explicit evaluative

feedback, e.g., using the Tit-for-Tat strategy [10] for the iterated prisoner dilemma, such a retaliating

strategy is not available or optimal for all games. Consider Public Good Games where agents contribute

to a common pool and receive in return a shared reward proportional to the collected pool. Punishing

a non-contributing agent by not contributing oneself results in punishment for everyone instead of a

targeted one. Furthermore, in the bitcoin blockchain example, no retaliation policy exists for the user

that encourages miners to validate his transaction. Additionally, in real-life situations, punishing or

rewarding through action selection instead of feedback can be more challenging to implement. For

instance, boycotting a company for animal testing is more challenging to implement than fining such

policies (e.g., when the company holds a near-monopoly on the market). Evaluative feedback is a

universal form of punishment and remuneration and has the advantage of being simultaneously easy to

target and simple to implement.

In our work, we present a Multi-Agent Reinforcement Learning framework where agents learn to

influence each other, not by action selection or communication, but directly using costly remunerations

or punishments, that we denote by evaluative feedback. The framework is useful when agents have

conflicting goals. Rewarding each other is a way of sharing preferences about the opponent’s behaviors.

Through mutual sharing of these preferences, we hope that agents find arrangements and compromises

that allow mutual co-existence instead of mutual destruction. The new arrangements emerge from

the reshaped goals (i.e., the reshaped reward functions) of every agent by its opponent. We propose

Learning to Influence through Evaluative Feedback (LIEF), an algorithm designed to learn how to

adequately use evaluative feedback to reshape an opponent’s goal and transform it from a conflicting

to a more conforming one.

We contribute to multi-agent reinforcement learning literature by proposing a framework that

introduces inter-agent evaluative feedback on top of environment rewards. Using our model, agents

learn to reshape each other’s reward functions and goals to move from conflicting environments to

conforming and cooperative ones. The novelty in our approach is that 1) opponent shaping is done

through reward shaping, 2) the punitive feedback strategies used for opponent shaping are learned and

not handcrafted and 3) no apriori knowledge of the optimal opponent target policy is needed.
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A.2 Related Work

The influence that agents can exercise on each other has been taken into account in some MARL

algorithms where agents adapt their choices with respect to their opponent. Notably, the learning

algorithm of an opponent is sometimes integrated in one’s own learning algorithm. One suggested

method is gradient ascent with policy prediction [225]. Here the strategy of the opponent is forecasted

based on the current policy parameters and the gradient is computed taking this change into account.

Learning with Opponent Learning Awareness (LOLA) [68] on the other hand, differentiates through

the variations of the opponent to actively shape their learning and consequently, manages to reach

cooperative equilibria in some multi-agent settings. Stable Opponent Shaping (SOS) [114] incorporates

both policy prediction and opponent shaping which increases stability while simultaneously escaping

saddle points.

While the above mentioned algorithms, try to influence a gradient-based learning opponent, Learning

and Influencing Latent Intent (LILA) [223] influences a handcrafted opponent that can select for every

episode to implement one of several pre-defined policies. The set of pre-defined policies is small and

comprises 2-3 policies. The selection of the policy by the opponent at the beginning of an episode is

not random but depends on the previous interaction. LILA models and predicts the opponent’s next

policy choice and ensures that the current interaction results in a favorable opponent policy in the

next episode.

In the context of influence for long term future benefits, Prognosticator [37] is an algorithm that

allows an agent in a non-stationary environment to forecast future performances and hence select to

minimize performance in some episodes if that results in a future increase in performance. Here the

future changes neither result from a learning opponent, nor from a conditionally changing one but

from a smoothly varying environment.

All these enumerated works try to influence the dynamics of an opponent or an environment by

selecting influential actions. On the other hand, in our work, we aim to influence an opponent’s

behavior using directly rewards instead of regular actions.

Recovering or optimizing a reward structure is at the center of interest of many RL problems.

Inverse reinforcement learning (IRL) [145] for example, tries to recover the reward function that could

be a prior for a given optimal policy or set of trajectories. AutoRL and evolution strategies (ES) have

also been used to explore and evolve different reward functions with the goal of finding the one that

facilitates the learning of a predefined task [41, 67].

Moreover, in some adversarial RL problems [162, 226], an attacker aims to poisons a learner’s

reward function with the goal of enforcing a predefined target policy on that learner.

Yet several differences are notable between these works and ours. First, while we propose a

reinforcement learning method to learn how to reward an opponent, the problem in the above examples

is usually defined as a control problem and standard optimization techniques are used to extract the

optimal solution. Second, while the target policy is predefined for adversarial attacks and IRL, it is

never explicitly given in our framework.
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To the best of our knowledge, the only other work that introduces inter-agent evaluative feedback

is a paper that studies the concept of gifting [120] in common pool resource environments. The agents

however, using the classical reinforcement learning objective of maximising episodic returns do not

learn how to effectively gift their peers and stop using this action when gifting is costly.

A.3 Definitions and notations

Our work concerns general n-player stochastic games defined by a tuple ⟨S,A, P, r, µ0⟩. Here, S is

the set of states, µ0 the initial state distribution and A = Πn
i=1Ai the Cartesian product of the sets

of actions of all individual players. At every timestep, each agent selects from his set of actions an

action ai yielding a joint action a = {a1, . . . an}. The system in state s, then transitions to s′ following

the transition probability function P (s′|s,a) : S × A × S → [0, 1]. Finally, the reward function r

representative of the underlying tasks, evaluates and distributes for every player i, a reward according

to ri(s,a, s
′) : S ×A× S → R.

We extend this setting to allow for inter-agent evaluative feedback. In this model, agents do not

only receive rewards from their environment, but also directly from other peers. Therefore, we endow

every agent with an additional set of evaluative actions Ui and we denote by U , the Cartesian product

of these sets U = Πn
i=1Ui. We suppose that such evaluative actions can be costly. Every agent i, now

incurs a cost based on his selected action ui and receives evaluative feedback based on his peers’ selected

actions u¬i. The costs are determined by a cost function c such that ci(s, ui, s
′) : S × Ui × S → R

and the peers’ feedback is calculated by the feedback function f where for every agent i we have

fi(s, u¬i, s
′) : S × U¬i × S → R.

The original stochastic game represented by the tuple ⟨S,A, P, r, µ0⟩ is now extended with an

additional evaluative action set U and two reward functions c and f representing respectively the cost

of evaluating others and the additional feedback received. The resulting dynamics are now described

by the tuple ⟨S,A,U , P, r, c, f, µ0⟩.

A.4 Methods

To solve the described problem, we equip every agent with two decoupled policies with different

objectives: the classical game policy and the feedback policy. The task or game policy of agent i,

denoted by πg
i , maps into the action space Ai while the feedback policy πf

i maps into the action space

Ui. The objective of the game policy is a classical RL objective i.e., solving a task by maximising

the expected return within an episode. Note however, that the task, modeled by a reward function,

is not only defined by the environment, but also generated by the agent’s peers. The original task

defined by r is reshaped into the function r + f from the tuple ⟨S,A,U , P, r, c, f, µ0⟩. The objective

of the feedback policy is of a different nature. While the game policy is concerned with maximising

the returns within an episode, the feedback policy tries to influence its opponent to make future

interactions more beneficial. We note that in a multi-agent setting, the returns of one agent depend on
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all other agents’ actions. Therefore, the performance of a fixed agent can vary if its opponent changes

policies. We consider a future interaction to be more beneficial for an agent, if keeping his own game

policy fixed, the opponents’ game policy update results in higher payoffs for said agent. The algorithm

we propose for this task is called Learning to Influence through Evaluative Feedback (LIEF). Figure

A.1 depicts the new extended game dynamics.

Figure A.1: Extension of a stochastic game to incorporate inter-agent evaluative feedback.

A.4.1 The Game Policy

In classical RL, an agent searches for an optimal policy to solve a task assigned to it by its environment

and defined by a reward function. The game policy in our framework is analogous to the classical RL

policy. It assumes a stationary world and maximizes the expected episodic return. However, in our

framework, feedback is received simultaneously from the environment and other agents. The expected

episodic return, defined by r + f , is conditioned on all agents’ game policies πg (that we parameterize

with θg) and on the opponents’ feedback policies πf
¬i (parametrised with θf ).

Given an episode horizon T , agent i’s game policy objective function is defined as

Jg
i (θ

g
i ;θ

g
¬i,θ

f
¬i) = Eθg,θf

¬i

[
T∑

t=0

γt
g(ri,t + fi,t)

]
(A.1)

where γg is a discount factor.

Parameters θgi are updated using the update rule

θg,k+1
i = θg,ki + ηg∇θg

i
Jg
i (θ

g
i ;θ

g
¬i,θ

f ) (A.2)

where ηg is the learning rate for updating the game policy and k the optimization step.
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Figure A.2: Here LIEF predicts from current data, the changes in the game policy of its opponent.
These changes incur changes in the expected rewards r2 received from the environment and changes in
the expected feedback f1 given to agent 1 which in turn yields changes in the expected costs c2. LIEF
makes sure that his feedback policy ameliorates the future of the agent, i.e., that his expected returns
c2 + r2 increase between the expected look-ahead step k + 1 and the current step k.

A.4.2 The Feedback Policy

On the other hand, the goal of the rewarding or feedback policy is to shape the objective of the

opponent to make it more compatible with its own. To achieve this target, the feedback network tries

to maximize the variations in returns resulting from one opponent optimization step. The idea is

detailed in Figure A.2 and the associated objective function of the feedback policy is given by

Jf
i (θ

f
i ;θ

g) =Eθf
i ,θ

g
i ,θ

g
¬i+∆θg

¬i

[
T∑

t=0

γt
rri,t + γt

cci,t

]
− Eθf

i ,θ
g
i ,θ

g
¬i

[
T∑

t=0

γt
rri,t + γt

cci,t

]
(A.3)

where γr and γc are discount factors for the reward functions r and c respectively. While the second

term can be estimated from experience, the first term corresponds to the future and needs to be

predicted. Using first order Taylor expansion we can replace the first term of equation A.3 by

Eθf
i ,θ

g
i ,θ

g
¬i

[
T∑

t=0

γt
rri,t + γt

cci,t

]
+ (∆θg

¬i)
T∇θg

¬i
Eθf

i ,θ
g
i ,θ

g
¬i

[
T∑

t=0

γt
rri,t + γt

cci,t

]

which yields the final objective function

Jf
i (θ

f
i ;θ

g) = (∆θg
¬i)

T∇θg
¬i
Eθf

i ,θ
g

[
T∑

t=0

γt
rri,t + γt

cci,t

]
. (A.4)

We can now use a gradient ascent update rule

θf,k+1
i = θf,ki + ηf∇θf

i
Jf
i (θ

f
i ;θ

g) (A.5)
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where ηf is the learning rate for updating the feedback policy and k the optimization step.

We need now to evaluate the term ∇θf
i
Jf
i (θ

f
i ;θ

g). To simplify notations, we use Ri to refer to

Eθf
i ,θ

g

[∑T
t=0 γ

t
rri,t

]
= Eθg

[∑T
t=0 γ

t
rri,t

]
and Ci to refer to Eθf

i ,θ
g

[∑T
t=0 γ

t
cci,t

]
. The product rule

gives us

∇θf
i
Jf
i (θ

f
i ;θ

g) =
(
∇θf

i
∆θg

¬i

)T

∇θg
¬i
(Ri +Ci) +

(
∇θf

i
∇θg

¬i
(Ri +Ci)

)T

∆θg
¬i. (A.6)

Using a similar derivation as in LOLA [68], we have

∆θg
j =ηg∇θg

j
Eθg,θf

¬j

[
T∑

t=0

γt
g(rj,t + fj,t)

]

=ηgEθg,θf
¬j

[
T∑

t=0

γt
g(rj,t + fj,t)∇θg

j

t∑
l=0

log(πg
j (aj,l|sl; θ

g
j ))

]
,

(A.7)

∇θf
i
∆θg

j = ηgEθg,θf
¬j

[ T∑
t=0

γt
gfj,t∇θg

j

t∑
l=0

log(πg
j (aj,l|sl; θ

g
j )) · ∇θf

i

t∑
l=0

log(πf
i (ui,l|sl; θfi ))

]
, (A.8)

∇θg
j
(Ri +Ci) = Eθf

i ,θ
g

[
T∑

t=0

(γt
rri,t + γt

cci,t)∇θg
j

t∑
l=0

log(πg
j (aj,l|sl; θ

g
j ))

]
, (A.9)

and

∇θf
i
∇θg

j
(Ri +Ci) = Eθf

i ,θ
g

[ T∑
t=0

γt
cci,t∇θg

j

t∑
l=0

log(πg
j (aj,l|sl; θ

g
j )) · ∇θf

i

t∑
l=0

log(πf
i (ui,l|sl; θfi ))

]
.

(A.10)

A.4.3 Training Procedure

The feedback and game policy are trained alternately for a number of Kf and Kg update-steps

respectively.

The equivalent DiCE objective [70] of the feedback policy objective is constructed and the corre-

sponding loss is used during training to mediate the errors in estimating second order derivatives of a

surrogate loss.

The game policy can be trained using an actor-critic architecture and the feedback policy with the

REINFORCE algorithm.

A pseudo-code is given in Algorithm 3.

A.5 Experiments and Results

We propose to test LIEF in two different scenarios. We begin with an environment called Teacher-

Student. Here, the student agent receives no rewards from the environment and its only feedback

comes from the teacher. We make sure that, without the teacher, the learning curve of the student is
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Algorithm 3: Learning to Influence through Evaluative Feedback
Input: Learning rates ηg and ηf , discount factors γg, γr and γc, update-steps Kg and Kf , total

updates K
Initialize: for agents i, . . . N , policy parameters θgi and θfi
for k=1,. . .K do

for kf = 1, 2, . . .Kf do
Rollout episode trajectory under πg and πf

Update: θfi ← θfi + ηf∇θf
i
Jf
i (θ

f
i ;θ

g) for i = 1, . . . N

for kg = 1, 2, . . .Kg do
Rollout episode trajectory under πg and πf

Update: θgi ← θgi + ηg∇θg
i
Jg
i (θ

g
i ;θ

g
¬i,θ

f ) for i = 1, . . . N

Output : Policy parameters θg and θf

flat. Learning is purely directed by the teacher agent which has to learn how to use evaluative feedback

to bring the student to accomplish a task.

In the second case, we test our framework on the iterated prisoner’s dilemma. In this game, mutual

cooperation is more beneficial than mutual defection. However, with the environment rewards only,

the point of mutual cooperation is unstable and naive learners eventually converge to a less optimal

but stable defective point. We test if, with inter-agent feedback, agents can modify the game dynamics

and stabilize the more beneficial and cooperative point.

A.5.1 Hyper-parameters

In all experiments, we train the feedback and game policy alternately for Kf = 35 and Kg = 5

update-steps, using a batch size of 4096 episodes. All actors or critics are linear functions of the state

and all states are one-hot encoded vectors. The learning rates of both actor and critic of the game

policy are set to ηg = 1 and we use a discount factor γg = 0.8. The learning rate of the feedback policy

is set to ηf = 0.1 and the discount factors are γr = 0.99 and γc = 0.9.

A.5.2 Teacher-Student Environment

We begin by testing LIEF in a simple Teacher-Student chain environment depicted in Figure A.3. A

student, physically present in the environment, can at every timestep, choose to either move left or

right. However, the environment is uninteresting to the student and doesn’t provide him any rewards

(rs = 0 ∀ s ∈ S). The teacher on the other hand, would like the student to reach the rightmost cell in

the chain since that state yields a positive reward of rt = +1 to the teacher. The goals of the agents

are not at conflict but nevertheless, uncorrelated. The teacher has to motivate the student somehow to

move right since without extrinsic intervention, actions right and left would be equally desirable for

the student.

The environment is a representation of situations where one individual has an interest in accom-

plishing a task but lacks the skills to do so. Another agent, with the necessary skills, has no personal

interest in getting the job done. Depending on the relationship between the two individuals, the former
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Figure A.3: Teacher-Student chain environment. The environment doesn’t motivate the student to
move either left or right (rs = 0 for all states). However, the teacher has an incentive to bring the
student to the right most cell where he receives a reward rt = 1.

needs to either motivate the latter by paying him a remuneration for getting the job done or punishing

him for not getting the task done.

In our experiment, we provide the teacher with a binary punitive action set U = {0, 1}. Both the

teacher and the student observe the state of the environment (i.e., the chain position of the student

and whether the student selected action right or action left in the previous timestep). The student can

then select to either move right or left while the teacher can select to either punish the student or

not. Not punishing, or selecting u = 0, returns no feedback to the student (f = 0) and incurs no cost

on the teacher (c = 0). However, choosing to punish, i.e., u = 1, returns a negative feedback to the

student (f = −1) and is equally costly to the teacher (c = −1). Figure A.4 illustrates the interactions

and feedback flow in this setting.

Figure A.4: Feedback loop of a MARL setting with additional evaluative feedback flowing from a
teacher to a student.

We set a fixed timestep of Te = 4 per episode and run our experiment with 10 different seeds. From

the results plotted in Figure A.5, we can see that during feedback policy training, the teacher learns to
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punish the student when the latter chooses the non beneficial action of going Left (green line rises

during the 35 feedback policy update-steps). Consequently, during student learning, the feedback

policy of the teacher causes the student to increase the frequency with which he chooses to go right

(blue line rises). Nevertheless, some shortcomings are visible in the algorithm. The teacher has trouble

completely canceling punishments of actions in his favor (the red line doesn’t decrease to zero). Deeper

examination of this cause and an improvement of the algorithm are needed. When training the student

without any feedback from the teacher, the preference of the student for action Right or Left remains

constant throughout training (all rewards are zero and hence all gradients are zero). The student’s

preference for action Right in Figure A.5 is solely constructed by the teacher.

Figure A.5: Teacher and Student policy dynamics. Vertical lines delimit the zones where the teacher
and student alternate in learning. The teacher performs 35 update-steps after which the teacher
feedback policy is frozen and the student, under said teacher policy, learns for 5 update-steps. The
cycle is repeated 5 times.

We note that our definition of Teacher-Student differs from that commonly seen in MARL [48, 66,

96, 105, 148, 149] where both the teacher and the student interact with the environment. There, the

rewards or feedback come exclusively from the environment. The teacher, generally more skilled, is

more of a guide to help the student achieve a task defined by the environment. In our case, the teacher

is not more skilled than the student but lacks the means to perform a task he’d like accomplished. He

cannot, like in the classical Teacher-Student case, give any demonstrations or examples to guide the

student. His goal is to construct a target goal for the student (through evaluative feedback) that is

compatible with his own goal.

A.5.3 Iterated Prisoner Dilemma

In a second experiment, we propose to test the efficacy of LIEF in an antagonistic environment. We

select for this purpose the iterated prisoner’s dilemma with returns shown in Table A.1.

In the one-shot version of the game, the environment raises in every player a preference to defect no

matter the opponent’s strategy. In fact, for a defecting opponent, defection results in one point more
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Table A.1: Prisoner’s dilemma reward table

Actions A2 - C A2 - D
A1 - C (−1,−1) (−3, 0)
A1 - D (0,−3) (−2,−2)

Figure A.6: Inter-agent evaluative feedback Feedback loop of a MARL setting with additional evaluative
feedback generated by opponents in the environment.

than cooperation (-2 compared to -3). Similarly, for a cooperative opponent, defection results in one

point more than cooperation (0 compared to -1). As a result, both players learn to defect and converge

to the bottom right cell of the table with an average of -2 points per player. We note here that, both

players can in fact increase their returns by switching simultaneously to cooperation. However, this

point, although more beneficial, is unstable.

In the iterated version of the game, which is the one we adopt for our experiment, agents play

the game repeatedly against one opponent. They are endowed with a memory and observe at every

timestep the actions taken by themselves and their opponent in the previous timestep. Accessing this

info, allows some strategies to converge to cooperative behaviors such as the Tit-for-Tat [10] strategy.

In Tit-for-Tat, an agent punishes at timestep t, an opponent that defected at the previous timestep

t − 1. The punishment is implemented as a retaliation and the agent reciprocates an opponent’s

defection at t− 1 with a defection at t. Although effective, Tit-for-Tat is not trivial to be found and

naive reinforcement learners generally converge to defective behaviors.

By introducing inter-agent feedback, agents can modify the reward table and hence change the

game dynamics. Instead of retaliation, agents may use punishment to compel cooperative behaviors

from their opponents. If every agent manages to make action defect less desirable to their rival (e.g., by

punishing this action), they can converge to cooperative behaviors without the risk of being exploited.

Figure A.6 shows the flow of the added inter-agent feedback and the resulting costs on the agents. In
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Figure A.7: Behavior and feedback dynamics of two mutually rewarding LIEF agents in an iterated
prisoner’s dilemma.

our case, we use a binary punitive action set Ui = {0, 1} for each agent and the resulting feedback and

costs are such that fi(u¬i) = −3u¬i and ci(ui) = −1ui.

We set a fixed timestep Te = 5 per episode and run the experiment with 10 different seeds. The

results are plotted in Figure A.7.

While cooperation is usually difficult to sustain in the IPD, Figure A.7 shows that agents converge

to cooperative behaviors. We can see that during the training of the feedback policy, the green lines,

indicating the rate with which agents punish a defective behavior increase while the red lines, indicating

the rate at which they punish cooperative behaviors decrease. As a result, during game policy training,

cooperative actions become more advantageous than defective ones and players converge to total

cooperation.

A.6 Discussion and conclusion

We present a multi-agent reinforcement learning framework extended to incorporate inter-agent

evaluative feedback. Leveraging the fact that the reward function in RL is the fundamental definition

of a task, we allow agents, through this framework, to construct or modify the tasks of their peers.

In the teacher-student case (see Section A.5.2), the teacher, using evaluative feedback, was con-

structed a target goal for the student who originally had none. Moreover, LIEF did not construct

a random reward function, but one that is specifically aligned with his own. The construction of a

reward function is not a trivial question in RL. Augmenting a sparse reward function to speed up

learning is widely studied in literature [128, 144, 222]. In this context, it’s interesting to investigate the

differences between rewards given by humans, constructed systematically or learned by reinforcement

learners.

In a more conflicting case, the iterated prisoner’s dilemma (see Section A.5.3), two LIEF agents were

capable of mutually reshaping each other’s reward functions to modify the whole game dynamics. The
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agents, through evaluative feedback, managed to make cooperative actions more beneficial from their

opponent’s perspective. The mutual and simultaneous feedback, assured that both agents cooperated

and no one exploited the other. Here, more conflicting environments can be tested, especially those in

which retaliation is not an effective tool to enforce cooperation but where evaluative feedback may be

(e.g., Public Goods Games and Common Pool Resources).
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