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Abstract

Reinforcement learning (RL) is a computational approach which models autonomous agents facing

a sequential decision problem in a dynamic environment. The behavior of the agent is guided by a

reward mechanism embedded into the agent by its designer. Designing flexible reward mechanisms,

capable of guiding the agent in learning the task intended by its designer, is a very demanding

endeavor: on one hand, artificial agents have inherent limitations that often impact the ability to

actually solve the task they were initially designed to accomplish; On the other hand, traditional

approaches to RL are too restrictive given the agents limitations, potentially leading to poor

performances. Therefore, applying RL in complex problems often requires a great amount of

manual fine-tuning on the agents so that they perform well in a given scenario, and even more when

we want them to operate in a variety of different situations, often involving complex interactions

with other agents.

In this thesis we adopt a recent framework for intrinsically-motivated reinforcement learning

(IMRL) that proposes the use of richer reward signals related to aspects of the agent’s relationship

with its environment that may not be directly related with the task intended by its designer. We

propose to take inspiration from information processing mechanisms present in natural organisms

to build more flexible and robust reward mechanisms for autonomous RL agents. Specifically,

we focus on the role of emotions as an evolutionary adaptive mechanism and also on the way

individuals interact and cooperate with each other as a social group.

In a series of experiments, we show that the adaptation of emotion-based signals for the design

of rewards within IRML allows us to achieve general-purpose solutions and at the same time

alleviate some of the agent’s inherent limitations. We also show that social groups of IMRL

agents, endowed with a reward mechanism inspired by the way humans and other animals exchange

signals between each other, end up maximizing their collective fitness by promoting socially-aware

behaviors. Furthermore, by emerging reward signals having dynamic and structural properties
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that relate to emotions and the way they evolved in nature, we show that emotion-based design

might have a greater impact for the adaptation of artificial agents than thought before.

Overall, our results support the claim that, by providing the agents with reward mechanisms

inspired by the way that emotions and social mechanisms evaluate and structure natural organ-

isms’ interactions with their environment, we provide agent designers with a flexible and robust

reward design principle that is able to overcome common limitations inherent to RL agents.

Keywords: Reinforcement Learning, Intrinsic Motivation, Reward Design, Autonomous Agents,

Multiagent Systems, Emotions, Cooperation, Evolution, Appraisal, Social Theories
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Resumo

A aprendizagem por reforço (AR) é uma abordagem computacional que modela agentes autónomos

com um problema de decisão sequencial com um ambiente dinâmico. O comportamento do agente

é guiado por um mecanismo de recompensa incorporado no agente pelo seu construtor. Criar

mecanismos de recompensa flexíveis, isto é, capazes de guiar o agente na aprendizagem da tarefa

pretendida pelo seu criador, é um esforço muito exigente: por um lado, os agentes artificiais

têm limitações inerentes que muitas vezes os impedem de realizar a tarefa para a qual foram

inicialmente desenhados; Por outro lado, as abordagens tradicionais em AR propõem soluções

que são demasiado restritivas dadas as limitações dos agentes, levando potencialmente ao fraco

desempenho por parte destes. Desta forma, o uso de AR em problemas complexos requer muitas

vezes uma grande quantidade de afinação manual dos agentes para que eles tenham um bom

desempenho num determinado cenário, e ainda mais quando queremos que eles sejam capazes

de executar tarefas numa variedade de situações diferentes, envolvendo muitas vezes interacções

complexas com outros agentes.

Nesta tese adoptamos uma recente abordagem à aprendizagem por reforço com motivação

intrínseca (ARMI), que propõe o uso de sinais de recompensa mais ricos relacionados com aspectos

da relação do agente com o seu ambiente que podem não estar directamente relacionados com a

tarefa pretendida pelo seu criador. A nossa proposta passa pela inspiraŊŃo em mecanismos de

processamento de informação presentes em organismos naturais e a sua os adaptação de forma a

construir mecanismos de recompensa para agentes autónomos de AR mais flexíveis e robustos. Mais

especificamente, focamo-nos no papel das emoções como um mecanismo de adaptação evolutivo

na natureza e também na forma como as pessoas interagem e cooperam umas com as outras como

um grupo social.

Através de uma série de experiências, mostramos que a adaptação de sinais emocionais para o

desenho de recompensas no contexto da ARMI nos permite obter soluções robustas e ao mesmo
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tempo dissimular algumas das limitações perceptuais do agente. Mostramos também que grupos

sociais de agentes, dotados de um mecanismo de recompensas inspirado na forma como os hu-

manos e outros animais sinais trocam sinais entre si, acabam por maximizar o seu desempenho

colectivo através da promoção de comportamentos socialmente conscientes. Para além disso, ao

fazermos emergir sinais de recompensas com propriedades dinâmicas e estruturais relacionadas

com as emoções e a forma como estas evoluíram na natureza, mostramos que a inclusão de sinais

emocionais pode ter um impacto maior na capacidade adaptativa dos agentes artificiais do que era

até agora suposto.

Em geral, os nossos resultados suportam a hipótese de que ao fornecer aos agentes sinais de rec-

ompensa inspirados pela forma como as emoções e os mecanismos sociais avaliam e estruturam as

interacções dos organismos naturais com o seu ambiente, proporcionamos aos criadores de agentes

uma filosofia de desenho de recompensa flexível e robusta capaz de superar limitações comuns em

agentes de AR.

Palavras-chave: Aprendizagem por Reforço, Motivação Intrínseca, Desenho de Recompensas,

Agentes Autónomos, Sistemas Multiagente, Emoções, Cooperação, Evolução, Appraisal, Teorias

Sociais
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1.1 Motivation

Over the past 70 years, the field of artificial intelligence (AI) has been dedicated to studying and

designing intelligent or autonomous agents that can be perceived as “thinking” and “acting” much

like humans do (Russell and Norvig, 2003). Given this goal, the design of such agents has been

greatly influenced by the way humans and other animals interact with their environment (Maes,

1994). Similar to the way biological organisms live and interact in nature, autonomous agents

are entities that inhabit dynamic and often unpredictable environments, where their actions are

influenced by a set of goals together with information perceived from the environment through its

sensors (Franklin and Graesser, 1997; Maes, 1994; Russell and Norvig, 2003). As such, one of the

major challenges within AI has do with building mechanisms that enable the agent to “correctly”

map its perceptions to actions in order to achieve its goals on its own and while interacting with

the environment.

Provided such challenge, this thesis is motivated by the design of more autonomous, flexible and

robust mechanisms for intelligent agents. Generally speaking, this means that we want to build

agents that require less the intervention of humans or other external agents—autonomy—and that

are able to operate on a larger variety of different domains each offering distinct challenges—

flexibility and robustness (Franklin and Graesser, 1997; Russell and Norvig, 2003). The ability of

an agent, either natural or artificial, to adjust its behavior according to changes perceived in its

environment is a process known as learning (Anderson, 2000). For autonomous agents, this is a

key factor for it to “perform well” according to its designers’ expectations (Maes, 1994). Within

the field of machine learning, reinforcement learning (RL) is precisely the discipline concerned with

providing mechanisms that allow an agent to accomplish a task through trial-and-error interactions

with a dynamic environment(Kaelbling et al., 1996; Sutton and Barto, 1998). Throughout this

thesis we will dedicate our attention to the design of learning mechanisms for RL agents.

1.2 Problem

RL models autonomous agents facing a sequential decision problem of learning what to do given

a certain situation in order to achieve a particular goal. The situation describes the agent’s

state of affairs which is relevant for it to solve the given task. The goal is often characterized

as the maximization of a certain numerical environmental feedback signal, also referred to as the

reinforcement, reward or return. By analyzing the reward received throughout time, the agent

learns a mapping from situations to actions which is referred to as a policy (Kaelbling et al., 1996;

Sutton and Barto, 1998).

RL has been successfully applied to develop systems that autonomously learn from experience.

Common applications of RL include game-playing agents (Samuel, 1959; Schaeffer et al., 2001;

Tesauro, 1995; Yan et al., 2005), mobile robotic control (Bagnell and Schneider, 2001; Bentivegna
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et al., 2002; Fidelman and Stone, 2004; Kohl and Stone, 2004; Kwok and Fox, 2004; Ng et al., 2006),

operations research (Abe et al., 2004; Proper and Tadepalli, 2006; Rusmevichientong et al., 2006),

human-computer interaction (HCI) (Isbell et al., 2006; Singh et al., 2002) and others (Moody and

Saffell, 2001; Stone and Sutton, 2001).

A major problem faced by learning agents, both natural and artificial, is the fact that they

suffer from perceptual, motor and adaptive limitations: they often do not have access to “all” the

information necessary to make the best decisions and normally do not know the environment’s

dynamics or the exact consequences of their actions. All of this makes it difficult to cope with

abrupt and profound changes in the environment.

Given such limitations and in light of our motivation to build more autonomous, flexible and

robust mechanisms for RL agents, existing RL techniques present several design challenges. This is

especially true when applying RL to practical applications and complex problems, where designers

have to provide the agent with the necessary built-in information and skills for it to correctly learn

a given task, often involving a great amount of fine-tuning and user expert knowledge (Kaelbling

et al., 1996; Littman, 1994; Singh et al., 1994; Sutton and Barto, 1998). Moreover, the perceptual

limitations of the agents make the design assumptions in classical RL methods to be too restrictive,

potentially leading to poor performances by the agent (Kaelbling et al., 1996; Littman, 1994; Loch

and Singh, 1998; Singh et al., 1994; Sutton and Barto, 1998). Also, in complex environments, the

demand for sufficient built-in knowledge is particularly critical as sometimes it is impossible for

the agent’s designer to know beforehand what the exact optimal behavior is in some situation, let

alone design mechanisms that are flexible enough to be applied in a variety of different situations

(Sorg et al., 2010a).

In this thesis we focus on the reward mechanism of RL agents as a means to alleviate some

of the aforementioned problems. In RL, the reward mechanism that the designer builds into

the agent guides it throughout learning and implicitly defines the task that it must accomplish

(Sutton and Barto, 1998). It critically impacts both the time taken to learn a task and what is

learned (Kaelbling et al., 1996). As such, building a “good” reward mechanism1 is crucial for the

performance of the agent. A major challenge when designing RL agents is then to build reward

mechanisms that allow them to learn the intended task as efficiently as possible (Abbeel and Ng,

2004; Ng and Russell, 2000; Sorg et al., 2010a). We can therefore state the research problem behind

this thesis as:

We want to design reward mechanisms for RL agents that are able to alleviate their inherent

perceptual limitations and make them operate in a wide variety of domains without the explicit

intervention of others or relying on expert or domain knowledge about a particular task.

1We define the specific criteria to evaluate a reward mechanism throughout the thesis. Generally speaking, we
can define a good reward mechanism as one that enables the agent to learn the intended task in the shortest time
possible.

3



Chapter 1

1.3 Approach

We have established the importance of designing good reward mechanisms that take the most out

of the agent’s perceptions in order to circumvent some of its perceptual limitations. In order to

address the above-stated problem one must consider how to design the reward mechanism and,

most importantly, which kinds of rewards we want to provide our agents. In that respect, we follow

a recent framework for intrinsically-motivated reinforcement learning (IRML) (Singh et al., 2009,

2010), in which an agent is rewarded for behaviors other than those strictly related to the task

being accomplished, e.g., by exploring or playing with elements of its environment. Interestingly,

studies performed using this approach have demonstrated the usefulness of such intrinsic rewards

in mitigating inherent computational limitations of learning agents (Bratman et al., 2012; Singh

et al., 2009, 2010; Sorg et al., 2010a). The question remains, however, about which kinds of rewards

are able to both alleviate perceptual limitations and be generic enough to be used in a variety of

domains without the need for fine adjustments for a particular situation.

To answer that question we return to the parallel between natural and artificial agents drawn

earlier and propose to look at the motivational mechanisms that humans and other animals inher-

ently possess that enable them to solve complex tasks. The rationale behind our approach stems

from the fact that, just like autonomous agents, animals inhabit very dynamic and sometimes

unpredictable environments and are also unable to perceive everything from their environment.

Still they are able to adapt to demanding conditions and overcome difficult situations, e.g., in face

of imminent danger.

Furthermore, humans and other animals do not inhabit their environments by themselves. They

live within social groups as a way to augment their survival chances, e.g., by hunting or performing

complex actions together. Nevertheless they still compete for resources or dispute social status as

a way to improve their reproductive power. Throughout evolution, nature has also shaped social

mechanisms that facilitate the way animals communicate their intentions and evaluate the actions

of others, even in inherently competitive settings.

Having into account this analogy between biological and artificial agents, we describe our hy-

pothesis to address the problem defined above through the following statement:

In this thesis we take inspiration from information processing mechanisms shaped through-

out evolution that are behind the adaptive success of humans and other biological organisms.

We focus on the role of emotions and also on the way individuals interact and cooperate with

each other as a social group to design more flexible and robust reward mechanisms that enhance

the autonomy of RL agents in both single and multiagent settings.

Specifically, we start by analyzing the role of emotions as a powerful adaptive mechanism that

influences cognitive and perceptual processing (Cardinal et al., 2002; Dawkins, 2000; Phelps and

4
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LeDoux, 2005). Emotions indirectly drive behaviors that lead individuals to achieve their goals,

and the absence of such mechanism was shown to impact the ability to properly take advantageous

decisions (Bechara et al., 2000; Damasio, 1994; LeDoux, 2000). We therefore take inspiration from

this role of emotions and propose the design of a general-purpose, domain-independent intrinsic

reward mechanism that, much like emotions do in natural organisms, evaluates the agent’s history

of interaction with its environment and enables it to solve complex tasks under limited perception

conditions.

We also study some social mechanisms of humans and other animals that allow for cooper-

ation to occur even in competitive contexts. We follow the idea that closely-related individuals

share a need for affiliation that makes them engage in altruistic behaviors despite possible mo-

mentary losses for the contributor (Axelrod, 1984; de Waal, 2008; Dörner, 1999; Hamilton, 1964;

Trivers, 1971). We take inspiration from mechanisms of reciprocation by which animals evaluate

the “kindness” of others’ actions and respond accordingly (Axelrod, 1984; Falk and Fischbacher,

2006; Trivers, 1971) to design intrinsic social rewards that enable the emergence of “socially-ware”

individual behaviors within competitive multiagent settings.

1.4 Contributions

We now examine in more detail the contributions stemming from our approach. The results from

this thesis have implications to the field of RL and also to affective computing (AC) and other

research fields within the computational sciences. Specifically:

1. We propose a set of domain-independent emotion-based reward features, namely novelty,

valence, goal relevance and control, based on dimensions of appraisal of the emotional signif-

icance of events, commonly found in the psychology literature.

(a) We show that the proposed rewards provide a general-purpose guiding system for au-

tonomous learning agents, alleviating the need for fine-tuning of reward functions to

specific environments;

(b) On the other hand, the design of rewards inspired by emotions endows learning agents

with some of the benefits that emotions bring to natural agents, namely a greater

adaptability to different dynamic and unpredictable environments and the mitigation of

perceptual limitations commonly found in RL agents;

(c) We consider our mechanism adaptive in that the emotion-based rewards are generic

enough to allow an optimization procedure to select the best emotional agent for a

particular set of environments without having to adjust the RL algorithm’s parameters

or the state representation for that particular domain;

(d) Our approach departs from previous works within the field of affective computing

5
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(AC) advocating the need for emotion-based mechanisms by using domain-independent

appraisal-based reward features that are independent of the particular RL method used

and also can be applied in a variety of domains, instead of focusing on a small set of

basic emotions or defining a set of emotion-based rules controlling the agent’s behavior;

2. We propose an information-processing reward mechanism having evaluative properties very

similar to those proposed by appraisal theories of emotions. This mechanism is composed of

features that focus on sources of information emerged by means of an evolutionary algorithm

using genetic programming;

(a) We used a novel method for assessing the significance of embedding emotions into artifi-

cial agents that, unlike previous approaches within AC, uses an evolutionary computation

mechanism for the emergence of emotion-like informative signals;

(b) The evolutionary procedure resembles the way emotions evolved in nature. This enables

an interesting computational parallel to what occurs in nature, where emotions allow

individuals to better adapt to their environments, and where arguably the most fit

species (humans) is that with more complex emotional mechanisms;

(c) The evolutionary procedure emerged four domain-independent, general purpose reward

features that can be applied in different scenarios, thus leading to the construction of

more robust, flexible and autonomous agents;

(d) The emerged signals have dynamic properties that resemble the way humans evaluate

their environment, according to appraisal theories of emotions;

(e) We go beyond the idea that emotions are only a useful mechanism for autonomous

agents. Our results point towards the idea of emotions having a major impact for the

adaptation of artificial agents to their environments than thought before;

3. We extend previous work on IMRL to multiagent scenarios. We develop reward mechanisms

for IMRL agents that take into consideration social interactions among agents, inspired by

the notion of group affiliation from multiagent systems;

(a) We show that the IMRL framework can be used to endow agents with social motivation

that drives them to learn behaviors that benefit the whole population of agents;

(b) We show that it is possible for agents to individually acquire socially aware behaviors

that trade-off individual well-fare for social acknowledgment, leading to a more successful

performance of populations as a whole;

(c) Our experiments are in accordance with several social theories claiming that altruistic

and cooperative behaviors can thrive in populations with mechanisms capable of re-

warding or punishing behaviors that are considerate (or not) for the well-being of the

social group in which they are inserted.
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1.5 Thesis Organization

This thesis is organized as follows:

• In Chapter 2 we provide technical background on RL and IMRL, necessary to set up nomen-

clature and notation. We also identify a number of computational limitations and challenges

commonly found in traditional approaches to RL that will be used throughout the thesis to

demonstrate the potential of our approach;

• Chapter 3 provides theoretical background on emotions, the main source of inspiration for

our approach presented in the following chapters. We discuss the importance of emotions in

nature for the survival of biological organisms. We also overview some works on the field of

AC that relate to our approach within this thesis;

• In Chapter 4 we present our proposal for the design of an emotion-based reward mechanism

inspired by appraisal theories of emotions. We show that emotions can be a powerful mecha-

nism when adapted into reward signals in a series of learning experiments within IMRL. We

also discuss the relationship between our approach and the intrinsic motivation provided by

emotions to natural agents;

• In Chapter 5, by means of an evolutionary computation procedure using genetic program-

ming, we show that emotions are a natural candidate when considering possible sources of

information available to an IMRL agent that relate to its relationship with the environment.

We show that the reward mechanism that best guides an agent through a series of learning

scenarios has characteristics that can be related with the way emotions evaluate events in

nature;

• Chapter 6 presents the first steps towards extending the IMRL framework to multiagent

scenarios. We simulate social groups of agents having a reward mechanism inspired by the

way humans signal their behaviors and social interactions. We test our approach in multiagent

foraging scenarios where groups of agents compete for food resources. We show that the social

group gains strength as a whole when the agents exhibit cooperative behaviors;

• In Chapter 7 we discuss in greater detail the overall contributions of this thesis and provide

future research directions.
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Chapter 2

In order to better understand the framework of computational reinforcement learning (RL) and

take meaning of where our contributions fit within this paradigm, in this chapter we provide the

necessary technical background on RL. We present the traditional model for RL and the recently

proposed framework for intrinsically motivated reinforcement learning (IMRL) that we will use as

a testbed for our experiments throughout the thesis. We also discuss in detail some challenges

within RL that motivated the appearance of IMRL, and how does our contribution fit within this

framework.

2.1 Introduction

Over the years, autonomous agent design has been greatly inspired by the way humans and other

animals learn by interacting with their environment, and a striking example of such line of thought

is the field of RL which, in a sense, is the computational counterpart of operant conditioning1

(Sutton and Barto, 1998; Watkins, 1989). In fact, some of the first RL algorithms were based

on the behaviorist2 paradigms of classical and operant conditioning (e.g., Rescorla and Wag-

ner, 1972; Sutton and Barto, 1981, 1987). Much like biological learning from the perspective of

behaviorism, computational RL also approaches learning by studying the changes occurring in

behavior through trial-and-error interactions with a dynamic environment (Kaelbling et al., 1996).

Despite these similarities, RL is more concerned at formulating classes of learning problems and

developing algorithms to solve them, independently of the biological validity of the methods used

(Kaelbling et al., 1996; Sutton and Barto, 1998). RL is one of the most successful approaches to

enable autonomous agents to learn from interactions with their (often unpredictable) environment

(Kaelbling et al., 1996).

One of the things that makes this framework so attractive is the fact that it assumes learning

under uncertainty in a dynamic environment. The agent learns “on its own” with no examples

of correct behavior being provided. Through consecutive interactions with the environment it

continuously evaluates its own actions in relation to the observations being made.

2.2 The Reinforcement Learning Problem

Reinforcement learning (RL) addresses the general problem of an agent faced with a sequential

decision problem (Kaelbling et al., 1996; Sutton and Barto, 1998). The RL model is depicted in

Figure 2.1. By a process of trial-and-error, the agent’s decision making component must learn

a “good” mapping that assigns states perceived from its environment to actions. Such mapping
1Skinner (1938) developed the theory of operant or instrumental conditioning to describe the learning that takes

place when some positive (rewarding) or negative (punishing) reinforcers change the relative frequency of neutral
responses known as free operants in the environment (Anderson, 2000).

2Behaviorism is an approach to psychology that appeared in the beginning of the 20th century by the hands of
Watson (1913). Behaviorists developed theories about the behavior of organisms with no reference to the mental
processes associated therein.
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2.2. THE REINFORCEMENT LEARNING PROBLEM

Figure 2.1: The traditional reinforcement learning model in which a (external) critic evaluates the
performance of the agent and provides the rewards to the decision-making module. Adapted from
(Singh et al., 2010).

determines how the agent acts in each possible situation and is commonly known as a policy. A

critic situated in the environment provides a feedback signal at each time-step, know as the reward,

that basically indicates the appropriateness of having executed some action given a certain state.

2.2.1 Running Example: Moving Preys Scenario

Let us consider the following grid-world scenario that we use as a running example throughout this

chapter. Figure 2.2 shows the environment used in the Moving Preys Scenario, which is inspired in

the foraging environment in (Singh et al., 2010).

Moving Preys Scenario: We model our agent as a predator, represented by a fox,

trying at each time-step to eat a prey, represented as a hare, which is available in one

of the three possible end-of-corridor positions, for example as depicted in Figure 2.2.

At each time-step the predator is located in one of the cells of the environment and its

internal state can be described as being either hungry or full. Whenever the predator

eats a hare it becomes full for the duration of one time-step and another prey appears

in a different end-of-corridor location of the environment chosen randomly. The agent

then becomes hungry until capturing another prey. Our objective is to model an agent

that “eats” as many preys as possible during its lifetime. ♦

2.2.2 Partially-Observable Markov Decision Processes

Formally, the sequential decision problem faced by the agent can be modeled as a partially-

observable Markov decision process (POMDP) (Cassandra, 1994, 1998; Kaelbling et al., 1998),

denoted as a tupleM = (S,A,Z,P,O, r, γ), where

• S is the set of all possible environment states;

• A is the action repertoire of the agent;

• Z is the set of all possible agent observations;
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Figure 2.2: The environment for the Moving Preys Scenario, inspired by the foraging environment
in (Singh et al., 2010). The agent tries to capture a prey, represented by a hare, which at each
time-step can be in one of the three end-of-corridor positions in the environment. See text for more
details.

• P(s′ | s, a) indicates the probability that the state at time-step t + 1, st+1, is s′, given that

the state at time-step t, st, is s and the agent selected action at = a. Formally,

P(s′ | s, a) = P [st+1 = s′ | st = s, at = a] .

• O(z | s, a) indicates the probability that the observation of the agent at time-step t+ 1, zt+1,

is z, given that the state at time t+1 is s and the agent selected action a at time t. Formally,

O(z | s, a) = P [zt+1 = z | st+1 = s, at = a] .

• r(s, a) represents the average reward that the agent expects to receive for performing action

a in state s.

• 0 ≤ γ < 1 is some discount factor.

A POMDP evolves as follows. At every discrete time-step t = 0, 1, 2, 3, . . ., the environment is

in some state st = s. The agent perceives an observation zt = z that depends on but is often

insufficient for the agent to unambiguously infer the underlying state of the environment s. The

agent then performs an action at = a and the environment transitions from state s to state st+1 = s′

with probability P(s′ | s, a). The agent receives a reward r(s, a) ∈ R representing the desirability

for having executed action a in state s. Besides receiving the reward, the agent also makes a new

observation zt+1 = z with probability O(z | s, a), and this process repeats.

Markov Decision Processes

Typical approaches to RL mainly focus on scenarios where Z = S and O(z | s, a) = δ(z, s), where

δ denotes the Kronecker delta (Sutton and Barto, 1998), i.e., where the observations zt do allow

the agent to unambiguously determine the underlying state st. Such scenarios are said to have full
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observability, i.e., we can predict the next state and expected reward at any given time from only

the current state and action (Puterman, 2009; Sutton and Barto, 1998). When this is the case, the

POMDP parameters Z and O can be safely discarded. The simplified model thus obtained, repre-

sented as a tupleM = (S,A,P, r, γ), is referred as a Markov decision process (MDP) (Puterman,

2009).

Resorting to the Moving Preys Scenario, we can now model our problem as an MDP in which

the state at time-step t, st, describes both the state of the prey and the state of the predator

at time-step t, i.e., st = (sprey,t, spred,t). The state of the prey at time-step t corresponds to its

(x, y) position at time-step t, i.e., sprey,t = Pprey; the state of the predator, on the other hand,

corresponds to its position at time-step t, and whether or not it is hungry, i.e., spred,t = (Ppred, H),

where H is a boolean flag that is set to 1 whenever the predator is hungry. The state-space, S, is

then set of all possible values that st can take. In order to move in its environment and eat preys we

can define the agent’s actions as the set A = {Up,Down,Left,Right, Eat}, each movement action

moving the agent deterministically one cell in the corresponding direction in the environment.

Action Eat consumes a prey whenever the agent is collocated with it and has no effect otherwise,

i.e., the agent remains in its current position.

However, if the bold lines delimiting the scenario in Figure 2.2 represent high walls in the

environment, our agent will not always be able to observe the current position of the prey Pprey.

In such cases, we can use the POMDP model described earlier and design the agent as observing

only some elements of the underlying state, e.g., by setting the space Z of possible observations

as the set of all possible values of zt, where zt = (sprey,t, spred,t), and sprey,t is now a boolean

variable that takes the value of 1 only if Ppred = Pprey, i.e., the agent can only observe the prey

if collocated with it. Therefore, the exact location of the prey Pprey is said to be hidden from the

agent’s observations.

2.2.3 Optimal Policy

In the classical view of RL, the reward function evaluates the agent’s behavior with respect to its

designer’s objectives, acting as a critic residing in the external environment (Singh et al., 2010),

as illustrated in Figure 2.1. The goal of the agent is to choose its actions so as to gather as much

reward as possible during its lifespan, according to some model of optimal behavior that tries

to optimize some cumulative measure of the received reward (Kaelbling et al., 1996; Sutton and

Barto, 1998). For example, the infinite-horizon discounted reward model optimizes the expected

reward received discounted by γ. Formally, the optimal behavior should then maximize the value

v = E

[∑
t

γtr(st, at)

]
. (2.1)
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The reward function r(s, a) implicitly encodes a task that the agent must complete. In order

to maximize the value in (2.1), the agent must learn a mapping that, depending on its history of

observations and actions, determines the next action that the agent should take. Such mapping,

denoted as π : S → A, is known as a policy, and is typically learned through a process of trial-and-

error by some learning algorithm residing in the decision-making component inside the agent, as

depicted in Figure 2.1. Furthermore, in the case of the infinite-horizon discounted model in MDPs,

it is possible to find a deterministic stationary3 policy π∗ : S → A maximizing the value in (2.1)

(Bellman, 2003; Kaelbling et al., 1996; Littman, 1994).

Let us return to our running example of the Moving Preys Scenario. Because we want our agent

to consume as many preys as possible throughout time, one possibility is to provide a reward

of r = 1 whenever it is collocated with a prey in the environment, i.e., we can define a reward

function r(st, at) that takes the value of 1 only when Ppred = Pprey in st and at = Eat and is 0 for

all other states and actions. In this manner, the agent’s task is explicitly determined by the pro-

vided reward function, i.e., its goal can be directly translated as eating as many preys as possible

during its lifespan, as this is the only “source” of reward that can be gathered from the environment.

Let us now denote by V π the value obtained by an agent following some policy π, i.e.,

V π(s) = E

[∑
t

γtr(st, at) | s0 = s, at ∼ π

]
, (2.2)

where at ∼ π indicates that the actions at are selected according to policy π.

In this thesis we will focus on memoryless agents (also known as reactive agents), corresponding

to agents that select their action based only on their current observation (Littman, 1994). In other

words, a memoryless agent necessarily follows a policy π : Z → A that maps each observation

z ∈ Z directly to an action π(z) ∈ A. If the state is fully observable, then Z = S and zt = st.

When this is the case, there is a policy π∗ : S → A, known as the optimal policy, such that

V π
∗
(s) ≥ V π(s) (2.3)

for any policy π and any initial state s ∈ S. We write V ∗ to denote V π
∗
as the optimal state-value

function. We can also associate with π∗ an optimal action-value function Q∗ : S × A → R that

verifies the recursive relation:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P(s′ | s, a) max
b∈A

Q∗(s′, b). (2.4)

3A deterministic policy π is a policy that consistently chooses an action a = π(s) given the current state s, with
probability 1, for all s ∈ S (Littman, 1994). A stationary policy π is a policy which mapping from states to actions
a = π(s) does not change over time, for all a ∈ A and s ∈ S (Singh et al., 1994).
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Value FunctionsPolicy

policy improvement
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Figure 2.3: Generalized policy iteration (GPI). Adapted from (Sutton and Barto, 1998).

Figure 2.3 depicts the generalized policy iteration (GPI) scheme, in which the processes of policy

evaluation—approximating V ∗ and/or Q∗—and policy improvement—approximating π∗—interact

until they are consistent with each other (Sutton and Barto, 1998).

Almost all RL algorithms can be described by the GPI scheme (Sutton and Barto, 1998).

Relation (2.4) can be used to iteratively compute Q∗ for all pairs (s, a) ∈ S ×A. Additionally,

V ∗(s) = max
a∈A

Q∗(s, a), (2.5)

and the optimal policy at state s is given by

π∗(s) = argmax
a∈A

Q∗(s, a), (2.6)

as denoted by the greedy operator in Figure 2.3. From the above, we can restate the goal of the

RL agent as that of learning Q∗, since from the latter it is possible to derive the optimal policy

π∗.

2.2.4 Learning the Optimal Policy

RL research addresses the problem of designing algorithms to learn the optimal policy π∗ from

sampled interactions of the agent with its environment, usually by successively updating the ap-

proximations of Q∗(s, a) for every possible state-action pair s, a. Common examples of such meth-

ods include Q-learning (Watkins, 1989), Dyna-Q/prioritized sweeping (Moore and Atkeson, 1993)

and others (Sutton and Barto, 1998).

Since RL agents typically have no knowledge of either the state transitions in P or the rewards in

r, one possibility is to explore the environment—i.e., select actions in some exploratory manner—

building estimates for P and r, denoted by P̂ and r̂, respectively, and then using these estimates

to successively approximate Q∗. After exploring its environment, the agent can then exploit its

knowledge and select the actions that maximize (its estimate of) Q∗. These methods, known

as model-based, use information from the successive interactions with the environment to build a
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Figure 2.4: Model-based learning scheme, where acting, learning and planning interact. Adapted
from (Sutton and Barto, 1998).

model of the world and then use planning to simulate experience and update the value functions,

as depicted in Figure 2.4 (Sutton and Barto, 1998).

Many RL methods also come with guarantees of asymptotic convergence to the optimal policy,

as long as some conditions are met (e.g., that the agent visits all state-action pairs an infinite

number of times) (Kaelbling et al., 1996; Sutton and Barto, 1998).

Applying learning to our Moving Preys Scenario example means that we want our predator to

explore its environment, trying each action in each perceived state a certain number of times. In a

sense, this will eventually enable our agent to learn a “mental map” of the environment that allows

it to go from point (x1, y1) to point (x2, y2) by performing a specific sequence of movement actions.

It will also be able to learn that eating hares when collocated with them is somehow “good”. In

this manner, learning the optimal policy for this scenario can be seen as “knowing” the direct path

(sequence of movement actions) from the agent’s current location to the prey at each time-step.

Furthermore, provided that the agent has access to the current position of the prey Pprey at each

time-step t, we can use e.g., prioritized sweeping, to determine the optimal policy for this problem.

2.3 Design Challenges in RL

The RL framework presented earlier allows for the development of elegant solutions that are guar-

anteed to converge to the optimal behavior. However, despite all of its success, RL algorithms

present several design challenges and such guarantees come with several requirements that the

problem must meet (Kaelbling et al., 1996; Littman, 1994; Singh et al., 1994; Sutton and Barto,

1998). Figure 2.5 delineates the diagram of design challenges within the frameworks of RL and

IMRL that we discuss throughout this section.
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Figure 2.5: Diagram containing some design challenges within the framework of RL discussed in
the context of this thesis. Closed boxes represent design challenges and dashed boxes represent
common solutions for them.

2.3.1 Explicit Updates

Several RL algorithms come with a guarantee of convergence to the optimal behavior. However,

some conditions must be satisfied, namely the agent has to explicitly update every state-action pair

an infinite number of times (Kaelbling et al., 1996). In practical cases, we expect algorithms to find

a good policy within a finite amount of updates. Still, “sufficient” exploration can quickly become

unfeasible considering large environments, thus following this approach is potentially tedious and

can take a great amount of time before achieving the desired behavior4.

However, a computational technique known as reward shaping5 directly adjusts the reward

mechanism incrementally in order to scale up RL methods to handle complex problems (Dorigo

and Colombetti, 1994; Ng et al., 1999; Randløv and Alstrøm, 1998). Other approaches reward

local behaviors that approximate the final goal (Mataric, 1994) or provide the agent with simpler

versions of the problem in order to learn the behavior of interest (Selfridge and Sutton, 1985). All

these methods seek to speed-up learning by progressively approximating the intended behavior.

For simple and sequential tasks, we can somehow adjust the behavior of the agent by providing

“extra” relevant rewards that direct its actions towards the desired objective.

For example, in our Moving Preys Scenario, there are several states, one for each cell in the envi-

ronment, that are somehow irrelevant for the completion of the intended task, i.e., what it matters

4We refer to (Kakade and Langford, 2002; Thrun, 1992) for examples and discussion about the performance of
exploratory techniques for these classes of problems.

5This computational procedure is inspired by a training technique pioneered by Skinner (1938) that allows to
train an animal to perform a complex task by selectively reinforcing successive approximations towards the intended
behavior (Anderson, 2000), and was an idea central to the theory of operant conditioning (Anderson, 2000; Skinner,
1938).
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is that the agent is able to go to one of the three end-of-corridor positions of the environment.

To speed-up learning, we could therefore provide the agent with an extra reward according to its

position in the environment. The closer the predator is to its prey the higher the reward. In this

manner, the location of the predator itself is informative for the task accomplishment.

Another important implication of explicit updates is that many classical methods require tab-

ular representations6 for the target functions, which is impractical in large scenarios. Therefore,

there is also the need for generalization: in real settings, the states experienced will not be ex-

actly the same, so the problem is to use the experience from a limited part of the state space and

generalize it to unvisited states (Kaelbling et al., 1996; Sutton and Barto, 1998).

A problem related with explicit updates in large state spaces has to do with the specific char-

acteristics of the space itself, which may lead to inefficient use of experience. Some environments

present a state space where the information which is relevant for the task to be learned is con-

centrated in a small set of states. This means that the majority of the observations experienced

by the agent during learning are irrelevant for it to solve the task, and require a great deal of

useless experimentation (Jong and Stone, 2005; Kroon and Whiteson, 2009). The way to behave

effectively in a wide range of environments is to use memory about previous interactions (states

and actions) to disambiguate new states, thus reducing the amount of experimentation required

(Kaelbling et al., 1996; Sequeira et al., 2013).

The most common methods to solve this kind of problems is to use supervised learning tech-

niques and estimate the value function through function approximation, using more compact pa-

rameterized representations (see Szepesvári, 2010, for references and discussion). Another possible

direction is to structure the problem in smaller problems that can be solved locally, thus reducing

the search space (Sutton and Barto, 1998).

2.3.2 Partial Observability

Another problem about the original theory of RL is that it assumes that the agent learns in a

Markov environment, i.e., most of the techniques originally proposed to solve RL problems are

limited to be used in the context of MDPs (Kaelbling et al., 1996; Littman, 1994; Loch and

Singh, 1998; Singh et al., 1994; Sutton and Barto, 1998). In fact, RL methods usually assume two

restrictions regarding the relationship between the agent and its environment (Kaelbling et al.,

1996):

1. The first one is full observability over a Markov environment which allows us to predict future

observations and rewards (Sutton and Barto, 1998);

6Tabular methods build up approximations of value functions, policies and models using arrays or tables con-
taining entries for each state or state-action pair (Sutton and Barto, 1998).

18



2.3. DESIGN CHALLENGES IN RL

2. The second is that the transition function P remains fixed or slowly changes throughout time,

i.e., that the environment is stationary or slowly-varying non-stationary.

In practice, this requires that the agent is provided with a complete description of the state of the

environment (in terms of the relevant information to make predictions), and that such predictions

are dependent only on the current state and are independent of past states or other variables (such

as time) (Singh et al., 1994).

Perceptual Aliasing

In realistic settings (e.g., the real-world), however, the agent often does not have a complete percep-

tion of the state of the environment, which can cause the agent to suffer from perceptual aliasing,

i.e., mapping the same observation to different states of the environment (Kaelbling et al., 1996;

Loch and Singh, 1998; Singh et al., 1994). Perceptual aliasing may be caused by perceptual and

motor limitations (Bratman et al., 2012; Sorg et al., 2010a): learning agents often do not have ac-

cess to all state information necessary to decide, besides not knowing the environment’s dynamics

or the exact consequences of their actions. This is particularly bad as the agent may not gather

sufficient information from the environment to take the optimal decision in a given situation, which

can ultimately lead to arbitrarily large losses in performance (Singh et al., 1994). Another common

cause for this problem is the presence of noise in sensor data, providing incomplete information

about the current state (Kaelbling et al., 1996). Due to partial observability the Markov property

no longer holds from the agent’s perspective, and as such in many real-world applications the con-

ditions supporting the appealing theoretical properties of RL methods are often violated (Littman,

1994).

Let us recall the problem posed by the Moving Preys Scenario under partial observability de-

scribed earlier in Section 2.2.2, i.e., where the agent cannot observe the prey’s position Pprey unless

collocated with it. Figure 2.6 represents an abstraction of the state transition model for this prob-

lem. Each prey State indicates any state where the agent is hungry and the prey is located in the

corresponding end-of-corridor location, i.e., top, middle or bottom. Each full State corresponds to

the state in which the agent is full after eating the corresponding prey. Each go to action is an

abstraction that corresponds to the sequence of movement actions necessary for the agent to move

from its current position to the respective end-of-corridor location. The dashed circle represents

the prey unknown State that in fact the agent observes, since it cannot observe the prey’s location.

Under such conditions, each observation made when the agent is hungry can therefore correspond

to one of 3 different underlying states, according to the particular location of the prey Pprey.

Applying classical RL algorithms under such conditions may prevent the agent from learning the

optimal behavior as it cannot determine whether going into a specific end-of-corridor position will

potentially lead to a prey, which is the only source of reward in the environment. In this case we
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Figure 2.6: Abstraction of the state transition model for the Moving Preys Scenario. The dashed
circle represents the prey unknown State that the agent in fact observes. Numbered arrows represent
state transitions and the associated transition probabilities. Labeled arrows represent the effects
of action execution in terms of state transition and the reward received. See text for more details.

would have to provide the agent with additional data. For example, we could use knowledge about

the domain and take advantage of the fact that a prey randomly appears on an end-of-corridor

location different from the one where it last appeared to “tell” the agent to explore one of the other

possible prey locations.

Ignoring Partial Observability

One possible strategy to deal with partial observability is to just ignore it, treating the observations

as if they were states, and then applying a traditional RL algorithm to solve the POMDP as

if it was an MDP (Kaelbling et al., 1996). The first consequence of doing so is that common

algorithms such as Q-learning (Watkins, 1989), although handling well partial observability in some

scenarios, are not guaranteed to converge to an optimal policy (Kaelbling et al., 1996; Littman,

1994). Even employing model-based approaches to collect the transition model of the environment

brings no guarantees, as the transition probabilities estimated depend on the policy being used

(Kaelbling et al., 1996; Singh et al., 1994). Moreover, Littman (1994) showed that finding the

optimal deterministic policy in such conditions is NP-hard (more on this ahead).

From an algorithmic perspective, it is also important to determine exactly what are the con-

sequences of employing traditional RL techniques in POMDPs, and what kinds of strategies there

are to alleviate such drawbacks. Singh et al. (1994) showed that just confounding two states can

lead to an arbitrarily high loss in the cumulative payoff received. Also, this loss is not proportional

to the degree of “non-Markovianness” of the environment, i.e., one cannot assume that because an

environment suffers from “mild” partial observability (e.g., only one of the state’s variables is not
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observable) the loss in return will also be small.

Stochastic and Non-stationary Policies

As mentioned earlier, in MDPs it is possible for an RL algorithm to find an optimal stationary

deterministic policy. However, in POMDPs, if the agent treats observations as states, the best

stationary deterministic policy can be arbitrarily worse than the best stationary stochastic7 policy,

although the latter can be arbitrarily worse than the optimal policy in the underlying MDP (Singh

et al., 1994). Additionally, optimal policies in POMDPs can be non-stationary. This has to do

with the fact that, due to hidden state, in POMDPs there may not be a policy that maximizes the

value of each observation simultaneously (Singh et al., 1994).

All these facts open the possibility for a new class of policies which can perform well in

POMDPs. These strategies try to attenuate the fact of not being able to observe the complete state

of the environment by using policies that change over time—non-stationary policies—or choose ac-

tions according to some probability—stochastic policies. For example, in our Moving Preys Scenario

and by looking at the state transitions in Figure 2.6 we could consider policies that choose going

to each of the end-of-corridor locations with a probability of 1/3. Still this would not guarantee

that the agent would go to a corridor and find a prey there. Furthermore, the task of determining

optimal non-stationary policies or stationary stochastic policies is generally hard. The policy space

is infinite, thus searching for the best strategy can be very computationally demanding. In fact,

Littman (1994) has proved that finding the optimal policy in such conditions is NP-hard.

Other Approaches

Alternative approaches to learning in POMDPs apply state-estimation, building internal repre-

sentations of the state of the environment (Singh et al., 1994). However, such approaches involve

strong assumptions about the environment (e.g., the number of states is known). Also, the state

estimation procedure may be computationally expensive by requiring large amounts of samples.

Finally, if state estimation and learning are performed at the same time, learning computation is

wasted until good state estimations are accurate enough (Singh et al., 1994).

Another approach presented by Loch and Singh (1998) proved that algorithms that use eligi-

bility traces (such as SARSA (Rummery and Niranjan, 1994)), work well in POMDPs that have

good memoryless or low-order memory-based policies. This is due to the fact that the eligibility

traces allow that each visited observation-action pair has access to the information about reward

during a certain number of following learning steps, thus diluting the problem of the uncertainty

about the hidden state (Loch and Singh, 1998).

7A stochastic policy π is a policy that chooses an action a = π(s) given the current state s according to some
probability distribution, for all s ∈ S (Singh et al., 1994).
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2.3.3 Manual Adjustments

As discussed in Section 1, practical reinforcement learning often requires providing the learning

algorithms with extra a priori knowledge. This requires human design effort in manually tuning

the algorithms for particular domains.

One of the design challenges within RL that we focus in this thesis has to do with building

reward functions that allow the agent to learn the task intended by its designers (Abbeel and

Ng, 2004; Ng and Russell, 2000). In complex environments even the agent’s designer cannot easily

determine the “correct” behavior for the agent in a particular task, making the task of handcrafting

reward functions possibly unpractical (Sorg et al., 2010a).

Another case within RL requiring a great effort of adjustment has to do with the state space

representation. Cases demanding special manual tuning include large or continuous state spaces,

where agent designers are sometimes required to break the tasks in smaller sub-tasks or manually

discretize the state space to reduce the number of dimensions (Kaelbling et al., 1996).

2.4 Intrinsically-Motivated Reinforcement Learning

In this thesis we follow a recently proposed approach for dealing with the problem of reward

function design from an ecological perspective that successfully mitigates some of the limitations

found in computationally bounded agents, including partial observability. This approach is defined

within the framework for intrinsically-motivated reinforcement learning (IMRL) (Singh et al., 2009,

2010), and the problem is referred to as the optimal reward problem (ORP) (Singh et al., 2009;

Sorg et al., 2010a).

2.4.1 Motivation

To motivate the idea behind IMRL and the ORP, we continue to analyze the problem behind the

Moving Preys Scenario. So far we have considered rewards that directly relate to the the task being

solved, i.e., provide a positive reward when eating a prey and rewards that take into account the

distance to the prey’s position by means of reward shaping. As we have seen, none of these solutions

are satisfactory given the agent’s problem of not being able to observe the prey’s current location.

We have also seen that stochastic and/or non-stationary policies can perform well in environments

with partial observability such as this one. Such policies may work well for this particular case,

however we would like to provide the learning agents with flexible and robust mechanisms that are

able to allow good performances in a wide range of environments. Moreover, as mentioned earlier,

searching for stochastic or non-stationary policies is hard as there could be infinite possibilities.
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2.4.2 Separating Designer and Agent Objectives

As we have seen in Section 2.2, in classical RL it is assumed that the reward function used by the

agent to learn the intended task is part of the external environment, as illustrated in Figure 2.1,

and that the provided rewards directly relate to the task being accomplished.

According to Sorg et al. (2010a), there is a misconception with classical agent design within

RL that “confounds” the designer’s and the agent’s objectives by only using reward functions di-

rectly associated with the task intended by the designer. Due to the aforementioned challenges

faced by both the agent and its designer when adjusting a reward mechanism for a specific task,

the authors proposed a separation between the designer ’s and the agent ’s objectives in order to

achieve flexible solutions for reward function design while mitigating agent computational bounds.

The idea is that, because of their limitations, agents should follow their own goals while learning,

and their performance should be later evaluated against the designer’s objectives.

Returning to our Moving Preys Scenario example, instead of directly providing rewards upon

task completion, we can encode within the learning agent reward functions that provide rewards

for actions performed some time ago, thus promoting exploration in the environment. Because the

environments are sometimes very dynamic and unpredictable from the perspective of the agent,

this general exploratory approach could guide the agent into choosing prey locations visited a long

time ago. In this manner, the position of prey that was just consumed will less likely be chosen

next, and thus our agent will have a greater probability of choosing the correct location. We note

that performing less experienced actions has nothing to do with the task intended by the designer.

Nonetheless, we can still measure whether the agent was “successful” by e.g., counting the number

of preys eaten. As we shall discuss further ahead in this chapter, these kind of exploratory rewards

provide intrinsic motivation for the agent.

2.4.3 The IMRL Model

In order to facilitate the design of reward functions and at the same time mitigate computational

limitations associated with learning agents, Singh et al. (2009, 2010) proposed a framework for

intrinsically-motivated reinforcement learning (IRML). Figure 2.7 shows the components for the

IMRL model. As depicted, IMRL makes explicit that the rewards used to guide the agent are

provided by a critic within its internal environment, contrasting to the traditional RL perspective

in Figure 2.1.8 Also, from an ecological perspective, the rewards with which the agent learns in

RL should be referred to as reward signals, since the rewards are the external elements in the

8It is noted that one must not confound the critic providing the reward in IMRL with the adaptive-critic of
“actor-critic” architectures (Barto et al., 1983) residing within the RL agent that evaluates the agent’s performance
in the long-term perspective, usually by defining a state or action-value function. In an ecological perspective, the
adaptive critic provides a form of secondary or learned reward, contrasting with the primary or innate rewards
provided by the critic inside the internal environment of the agent depicted in Figure 2.7 (Singh et al., 2010).
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Figure 2.7: The model for intrinsically motivated reinforcement learning, where a critic belonging
to the internal environment provides the reward signals to the learning agent; adapted from (Singh
et al., 2010).

environment, e.g., food, carrying advantageous properties that make the agent interact with them.

Such external elements are perceived alongside other sensations to form the states perceived by

the agent from the environment. Another distinction has to do with the actions performed by

the agent, that are considered to occur in the external environment according to the decisions

deliberated at each time-step by the decision-making component (Singh et al., 2010).

Formally, the IRML framework slightly extends the standard RL model presented in Section 2.2.

Specifically, in this framework:

• let E denote some set of environments where we want the agent to perform well (Singh et al.,

2009). Contrasting to classical RL, E directly relates to the problem of designing agents that

perform well in a (limited) variety of environments;

• let {ρτ , τ = 1, . . . , t} correspond to an external evaluation signal that, at each time-step

t, depends only on the underlying state st−1 of the environment and the action at−1 per-

formed by the agent. This signal can be either environment feedback—for example, when an

agent receives a monetary prize for performing some action—or physiological feedback—for

example, when an agent feels satisfied after feeding.

• let ht = {z0, a0, ρ1, . . . , ρt, zt} ∈ H denote one particular history of interaction of the agent

with some environment up to time-step t, taken from a set H of possible (finite) histories.

Such history corresponds to all the information perceived by the agent directly from the

environment: sequence {zτ , τ = 0, . . . , t} corresponds to observations about the environment

state9; similarly, {aτ , τ = 0, . . . , t − 1} corresponds to the sequence of actions performed by

the agent;

• the designer’s objectives are encoded via an objective or fitness-based reward function, denoted

by rF : S ×A×H → R, which, if used by the agent, prescribes preferences over its behavior

during some history of interaction (Bratman et al., 2012). rF therefore directly rewards
9Here we assume partial observability by the agent, but the model is extensible to the case of full observability

where zt = st.
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behaviors related to the task being learned and throughout this thesis we define it as

rF (s, a, h) = E [ρt+1 | st = s, at = a] . (2.7)

• let R denote some space of possible reward functions containing rF that the agent can use

to learn the intended task;

• the agent’s objective is represented via an agent or primary reward function r : S ×A×H →

R ∈ R. Separated from its designer’s objectives, the agent’s goal is the goal of any other RL

agent, i.e., to attempt to maximize the cumulative reward as defined by r, which is used to

guide its behavior while learning;

• let pH(ht | r, e) denote the probability of observing history ht in environment e ∈ E given

the reward function r.

IMRL extends classical RL by considering reward functions which map from agent histories

to scalar values. The agent designer’s objective is to build agents that perform well in a set of

environments of interest (Bratman et al., 2012; Singh et al., 2009, 2010; Sorg et al., 2010a). For the

agent to meet the objectives of its designer, its performance over history ht is evaluated by some

real-valued objective or fitness function f : H → R. This function measures how the fitness-based

reward is accumulated during ht and throughout this thesis we define it as

f(ht) =

t∑
τ=1

ρ(sτ , aτ ), (2.8)

Furthermore, each reward function r ∈ R can be evaluated according to the scalar value F(r),

which can be estimated from a set of histories of interaction, {h1
t , . . . , h

N
t }, as

F(r) =

N∑
i=1

pH(hit | r, ei)pE(ei)f(h). (2.9)

Each history hit is sampled according to pH(hit | r, ei), where ei is an environment sampled according

to a distribution pE(E) over the environments in E and in which the reward function r is held fixed

(Singh et al., 2009).

Figure 2.8 delineates the extended learning scheme proposed by the IMRL framework. The

result of each learning process i is a history of interaction hit given a reward function r and an

environment ei sampled as described above. We note that, for the purpose of generating each

history hit, the agent is only constrained to learn with reward function r, independently of the

method used to learn the optimal policy/optimal value functions therein (Singh et al., 2009).

Moreover, each r ∈ R is constrained only to be any reward function mapping from agent histories

to scalar values (Singh et al., 2009). The result of the overall learning procedure is the evaluation

25



Chapter 2

History 
Evaluation

Reward Function 
Space

Environment 
Set

Learning Reward Function 
Evaluation

…

Figure 2.8: IMRL learning scheme, where the agent learns with a given reward function r and its
performance is evaluated given a fitness function f and a set of environments of interest E (Singh
et al., 2009, 2010). The Learning block represents any RL method that learns an optimal policy
from experience given r (see text for details).

of reward function r according to the fitness function f(ht) as given by (2.9). In a sense, f(h)

measures how well-adapted the agent is to its intended purpose/environment during some history

of interactions with it (Singh et al., 2010). In the same manner, F(r) measures the impact of

reward function r on the agent’s fitness in a set of environments of interest E .

Provided a formal manner of evaluating histories of interaction with the environment, the

optimal reward problem (ORP) is then defined as an optimization problem: that of choosing an

optimal reward function, denoted by r∗ ∈ R, that maximizes the expected fitness or objective return

with respect to a distribution over possible environments (Bratman et al., 2012; Singh et al., 2009,

2010; Sorg et al., 2010a), i.e., a reward function such that

r∗ = argmax
r∈R

F(r) = argmax
r∈R

EpH(hi
t|r,ei)pE(ei) [f(h)] . (2.10)

Table 2.1 summarizes the idea behind IMRL and the ORP formulation through the separation

of the agent and its designer’s objectives. It also presents the nomenclature and notation used

within IMRL/ORP in comparison to classical RL.

2.4.4 Mitigating Computational Bounds

One advantage of using the ORP formulation is that it often has the potential to alleviate limi-

tations in computationally bounded agents. Sorg et al. (2010a) designed a series of experiments

targeted at assessing how well-designed rewards can mitigate some limitations of computationally-

bounded learning agents. These experiments showed that by means of some internal reward fea-

tures, well-designed reward functions can enhance the performance (as measured by the designer’s

fitness utility function) of agents that have limitations in planning depth, impoverished state repre-

sentations, locally inaccurate models, and also some limitations inherent to function approximation

and specific learning algorithms used (Sorg et al., 2010a).

26



2.4. INTRINSICALLY-MOTIVATED REINFORCEMENT LEARNING

Table 2.1: Separation between the agent’s and its designer’s objectives (Bratman et al., 2012; Singh
et al., 2009, 2010; Sorg et al., 2010a).

Designer Agent

Objective design agents that maximize
fitness / objective utility

maximize utility as provided by
r(s, a, h)

Reward function rF r

Designation fitness-based / objective primary / agent

Purpose evaluate the agent’s behavior guide the agent through
learning

Reward type extrinsic or fitness-related /
task-related intrinsic or fitness-inducing

Example for the
Moving Preys Scenario +1 for eating a prey +1 for going to a prey position

visited a long time ago

Utility function f(h) e.g., the value in (2.1)

Designation fitness / objective utility guidance / agent utility

Example for the
Moving Preys Scenario number of preys eaten —

Bratman et al. (2012) further proposed a formal manner to assess the benefits for the design

of learning agents when solving the ORP. The authors propose a distinction between strong and

weak mitigation. Weak mitigation has to do with finding rewards other than the designer’s implicit

fitness-based reward function that enhance the agent’s performance, regardless of the method that

is used for that purpose or the agent’s limitations. Strong mitigation is a setting in which both

the cost of searching for good reward functions and the cost of evaluating those functions is taken

into account, more specifically by splitting the computational resources available to the designer

in order to achieve these two tasks.

Figure 2.9 presents the nested optimal reward and control (NORC) architecture for strong

mitigation proposed in (Bratman et al., 2012). This model extends the IMRL standard model

depicted in Figure 2.7 by searching for good reward functions online, i.e., while the agent is learning

the intended task. It defines two RL agents learning and acting interchangeably: the critic agent

evaluates and adjusts the reward function used by the IMRL internal critic; the decision-making

agent is the normal agent learning the best policy at each time given that reward function. The

critic agent gathers statistics about the designer’s fitness-based reward received during a certain

period of time (e.g., by using F(r)) and uses such information to improve the intrinsic reward

function being used. In this manner it is possible to split the available time to both learn the

optimal policy and improve the reward function online, thus achieving strong mitigation.
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Figure 2.9: The model for strong mitigation provided by the NORC architecture, where a “critic
agent” adjusts the reward function used by the internal critic to provide the reward signals during
learning; adapted from (Bratman et al., 2012).

2.5 Design Challenges in IMRL

To better understand the implications and the computational focus of our approach we summarize

the challenges involved in designing RL agents that were discussed throughout this chapter:

1. First of all, reinforcement learning involves the design of a learning algorithm that given some

task—including a state-space representation and a reward function—is able to compute an

optimal policy for it;

2. If the reward function and/or the state transitions are unknown we can delineate an explo-

ration strategy to gather useful information from the interactions with the environment and

thus estimate the desired optimal policy;

3. Research within the framework of IMRL has shown that using intrinsic reward functions

relating to aspects of the agent’s history of interaction with the environment that may not be

directly related to the task being learned can actually lead to good performances by the agent,

particularly in the presence of perceptual limitations—which is termed weak mitigation;

4. By considering further computational bounds of the agents e.g., limited planning depth,

we can design optimization mechanisms that improve the intrinsic reward functions online,

i.e., while the agent is interacting with the environment—which is referred to as strong

mitigation.

So far we have provided a formal description of the ORP and the IMRL framework but did not

explain why or how this approach will help us to alleviate some of the aforementioned challenges.

As we have seen, because of their limitations, agents should follow their own distinct goals while

learning and their performance should be later evaluated against the designer’s objectives. The

key element of this approach lies precisely in discovering an optimal reward function as described

earlier (Singh et al., 2009; Sorg et al., 2010a).
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Figure 2.10: Diagram of the RL design challenges addressed by the framework of IMRL, and some
challenges deriving from this approach. As before, closed boxes represent design challenges and
dashed boxes represent common solutions for them.

The IMRL framework proposes an elegant solution by considering rewards not directly related

to the agent’s task while mitigating some of its limitations, as indicated in Figure 2.10. However, it

also poses a set of design challenges or choices that one must deal with when building such reward

mechanisms. Namely, one must decide how the optimization procedure will discover the optimal

reward function and also address the nature of the rewards provided to guide the agent throughout

learning. We summarize both challenges and also solutions proposed so far to tackle them.

2.5.1 The Search for Optimal Rewards

The ORP formulation presented above outlines two distinct search problems, namely that of finding

the optimal reward function and that of discovering optimal policies/value functions (Bratman

et al., 2012; Niekum et al., 2010; Singh et al., 2010; Sorg et al., 2010b). The latter can be achieved by

employing traditional RL techniques given a particular reward function and a set of environments

of interest, as discussed in Section 2.2.4.

Linearly Parameterized ORP

Solutions for finding the optimal reward function commonly propose a space of reward functions

R as the linear span of some set Φ of real-valued reward features, Φ = {φ1, . . . , φp} (Singh et al.,
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2009, 2010; Sorg et al., 2010a,b), i.e.,

R = {φ>θ | θ ∈ Rp}.

In other words, each reward r ∈ R is a linear combination of the features in Φ,

r(s, a, h) =

p∑
k=1

φk(s, a, h)θk = φ>(s, a, h)θ, (2.11)

where the θk, k = 1, . . . , p, correspond to the parameters of the linear combination (Singh et al.,

2010). We henceforth write r(θ) to explicitly denote the reward function corresponding to the

parameter vector θ, i.e., r(θ) = φ>θ. We refer to this formulation of the ORP as linearly param-

eterized approach to ORP.

With this formulation, the task of the optimization procedure is to find the optimal combination

of parameters denoted by θ∗. In other words, the ORP reduces to finding the parameter vector θ∗

such that the corresponding reward function, r(θ∗), has maximal fitness, i.e.,

θ∗ = argmax
θ∈Rp

F(r(θ)), (2.12)

where F(r(θ)) is given by (2.9).

The above optimization can be conducted using different techniques. Some approaches, more

concerned with discussing the ORP itself, used quasi-exhaustive methods to search for good pa-

rameter configurations (Singh et al., 2009, 2010; Sorg et al., 2010a). The optimization can also be

performed online, i.e., while the agent is learning in a particular environment. The policy gradient

for reward design (PGRD) algorithm (Sorg et al., 2010b) proposes a gradient ascent approach to

solve the ORP by improving the agent’s reward function (and the corresponding parameter vector)

online. This method has been used together the NORC architecture described earlier to have into

account computational limitations of the agent by adjusting the parameters while the agent is

learning (Bratman et al., 2012).

Other Approaches

Apart from the aforementioned linearly parameterized approach to ORP, Niekum et al. (2010)

propose the use of genetic programming to search for good reward functions, whereby populations

of reward functions (as programs) are evolved, the fitness of which is calculated according to the

fitness function10.

An approach similar to that of the NORC architecture is presented in (Hester et al., 2013) in

which an algorithm learns to choose online from several predefined exploration strategies using

bandit-type algorithms. The exploration strategies rely on combinations of intrinsic rewards col-
10We refer to Chapter 5 for a similar approach to search for domain-independent reward functions.
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lecting information about the structure and quality of the model built by the agent. Such method

is useful when learning across several domains to reduce the amount of fine-tuning needed to adjust

exploration strategies and rewards for a specific task.

2.5.2 The Nature of the Reward Functions

The IMRL framework proposes the use of richer reward functions that implicitly encode information

to potentially overcome the agents’ perceptual limitations. And, in fact, this approach was shown

useful both to facilitate reward design (Niekum et al., 2010; Sequeira et al., 2011a) and to mitigate

agent limitations (Bratman et al., 2012; Sorg et al., 2010a,b). However, a design challenge within

IRML has to do with the nature of the agent reward functions r ∈ R that serve as parameters to

the optimization problem described earlier.

Computationally, in IMRL, this problem relating the possible sources of reward has been ad-

dressed by providing the agent with both domain-dependent and domain-independent reward fea-

tures fostering exploration and manipulation behaviors (Singh et al., 2010). Domain-dependent

features use (combinations of) the values of immediate state/observation components to generate

reward, for example using the location of the agent at some time-step (Niekum et al., 2010), or

combinations of “thirst” and “hunger” status of the agent (Niekum et al., 2010; Singh et al., 2009,

2010). Domain-independent features relate to statistical properties of the history of interaction

with the environment.

For example, some solutions have been based on (inverse) recency features relating the number

of times the agent has visited some state-action pair or (inverse) frequency features measuring

the time since the agent last visited some state, all rewarding exploratory or “play” behaviors

(Bratman et al., 2012; Singh et al., 2010; Sorg et al., 2010a). From a perspective of measuring

curiosity and creativity in learning agents, Schmidhuber (2010) proposed a reward feature that

measures improvements in the agent’s world-model to provide intrinsic reward. Other solutions

include using the Manhattan distance to some goal location (Bratman et al., 2012), rewarding

behaviors that get the agent closer to its objective, or using recent transition errors to measure

the quality of the agent’s model (Sorg et al., 2010a), rewarding situations in which the agent has

more control over its environment.

2.6 Research Problem

As mentioned in Chapter 1, in this thesis we are interested in designing reward functions that

augment the autonomy, robustness and flexibility of autonomous learning agents. This means that

our research focus is in discovering reward functions that are both capable of alleviating perceptual

limitations inherent to learning agents and that are generic enough to be used in a variety of distinct

scenarios thus reducing the amount of manual fine-tuning or expert knowledge on a specific domain.
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In other words, our “computational focus” resides in the challenge regarding the nature of the

reward functions described in the previous section. This implies that computationally we aim at

weak mitigation as defined in (Bratman et al., 2012).

However, a couple of considerations must be taken about the difficulties involved in designing

reward mechanisms having the above-mentioned attractive properties:

• First of all, practical reinforcement learning often requires providing the learning algorithms

with relevant a priori knowledge, adequately tuning the algorithm for the situation of in-

terest, thus decreasing the autonomy in the agent’s decision process (Kaelbling et al., 1996;

Littman, 1994);

• In complex environments, the demand for “sufficient” built-in knowledge is particularly criti-

cal as sometimes it is impossible for the agent’s designer to know beforehand what the exact

optimal behavior is in some situation, let alone design reward mechanisms that are flexible

enough to be applied in a variety of different situations (Sorg et al., 2010a);

• In the context of computational bounds mitigation the word “weak” might be misleading—

the challenge of designing domain-independent reward functions that are able to alleviate

some of the problems associated with learning under partial observability must at least be as

important as discovering the optimal one. In fact, the agent relies in these reward functions

to learn the desired task and as such without “good” reward functions or “good” rewards,

strong mitigation can never occur;

• Furthermore, strong mitigation implies a natural trade-off between the computational limi-

tations of the agent and the quality of the obtained solutions (Bratman et al., 2012);

• On the other hand, we also have to balance the time costs involved in optimizing a generic

and domain-independent reward function offline versus the time spent in manually adjusting

the learning algorithm’s parameters and reward functions for a specific domain.

Generally speaking, throughout this thesis we acknowledge the importance of strong mitigation,

i.e., we take into consideration the time necessary to discover the optimal reward functions and

possible computational limitations associated with practical learning settings when testing our

approach. Nevertheless, we note that our focus is mainly on the design of reward functions that

are independent of the learning algorithm, state representation or exploration strategy adopted.

Therefore, the quality and the specific characteristics of the optimized reward functions are of

more importance in the context of our discussions than the processes by which they are optimized.

Furthermore, there is nothing that prevents our proposal for intrinsic rewards from being integrated

within the approaches to strong mitigation (e.g., within the NORC architecture of Bratman et al.,

2012) discussed in Section 2.4.4 if further limitations have to be taken into account.
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2.7 Our Approach

To tackle with the research problem described above, in this thesis we focus on solutions for reward

design that are in line with the ecological and evolutionary principles behind the IMRL framework.

As such, it is necessary to better understand the meaning of intrinsic motivation within IMRL,

and how can it be used to address the aforementioned challenge.

2.7.1 Ecological Perspective

To understand the role of intrinsic motivation within IMRL, first it is important to address the

relationship between reward functions in RL in general and the kinds of rewards in nature that

motivate the behavior of biological organisms. As described throughout this chapter, RL agents’

behavior is contingent on the reward function that it uses to learn the intended task/optimal policy.

From a computational perspective, the critic evaluating the agent’s performance during its lifespan

provides the only source of motivation for its behavior (see Figure 2.1). IMRL approaches reward

design by formulating the ORP from an ecological and evolutionary perspective(Singh et al., 2009,

2010). Within this perspective, any rewards in RL provided to the agent are considered as primary

rewards, i.e., innate, phylogenetically significant rewards that, throughout evolution, provided

reproductive benefit in a particular habitat (Singh et al., 2009).

In relation to the nature of the rewards and motivation provided to the agent, two types are

considered:

• extrinsic rewards characterize activities related to attaining some specific goal, like reducing

the value of some biological drive11(Oudeyer et al., 2007; Ryan and Deci, 2000; Singh et al.,

2010). Making a parallel with our running example, this corresponds to the direct rewards

provided by eating a prey;

• in contrast, by means of intrinsic motivation, intrinsic rewards foster behaviors devoid of a

specific goal, such as play or exploration, that despite not having a direct biological signifi-

cance for the organism are inherently enjoyable and provide adaptive advantages (Deci and

Ryan, 1985; Oudeyer et al., 2007; Ryan and Deci, 2000; Schmidhuber, 2010; Singh et al.,

2010).

Several parallels have been drawn between intrinsic motivation systems in the psychology liter-

ature and some active learning and experimental design techniques from machine learning (Kaplan

and Oudeyer, 2007; Oudeyer et al., 2007; Schmidhuber, 2010). Also, several intrinsic motiva-

tion systems have been proposed for artificial systems in areas such as developmental robotics.

Examples include the hierarchical acquisition of skills using intrinsically motivated reinforcement

11In works that consider the nature of the motivation provided by the rewards, the fitness-based reward function
rF is also referred to as the extrinsic reward function as it explicitly rewards goal-related behaviors (Singh et al.,
2009, 2010).
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learning (Barto and Şimşek, 2005; Schembri et al., 2007; Stout et al., 2005), the acquisition of a

visual-attention system from motivation variables (Kaplan and Oudeyer, 2003), and others (Şimşek

and Barto, 2006; Konidaris and Barto, 2006; Oudeyer et al., 2007; Schmidhuber, 2010).

Intrinsic rewards come to be by means of evolutionary processes that reward behaviors which

have an adaptive purpose and enhance the organism’s fitness in some environments. Similarly,

within IMRL, intrinsic rewards can stem from an optimization procedure that can be “paralleled”

with the evolutionary pressures for adaptation that animals are subject to in nature (Singh et al.,

2010). Intrinsic reward functions should then provide intrinsic motivation to the agent, i.e., useful

rewards that may not be directly related to fitness improvement but that guide the agent through-

out learning and ultimately improve its adaptive potential in a set of environments of interest

(Singh et al., 2010). As illustrated in Figure 2.10, the use of intrinsic rewards within IMRL has

facilitated both the design of reward functions (Niekum et al., 2010; Sequeira et al., 2011a) and also

mitigated computational limitation of learning agents (Bratman et al., 2012; Sorg et al., 2010a,b).

2.7.2 Sources of Intrinsic Motivation

We have seen that intrinsic rewards are useful for the design of more flexible and robust learning

agents within IMRL. But what are the sources of intrinsic motivation in nature? Oudeyer et al.

(2007) analyzed some activities providing intrinsic motivation in humans according to research in

the psychology field. Basically, several theories have tried to explain the existence of motivation

that encourages exploration and manipulation in the environment. From a physiological point of

view, such motivations are not explained by theories of homeostasis, i.e., these observed behavioral

tendencies do not address any specific tissue deficit like hunger or thirst do. Instead, theories of

cognitive dissonance assert that organisms are motivated to reduce the incompatibility between

perceived situations and cognitive structures built from past experience. However, such theories can

not account for the “search for uncertainty” observed in human behavior. More recent research has

formulated theories where both exploratory and incongruence reduction behaviors are rewarded.

According to these theories, people seem to find an equilibrium between the search for novel

stimuli through exploration and the comfort of familiar situations that provide an idea of control

or competence over the external environment (Ryan and Deci, 2000).

2.7.3 Socio-Emotional Reward Design

Provided this ecological perspective over the possible sources of intrinsic motivation, our approach

for the design of intrinsic reward mechanisms is inspired by the role of emotions in nature in

motivating behavior and aiding decision-making and also by the way humans and other animals

take advantage of their social context in order to thrive. Throughout the following chapters we

show that reward features based on appraisal theories of emotion indeed simplify the design of

IMRL agents and also alleviate common perceptual challenges. Moreover, we show that emotions
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emerge as natural sources of information within IMRL agents and that the motivation provided by

means of the emotion-like rewards fits the above-mentioned notion of intrinsic motivation. Finally,

we propose social intrinsic reward features that evaluate the agent’s actions in benefiting its social

group, thus extending IMRL into multiagent scenarios.

2.8 Summary

In this chapter we provided the technical background on RL and IMRL, necessary to set up nomen-

clature and notation used throughout the thesis. We started by presenting the general problem

faced by an RL agent and also common methods proposed in the literature for the agent to learn

the task intended by its designer. We overviewed some limitations and design challenges associated

with classical approaches within RL. We then introduced the framework of IMRL and formulated

the ORP that provide a structured way to alleviate some of the previously identified limitations.

Finally, we briefly surveyed related work within these areas and identified how our approach can

also contribute to mitigate challenges faced by both agents and their designers in complex domains.

The next chapter provides theoretical background and related work on emotions and the field

of affective computing, making the bridge between the technical problem identified above and our

approach and contributions in the following chapters.
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A large part of the contributions of this thesis is based on the adaptation of emotional signals to

design reward functions for IMRL. As such, in this chapter we provide theoretical background on

emotions to understand their role on biological organisms and how can they contribute to build

more robust and flexible IMRL agents, alleviating some of the problems identified in the previous

chapter. The area of affective computing (AC) has long been a research field concerned at building

more interactive, natural and proficient artificial agents based on computational models of emotions

(Picard, 2000). Therefore, we also show the beneficial impact that emotion-based design within

AC has had in the performance of artificial learning agents.

3.1 Introduction

Over the past 50 years, research within the fields of psychology, biology, ethology, neuroscience

and others have shed light over the origins, causes and consequences and the underlying brain

mechanisms behind one of the most common behavioral phenomenon observed in nature: emotions.

Emotions have often been considered as detrimental to rational and sound decision-making (Isen,

2008; Oatley and Jenkins, 2006). However, as the research about the influence of emotions on

human and other animals grew, emotions started being regarded as a beneficial adaptive mechanism

for problem solving, enhancing perception, memory, attention and other cognitive skills (Cardinal

et al., 2002; Isen, 2008; Kensinger, 2004; LeDoux, 2007; Naqvi et al., 2006; Phelps and LeDoux,

2005). The need for an attention-focusing interrupting mechanism for artificial agents having the

properties of emotions has been advocated for a long time (Minsky, 1986; Simon, 1967). Other

recent works established the importance of including emotion-based components within the design

of artificial agents (Lisetti and Gmytrasiewicz, 2002; Rumbell et al., 2011; Scheutz, 2004). However,

apart from some exceptions focusing on discrete modal emotions, only a few computational systems

have considered the potential of emotions as a basic, general-purpose, universal, evolutionary

survival mechanism and its integrative role on learning, self-development and adaptation.

3.2 The Role of Emotions in Nature

We now review in greater depth what research in different areas indicates to be the purpose of

emotions in biological organisms. More specifically, we emphasize the importance of an emotional

mechanism to process perceptual information and guide an individual to adapt to its environment,

a key idea of our approach. As mentioned above, as the body of knowledge about the influences

of emotions on humans cognitive and behavioral systems grew, and more clues about the neural

circuitry of emotional events were discovered, emotions have increasingly been regarded as a bene-

ficial adaptive mechanism for decision-making (Cardinal et al., 2002; Isen, 2008; Naqvi et al., 2006;

Phelps and LeDoux, 2005).
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Figure 3.1: Fear conditioning processing within the amygdala (see text for details). CG—central
gray, LH—lateral hypothalamus, PVN—paraventricular nucleus of the hypothalamus, ANS—
autonomic nervous system. Adapted from (LeDoux, 2007).

3.2.1 The Neurological Level

At a neurological level, the limbic system is a set of evolutionarily primitive brain structures re-

sponsible for the first animal surviving skills, e.g., fight or flight responses (LeDoux, 2000). Recent

studies have implicated the amygdala, a region within the limbic system, has having a major role

in several cognitive and behavioral processes, such as memory enhancement, sensory plasticity,

attention facilitation and regulation of social behavior (Kensinger, 2004; LeDoux, 2000; Phelps

and LeDoux, 2005). At the same time, the amygdala is responsible for the emotional processing

of events, “imprinting” emotional content into memories, mediating learning and regulating emo-

tional responses (Kensinger, 2004; LeDoux, 2000). At its essence, emotions thus have an essential

functional and adaptive role in natural agents.

An example of the role of the amygdala in emotional learning is illustrated in Figure 3.1. In the

paradigm of fear conditioning, a conditioned stimulus (CS) such as an auditory tone gains access to

primary, species-specific behavioral responses like freezing by being associated to an unconditioned

stimulus (US) such as a foot shock. Through fear, the animal increases its fitness by avoiding in

the future hazardous situations like the foot shock when in the presence of learned, initially neutral

stimuli (Dawkins, 2000; LeDoux, 2000, 2007).

3.2.2 The Absence of Emotions

The importance of emotions and its impact on decision-making and other cognitive skills has been

demonstrated by studies that analyze the effects of lesions in (or absence of) certain regions of the

brain associated with emotional processing of events both in humans and other animals. The most

notorious case in that respect is that of Phineas Gage, a railroad worker which in the summer

of 1848 suffered an accident while setting explosive charges in a rock which resulted in an iron

bar penetrating his skull just below the left eyebrow (Damasio, 1994; Oatley and Jenkins, 2006).

While Gage physically recovered from the accident, some of its cognitive capabilities were altered,
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turning the once efficient and reliable worker into an unstable person incapable of making correct

daily-life decisions, e.g., planning some work task (Damasio, 1994).

Recent technology allowed the identification of Gage’s brain region damaged in the accident as

being the ventromedial prefrontal cortex (vmPFC), an area responsible for assessing the relevance

of events and also the modulation of emotional-eliciting behavior from the lower regions like the

amygdala (Bechara et al., 2000; Oatley and Jenkins, 2006). Without this controlling mechanism,

individuals are unable to undertake proper planning or advantageous decisions relating their per-

sonal well-being (Bechara et al., 2000; Damasio, 1994; Naqvi et al., 2006; Oatley and Jenkins,

2006). Such observations lead to appearance of the somatic marker hypothesis Bechara et al.

(2000); Damasio (1994) that proposes the involvement of emotions, particularly the bodily signals

(the so-called somatic markers) arousing with them, in proper reasoning and planning by “guiding”

the subject towards advantageous choices.

Besides accidental lesions in humans, such as the one observed in Phineas Gage, lesions delib-

erately inflicted to the same brain regions in animals also establish the importance of emotions in

providing adaptive behavior. As mentioned before, fear conditioning is an experimental procedure

in which an animal learns to fear (through avoidance or freezing) a previously neutral stimulus

when paired several times with a biologically significant aversive stimulus (LeDoux, 2000, 2007)

(see Figure 3.1). Within this paradigm, several studies have reported that lesions to areas of the

amygdala and the vmPFC lead to a general inability to learn the conditioned response that lead

to the (advantageous) exhibition of fear (Amorapanth et al., 2000; Killcross et al., 1997), deficits

in attentional and perceptual mechanisms (Holland and Gallagher, 1999), memory impairment

(Morgan et al., 2003; Nader et al., 2000), inappropriate behavioral reactions (Morgan and LeDoux,

1995; Walker and Davis, 2002), and other unfavorable effects (LeDoux, 2000).

Together, these studies show that lesions in certain areas of the limbic system lead to poor

decision making (Damasio, 1994; Naqvi et al., 2006), lack of the ability to learn the significance of

stimuli through association (LeDoux, 2000, 2007), or impoverished retention of emotional stimuli in

memory (LeDoux, 2000; Phelps and LeDoux, 2005). At the same time, these damages also impair

“normal” emotional responses to situations and a general inability to behave in a healthy social

manner, further implicating the role of emotions in cognitive processing mechanisms involving

learning (Damasio, 1994; Naqvi et al., 2006; Oatley and Jenkins, 2006).

3.2.3 Emotions, Evolution and Learning

It is not only in human beings that emotions seem to play a major role in the processing of external

events. In fact, emotional processing of events seems to involve primitive circuits within the

limbic system that were conserved throughout mammalian evolution (LeDoux, 2000). Throughout

evolution, emotions have provided animals with the ability to better obtain food resources and

avoid predators and other dangers (Cardinal et al., 2002; Darwin, 1872; Dawkins, 2000). As
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such, emotions provide an adaptive tool for natural agents, enhancing their fitness and behavior

potential in a dynamic and sometimes unpredictable environment (Cardinal et al., 2002; Dawkins,

2000; LeDoux, 2000). Emotions, like other information-processing natural mechanisms, develop at

different levels:

• by means of evolutionary processes, emotions develop at a phylogenetic, adaptive level. Unlike

simple reflexive responses, emotions provide a multitude of complex interactions that allow

for more adaptive behaviors in both the social and physical environment (Darwin, 1872;

Dawkins, 2000; Ellsworth and Scherer, 2003; Griffiths, 2004; Lazarus, 2001; Leventhal and

Scherer, 1987; Scherer, 2001);

• there is also evidence for the non-stationarity of emotions during an organism’s lifetime.

At an ontogenetic level, biological reinforcement learning, by means of associative learning

processes, seems to rely on emotional states to indicate whether a situation is perceived as

advantageous or undesirable (Cardinal et al., 2002; Dawkins, 2000; Naqvi et al., 2006).

Biological reinforcement learning processes found in nature thus seem to rely on emotional cues

to indicate the pleasantness or adversity of events and identify advantageous acting opportunities

or harmful behaviors (Cardinal et al., 2002; Dawkins, 2000; Leventhal and Scherer, 1987). More-

over, as we have seen, the absence of such evaluative mechanism impairs a good judgment of the

significance of situations for the individual’s well-being, leading to maladaptive behaviors.

�

As a consequence, all the aforementioned studies show that rational, fitness-focused decision-

making relies on emotional states—the feelings—to indicate whether a situation is perceived as

beneficial or undesirable, the lack of which leads to disruptive and maladaptive behaviors (Bechara

et al., 2000; Cardinal et al., 2002; Damasio, 1994; Naqvi et al., 2006).

3.3 Appraisal Theories of Emotions

As stated earlier in the beginning of this chapter, throughout this thesis we approach reward design

within IMRL by considering rewards based on emotions. We have seen that emotions is a crucial

skill in natural agents to correctly adapt to their environment. However, so far we lack a formal way

to describe the process of emotion elicitation. In this section we provide theoretical background

about the generation of emotions according to events perceived in the environment according to

appraisal theories of emotion.

Appraisal theories of emotions were pioneered by the works of Arnold (1960), who proposed

that the elicitation of some emotional state is preceded by an appraisal of the situation in relation

to its significance for the individuals’s well-being or goals. Later, Lazarus (1966) introduced a
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Figure 3.2: The elicitation of emotional responses as the result of an evaluation of the situation
(the stimuli) in relation to the individual’s goals, beliefs and intentions, from the perspective of
appraisal theories of emotion.

distinction between primary and secondary appraisals to distinguish the processes of evaluating

and coping with a situation, respectively (Ellsworth and Scherer, 2003; Leventhal and Scherer,

1987; Roseman and Smith, 2001; Schorr, 2001). Appraisal theories contrast with other theories of

emotion elicitation which do not consider such an evaluative and relational process. Specifically,

they contrast with categorical theories of emotions targeted at explaining the emergence of only

a limited number of basic emotions (Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998;

Roseman and Smith, 2001). They also contrast with stimulus-response and other physiological

and expressive theories which focus on the subjective experience of emotions while ignoring the

link between the situation and the individual as proposed by appraisal theorists (Ellsworth and

Scherer, 2003; Roseman and Smith, 2001).

3.3.1 The Process of Appraisal

Appraisal theories of emotions are more concerned about how the result of the appraisals affects

behavior and decision-making. Figure 3.2 shows a diagram of the process of emotional elicitation

by means of appraisal, which combines information from external stimuli and the individual’s

goals, beliefs and norms to perform an evaluation of the situation. The outcome of the appraisal

is a set of responses, including the physiological signals and bodily expressions responsible for the

subjective feelings of emotions. They are also responsible for the functional aspect of emotions,

i.e., the behavioral and cognitive responses to deal with the situation at hand which direct the

individual’s attention to the significant aspects of its environment (Frijda and Mesquita, 1998;

Lazarus, 2001; Leventhal and Scherer, 1987; Smith and Kirby, 2000).

Many of the theories of appraisal stressed in the literature (Frijda and Mesquita, 1998; Lazarus,

2001; Reisenzein, 2009; Roseman, 2001; Scherer, 2001) propose structural models in which emotions

are elicited by evaluations of events through a set of appraisal variables. Each variable is usually

conceptualized as a dimension along which appraisal outcomes may vary continuously (Roseman

and Smith, 2001). The several dimensions define the criteria used to evaluate a situation and
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ascribe the structure or the contents of the appraisal (Ellsworth and Scherer, 2003; Roseman and

Smith, 2001). Moreover, through a process of reappraisal, the subject evaluates a situation by

considering the outcomes of previous appraisals in order to cope with a significant event, usually

by requiring a more thorough processing (Ellsworth and Scherer, 2003; Lazarus, 1966, 2001).

An important feature of dimensional appraisal theories is that they contrast with discrete

appraisal theories of emotions which explain the situation by selecting one of a set of qualitatively

distinct emotions (Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998; Oatley and Jenkins,

2006; Roseman and Smith, 2001). This difference is a relevant aspect of the dimensional models

because they are capable of accounting for the subtleties between the different emotional states

as well as individual differences in the appraisal of events and cultural variance in terms of the

specific emotion labeling (Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998; Oatley and

Jenkins, 2006; Roseman, 2001; Scherer, 2009).

By defining appraisal as a tight connection between the organism and the particular situations

eliciting the emotions, what Lazarus (2001) calls the relational meaning (corresponding to the

person-environment relationship in Figure 3.2), appraisal theories support the fact that different

individuals will appraise external events in a distinct manner according to their own experience

and cultural background (Frijda and Mesquita, 1998; Roseman and Smith, 2001; Smith and Kirby,

2009). As such, most of the appraisal dimensions proposed in the literature deal with universal,

culturally-independent evaluations of the personal significance of events. It is by combining specific

values or outcomes of the dimensions that these theories can model discrete emotions (e.g., joy,

sadness, fear, etc.) and predict the particular physiological responses and action tendencies asso-

ciated with each of them (Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998; Roseman and

Smith, 2001).

3.3.2 Major Dimensions of Appraisal

While the several appraisal theories have some differences, e.g., which emotions are supported by

the model or which particular appraisals contribute to the elicitation of some emotion, most of them

largely overlap in the kinds of dimensions that are necessary for the evaluation of a given situation

(Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998; Roseman and Smith, 2001). A study by

Ellsworth and Scherer (2003) compared the most common appraisal theories and identified a set

of five major dimensions or groups of appraisal proposed by most appraisal theorists (Frijda and

Mesquita, 1998; Lazarus, 2001; Leventhal and Scherer, 1987; Roseman and Smith, 2001; Scherer,

2001). Table 3.1 depicts the major dimensions and the kinds of appraisal variables usually related

with each of them.
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Table 3.1: Major appraisal dimensions and the common appraisal variables associated with them.

Major dimensions Associated appraisal variables

Familiarity novelty, suddenness, matching

Pleasantness intrinsic pleasantness, valence

Motivational relevance goal/need significance, expectation and conduciveness

Coping potential causation, control, power, adjustment

Social significance norm/self compatibility

3.3.3 Levels of appraisal

A relevant concern when considering rewards for IMRL agents based on emotions has to do with

the level at which appraisal occurs— for example, the more basic fight-or-flight kind of evaluation

observed in humans and mostly in other animals when facing a dangerous situation is different

from the more cognitive assessments that we make after the death of a close family member.

Some of the above-mentioned appraisal dimensions are usually defined using high-level cogni-

tive concepts and mental representations such as one’s beliefs and desires, or even more abstract

concepts such as cultural norms or social standards (Ellsworth and Scherer, 2003; Lazarus, 2001;

Leventhal and Scherer, 1987; Scherer, 2001). However, our learning agents only have access to

rather low-level properties of their history of interaction with the environment. As such, one of

the main challenges of our emotion-based reward design is to map the evaluations made by the

appraisal components into low-level scalar values that can be used as intrinsic reward features.

In this thesis we follow the perspective conceived by several appraisal theorists that many

appraisals, especially in the case of young children and nonhuman animals, require little cognitive

processing and simple judgments of the event (Frijda and Mesquita, 1998; Leventhal and Scherer,

1987; Scherer, 2001; Smith and Kirby, 2000). For example, Leventhal and Scherer (1987) proposed

a framework where the events are evaluated at different levels of processing: a sensory-motor level,

a schematic or learned level and finally at a conceptual level. Such multilevel model of emotional

appraisal allows to explain emotions as an adaptive mechanism developing from simple, reflex-like

innate responses into more complex cognitive patterns throughout time (Leventhal and Scherer,

1987). Moreover, it is by interacting with the environment and learning that the organisms evaluate

more complex appraisal variables, which in turn leads to more complex emotions. In our approach,

by considering this multilevel perspective, the agents can leverage the low-level information they

have access to and perform evaluations similar to those made by the several appraisal dimensions.
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Table 3.2: The levels of processing in appraisal. Adapted from (Leventhal and Scherer, 1987).

Dimensions
Processing Levels of Appraisal

Sensory-motor Schematic Conceptual

Familiarity sudden, intense
stimulation schemata matching cause/effect,

probability estimates

Pleasantness innate
preferences/aversions

learned
preferences/aversions

recalled, anticipated or
derived positive /
negative evaluations

Motivational
relevance basic needs acquired needs and

motives
conscious goals and
plans

Coping
potential available energy body schemata problem solving ability

Social
significance — self/social schemata self ideal and moral

evaluation

3.4 Affective Computing

As discussed earlier, emotions were not always considered as a beneficial adaptive mechanism,

essential in cognition for problem solving and decision-making. Because of this, a large volume

of early research within AI did not consider emotions as a potential mechanism to be adapted

into intelligent systems (Marsella et al., 2010; Picard, 2000). Nevertheless, a few early models

were proposed asserting the importance of emotions as an attention-focusing, task prioritizing

mechanism, crucial to any system that wants be regarded itself as intelligent (Minsky, 1986; Simon,

1967).

3.4.1 Computational Models of Emotion

As researchers recognized this major role of emotions in cognition, especially after the results by

Damasio (1994), they started building computational models of human emotions.1 Computational

models of emotions are usually based on appraisal theories of emotions (Marsella et al., 2010),

e.g., (Becker-Asano and Wachsmuth, 2008; Dias and Paiva, 2005; El-Nasr et al., 2000; Gebhard,

2005; Marinier, 2008; Marsella and Gratch, 2009; Ortony et al., 1988). A generic architecture for

appraisal-based models is depicted in Figure 3.3 and can be related to Figure 3.2 outlining the

process of appraisal. As we have seen previously in Section 3.3.1, a central tenet of appraisal

theory is the notion of a person-environment relationship. As such, computational models based

on appraisal develop ways to represent this relationship and how it influences the appraisals—

the appraisal derivation, specify the role of perception, memory and inference in the appraisal

variables, and how appraisal and derived emotions affect coping responses— the affect consequent

1We refer to (Marsella et al., 2010) for a recent overview of computational models of emotions.
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Figure 3.3: Idealized architecture for an appraisal-based computational model of emotions.
Adapted from (Marsella et al., 2010).

model (Marsella and Gratch, 2009).

Over the years, computational models of emotions have enabled the construction of more in-

telligent and robust artificial agents (Marsella et al., 2010; Picard, 2000).2 As a consequence, the

appearance of AC allowed the inclusion of emotions in a large number of applications which allowed

the construction of richer and more believable virtual characters (Dias and Paiva, 2005; El-Nasr

et al., 2000; Reilly and Bates, 1992; Velásquez, 1997), more interactive systems that are able to

recognize the user’s feelings and express its “own” emotions (Caridakis et al., 2007; Hudlicka et al.,

2009; Pantic and Bartlett, 2007), more efficient agents and robots (Ahn and Picard, 2006; Broekens

et al., 2007; Cañamero, 1997; Gadanho and Hallam, 2001; Salichs and Malfaz, 2012), or even pure

experimental simulations (Armony et al., 1997; Elliott, 1994; Marsella and Gratch, 2009).

3.5 Emotion-based Agent Learning

While the aforementioned use of emotion-based systems provides more engaging interactive experi-

ences, there are only a few systems that, like our approach, explicitly leverage emotions to improve

the adaptive capacity of autonomous agents. Some works bare some similarities in their use of

emotion-like signals to control or influence learning. For example, in the FLAME model (El-Nasr

et al., 2000), RL is used to form emotion-object associations and to predict the user’s actions.

Armony et al. (1997) used a connectionist learning approach to simulate some effects associated

with the fear-conditioning paradigm. The artificial creatures developed by Cañamero (1997) are

an example of the use of “low-level” emotional signals as a motivation drive to behavior selection.

Based on the somatic marker hypothesis described earlier, Ventura and Pinto-Ferreira (2009) pro-

posed an agent architecture where stimuli are processed at two different levels, thus allowing for

a more cognitive assessment and response of each situation. In an approach similar to our own

concerning appraisal, Si et al. (2010) propose a computational model of emotional appraisal in

2We refer to (Rumbell et al., 2011) for a recent comparative overview of several emotion-based systems for
autonomous agents.
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a multiagent framework using POMDP agents. Five key appraisal dimensions are derived to aid

decision-making in a look-ahead process that calculates the next action depending on the agent’s

emotional state.

3.5.1 Emotion-based RL

In this section we provide a comparative analysis between some recent works within adaptive

behavior research into the role of emotions in providing reward and influence decision-making

within RL, which is more related to the approach proposed in this thesis.

In the field of robotics, Gadanho (1999); Gadanho and Hallam (2001) proposed a bottom-up

approach to emotion elicitation. The system uses artificial neural networks combining values of

sensations, feelings and hormones to determine a dominant emotional state from a set of four basic

emotions, namely happiness, sadness, fear and anger. A traditional RL mechanism was used to

reinforce state-behavior associations, where the values of the rewards and their respective sign were

provided by the intensity of the current dominant emotion and whether that emotion was positively

or negatively valued.

Salichs and Malfaz (2006) proposed three basic emotions to control the behavior of an agent

in an RL task: happiness, sadness and fear. The reward provided during learning is calculated

according to a temporal difference of a measure of the agent’s well-being, which is defined by a linear

combination of the levels of four internal drives. Positive and negative differences make the agent

“happy” or “sad”, respectively. The behavior selection mechanism uses a predefined level of dare

to select conservative (high-valued) actions and prevent the agent from choosing bad (low-valued)

actions due to fear.

The idea behind the approach of Broekens (2007); Broekens et al. (2007) is that associating

positive affective states with exploitation and negative affect with exploration strategies provides

adaptive benefits for the agent in some RL scenarios.3 The agent’s reward (used to learn) and its

affective state at each time step are computed based on the relation between the short and long-

term running averages of the reinforcement signal provided to the agent in the past. The agent’s

affective state further influences the behavior selection within the RL algorithm by increasing or

decreasing the probability of choosing a random (exploration) or greedy (exploitation) action.

Marinier (2008) proposed an intrinsic reward signal based on appraisal theories for the SOAR

architecture (Nason and Laird, 2005). The signal is based on the appraisal of conduciveness, which

basically states how “good” or “bad” the situation is with respect to the current goal. The con-

duciveness appraisal’s valence (positive/negative) determines the sign of the reward value, while

the intensity of the agent’s current feeling determines the magnitude of the signal. An experi-

ment conducted in a grid-world scenario showed that intermediate, emotion-based rewards lead to

3Interestingly, this is in contrast with approaches relying on optimism in the face of uncertainty such as the E3

(Kearns and Singh, 2002) and R-MAX (Brafman, 2003) algorithms.
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Table 3.3: Comparative overview between our approach and other systems using emotions to
influence learning and decision-making within RL.

Criteria
Gadanho

and Hallam
(2001)

Salichs and
Malfaz
(2006)

Broekens
et al. (2007)

Marinier
(2008)

Ahn and
Picard
(2006)

Our
approach

Emotions/
appraisal
variables

happiness,
sadness,

fear, anger

happiness,
sadness, fear valence several valence,

arousal

novelty, goal
rel., control,

valence

Intrinsic/
extrinsic
distinction

no no no yes yes yes

Reward
generation

emotions
intensity and

sign

temporal
difference of
internal

drive levels

averages of
extrinsic
reward

feelings
intensity x
conduciv.

sign

intrinsic
reward +
changes on

value
functions

linear
combination
of appraisal
values and
extrinsic
reward

Emotional
components
contribution

fixed, equal
fixed,

personality
dependent

fixed fixed fixed
optimized

weights (env.
dependent)

Influence on
action
selection

indirect, via
rewards

direct,
through fear

direct,
through
valence

indirect, via
rewards

indirect, via
rewards

indirect, via
rewards

learning the task faster.

Perhaps the work that most resembles our approach is the one in (Ahn and Picard, 2006). Like

in our approach, the authors also consider the use of both extrinsic and intrinsic rewards to improve

the learning speed and also influence decision-making. Apart from the extrinsic reward provided

according to the external goal or cost, they propose a model for affective anticipatory (intrinsic)

reward based on valence and arousal levels. Valence is related to the expected reward for some

action in relation to the average reward, and arousal is calculated according to an uncertainty

measure. The relative influence between immediate intrinsic rewards and long-run extrinsic rewards

is given by a constant scale factor.

To better evaluate the differences between the aforementioned systems and our own approach,

Table 3.3 makes a comparative overview according to some criteria. Specifically, we are interested

in knowing what emotions or dimensions of appraisal are modeled in each system, the influence

that emotions have on the agent’s rewards and on action selection, the contribution of the different

emotional components on the reward and also whether there is a distinction between extrinsic and

intrinsic components of the rewards signal.
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3.6 Summary

In this section we provided theoretical background on emotions, appraisal theories and related work

involving emotion-based agent learning. We showed the importance of emotions as a basic but

powerful survival mechanism for biological agents that, throughout evolution, has helped humans

and other animals adapting to their environment. We showed how emotions and all the behavioral

phenomena that come with them can be elicited, from the perspective of appraisal theories of

emotions. We introduced the research field of AC and showed how appraisal theories have led to

the development of computational models of emotions. We also performed a brief comparative

analysis about some applications within RL that, just like our approach in this thesis, have used

emotions to enhance the behavior of artificial learning agents.

In the next two sections we will present our approach for emotion-based design based on ap-

praisal theories of emotions, and also analyze the role of emotions as an optimal information

processing mechanism for artificial agents.
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In this chapter we propose a set of reward features based on four common dimensions of emotional

appraisal that, similarly to what occurs in biological agents, evaluate the significance of several

aspects of the agent’s history of interaction with its environment. Therefore, the work included

in this chapter bridges the research problem of building reward functions for IMRL, described in

Section 2.6, with research on appraisal theories of emotions, described in Section 3.3. Figure 4.1

outlines our approach, validation and contributions provided in this chapter.1

Appraisal theories 

of emotions

Emotion-based 

reward design

Sampled 

optimization
IMRL

Linearly 

parameterized 

ORP

Foraging 

scenarios

Mitigation of 

perceptual 

limitations

General-purpose 

rewards

Usefulness of 

emotion-based 

agent design

Approach Validation Contributions

Figure 4.1: Outline of our approach for emotion-based intrinsic reward design.

4.1 Introduction

In this first set of contributions we follow the notion of emotions as an evolutionary adaptive

mechanism in nature and address the ORP formulation within the IMRL framework described

in Section 2.4.3. We consider an intrinsic reward mechanism for autonomous learning agents

inspired by appraisal theories of emotions. The main technical contribution is a set of four domain-

independent emotion-based reward features, namely novelty, valence, goal relevance and control.

The proposed features are based on dimensions of appraisal of the emotional significance of events,

commonly found in the psychology literature (Ellsworth and Scherer, 2003; Frijda and Mesquita,

1998; Lazarus, 2001; Leventhal and Scherer, 1987; Reisenzein, 2009; Roseman, 2001; Roseman and

Smith, 2001; Scherer, 2001, 2009; Smith and Kirby, 2000, 2009). We also focus on emotions as

a plausible source of general-purpose, domain-independent intrinsic reward and discuss possible

alternatives for each reward feature.

We design a set of experiments in several foraging scenarios and show that, by optimizing

the relative contributions of each feature for a set of environments of interest, emotion-based

reward functions enable better performances when compared to more standard goal-oriented reward

functions, particularly in the presence of agent limitations. The results support our claim that

reward functions inspired on biological evolutionary adaptive mechanisms (as emotions are) have

the potential to provide more autonomy to the agents and a greater flexibility in the reward design,

1Part of the contributions within this chapter can be found in (Sequeira et al., 2011a, 2012).
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while alleviating some limitations inherent to artificial agents, as depicted in Figure 4.1.

4.2 Emotion-based Reward Design

As mentioned earlier, in this chapter we focus on the agent design challenge regarding the possible

sources of intrinsic rewards to be used within IRML, discussed in Section 2.5.2. We also look at

possible agent limitations that can be mitigated following our approach. In this respect we propose

looking at a natural adaptive mechanism present in almost all forms of biological organisms since

the origins of evolution: emotions. Based on emotion literature, specifically the one presented in

Section 3.3 on appraisal theories of emotions, we propose the use of reward features that, in some

manner, relate to the way emotions provide motivation in natural organisms. The hypothesis for

our approach is that like emotions do in natural organisms, emotion-like processes that evaluate

the relevance of a given situation in the environment should provide artificial learning agents with

a simple but powerful adaptive mechanism.

4.2.1 Rationale for our Approach

In Section 3.3.1 we showed that one way of explaining the generation of emotions is through the

description of a process known as appraisal. As we have seen, appraisal theories of emotions

usually define a set of appraisal dimensions through which an individual evaluates situations per-

ceived from its environment. In our approach we follow the five major appraisal dimensions from

(Ellsworth and Scherer, 2003; Leventhal and Scherer, 1987) discussed in Section 3.3.2 and propose

four emotion-based intrinsic reward features based on four of those dimensions, namely novelty,

valence, goal relevance and control. We restrict to single agent settings and as such do not con-

sider the normative/social dimensions as they are responsible for the emergence of more complex

emotions like shame or guilt requiring a formal social, multiagent framework.2

We follow the perspective that each appraisal dimension prescribes a criterion to evaluate the

significance of a specific aspect of the individual’s relationship with its environment (Ellsworth and

Scherer, 2003; Scherer, 2001). Also, we explore the idea that the dimensions vary continuously,

defining a multidimensional space of emotional experience in which some point represents a distinct

experience (Roseman and Smith, 2001). The rationale of such proposal stems from the fact that,

just like the corresponding appraisal dimension does in biological agents, each reward feature

indicates the significance of the current situation for the agent’s well-being according to specific

aspects of the agent’s history of interaction with its environment (Singh et al., 2009, 2010).

We note, however, that by following this approach we are not assuming that in nature, emotions

(or the appraisal process) correspond merely to a complex form of reward—we rather inspire in the

role of emotions in motivating behavior towards the achievement of an individual’s goals and needs
2We refer to Chapter 6 where we propose a set of intrinsic reward features based on signals exchanged between

individuals to communicate approval/reprehension of socially-aware/unaware behaviors in multiagent scenarios.
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Figure 4.2: Proposed framework for emotion-based intrinsic rewards. Adapted from (Sequeira
et al., 2011b; Singh et al., 2009).

or dealing with some problem at hand. We incorporate that aspect within IMRL through the design

of a combined emotion-based reward signal, independently of the type of learning algorithm, state

representation or exploration strategy used as discussed in Section 2.7. As will become apparent,

whether the agent should pay attention to each of these emotional aspects (the features) or not

will depend on the specific challenges offered by the environment.

4.2.2 Learning Model

Figure 4.2 shows our approach for an emotion-based evaluative mechanism as part of an intrin-

sic reward component for learning agents, extending the IMRL model illustrated in Figure 2.7.

We adopt the ORP formulation within the evolutionary interpretation of IMRL described in Sec-

tion 2.4.3. For the reward functions providing the intrinsic rewards that guide the agent throughout

learning, we propose a linear combination of reward features originating from both an “emotional”

and a “fitness-based” critic, as indicated in Figure 4.2. The fitness-based critic corresponds to

the “standard” RL critic, evaluating the agent’s behavior according to an external fitness-based

evaluation signal, ρ. This critic uses a fitness-based reward function rF as defined in (2.7). As

we have seen in Section 2.4.3, this function is also referred to as the objective or extrinsic reward

function, as it explicitly rewards fitness-enhancing behaviors, i.e., actions that directly relate to

the task being learned (Singh et al., 2010).

The emotion-based critic generates four domain-independent reward features, each one evalu-

ating a certain aspect of the agent-environment relationship. These signals map the result of each

appraisal into scalar values that somehow indicate the degree of activation/significance of each di-

mension. In our approach we consider emotion-based reward features depending on properties of a

fitness-based adaptive critic (residing within the RL agent in Figure 4.2), according to the notion in

54



4.2. EMOTION-BASED REWARD DESIGN

(Barto et al., 1983). In particular, we denote by V F (s) and QF (s, a) the fitness-based state-value

and action-value functions analyzing the agent’s behavior according to rF (s, a, h), respectively.3

4.2.3 Emotion-based Reward Features

Formally, we consider a set of five reward features, Φ = {φn, φgr, φc, φv, φfit}, where

• φn(z, a, h) denotes the novelty dimension associated with trying action a in observation z,

given the history h;

• φgr(z, a, h) denotes the goal relevance of executing action a when observing z, given h;

• φc(z, a, h) denotes the degree of control over observation-action pair z, a given history h;

• φv(z, a, h) denotes the dimension of valence resulting from executing a after observing z

according to history h;

• φfit(z, a, h) = ρ(z, a, h) is the fitness-based reward for performing action a after observing z

during h.

To define the space R of possible agent reward functions, we follow the linearly parameterized

approach to ORP described in Section 2.5.1. We thus define R as the linear span of Φ,i.e., the set

of all reward functions r in the form

r(z, a, h) =
∑
φi∈Φ

φi(z, a, h)θi = φ>(z, a, h)θ,

where

φ(z, a, h) = [φn(z, a, h), φgr(z, a, h), φc(z, a, h), φv(z, a, h), φfit(z, a)]>

and

θ = [θn, θgr, θc, θv, θfit]
>.

Each parameter θi ∈ [−1.0, 1.0] determines the contribution of the corresponding reward-feature

φi to the overall reward.

By defining the reward function space in this manner, we allow for the discovery of reward

functions providing the agent with different ways of appraising its environment, according to the

particular parameter vector θ. For example, the parameter vector θfit = [0, 0, 0, 0, 1]>, originating

the fitness-based reward function rF , indicates that the agent is predisposed to focus only in fitness-

inducing behaviors while completely ignoring the emotional appraisal of the events.

3We note that the fitness-based value functions only evaluate the agent’s behavior according to the fitness-based
reward function rF . As such, one must not confound them with the value functions calculated by means of the
agent’s reward function r, which are used to guide the agent throughout learning. We refer to Section 2.4.3 for
further details.
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We consider the configuration of each reward function r(θ) to be fixed throughout learning,

i.e., the parameters θ are initially set for the agent and remain that way during its lifetime, fol-

lowing the learning scheme described in Section 2.4.3. This idea fits the notion of intrinsic rewards

as part of a primary, hard-wired mechanism in natural organisms (Singh et al., 2010).4

Having defined the general framework for emotion-based reward design, we now describe our

proposal for the emotion-based reward features mapping from the agent’s history of interaction

with its environment to scalar values. We note that this corresponds to a possible interpretation

for the corresponding appraisal dimensions in the context of our approach and scenarios. In that

manner, for each reward feature we refer to the corresponding theoretical support provided by

appraisal theories of emotions and also discuss alternatives and related features already proposed

within the RL literature.

Importantly, we also note that “high/low” or “negative/positive” feature values do not corre-

spond necessarily to “good” or “bad” states or actions for the agent. Similar to the emotional

appraisal occurring in biological organisms, the emotion-based features only signal specific charac-

teristics of the agent’s relationship with its environment that may be pertinent to its fitness and to

which the agent can pay attention to. As occurs in nature, it will depend on the agent’s experience

and specific situation whether some states and actions are considered beneficial or detrimental to

its well-being and also the amount of attention it should pay to each reward-feature’s value.

Novelty

Novelty is one of the most basic and low-level dimensions of emotional appraisal of events, usually

eliciting focus of attention to important changes occurring in the environment (Ellsworth and

Scherer, 2003; Frijda and Mesquita, 1998; Reisenzein, 2009). As indicated in Table 3.1, there

are several factors which contribute to the evaluation of an event’s novelty, such as the level of

habituation to a stimulus, the individual’s motivation state or the perception of predictability or

expectedness of a situation (Ellsworth and Scherer, 2003; Roseman, 2001). From Table 3.2, we

see that at perception or schematic level, novelty usually refers to the degree of familiarity or

matching between the perceived stimuli and the agent’s knowledge structures built so far (Frijda

and Mesquita, 1998; Leventhal and Scherer, 1987; Reisenzein, 2009).

In the RL framework, familiarity about states and actions is directly related to the number

of visits to state-action pairs. Let us denote by nt(z) the number of times z was observed up to

time-step t, and by nt(z, a) the number of times that action a has been executed after observing

z so far. Therefore, one can quantify the dimension of novelty as the reward-feature

φn(z, a, h) =
λ
−nt(z,a)
n + λ

−nt(z)
n

2
, (4.1)

4We refer to (Sorg et al., 2010b) for a solution in which the parameter vector is modified online according to the
gradient of the utility function.
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where λn is a positive constant such that λn < 1. λn can be seen as a “novelty rate” determining how

the novelty dimension decays with experience. This feature thus signals the amount of familiarity

of states and actions experienced so far by the agent. If associated with a positive weight, novelty

can be useful in scenarios where the environment is very dynamic or the reward opportunities

change throughout time by indicating that states and actions experienced long ago are preferable.

On the contrary, a negative novelty weight can be useful in scenarios where well-known states and

actions are better and thus where familiar behavior “routines” are preferable5.

For simplicity reasons, we chose to include only statistical variables in the calculation of the

novelty reward-feature which somehow evaluate the amount of past experience with some observa-

tions and actions. However, one can envisage expressions that evaluate the predictability of stimuli

or the probability of actions outcomes, all characteristics of the novelty dimension at a higher level

in the appraisal processes occurring in natural agents (Ellsworth and Scherer, 2003; Frijda and

Mesquita, 1998; Leventhal and Scherer, 1987). Such expressions could, for example, assess pre-

diction errors in V F and QF , or discrepancies detected from the fitness-based reward received in

relation to previous interactions.

Another alternative is to consider recency-based features, rewarding interactions with (z, a)

pairs (not) visited recently (Singh et al., 2010; Sorg et al., 2010a,b). However, we prefer frequency-

based features in favor of recency-based ones as they better capture the essence of novelty. Having

observations and actions that are not experienced for a certain amount of time does not imply that

they are novel, although they can also encourage exploratory behaviors (Singh et al., 2010). The

expression proposed for novelty also resembles the inverse-frequency reward feature in (Bratman

et al., 2012). However, instead of a linear decaying rate, we consider an exponential decaying

rate that is dependent, for example, on the total number of observations and actions that can be

experienced or the duration of the agent’s lifespan. Hester and Stone (2012) present a novelty re-

ward for domains with factored state by measuring the distance in feature space between perceived

state-actions to indicate situations that are most different from previously experienced ones.

Goal Relevance

As its name indicates, this dimension asserts the relevance of a perceived event in terms of the

attainment of the agent’s long-term goals or satisfaction of its needs (Ellsworth and Scherer, 2003;

Lazarus, 2001; Leventhal and Scherer, 1987). Also related to the notions of desire-congruence

(Reisenzein, 2009) or motive-consistence (Roseman, 2001), goal relevance is essential for the sur-

vival and adaptation of an individual to its environment as it evaluates the further consequences of

5We again reinforce that the emotion-based features are independent of the action-selection/exploration strategy
used during learning. In the case of novelty, if taken into account by the agent it can lead to non-stationary policies
as the rewards for some state or state-action pair are always changing and consequently adjusting the respective
V and Q-value functions. In fact, in situations where the environment is itself non-stationary such policies are
indeed desirable, which is fundamentally different from changing the exploration strategy used, i.e., in such cases,
the agent is following less familiar states and actions because it is “good” to do it so, not because it is still exploring
the environment.
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a given situation in relation to its goals, needs or desires (Ellsworth and Scherer, 2003; Reisenzein,

2009).

As indicated in Table 3.1, goal relevance has a motivational basis and is influenced by the

importance of the event and the consistency of its outcomes in relation to the goals or needs being

concerned (Roseman, 2001). Broadly speaking, we can say that the goal relevance of an event

increases if such event is consistent with an individual’s goals, i.e., the individual approaches its

objectives, and decreases when the consequences of the event are obstructive to reaching those

goals (Ellsworth and Scherer, 2003; Reisenzein, 2009).

At a low-level, the goal of an organism is to attain the maximum fitness to its environment

throughout its lifetime. Recall from Section 2.4.3 that this is exactly the long-term goal of an

artificial learning agent according to the IMRL framework (Singh et al., 2010). As such, we

consider that the observations for which the expected fitness-based return (as indicated by the

state-value function V F ) is high should lead to a greater degree of fitness than those with a low

fitness return expectancy.

For the purposes of our model, we assume that, at each time-step t, the agent has access to

a distance, d̂(st, s
∗), that corresponds to an estimate of the number of actions needed to move

from its current state st to a so-called goal-state, denoted by s∗. The distance, i.e., the number

of steps, is estimated based on the state transition model P̂(s′ | s, a) learned by the agent. A

state s is considered to be the goal-state s∗ when its current expected fitness return provided by

V Ft (s) is maximal in relation to all other known states when the agent last visited it, i.e., s∗ =

argmaxs V
F
t (s). If there are multiple maximal states, it is considered the one that was discovered

first. In this manner, s∗ is not fixed beforehand, rather it is discovered whenever the agent perceives

a state with expected value that is maximal at some point in time. We also note that this distance

estimate needs not to be accurate, but should be coherent with the true values, i.e., if d(s1, s
∗) >

d(s2, s
∗) then d̂(s1, s

∗) > d̂(s2, s
∗), where d(·, ·) denotes the actual distance.

In our framework, goal relevance is thus translated in terms of the numerical value

φgr(z, a, h) =
1

1 + d̂(s, s∗)
, (4.2)

where s is the state underlying observation z.

The behavior of this expression seems to be coherent with the role of the goal relevance ap-

praisal dimension in natural organisms. It makes the relevance of some observation decrease as

its perceived distance to the goal state increases, and have the value of 1 when the agent gets the

closest to its goal, i.e., only when the agent achieves a state capable of fostering maximal fitness.

Moreover, because the goal-state is not fixed beforehand it allows that different states can become

the “goal” overtime whenever the associated V F is maximal. This means that when taken posi-

tively, the goal relevance feature allows the agent of better adapting to environments where the
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“source of fitness” is altered throughout time, e.g., the value of reward changes or the goal-state

becomes unreachable. On the other hand, a negative weight associated with goal relevance can be

useful in situations where relying in lower fitness-based rewards is beneficial compared to aiming

at high-valued but possibly more irregular states6.

Alternatives to this formulation can account for example the Manhattan distance to goal states

as proposed in (Bratman et al., 2012), but with the disadvantage of having to specify such states

beforehand.

Control

Control is part of a group of appraisal dimensions associated with the coping potential of an

individual (Ellsworth and Scherer, 2003; Smith and Kirby, 2009), as denoted in Table 3.1. This

dimension is usually defined involving a more proactive assessment of the ability of the individual

to deal with a particular situation, i.e., the potential of an organism to cope with the situation

being evaluated (Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998; Lazarus, 2001; Leventhal

and Scherer, 1987). Because of that, this dimension is considered to be part of a “secondary” level

of appraisal as they require an individual to determine an appropriate response to the event being

evaluated (Lazarus, 2001).

Table 3.2 describes the several levels at which the assessment of the coping potential can occur.

At a higher level of cognitive appraisal, this evaluation implicates the attribution of causal agency

for the event, influencing the significance and kind of response to the situation at hand (Ellsworth

and Scherer, 2003; Roseman, 2001), or cognitively adjusting one’s goals in order to fit the outcomes

of the situation (Lazarus, 2001; Smith and Kirby, 2009). At a rather lower level of information

processing, coping potential estimates the extent to which an event or its outcomes can or cannot

be controllable, and whether the organism has the sufficient power to change the situation to its

benefit (Frijda and Mesquita, 1998; Roseman, 2001; Scherer, 2009).

In our framework, we follow the perspective that often the control over a situation involves

determining the degree of predictability or probability of the events being considered (Ellsworth

and Scherer, 2003; Leventhal and Scherer, 1987; Roseman, 2001; Scherer, 2009). By following this

approach, an agent can determine the degree of correctness/clarity of the world-model that it has

built of its own environment which directly influences its ability to control it. The more clear and

correct the model is, the greater the control and power the agent has over its environment and

thus the greater its potential is in coping with a particular situation.

As we have seen in Section 2.2.3, the action-value function Q(s, a) for a certain policy can be es-

timated from the rewards received in the several states encountered through time by following such

policy in the environment. Given an observed transition (z, a, r, z′), the Bellman error associated

6We refer to the Poisoned Prey Scenario in Section 4.3.5 for an example of an environment with such dynamics.
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with QFt is given by

∆QFt (z, a) = r̂Ft (z, a) + γmax
b∈A

QFt (z′, b)−QFt (z, a). (4.3)

We can therefore calculate the value of control by considering the expected Bellman error associated

with QFt at (z, a) through the numerical value

φc(z, a, h) = 1− E
[
∆QFt (z, a)

]
. (4.4)

Because the total reward depends itself on the control value, we consider the fitness-based

reward function rF to calculate the prediction error. From the above expression we can see that

the lower the prediction error, the greater the agent’s coping potential will be, and hence the

more accurate the current world-model is for the given action and observation. Observations

which associated action-values often change will have higher prediction errors and therefore denote

irregularities in the environment that the agent does not fully control. As noted with the previous

features, the way the control feature is weighted will depend on the environment’s dynamics. If

taken positively, control favors more predictable states and actions thus allowing a faster learning in

environments where more uncertain situations are detrimental when compared to more controllable

ones. On contrary, in scenarios where fitness enhancement may come from states and actions

changing very often, a “negative control” value can be advantageous.

Other factors contributing to the prediction errors can account for discrepancies in the state

transition model perceived throughout time, as proposed by the quality of model feature in (Sorg

et al., 2010a). The variance reward in (Hester and Stone, 2012) follows a similar approach by

measuring the variance in the predictions of decision trees used to model the dynamics of the

learning domain. In (Lopes et al., 2012), a measure formodel accuracy and learning progress related

to control is presented where the likelihood of recently-visited state-action data-sets are evaluated

over the complete (experienced) data in order to determine whether particular state-actions need

further exploration or not. Within the area of emotion-based RL, the uncertainty model proposed

in (Ahn and Picard, 2006), calculates the level of emotional arousal by considering discrepancies

between the current state’s value and expected extrinsic rewards from the same action in other

states by means of a standard deviation measure. Other alternatives for the control feature could

for example account for the difference between the global (across states and actions) maximum

and minimum Q-values, meaning that large differences would indicate a greater control over the

environment.

Valence

Valence measures how intrinsically pleasant a given situation is (Ellsworth and Scherer, 2003). It

is either generated from a set of innate detectors or learned preferences/aversions that basically
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indicate whether a stimulus is “positive” or “negative” in terms of biological significance for the

organism (Leventhal and Scherer, 1987). Valence is considered a very low-level and automatic

appraisal dimension capable of evoking approaching behaviors to pleasant stimuli and aversion to

unpleasant situations. Moreover, unlike other dimensions, valence is considered to be mainly a

feature of the stimulus itself, independent of the momentary situation of the organism (Ellsworth

and Scherer, 2003).

In our framework we consider the fitness-based reward function rF to be directly related with

the fitness utility-function f(h) evaluating the performance of the agent in some environment, as

described in Section 2.4.3. The external signal ρ(s, a, h) received by the agent directly corresponds

to the biological significance attained by executing action a in state s. Therefore, the fitness-based

reward feature could itself be used to provide the evaluation of valence, i.e., we could denote valence

as φv(z, a, h) = φfit(z, a, h).

However, in our approach we follow the perspective that the implicit value of things can change

throughout time according to experience (Cardinal et al., 2002; Ellsworth and Scherer, 2003; Lev-

enthal and Scherer, 1987). While some preferences are phylogenetically hardwired, other evalu-

ative processes are acquired to signal preferences or dislikes over never-before-experienced stim-

uli (Ellsworth and Scherer, 2003). Furthermore, by means of associative processes, stimuli that

were considered preferable or neutral can become unpleasant through the association with other

biologically-relevant aversive stimuli (Cardinal et al., 2002).

Bearing this idea in mind, we can consider the fitness-based reward function as a source of

innate preferences over some states and actions of the environment. In order to account for the

adaptive nature of valence with experience, we consider the following numerical value to evaluate

the pleasantness of a certain situation:

φv(z, a, h) =
V Ft (z)−minz′ V

F
t (z′)

2(maxz′ V Ft (z′)−minz′ V Ft (z′))
+
QFt (z, a)

2V Ft (z)
, (4.5)

where minz′ V
F
t (z′) and maxz′ V

F
t (z′) are the current minimal and maximal values of the fitness-

based state-value function, respectively.

This expression basically indicates how “good” observation z is when comparing its current

expected fitness return with all other observation-values, and also how “good” it is to execute

action a after observing z when compared with other already-experienced actions given the same

observation. As such, valence will have a value of 1 only when the agent executes the action

with highest action-value after the observation with the highest observation-value, thus denoting a

learned preference by the agent towards a behavior which it currently believes will lead to a high

degree of fitness in the environment. As should be apparent, valence is useful to evaluate states

that, although providing a low fitness-based reward on the immediate, may foster greater degrees

of fitness on the long-run, i.e., when adopting a long term perspective is better than focusing on
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instant reward.

A possible alternative for this expression can consider the reward proposed in (Ahn and Picard,

2006), where a sensation of feeling good or bad is given as a measure of the expected reward given

the current state and an action in relation to the average reward received in that state. However,

such expression evaluates only immediate reward, and we believe our feature captures the essence

of valence as an evaluation towards the agent’s long-term goals. A better alternative for this feature

can be found in (Broekens et al., 2007), where the window-limited short-term running average of

the (fitness-based) reinforcement is measured against its long-term running average to provide the

reward (and valence) with which the agent learns.

4.3 Experiments and Results

In Figure 4.1 we outline the method to validate our approach for emotion-based reward design. In

order to assess the potential of using an emotion-based mechanism to provide intrinsic reward we

designed a set of experiments in foraging environments inspired by those in (Singh et al., 2010).

4.3.1 Objectives

The choice of foraging scenarios in our approach is tightly connected with the objectives of the

experiments. First of all, foraging scenarios enable an easy evaluation of the agent’s behavior as

prescribed by the designer’s objective. As such, the fitness-based reward functions for our scenarios

are related to feeding behaviors, which in natural environments directly enhance most biological

organisms’ fitness. The foraging scenarios also enable us to test whether the different reward-

features lead to distinct behaviors, depending on the environments. We observe the emergence

of different strategies to attain fitness in different environments, but also maladaptive behaviors

leading to poor performances.

Foraging scenarios also fit our purpose of evaluating whether an adaptation of an emotional

appraisal-based mechanism brings advantages when designing artificial learning agents. In most

scenarios, the agent will have some perceptual limitations that prevent it from attaining maximal

fitness if it engages in fitness-inducing behaviors only, or, loosely speaking, if it only cares about

eating. As such, we note that the majority of the environments proposed in the experiments do not

hold the Markov property from the perspective of the agent’s observations, since the information

about the location of the preys or other predators cannot be directly determined from the current

observation (Sutton and Barto, 1998). Therefore, just like biological agents encounter challenges

in nature, our agents will have to discover particularities of the environments that allow them to

achieve a better fitness. Because the agents are “guided” by appraisal-based reward features, the

proposed foraging scenarios enable us to assert the usefulness of an emotion-based implementation

in IMRL agents.
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4.3.2 Methodology

In our experiments, the agent is modeled as predator moving in the environment, trying to eat

preys and, in some scenarios, avoiding encounters with other predators.

Agent Description

In all scenarios, at each time-step, the agent is able to observe its position in the environment and

whether it is collocated with a prey. Also for all scenarios the agent has available at least four

possible actions, i.e., A = {Up,Down,Left,Right}, each deterministically moving the agent to

the adjacent cell in the corresponding direction.

We use prioritized sweeping (Moore and Atkeson, 1993) to learn a memoryless policy that treats

the observations of the agent as states.7 Prioritized sweeping uses a model of the environment

(namely of the state transitions and reward function) in order to back-propagate action-values to

state-action pairs that have trajectories going to the current state perceived by the agent. We note

that, in our approach, both the transition function P̂ the reward function r̂ are learned online,

i.e., they are not known by the agent beforehand, following the learning scheme presented earlier

in Section 2.2.3 which is depicted in Figure 2.4.

The agent updates a transition P̂(s′|s, a) from state s to state s′ after executing action a based

on observed transitions according to

P̂(s′|s, a) =
ns,a,s′

ns,a
,

where ns,a is the number of times action a was taken in s and ns,a,s′ is the number of times s′

was observed after executing a in s. The agent models a reward r̂(s, a, h) received after executing

action a in state s by averaging the rewards received by means of the agent reward function in

history h, i.e., r̂(s, a, h) = rave(s, a, h).

In terms of the learning parameters, we use a learning rate α = 0.3, a discount factor of

γ = 0.9, a backup limit of 10 state-action pairs and a minimum priority threshold of 10−4. The

agent follows an ε-greedy policy with decaying exploration parameter εt = λtε with an exploration

rate λε = 0.9999. We also use a novelty rate λn = 1.001 required for the calculation of the novelty

reward-feature in (4.1).

Computing Agent Fitness

Regarding the fitness function, we consider utility as measuring the total cumulative fitness-based

reward received by the agent throughout its lifetime as defined by (2.8) for each history hi sampled.

We follow the reward function evaluation scheme outlined in Figure 2.8.
7We note that the fitness-based adaptive critic mentioned in Section 4.2.2 uses the same learning algorithm

and parameters that the agent’s emotion-based adaptive critic does, in order to calculate the fitness-based value
functions V Ft (s) and QFt (s, a).
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In our foraging scenarios, the fitness of the agent is then measured according to the total number

of preys eaten and the particular fitness-based reward provided by each prey. Recall that we define

a parameter vector θ = [θn, θgr, θc, θv, θfit]
> weighting the contribution of each reward-feature to

the total reward received by the agent at each time step. Therefore, different parameter vectors

will yield different degrees of fitness, depending on the set of environments of interest, E .

As seen in Section 2.4.3, the ORP is precisely the problem of, given E , recovering the optimal

reward function, r∗(s, a, h), that provides the maximal degree of fitness. In this respect we adopt

the optimization approach described in (Singh et al., 2010). In particular, we sample a total of

M = 14, 003 parameter vectors θm ∈ [−1, 1]5,m = 1, . . . ,M , such that ‖θm‖1 = 1, and select the

optimal vector θ∗ according to (2.12).

In our experiments, for each scenario, we generate a total of N = 200 histories as independent

Monte-Carlo trials for each sampled reward function rm = r(θm),m = 1, . . . ,M . For each history

hi, we simulate the agent for T = 100, 000 learning steps in an environment E stochastically sam-

pled according to pE(E). The number of environments in E depends on the specific scenario tested.

For all scenarios we use a uniform distribution, i.e., pE(ei) = 1
|E| for all e

i ∈ E , thus sampling each

possible environment with equal probability.

We now provide a detailed analysis of each scenario, including the description of the environ-

ment’s dynamics and the challenges each set of environments presents to the learning agent. For

each scenario we provide the results of the optimization procedure, comparing the fitness attained

by the agent using the optimal parameter vector θ∗ versus an agent using the fitness-based reward

function using θfit = [0, 0, 0, 0, 1]
> corresponding to a traditional RL agent, and an agent receiving

no reward, i.e., θ0 = [0, 0, 0, 0, 0]
> corresponding to a random-behavior agent. The objective is to

assess the usefulness of the proposed emotion-based features when compared to an agent receiving

the designer’s fitness-based rewards and an agent behaving according to chance.8

4.3.3 IMRL scenarios

We start our experiments with three scenarios inspired by early work within the IMRL framework

(Singh et al., 2009, 2010), namely the Hungry-Thirsty Scenario, the Lairs Scenario and the Moving

Preys Scenario. These scenarios have the purpose of assessing the performance of our approach in

scenarios already proposed in the literature to test the efficacy of using rewards different than those

defined by the agent designer’s objective. We note that we do not intend to perform a comparative

analysis between our approach and others, but rather determine the usefulness of emotion-based

rewards as a general-purpose learning mechanism that does not rely on any specific domain or

task.

8Illustrative videos containing a comparison between the behaviors of the optimal emotion-based agent versus the
fitness-based agent for each scenario are available online at http://gaips.inesc-id.pt/~psequeira/emot-design/.
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Hungry-Thirsty Experiment

This experiment is inspired by the Hungry-Thirsty domain proposed in Singh et al. (2009) and used

in another work within IRML (Niekum et al., 2010). For reasons of simplicity, we have reduced

the size of the environment to a 5 × 5 grid-world, consisting of four subspaces of 2 × 2 cells, as

depicted in Figure 4.3(a).

Hungry-Thirsty Scenario: In this scenario the agent has available two types of inex-

haustible resources: a prey that the agent can eat, represented by a hare, and a pond

from which it can drink water. These two resources are placed randomly in two differ-

ent positions out of the 4 corners of the environment and remain fixed throughout the

simulation. Figure 4.3(a) shows a possible configuration of the environment and also

the agent’s start position, where the agent is represented by a fox. As such, the set E

of environments of interest for this scenario consists of a uniform distribution over the

12 different corner positioning configurations for the hare and the water.

In terms of the dynamics of the scenario, at each time step the agent can be ei-

ther thirsty or not-thirsty, depending on whether it drank water from the pond or not,

respectively. After drinking, in successive time steps it becomes thirsty with a proba-

bility of 0.2. Also, eating the hare is the only behavior increasing the agent’s fitness

by providing it a fitness-based reward ρ = 1. This only happens however if the agent

is currently not-thirsty, otherwise its fitness does not change. As we can see, the fitness

function f(h) for this scenario measures the total number of hares eaten by the agent

(while not-thirsty) during learning. The state for this scenario is two-dimensional: be-

sides its position the agent also observes its thirst status. The agent only has available

the aforementioned movement actions in A. For reasons of simplicity, we assume that

the agent eats and drinks when collocated with the hare and the pond, respectively. ♦

We note that the assumption of the agent automatically eating and drinking while collocated

with the resources does not impair the essence of the Hungry-Thirsty Scenario, which is to provide

the agent the challenge of having to drink water before attaining fitness through food. In our

scenario, the agent still needs to go to the pond when thirsty in order to be able to later eat the

hare. We also note that this environment holds the Markov property, as the agent’s state has

access to whether it is thirsty and also its position, the only information needed to attain fitness

and perform optimally within the scenario.

The comparative results of the experiments in the Hungry-Thirsty Scenario are described in

Table 4.1. As we can see, the performance of the emotion-based agent using r∗ surpassed the

standard RL agent using rF receiving fitness-based reward only after eating a prey. The high

standard deviation of the mean cumulative fitness is related to the fact that different configurations

of food and water provide very different fitness. In particular, the configuration in which the hare
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(a) Hungry-Thirsty environment. (b) Mean cumulative fitness evolution.

(c) Policy when thirsty. (d) Policy when not-thirsty.

Figure 4.3: (a) The environment for the Hungry-Thirsty Scenario, inspired by the environment
in (Singh et al., 2009). Each marked square corresponds to a possible position of the agent in
the environment, non-crossable walls are denoted by bold lines; (b) The evolution of the mean
cumulative fitness attained in the experiment over 100, 000 learning steps. We compare the optimal
emotion-based agent, an agent receiving only fitness-based reward and a random-behavior agent.
The results correspond to averages over 200 independent Monte-Carlo trials; (c)-(d) Policy learned
by a single agent using the best reward function r∗ within a particular environment configuration
of the Hungry-Thirsty Scenario. Squares with no arrow refer to states seldom visited, thus denoting
very random policies. See text for more details.

Table 4.1: Mean cumulative fitness for the Hungry-Thirsty Scenario, for the optimal emotion-based
agent using parameter vector θ∗, an agent receiving only fitness-based reward using θfit and a
random agent, using θ0.

Parameter Vector θ = [ θn, θgr, θc, θv, θfit]
> Mean Fitness

Emotion-based opt. θ∗ = [ −0.4, 0.0, 0.0, 0.5, 0.1]> 9, 505.6 ± 7, 303.6

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 7, 783.7 ± 6, 930.1

Random θ0 = [ 0.0, 0.0, 0.0, 0.0, 0.0]> 35.6 ± 40.6

and the pond are in the left side corners of the environment provides the toughest challenge for

the agent. In this case, the agent has to go all around the environment to eat, and come all the

way back when it is thirsty, causing a smaller total amount of fitness attained when compared to

other configurations. Nevertheless, this difference is statistically significant when compared to the
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fitness-based agent for p < 0.02, and Figure 4.3(b) further supports the view that the optimized

emotion-based reward function r∗ provided a faster learning for the agent by considering other

sources of reward besides the fitness-based one.

In Figures 4.3(c) and 4.3(d) we can see the policy learned by a single agent using the optimal

emotion-based reward function, for a particular configuration of food and water when they are at

opposite corners in the environment. As we can see, the emotion-based agent learned the optimal

policy, going to the water when it is thirsty, and approaching the hare when not-thirsty. These

results also confirm the idea in (Singh et al., 2009) about the emergence of a secondary, learned

preference towards water, although water itself does not increase the agent’s fitness. Furthermore,

we note that to learn the optimal behavior, the emotion-based agent evaluated generic features

of its relationship with the environment that had nothing to do with being hungry or thirsty,

neither with the presence of food or water in its current location. This contrasts with the previous

approach in a similar scenario which considered combinations of internal features of the agent to

provide the reward, namely its hunger and thirst status (Singh et al., 2009).9

Lairs Experiment

This scenario is inspired by the Boxes domain presented in (Singh et al., 2009, 2010), where

instead of boxes with food inside we consider lairs containing rabbits in a foraging environment.

The structure of the environment is the same as in the Hungry-Thirsty Scenario, as can be seen

from Figure 4.4(a), depicting a possible initial configuration for the scenario.

Lairs Scenario: There are two lairs positioned in different corners of the environment.

Each lair can be in one of three possible states: a lair can be empty of rabbits, occupied

if there is a rabbit inside it, or the rabbit can be outside of the lair. As such, in

this experiment there is a total of 6 different environments of interest based on the

different configurations one can get from positioning the two lairs in the corners of the

environment. As with the previous experiment, eating a prey, in any of the lairs, is the

only source of fitness for the agent.

The dynamics of the environment are as follows. Whenever a lair is occupied by a

rabbit, the agent can pull it outside by means of a Pull action, in which case the lair’s

state goes to rabbit outside. When the rabbit is outside of a lair, the agent has exactly

one time step to eat it by means of an Eat action, in which case it receives a fitness-

based reward ρ = 1 and the lair transitions to an empty state. If, on the contrary, the

agent does not eat the rabbit within one time step, the rabbit will run away, leaving

the lair also in the empty state. In each successive time step, there is a chance of 0.1 of

another rabbit appearing on the empty lair, again putting its state to occupied. ♦

9Despite acknowledging the (different) purpose of the Hungry-Thirsty experiment presented in (Singh et al.,
2009), we are only emphasizing the generality of our method by not using domain-dependent reward features.
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(a) Lairs environment. (b) Mean cumulative fitness evolution.

Figure 4.4: (a) The environment for the Lairs Scenario, inspired by the environment in (Singh et al.,
2010). In this particular configuration of the environment, the left lair is occupied by a rabbit, while
in the right lair the rabbit is outside; (b) The evolution of the mean cumulative fitness attained in
the scenario. The experimental procedure is the same as the above experiment. See text for more
details.

Table 4.2: Mean cumulative fitness for the Lairs Scenario.
Parameter Vector θ = [ θn, θgr, θc, θv, θfit]

> Mean Fitness

Emotion-based opt. θ∗ = [ 0.1, 0.0, −0.2, 0.0, 0.7]> 8, 635.8 ± 1, 133.3

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 7, 536.7 ± 944.8

Random θ0 = [ 0.0, 0.0, 0.0, 0.0, 0.0]> 173.3 ± 13.5

The action space for this scenario thus corresponds to the set A = {Up,Down,Left,Right,

Pull, Eat}, explicitly including an action Eat which is necessary to distinguish situations in which

the agent “captures” the rabbit or lets it run away. This environment is also Markovian as the

agent’s state comprises its position in the environment and the current state of both lairs, inde-

pendently of the agent’s position, and also because occupied lairs always contain a prey that can

be eaten (Singh et al., 2010).

Table 4.2 includes the results of the parameter vector optimization procedure for the Lairs

Scenario. Again, the results show a statistically significant (p < 10−4) better performance and a

faster learning of the agent using the optimal emotion-based reward function r∗ when compared to

the fitness-based agent. A visual analysis of the performance of the optimal emotion-based agent

shows that the learned policy is to go from lair to lair, pulling and eating rabbits at a time when

a lair becomes empty.

In comparison, by analyzing the performance of the fitness-based agent one sees that it con-

centrates in eating rabbits from only one of the two lairs. Because there is a small chance of the

lairs becoming occupied after being empty, waiting for a rabbit in the same lair proves not to be

the best strategy. Such optimal behavior policy is consistent with the one found in the Boxes

experiment in (Singh et al., 2010). Again, the difference between the approaches lies in the fact
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Figure 4.5: The evolution of the mean cumulative fitness attained in the Moving Preys Scenario.
See text for more details.

that our emotion-based agent is not rewarded according to combinations of features from its direct

observations.

Furthermore, by looking at the configuration of the optimal parameter vector θ∗ in Table 4.2,

it seems that by rewarding less experienced states (through a positive novelty weight) and less

controllable situations (by means of the negative control weight), the agent acquires behavior

preferences towards changing of eating places after capturing a rabbit. This kind of “nomad”

behavior observed in this experiment has itself nothing to do with fitness enhancement. Rather it

can be considered as a primary intrinsic mechanism that, within the set of environments in this

scenario, proved to be the one providing the best adaptive surviving strategy to the agent, which

is exactly what we intend with our approach.

Moving Preys Experiment

In this experiment we resort to the Moving Preys Scenario defined in Section 2.2.1. Just as in the

previous scenarios, in this experiment we assume that the agent automatically consumes the prey

when collocated with it, and as such the set A of possible actions contains only the movement

actions. The set E of environments for this scenario is composed of all environments of as depicted

in Figure 2.2, the difference between them being the specific order of locations in which a new

hare appears after one is consumed. Recall that in this scenario the agent receives a reward ρ = 1

whenever it eats a hare, which as with the previous experiments is the only behavior enhancing

the agent’s fitness.

In this scenario the agent does not have access to the current location of the prey, it can only

observe its own location and whether a hare is present in its cell. This makes the environment non-

Markovian in the agent’s perspective because it does not have access to the necessary information

to take the optimal decision from its current observation. As we have discussed in Section 2.3.2,

partial observability poses a challenge to traditional RL algorithms that usually consider optimal

stationary memoryless policies (Littman, 1994). Because the source of fitness-based reward is
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Table 4.3: Mean cumulative fitness for the Moving Preys Scenario.

Parameter Vector θ = [ θn, θgr, θc, θv, θfit]
> Mean Fitness

Emotion-based opt. θ∗ = [ 0.4, 0.0, −0.1, 0.2, −0.3]> 1, 986.9 ± 110.0

Random θ0 = [ 0.0, 0.0, 0.0, 0.0, 0.0]> 683.1 ± 25.7

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 381.3 ± 17.2

always “moving” in the environment, a traditional algorithm will never converge to an optimal

policy that considers only the current observed state.10 The objective of this experiment is then

to provide the agent challenges similar to those encountered by natural agents that have to search

and explore their environment to look for food resources.

The results in Table 4.3 confirm the idea that in this scenario, using only the fitness-based

reward to learn a policy can lead to an extremely maladaptive strategy in the environment. In

fact, in relation to such strategy the agent is better off behaving according to chance, i.e., by not

being guided at all by any reward. Moreover, the fitness-based parameter θfit = −0.3 in the best

parameter vector θ∗ confirms the hypothesis of fitness-based reward being in fact detrimental to

fitness by providing a negative reward to the agent whenever it eats a prey.

The results also confirm the ones in (Singh et al., 2010) showing that providing intrinsic reward

to the agent can motivate exploratory behaviors. In this case, such behaviors are beneficial for

the agent in attaining a greater degree of fitness, especially when compared with a strategy that

focuses only on fitness-inducing behaviors. This effect can be seen in Figure 4.5 portraying the

evolution of the cumulative fitness throughout time.

By further looking at θ∗ we once again see that this kind of exploratory intrinsic motivation in

our approach is fostered mainly by rewarding less experienced states and actions through novelty

(θn = 0.4), and slightly punishing controlled situations by means of the negative parameter θc =

−0.1. Together, the results of the Moving Preys Scenario further reinforce the usefulness and

generality of our approach by mitigating a limitation so common to practical learning agents such

as partial observability.

4.3.4 Persistence Experiment

In this experiment we wanted to test the possibility of an agent adopting a long term view of the

world as opposed to focusing in immediate reward in order to achieve better performances in an

environment.

Persistence Scenario: The environment for this scenario is depicted in Figure 4.6(a),

where two kinds of prey are always present, namely a hare in the top-right corner with
10We can envisage a policy that for example stores the previous locations of food encountered so far. However,

the agent would still not know in which one the prey is. As such, to behave optimally the agent would have to
observe the current location of the prey, which intentionally is not the case in this scenario.

70



4.3. EXPERIMENTS AND RESULTS

Table 4.4: Mean cumulative fitness for the Persistence Scenario.
Parameter Vector θ = [ θn, θgr, θc, θv, θfit]

> Mean Fitness

Emotion-based opt. θ∗ = [ −0.1, 0.1, −0.1, 0.1, 0.6]> 1, 879.8 ± 11.2

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 136.3 ± 1.4

Random θ0 = [ 0.0, 0.0, 0.0, 0.0, 0.0]> 17.1 ± 0.7

a value of ρ = 1 when eaten, and a rabbit in the lower-right corner providing a reward

of ρ = 0.01. However, to get to the hare the agent must pass a fence as indicated in

the figure. Initially, this fence is very weak, and the agent can pass it by performing

only one Up action. After crossing the fence, the fence is reinforced so that the next

time the agent will need to perform one more Up action to pass it up to a maximum of

30 actions, i.e., nUp = min{nUp + 1, 30} whenever the agent crosses the fence, where

nUp is the number of Up actions needed to pass it.11 In this scenario, we consider

the environment just described as the only environment of interest.12 The state of the

agent is two-dimensional as it only observes its position and whether there is food in

its location. ♦

Importantly, in the Persistence Scenario the agent does not known how many Up actions are

needed to cross the fence. The lack of this information makes the environment non-Markovian in

the agent’s perspective as it is needed for optimal performance. This scenario is also episodic: the

agent returns to its initial position after eating one of the preys. As mentioned in Section 3.3, one

of the roles of emotions is to evaluate the current situation of the environment against the agent’s

goals and desires. In this case, our goal is for the agent to accumulate as much fitness-based reward

as possible throughout time. Due to the differences of reward provided by the two preys in the

environment, a “persistent” strategy directed towards the bigger future reward provided by the

hare will naturally beat one that focuses on a smaller but immediate and easier reward given by

the rabbit.

The results from this experiment are shown in Table 4.4, where the optimal emotion-based

agent clearly outperformed the agent focusing only on fitness-based reward. This result can be

better explained by looking at the policies learned by the two agents. As expected, the agent using

the fitness-based reward function rF focused on eating the rabbit providing a more immediate

reward, as can be seen in Figure 4.6(c). The ε-greedy policy followed by the agent during learning

allowed it to experience eating the hare in the initial phase of the simulation. However, as the fence

got more difficult to cross, the agent ignored the bigger reward in favor of the more immediate
11We note that this obstacle only works when the agent is moving upwards across the fence, and not in the

top-down direction, in which case the fence does not have any effect.
12In this experiment we are only concerned at finding a reward function enabling the agent of “learning to cross

the fence” and as such it was not relevant to test other environments. Nevertheless, we could consider several
configurations in which the fence was positioned in the environment so that the agent would have to cross it to get
to the hare.
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(a) Persistence environment. (b) Mean cumulative fitness evolution.

(c) Fitness-based policy. (d) Emotion-based optimal policy.

Figure 4.6: (a) The environment for the Persistence Scenario. The fence represents an obstacle the
agent has to pass to access the hare. Each time it passes the fence, more difficult it will be for it
to cross it the next time. The agent always starts in the indicated position after eating a prey; (b)
The evolution of the mean cumulative fitness attained by each type of agent in the experiment; (c)
Policy learned by a single agent using the fitness-based reward function rF ; (d) Policy of an agent
using the optimal emotion-based reward function r∗. Squares with no arrow refer to states seldom
visited, thus denoting very random policies. See text for more details.

although smaller reward from eating the rabbits. This analysis is also supported by Figure 4.6(b),

where we can see that the emotion-based agent only started to gain advantage over the other agents

at about 20% of the simulation,13 when the maximum number of actions was already required to

cross the fence. On the contrary, the optimal emotion-based agent, experimenting both types of

prey, preferred to continue on aiming at the hare prey in favor of the rabbit, as observable in

Figure 4.6(d) showing the learned policy by a single agent using r∗.

Furthermore, by looking at the optimal weight vector θ∗ in Table 4.4, we see that besides the

fitness-based reward, goal relevance and valence positively motivate the agent in crossing the fence

to go to the hare. Recall from Section 4.2.3 that the goal relevance feature rewards the agent in

approaching states with maximal expected fitness return. In this case, this corresponds to the

hare location, where the agent always receives the bigger fitness-based reward of ρ = 1. Also, the

valence feature rewards actions that lead to good fitness in the long-run, thus motivating the use

13This value was confirmed experimentally.
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(a) Prey seasons envi-
ronment.

(b) Different seasons results. (c) Poisoned season results.

Figure 4.7: (a) Descriptive environment for the Prey Seasons Scenario and Poisoned Prey Scenario, in
which two types of prey are available: hares and rabbits. In the Poisoned Prey Scenario environment
there are always two preys available as depicted while in the Prey Seasons Scenario environment
only one kind of prey is available at a time according to the season. In all scenarios the agent starts
from the depicted position after eating. See text for more details; (b)-(c) Comparative results of
the mean cumulative fitness evolution for the prey season scenarios.

of the Up action just before the fence.

Overall, in the Persistence Scenario a balanced combination of emotion-based rewards provided

the best strategy for this scenario by motivating the agent in trying to cross the fence, although

such behavior by itself has nothing to do with fitness enhancement.

4.3.5 Prey Season Experiments

The next set of scenarios present environments that not only change quickly as occurred in the

Moving Preys Scenario, but also present different situations throughout time. The configuration

of the environments changes cyclically according to “seasons” of 5, 000 time steps. Each season

presents food resources providing different degrees of fitness and/or appearing in different locations

within the environment.

In this experiment all the scenarios are episodic—whenever the agent eats a prey it returns

to the initial position in the environment. As with the Moving Preys Scenario and Persistence

Scenario, the agent only has access to its location in the environment and the presence of food in

its cell, and only has available the four movement actions. From the agent’s perspective, all the

season environments are non-Markovian because the agent does not know which season is currently

“active”, thus preventing the agent of acting optimally. As mentioned earlier, one of the advantages

of emotions in nature is to provide biological organisms a mechanism to cope with the changes

occurring in their environment. As such, this set of scenarios tests our hypothesis of emotion-based

rewards guiding agents to quickly adapt to changing and ambiguous environments.
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Table 4.5: Mean cumulative fitness for the Prey Seasons Scenario.

Parameter Vector θ = [ θn, θgr, θc, θv, θfit]
> Mean Fitness

Emotion-based opt. θ∗ = [ 0.0, 0.1, 0.6, 0.0, 0.3]> 6, 142.3 ± 1, 336.3

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 4, 959.3 ± 1, 862.4

Random θfit= [ 0.0, 0.0, 0.0, 0.0, 0.0]> 105.7 ± 24.4

Prey Seasons Experiment

Prey Seasons Scenario: In this scenario there are two types of preys, each one available

to the agent during its own season. During the hare season, a hare appears on the top-

right corner of the environment and during the rabbit season, a rabbit appears in the

lower-right corner, as depicted in Figure 4.7(a). When eaten, a hare enhances the

agent’s fitness by ρ = 1 and a rabbit provides a reward ρ = 0.1. After eating the agent

returns to its initial position as indicated in the figure.

In this scenario, hares “live in the wild” and as such provide the agent with an

inexhaustible source of food. On the other hand, rabbits are “raised by a breeder”.

As such, during the rabbit season, the agent is only allowed to eat a maximum of 9

rabbits. If it tries to eat other rabbits after that, the breeder “shoots” at the agent

which results in a loss of fitness in the amount of ρ = −1 (the agent still returns to its

initial position). There are two environments of interest in the set E for this scenario,

depending on which season starts first. ♦

The prey season at the start of the simulation significantly impacts the learned policy as

the agent spends more time exploring the environment in the beginning of the simulation, thus

influencing the type of prey it encounters more during that initial phase. Moreover, this scenario

poses two kinds of challenges for the learning agent: it is constantly changing by means of the

seasons and it is ambiguous by providing different rewards when eating a rabbit depending on the

number of rabbits eaten so far—which the agent does not observe.

As we can see from from Table 4.5, the optimal emotion-based agent outperformed the fitness-

based agent (p < 10−4). By analyzing the performance of the two agents we see that both agents

learn the same good policy for this scenario, which is to eat only during the hare season, avoiding

being punished for eating too much rabbits during the rabbit season.14 (see also Figure 4.7(b)).

The difference of total cumulative fitness between the two agents is explainable by the relatively

high positive control parameter θc = 0.6 in the optimal parameter vector θ∗. This scenario shows

an example in which following safe and controlled behaviors leads to a better adaptation to the

environment, unlike with the previous experiments in which exploratory behaviors seeking novelty

14We note that the optimal policy would be to eat as much hares as possible during the hare season and eat only
9 rabbits during the rabbit season. Given the information the agent has access to from the environment we consider
the learned policy to be a good policy for this scenario.
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were required to gather more fitness-based reward. Because eating rabbits provides an ambiguous

reward in the agent’s perspective, it is preferable to avoid uncertainty and wait for the more

predictable reward provided by eating hares. By not having this emotion-like mechanism, the

fitness-based agent initially spends more time trying to eat rabbits, which at the end proved to be

a disadvantage in terms of cumulative fitness.

Poisoned Prey Experiment

This scenario is an extension of the previous one and has the objective of reinforcing the idea of

using emotions for coping in an changing and ambiguous world.

Poisoned Prey Scenario: In this environment the two types of prey—hares and rabbits—

are always available in the locations indicated in Figure 4.7(a). As before, the rabbit,

when eaten, provides a fitness-based reward ρ = 0.1. During the normal season, the

agent receives a reward ρ = 1 whenever it eats a hare. However, in the poisoned season

eating hares is harmful for the agent as the hares are “poisoned due to toxic waste”

being released during this period of time. Whenever this occurs, the agent’s fitness is

reduced by ρ = −1 by eating the toxic food. ♦

As with the Prey Seasons Scenario, the agent does not know which season is currently occurring.

This scenario simulates the kinds of cyclic and drastic environmental changes that natural agents

suffer in their environments. In such situations, a balanced strategy may provide the best outcome.

On one hand, healthy hares are worth much more than the rabbits. However, the agent must quickly

change its feeding behavior whenever it perceives that the hares are no longer the best choice of

food during the poisoned season.

The results for this scenario depicted in Figure 4.7(c) show that in the end, both agents engaged

in fitness-enhancing behavior strategies. However, in comparison, the total cumulative fitness

attained shows that the optimal emotion-based agent largely outperformed the fitness-based agent.

This is due to the fact the fitness-based agent, relying only on reward provided by the food, preferred

to eat only the rabbits throughout time. In fact, such behavior makes sense from a fitness-only

point of view. In this scenario, on average, eating the same amount of hares on the two seasons

results in a fitness-based reward of ρ = 0. In other words, on average it does not compensate to

go to the upper part of the environment to eat the hares.

In Section 3.2.3 we discussed that emotions are a mechanism that enable an individual in taking

advantage of its environment, seeking food and avoiding harm by quickly adapting to the current

situation. Therefore, the results from this experiment further support our claim that emotion-based

rewards enable learning agents of adapting to an environment with low-predictability conditions.

Moreover, we note that the emotion-based agent learned a memoryless policy acting solely based

on the current observation. By observing the resulting behavior learned by our agents, we can see
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Table 4.6: Mean cumulative fitness for the Poisoned Prey Scenario.

Parameter Vector θ = [ θn, θgr, θc, θv, θfit]
> Mean Fitness

Emotion-based opt. θ∗ = [ 0.1, −0.2, 0.1, 0.0, 0.6]> 5, 237.6 ± 77.2

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 1, 284.3 ± 4.3

Random θfit= [ 0.0, 0.0, 0.0, 0.0, 0.0]> 80.6 ± 24.9

the benefits of having a mechanism providing rewards that appraise the history of interaction with

the environment. In fact, the emotion-based agent is intrinsically motivated to cope with drastic

changes by preferring more secure behaviors—eating the rabbits, but also to take risk and take

advantage when the hares are healthy.

As opposed to what occurred in the Persistence Scenario, going to the upper part of the envi-

ronment by itself can lead to a poor performance on average, so other aspects had to be considered

in this case. Table 4.6 presents a comparative analysis for this experiment. As we can see, the

best strategy found for this scenario is a balanced consideration of different aspects of the agent-

environment relationship. On one hand, positive novelty (θn = 0.1) encouraged exploration in the

environment required for when seasons change. On the other hand, predictable states by means of

positive control (θc = 0.1) motivate behaviors such as eating rabbits. More significantly, relying

on goal states in this experiment has a negative impact, as denoted by the negative goal relevance

parameter θgr = −0.2.

4.3.6 Universality of Parameter Vectors

Thus far we have been silent about the universality of the optimal parameter vectors θ∗, i.e., about

what would happen if we took the optimal emotion-based agents discovered by the optimization

procedure for each scenario and tested them in the other scenarios. As an example, in this section

we present a brief comparative analysis of the performance of all the optimal emotion-based agents

attained when acting in the Persistence Scenario environment described in Section 4.3.4. For each

scenario we took the optimal parameter vector θ∗ providing the highest fitness for each scenario

and tested it in the Persistence Scenario.

The results of this experiment can be seen in Table 4.7. As we can observe there is a large

difference in the cumulative fitness attained by the optimal emotion-based agent in this scenario

when compared with the optimal agents of the other scenarios. Moreover, all other agents per-

formed worse than the fitness-based agent in the Persistence Scenario, and two of them even worse

than the random agent.

Recall from the results of the Persistence Scenario in Section 4.3.4 that a strategy correctly

balancing all the reward-feature weights allowed the optimal emotion-based agent to learn to “cross

the fence” in order to get to the higher fitness-based reward. By not considering this balance, the
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Table 4.7: Mean cumulative fitness attained by the optimal parameter vector θ∗ discovered in
each experiment in the Persistence Scenario, sorted descendingly. We also include the results for
the fitness-based agent θfit and a random agent using θ0.

Scenario
Parameter Vector

Mean Fitness
θ = [ θn, θgr, θc, θv, θfit]

>

Persistence Scenario θ∗ = [−0.1, 0.1,−0.1, 0.1, 0.6]> 1, 879.8 ± 11.2

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 136.3 ± 1.4

Lairs Scenario θ∗ = [ 0.1, 0.0,−0.2, 0.0, 0.7]> 67.3 ± 2.1

Poisoned Prey Scenario θ∗ = [ 0.1,−0.2, 0.1, 0.0, 0.6]> 60.5 ± 1.5

Moving Preys Scenario θ∗ = [ 0.4, 0.0,−0.1, 0.2,−0.3]> 47.3 ± 4.2

Random θ0 = [ 0.0, 0.0, 0.0, 0.0, 0.0]> 17.1 ± 0.7

Hungry-Thirsty Scenario θ∗ = [−0.4, 0.0, 0.0, 0.5, 0.1]> 14.5 ± 5.8

Prey Seasons Scenario θ∗ = [ 0.0, 0.1, 0.6, 0.0, 0.3]> 11.5 ± 1.5

other agents, which strategies allowed them to thrive in their respective environments, performed

very poorly in this scenario and did not learn the optimal behavior. This example serves to

illustrate the non-universality of the optimal parameter vectors for each scenario, as each is tuned

for a specific environment. However, as will be discussed further ahead, this fact does not invalidate

the generality of our approach, as the reward-features used by the agents are the same in all

experiments.

On the other hand, it is also important to assess whether there is a universal or “good enough”

parameter configuration, i.e., one that is better on average than the fitness-based agent on all

scenarios. For that purpose we made another experiment where we measured the average “rank” of

each parameter vector across all the foraging scenarios. The rank position for a specific scenario is

taken by ordering the several parameter vectors according to the mean cumulative fitness attained

by the respective agent in that scenario. This means that the optimal weight vector θ∗ for a scenario

is the highest ranked parameter vector, i.e., rank(θ∗) = 0. We then averaged the rankings of all the

tested parameter vectors to determine the one performing the best on average across all scenarios.

We denote by θU the universal parameter-vector. Table 4.8 presents the comparison in ranking

of the universal emotion-based agent versus the fitness-based and random agents. The difference

in averaged performance between the the universal and the fitness-based agent was found to be

statistically significant (p = 8× 10−4).

As the results of this experiment indicate, there are in fact parameter vectors that behave well,

on average, in all the foraging scenarios when compared to an agent receiving only fitness-based

reward. As θ∗ indicates, a combination of fitness-based reward and negative control allows the

universal agent of attaining a better performance on average when compared to the standard agent.

The negative weight on control is justified by the non-stationarity of most of the foraging scenarios,

thus favoring exploratory strategies in the environments.
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Table 4.8: Mean rank positions for the “universal” emotion-based, fitness-based and random agents
across all the foraging scenarios. See text for details.

Parameter Vector θ = [ θn, θgr, θc, θv, θfit]
> Mean Rank

Universal θU = [ 0.0, 0.0, −0.3, 0.0, 0.7]> 522.7 ± 460.2

Fitness-based θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 779.8 ± 602.0

Random θ0 = [ 0.0, 0.0, 0.0, 0.0, 0.0]> 6243.0 ± 2996.7

Table 4.9: Comparison of the performance of the universal emotion-based agent and the optimal
and fitness-based agents in each foraging scenario.

Scenario
Mean Fitness

Universal Optimal Fitness-based

Hungry-Thirsty Scenario 8, 297.8 ± 5, 933.5 9, 505.6 ± 7, 303.6 7, 783.7 ± 6, 930.1

Lairs Scenario 8, 798.0 ± 1, 576.6 8, 635.8 ± 1, 133.3 7, 536.7 ± 944.8

Moving Preys Scenario 460.8 ± 49.2 1, 986.9 ± 110.0 381.3 ± 17.2

Persistence Scenario 470.8 ± 59.0 1, 879.8 ± 11.2 136.3 ± 1.4

Prey Seasons Scenario 4, 912.0 ± 2, 606.3 6, 142.3 ± 1, 336.3 4, 959.3 ± 1, 862.4

Poisoned Prey Scenario 1, 279.7 ± 5.2 5, 237.6 ± 77.2 1, 284.3 ± 4.3

However, as one would expect given that rank(θU ) = 522.7, when the performance of this

“universal” parameter vector is taken in each scenario individually, the results are only marginal in

terms of the fitness attained compared to the optimal parameter vectors, as indicated in Table 4.9.

Nevertheless, when compared to the fitness-based agent, in all but the Hungry-Thirsty Scenario, Prey

Seasons Scenario and Poisoned Prey Scenario scenarios the universal agent performed significantly

better (p < 10−4). In the referred scenarios the performance of the universal agent was in line

with that of the fitness-based agent.

The results of this experiment further show the existence of a parameter vector that, despite not

being “specialized” in any particular environment, is “good enough” across all scenarios, especially

when compared to an agent learning only with the external task reward. In the context of our study

this result thus point towards the general-purpose usefulness of emotion-based rewards in solving

complex learning tasks. We note however that such universal configuration is still dependent on

the particular set of foraging environments in which learning took place. It is therefore expected

that, in scenarios that have dynamics and challenges quite distinct from those presented by our

foraging scenarios, the discovered universal agent performs worse than the agent best adapted to

such environments or even the standard fitness-based agent.15 A more critical discussion on this

subject of universality is provided in the following section.

15We refer to the experiments in Section B.1 where we test the performance of the discovered “universal” parameter
vector in different scenarios with varying complexity in the presented challenges.
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4.4 Discussion

Now that the we provided both our approach and the validation for the design of rewards based

on emotions, it is important to analyze our results in light of the several areas of research that

contributed to them, namely emotion-based research in the field of RL and psychological work on

emotions.

4.4.1 Emotions and Motivation

Recall from Section 3.2 that emotions play a fundamental role in several aspects of humans’ cogni-

tive and behavioral processes, such as such as memory enhancement, sensory plasticity, attention

focusing, regulation of social behavior, etc. In this chapter we propose the use of emotion-based

rewards that are able to complement the perceptions of the agent and guide it throughout its

interaction with the environment. The way the agent appraises its environment by means of the

intrinsic reward features together with the parameter vector used makes it focus on different aspects

of the interaction and act accordingly. As discussed earlier, our focus is on the motivational aspect

of emotions. Just as occurs with natural organisms, different evaluations—the rewards—provide

distinct motivations—as indicated by the Q-values that they influence—to deal with the problems

at hand.

We acknowledge the fact that emotions could, in parallel to what occurs in nature, also influence

other aspects of a RL agent. We could consider for example an emotional mechanism focusing on

particular stimuli from the environment, or influencing the rate at which the RL agent learns

according to the positive/negative emotional tone associated with some state, or even adjusting

the amount of exploration according to the level of control over the environment. In Section 3.5

we discussed other approaches to emotion-based RL that had some of these aspects of emotions

into consideration for the design of the whole learning mechanism.

Nevertheless, we note that this is not a limitation of our approach as we do not propose a

computational model of emotions that attempts to incorporate all the aspects of the emotional

process for the design of the agent. Moreover, such emotional mechanisms within the RL framework

would have to undergo independent processes of optimization (or manual tuning) in order to

discover the best parameterization for some scenario. By focusing in the motivational role of

emotions through the design of emotion-based reward functions, we concentrate on optimizing

only the particular parameter configuration—hence the particular combined reward signal—that

best guides the agent in a specific domain.

4.4.2 Emotions as Intrinsic Reward

In this thesis, particularly in this chapter, we explore whether emotions, from an ecological point

of view, fit the idea of intrinsic rewards as primary and biologically-relevant rewards to natural
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organisms (Singh et al., 2010), as discussed in Section 2.7.1. We follow the perspective in which

intrinsic rewards encourage behaviors that, throughout evolution, proved to contribute to an or-

ganism’s reproductive success, i.e., its fitness. Intrinsic rewards foster courses of action that are

not directly related to enhancing the animal’s fitness, i.e., behaviors unrelated to eating, drinking

or sex that directly reduce some internal biological drive.

The motivation behind our approach comes precisely from the fact that emotions are a hard-

wired, phylogenetic adaptive mechanism that, throughout evolution, allowed animals to avoid

dangers and gain fitness in the environment. Although emotions are tied to an individual’s de-

sires and goals, emotions may motivate behavior not directly related to fitness enhancement. By

assessing the value or the significance of stimuli in the environment, emotions promote behaviors

directed towards dealing with a situation so to improve the individual’s well-being.

One might argue that some reactions to emotion-inducing events are extrinsically motivated,

such as when in a fear conditioning experiment (see Section 3.2.1) a rat responds with immobility,

as a result of fear, in the presence of a stimulus previously associated with an electrical shock.

However, as the emotional processing mechanism becomes more complex, emotions elicit behaviors

unrelated to extrinsic pain or pleasure stimuli. For example, one might feel curious and explore

unfamiliar situations “just for the fun of it”, or sad due to an unfavorable outcome without the

need to be fearful of some extrinsic punishment. One can even feel ashamed of having done some

action which is not acceptable within its social circle.

In essence, humans and other animals seem to respond emotionally to situations because evo-

lution and individual experience dictates so. Together, all these ideas seem to support our claim

of emotions being a possible and natural evaluative mechanism for autonomous learning agents in

the general case.

4.4.3 Differences in Appraisal

Recall also from Section 3.3.1 that phylogenetic characteristics together with experience allow for

individual and cross-cultural differences in emotional experience and emotion-related behaviors.

This is a relevant phenomenon which is demonstrated by our model. In our approach, the emotion-

based evaluative mechanism depends both on individual characteristics of the agent, i.e., by means

of the particular parameter vector providing the intrinsic reward, and also on experience as provided

by the course of behavior performed by the agent and the rewards received during learning.

Additionally, because the agent uses a reward function based on emotion-like signals, our model

follows the perspective that affective states may encode useful information that guide an agent

during learning and decision-making (Isen, 2008; Naqvi et al., 2006). The proposed emotion-

based features consider properties of the agent’s history of interaction with its environment and

not solely properties of the current state and action. Although we do not explicitly consider the

values of previous features for the calculation of the rewards in each time step, the proposed
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evaluative mechanism resembles the process of reappraisal (Lazarus, 1966, 2001) in the sense that

past information contributes for the current and future appraisals.

4.4.4 Connection with Computational Models of Emotions

As stated earlier, in this thesis we do not propose a new computational model of emotions. As

described in Section 3.4.1, computational models based on appraisal theory specify emotional

components that interact with entities such as memory, inference, reasoning or the agent’s beliefs,

as illustrated in the agent architecture of Figure 3.3. Although our IMRL-based agents do not

have access to such components, we can still discuss how our model fits the above-mentioned

architecture.

Recall from Section 3.3.1 that the person-environment relationship is the basis of appraisal,

representing a connection between what is perceived from the environment and past interactions

with it, the individuals beliefs, norms and cultural background (Frijda and Mesquita, 1998; Rose-

man and Smith, 2001; Smith and Kirby, 2009). In our framework, this entity is represented by

everything the learning agent has access to in order to make its decisions, i.e., its history h of inter-

action with the environment. In our emotion-based agent model, depicted in Figure 4.2, we see that

the reward features based on appraisal dimensions correspond to the appraisal variables proposed

for computational appraisal models (Marsella et al., 2010).16 Like the appraisal dimensions in

which they were inspired, our emotion-based reward features make universal, domain-independent

evaluations of the significance of events for the agent’s welfare, i.e., its fitness. Therefore, our

emotion-based critic relates to the appraisal derivation model proposed for appraisal-based com-

putational models. Moreover, because the values of the several features are combined into a reward

signal to guide the agent through learning, our RL decision-making mechanism corresponds to the

affect consequent model of the emotional architecture that, at each step of time, takes a decision

based on the outcome of previous appraisals (Marsella et al., 2010).

Finally, we note that in our approach, due to the nature of the evaluation and scenarios imple-

mented, we are not concerned in explaining the current emotional state of the agent with labels such

as happy, sad or angry corresponding to the emotion/affect component of Figure 3.3. Nevertheless,

one can envisage a labeling mechanism that, at each time step, evaluates a point representing the

agent’s current emotional experience in the 4-dimensional space created by the actual values of

the emotion-based reward features. Based on predefined emotion profiles or patterns associating

a label with a specific point in the emotional space, one could find the emotion label which respec-

tive point was closest to the agent’s current experience point. Such label would then be the one

describing the agent’s current emotional state.

16A similar perspective of the internal critic as an appraisal process is provided in (Marinier, 2008).
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4.4.5 Comparison with Other Approaches

In Section 3.5 we discussed some works that, like our approach, are inspired by emotions for

the creation of more robust and efficient autonomous agents. As we can see from Table 3.3, all

the approaches rely either on a set of discrete emotions or positive/negative evaluations of the

emotional state of the agent. This contrasts with our approach, since we propose a set of domain-

independent reward features based on major dimensions of emotional appraisal which, together,

create a multidimensional emotional experience space capable of generating a multitude of distinct

emotional states.

While some systems use changes in the internal drives of the agent as the reward that guides the

agent through learning (Gadanho and Hallam, 2001; Salichs and Malfaz, 2006), others (Ahn and

Picard, 2006; Broekens et al., 2007), like our approach, use (combinations of) intrinsic and extrinsic

reward. We note however that in our approach we do not modify the learning architecture as the

intrinsic reward provided to the agent is considered a “normal”, primary reward in any traditional

RL algorithm (we refer to the discussion on Section 2.7.1). Also, as described earlier, we consider

an optimization procedure to search for the optimal contribution of each reward feature for a

particular set of environments. Finally, in our approach, instead of using predefined rules relating

particular emotion states and action strategies (exploration vs. exploitation), emotions influence

the choice of actions indirectly, i.e., actions are chosen so as to maximize the emotional benefit of

the current situation, as ascribed by the appraisal-based reward mechanism.

4.4.6 Plausibility and Universality of our Approach

We conclude this section with some important remarks regarding our approach. First, we do not

claim the reward features proposed in this paper to be universal, biologically plausible, or the only

ones reasonable to represent the discussed appraisal dimensions. Instead, we propose a possible

interpretation for a set of low-level features that, within our framework, provide evaluations similar

to those emerging from the respective appraisal dimensions in nature.17 Like other approaches

within IMRL (Niekum et al., 2010; Singh et al., 2009, 2010; Sorg et al., 2010a), we could have used

observation/state data to perform the appraisal-like evaluation, but we wanted to provide features

that, like emotions, provide general-purpose evaluations of events according to one’s particular

situation, independently of the particular domain being considered.

Finally, we also do not claim that emotion-based agents are able to cope with all kinds of

challenges in all types of scenarios. Indeed, it is only expected that mechanisms that are inspired

by biological systems are not perfect or flawless. As occurs in nature, maladaptive behaviors may

lead to poor performances (see the discussion on Section 3.2.2). The results from our experimental

procedure seem to support the claim that there may be “universal” parameter vectors that behave

17We propose domain-independent features that quantitatively evaluate some aspects of the agent’s history of
interaction with its environment, including statistical information about reward, action and state-value functions.
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well across a given set of scenarios when compared to a fitness-based agent, despite not being “spe-

cialized” in any particular environment. However, the results from the experiment in Section 4.3.6

show that parameter vectors that were optimized for some scenarios lead to maladaptive behaviors

by the agent when acting in a different environment. In fact, the optimization procedure for each

scenario makes the agent value different aspects of its relationship with the environment, i.e., it

makes the agent to adapt to a specific habitat. This is to be expected in natural agents as well.

Animals accustomed to living in one environment seldom thrive in environments which have major

distinct characteristics.

4.5 Contributions

We now detail the contributions within this chapter resulting from our experiments in Section 4.3

and the discussion in Section 4.4. We also denote the implications of our approach for IMRL and

the area of AC. Generally speaking, we advocate the idea that an emotion-based mechanism may

be useful for both agent designers and for autonomous agents in general.

4.5.1 Implications for RL/IMRL

The main technical contribution for IMRL is a set of four domain-independent emotion-based reward

features, namely novelty, valence, goal relevance and control, based on dimensions of appraisal of

the emotional significance of events, commonly found in the psychology literature.

• The use of these reward features in the context of IMRL alleviates the need for the agent

designer to handcraft reward functions for a specific domain, thus making the agents more

autonomous;

• The advantage of our approach stems from the fact that, like emotions do to natural agents,

emotion-based reward functions provide a general-purpose evaluative mechanism of the agent’s

history of interaction with its environment.

Furthermore, we demonstrate the potential of emotion-based learning through a set of foraging

experiments targeted at evaluating how the proposed model can mitigate perceptual limitations.

• The scenarios also indicate a wider range of problem domains in which our features can

improve the agents at being more robust and flexible by requiring little tuning of the reward

functions for specific domains.

• Previous approaches within IMRL have also demonstrated the effectiveness of using intrinsic

rewards to overcome computational limitations, but the solutions were usually based on

frequency and domain-related features (Niekum et al., 2010; Singh et al., 2009, 2010; Sorg

et al., 2010a). In this chapter we showed that emotions can be a very natural and efficient
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approach to reward design by mimicking the way humans and other animals evaluate and

respond to events in their environment;

Our approach also departs from reward shaping techniques used with RL (Dorigo and Colom-

betti, 1994; Mataric, 1994; Ng et al., 1999; Randløv and Alstrøm, 1998). It is known that shaping-

based algorithms require a great amount of knowledge about the domain and its effect is also

temporary (Ng et al., 1999; Randløv and Alstrøm, 1998; Wiewiora, 2003). Also, in a large part of

our experiments the agents do not have access to the necessary information to behave optimally

and in consequence reward shaping techniques cannot be expected to overcome such limitations

(Sorg et al., 2010a).

• By using combinations of intrinsic reward features evaluating the agent’s history with its

environment (unrelated directly with the intended task/fitness), our reward functions allow

the agent to mitigate its perceptual limitations by actually changing the optimal policy, as

opposed to reward shaping where the optimal policy is only approximated but is not modified,

potentially leading to very poor performances;

• The results from our experiments show that our approach is also suitable to be used in

non-stationary environments in which the elements change quickly or that due to limited

perception provide ambiguous outcomes, reinforcing our claim of using emotions to enhance

the adaptive capabilities of the learning agents.

4.5.2 Implications for AC

Our experiments and results reinforce other approaches within the field of AC that advocate the

need for emotion-based mechanisms for autonomous agents capable of enhancing their perceptual

and information-processing capabilities, similarly to what occurs in nature. However, as discussed

earlier in Section 4.4.5, our approach departs from previous works in several ways:

• The proposed emotion-based reward features can be used in conjunction with any RL al-

gorithm used to learn an optimal policy, i.e., we do not modify the learning algorithms to

include emotional information;

• We do not focus in a predefined set of basic emotions to influence learning. Our agents use

a reward function that is the combination of the values of several appraisal dimension-based

reward features. In this manner we are not limited by focusing on properties of a few modal

emotions;

• We also do not use predefined rules to influence the agent’s behavior based on emotions.

Rather, the behavior emerges from the agent’s interaction with its environment;
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• Finally, we do not embed in the agent any domain knowledge relating the particular sce-

narios in which learning takes place. Our use of the appraisal-based features allows of their

application in a variety of different scenarios.

4.6 Summary

In this chapter we analyzed the contributions of a novel mechanism for the design of intrinsic reward

functions. We followed the ORP formulation within the IMRL framework in which the agent is

provided with rewards motivating behaviors not directly related to its designer’s objectives. For

the nature of the rewards we proposed a set of four reward features each one evaluating a particular

aspect of the agent’s relationship with its environment. The proposed features relate to the kinds

of evaluations that emotional appraisal dimensions provide to natural organisms. In a sense, each

emotion-based reward feature makes the agent focus in aspects of the environment that are not

themselves related to fitness enhancement but which motivate useful, advantageous behaviors for

a particular set of environments.

Together with a feature providing the “standard” fitness-based reward to the agent, these reward

features form a space of emotion-based reward functions. Each function has a distinct parameter

vector that weights the importance of each feature differently. We tested the potential of our

approach in a set of foraging experiments, each one providing particular challenges to the learning

agent that somehow simulate the kinds of limitations biological agents face in nature. For each

scenario, an optimization procedure searched for the particular configuration of reward features

providing the best overall cumulative fitness for the agent in that scenario.

�

In conclusion, in this chapter we showed that emotions, adapted to an intrinsic reward mech-

anism, endows IMRL agents to overcome some of their perceptual deficits and at the same time

provide agent designers with a general-purpose, domain-independent reward mechanism capable

of providing leverage in a variety of different situations. In the next chapter, we complement the

work within this chapter to discover whether, from a set of possible reward mechanisms, the ones

providing maximal performance to learning agents have dynamical and structural properties that

can be related to emotions, specifically as prescribed by appraisal theories.
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In Section 3.2 we have provided theoretical support for the importance of emotions in biological

organisms. Chapter 4 accompanied other works within AI advocating the positive impact of

emotion-based mechanisms in augmenting the perceptual information of autonomous agents. In

this chapter we address the question of whether emotions are indeed the best candidate for the

agents’ information processing mechanism. Appraisal theories of emotions investigated within

psychology provide support for this hypothesis in biological agents, as discussed in Section 3.3.

In this chapter we look for similar support in artificial systems. In Figure 5.1 we outline the

methodology used in this chapter in order to answer the aforementioned question and highlight

the contributions arising therefrom.

Genetic 

programming

Optimal sources 

of information

Sampled 

optimization

IMRL

Linearly 

parameterized 

ORP
Pac-Man 

scenarios Novel method to 

assess emotional 

significance

General-purpose 

rewards

Emergence of 

signals having 
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Approach Validation Contributions

Foraging 

scenarios

Appraisal theories 

of emotions

Figure 5.1: Outline of our approach for assessing the emergence of emotion-like signals within
IMRL.

5.1 Introduction

As discussed in Section 3.2, research on psychology, neuroscience and other related areas established

emotions as a powerful adaptive mechanism that influences cognitive and perceptual processing

(Cardinal et al., 2002; Dawkins, 2000; Phelps and LeDoux, 2005). Emotions indirectly drive be-

haviors that lead individuals to achieve goals and satisfy needs. Damage to regions of the brain

identified as responsible for emotional processing was shown to impact the human and animal

ability to properly learn aversive stimuli, plan courses of action and, more generally, take decisions

that are advantageous for their well-being (Bechara et al., 2000; Damasio, 1994; LeDoux, 2000).

On the other hand, the area of affective computing (AC) has also investigated the impact of

emotional processing capabilities in the development of autonomous agents, as seen in Section 3.4.

The embedded emotional processing mechanisms were shown to improve the performance of arti-

ficial agents as measured in several manners such as robustness, efficiency, believability and others

(Marsella et al., 2010; Rumbell et al., 2011; Salichs and Malfaz, 2012; Sequeira et al., 2011b). As

we have seen throughout this thesis, in very general terms, emotional architectures feature an

emotional processing module that, together with the perceptual information acquired by the agent,
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Figure 5.2: General architecture for an artificial agent with emotional processing. The decision-
making process is driven by both perceptual information from the environment and also by some
form of emotional information.

guides its decision process, as illustrated in Figure 5.2 (Becker-Asano and Wachsmuth, 2008; Dias

and Paiva, 2005; El-Nasr et al., 2000; Marsella and Gratch, 2009; Marsella et al., 2010; Reilly and

Bates, 1992; Sequeira et al., 2011a; Velásquez, 1997).

The emotional signals provided by such module “translate” information about the history of

interaction of the agent with its environment that aid decision-making, complementing the percep-

tual information acquired through the agent’s sensors. For example, our emotion-based learning

architecture depicted in Figure 4.2, proposed in Chapter 4, fits this model. The decision-maker

receives a reward signal as a linear combination of four emotion-based reward features—the emo-

tional information— and a fitness-based reward feature— the external information.

Although one of the driving motivations for the use of emotional agent architectures is the

creation of “better agents” (e.g., agents able to successfully perform more complex tasks) one

fundamental question remains mostly unaddressed in the literature: in the search for information

that may complement an agent’s perceptual capabilities, are emotions the best candidate?

In this chapter we contribute to this question by providing empirical evidence that emotion-

like signals may arise as natural candidates when looking for sources of information to complement

an agent’s perceptual capabilities. Using an evolutionary approach, we show the emergence of

domain-independent, general-purpose intrinsic sources of information to complement the (possibly

limited) perception of artificial agents, thus endowing them with evolutionary advantages. We

analyze the dynamical and structural properties of such sources of information and discover in-

teresting connections with evaluative variables from appraisal theories of emotions proposed in

the psychology literature (Ellsworth and Scherer, 2003; Frijda and Mesquita, 1998; Lazarus, 2001;

Leventhal and Scherer, 1987; Roseman and Smith, 2001; Scherer, 2001). We thus contribute a

computational parallel to the evidence observed in biological systems, where the organisms with

the most complex emotional processing capabilities (humans) are arguably those most fit to their

environment (LeDoux, 2000; Leventhal and Scherer, 1987; Oatley and Jenkins, 2006).
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Figure 5.3: General architecture for an artificial agent which decisions are influenced by the percep-
tions from the environment and also other sources of information from some (unknown) processing
mechanism.

5.2 Identification of Optimal Sources of Information

We begin our study in this chapter by addressing the following question: which information is (po-

tentially) most useful to complement the perceptual capabilities of an autonomous learning agent?

In other words, we abstract from any type of information processing mechanism for a learning agent

and investigate possible sources of information that may most significantly impact the agent’s per-

formance, as illustrated in Figure 5.3.

5.2.1 Background

Before detailing our approach for the emergence of the optimal sources of information, we briefly

describe the purpose behind the discipline of evolutionary computation (EC) and the use of genetic

programming (GP) within the IMRL framework.

Evolutionary Computation

Within machine learning, the discipline of EC (or evolutionary modeling) is motivated by evolution

in biological systems, which is known to be a successful adaptation process (Mitchell, 1997). The

neo-Darwinian paradigm is a collection of evolutionary theories that stresses the importance of four

physical processes, operating within populations of species, that determine their history throughout

time (Fogel, 1994):

Reproduction, or the lack of it, allows for changes in the size of population throughout time.

Through reproduction, part of an individual’s genetic program is passed on to its descendants;

Mutation is the effect which allows for replication errors to occur when information is being

transfered during reproduction;

Competition occurs within expanding populations with access to limited resources or by decreas-

ing the amount of such resources;

Selection is a consequence of competition and determines which individuals within a population

will pass on its genetic code to future generations.
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⇢(s, a, h) nt(s, a, h)nt(s, h)

Figure 5.4: Example of a GP tree representing the reward function r(s, a, h) = 2ρ(s, a, h) −
(nt(s, h) +nt(s, a, h)) (see text for details). Double circles represent operator nodes, dashed circles
represent terminal nodes.

Genetic Programming within IMRL

As discussed in Section 2.5.1, the ORP is the formulated as finding a primary reward function

r(s, a, h) providing maximal utility as defined by a fitness function f(h) in a set of environments of

interest E (Bratman et al., 2012; Sorg et al., 2010a). In that respect, Niekum et al. (2010) proposed

the use of GP in the context of IMRL as a possible approach to identify optimal rewards for RL

agents.

In that particular work, GP was used to search for reward functions—represented by genetic

programs—that combine different elements of the learning domain, such as the agent’s position in

the environment or its hunger status. For example, a reward function expressed by the program

2ρ(s, a, h) − (nt(s, h) + nt(s, a, h)), represented in tree form in Figure 5.4, rewards the agent for

fitness-inducing behaviors and punishes the agent as it becomes more and more “familiarized” with

s and a. The GP algorithm finds interesting combinations of these informative elements to search

for the ones providing maximal fitness in some environments.

5.2.2 Objectives

In this study we will again adopt the IMRL framework (Singh et al., 2009, 2010) introduced in

Section 2.4.3. Recall that IMRL provides a principled manner to integrate multiple sources of

information in the process of learning and decision-making of artificial agents (Singh et al., 2009).

As such, it is a framework naturally suited to our investigation in this chapter. To address the

aforestated question, we consider the foraging scenarios presented in Chapter 4, where the learning

agent acts as a predator in the environment. As discussed therein, the perceptual limitations of

the agent in the different environments pose challenges that directly impact its ability to capture

its prey and, consequently, its fitness.

Our objective in this first set of experiments is to determine which reward functions—and,

consequently, which sources of information—best complement the agent’s perceptions. Because

the different environments provide distinct challenges for our learning agents, there is no general

heuristic for us to determine good reward functions for the set of environments of interest. As
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mentioned above, the GP approach automatically discovers interesting relations between variables

(like nt(s), nt(s, a), and rF (s, a) in the example of Fig. 5.4) that account for the agent-environment

history of interaction. In fact, evolutionary computation algorithms have proved to be well suited

to be applied to problems where heuristic solutions are not available or produce unsatisfactory

results (Fogel, 1994).

In order to identify possible sources of useful information to complement the agent’s percep-

tual limitations, we depart from a primitive population of agents, each endowed with a reward

function evaluating information about different aspects of the agent’s history of interaction with

its environment. The fittest agents, i.e., those with the greatest ability to capture preys, are used

to successively improve the preceding population. Upon convergence, we identify the set of agents

able to attain the largest degrees of fitness in each scenario. The analysis of the corresponding

reward function provides the required information about which signals are potentially most useful

to complement the perceptual capabilities of our IMRL agents.

5.2.3 Methodology

We now provide a detailed description of the setup and procedure used in this first experiment.

As mentioned earlier, we will use the foraging scenarios defined in the experiments in Section 4.3,

i.e., the Hungry-Thirsty Scenario, Lairs Scenario, Moving Preys Scenario, Persistence Scenario, Prey

Seasons Scenario and Poisoned Prey Scenario. Also, we model our RL agents as learning in MDPs

using prioritized sweeping (Moore and Atkeson, 1993) exactly as described in Section 4.3.2. Reca-

pitulating, in our experiments, prioritized sweeping updates the Q-value of up to 10 state-action

pairs in each iteration, using a learning rate of α = 0.3 and a discount factor of γ = 0.9. The

agent follows an ε-greedy exploration strategy with a decaying exploration parameter εt = λtε, with

λε = 0.9999.

Evolutionary Procedure

In general terms, GP aims to find a program that maximizes some measure of fitness (Koza, 1992).

Programs are represented as syntax trees, where nodes correspond to either operators or terminal

nodes (see Figure 5.4). Operators are selected from a set O of possible operators, and its arguments

are represented as their descendants in the tree. Non-operator (terminal) nodes are selected from

a set T of possible terminal nodes, and represent either numerical variables or constants.

GP iteratively explores possible solutions by maintaining a population of candidate programs,

referred to as hypothesis, producing new generations of programs by means of several mechanisms

that relate to the evolutionary physical processes described above. Specifically, within GP, repro-

duction is achieved by means of the crossover function that randomly replaces some subtree (a

node and all of its descendants) of a parent program by another subtree from another parent. The
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Reward Function 
Population

Crossover
Mutation
Selection

Reward Function 
Evaluation …

Figure 5.5: The GP approach to the ORP, as proposed in (Niekum et al., 2010). Populations of
agents, each with one reward function, are evaluated according to some fitness function and evolve
according to crossover, mutation and selection. See text for details.

mutation operator replaces some node by another randomly selected one.1

GP alleviates the need for specifying an explicit parameterization for the space of rewards,

e.g., as occurs in linearly parameterized ORP. Instead, we implicitly define the space of possible

reward functionsR as a population of genetic programs by specifying a set of operators and terminal

nodes. In our case, we use as terminal nodes quantities that evaluate some aspects of the history

h of interaction of the agent with its environment. The operators then combine these quantities,

constructing richer, more complex and potentially more informative signals throughout “evolution”.

By following such offline optimization procedure we automatically aim at weak mitigation, as

discussed in Section 2.4.4. We note however that in this case we are interested in the quality of

the resulting GP expressions used as reward functions and that the evolutionary procedure is a

requirement to discover interesting combinations of the basic information elements.

Figure 5.5 outlines the learning scheme for GP within IMRL. At each generation j, each reward

function rk, k = 1, . . . ,K from a population of reward functions Rj of size K is evaluated according

to the fitness function F(rk) as it was defined in (2.9) and the scheme delineated in Figure 2.8.

When all the reward functions have been evaluated, the evolutionary procedure takes place by

applying the mutation and crossover operators defined above and applying selection over the pop-

ulation in order to produce the new generation of reward functions, corresponding to population

Rj+1.2

Genetic Programming Parameterization

Recall from Section 2.4.3 that ρt(s, a, h) is an “external” evaluative signal that rewards the agent

according to the increase/decrease of fitness caused by executing each action a in each state s

during history h. Recall also the definition given by (2.7) of the fitness-based reward function

rF that uses solely this external evaluative signal to provide the reward to the agent. In our

experiments, we used a terminal set T = C ∪ V, with C corresponding to the set of constants,

1More details can be found in (Koza, 1992, 1994).
2The first generation, corresponding to the population of reward functions R0, is randomly generated.
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C = {0, 1, 2, 3, 5}, and V to the set of variables, V = {rza, nz, nza, vz, qza, dz, eza, pzaz′}, where

• rza = ρ(z, a, h) is the agent’s fitness-based reward for performing action a after observing z.

It is a function of z, a, and the agent’s history h.

• nz = n(z, h) is the number of times that z was observed so far during history h.

• nza = n(z, a, h) is the number of times the agent executed action a after observing z during

history h.

• vz = V F (z, h) is the value function associated with the fitness-based reward function estimate

r̂F (z, a, h). It is a function of z and the agent’s history h.

• qza = QF (z, a, h) is the Q-function associated with the fitness-based reward function estimate

r̂F (z, a, h). It is a function of z, a, and the agent’s history h.

• dz = d̂(z) corresponds to an estimate of the number of actions needed to reach a goal after

observing z. Goals correspond to those observations that maximize r̂F . It is a function of z

and the agent’s history h.

• eza = E
[
∆QF (z, a, h)

]
is the expected Bellman error associated withQF , where ∆QF (z, a, h)

is given by (4.3). This variable is a function of z, a, and the agent’s history h.

• pzaz′ = P̂(z′ | z, a) corresponds to the estimated probability of observing z′ when executing

action a after observing z. Since the learning algorithm used by the agent averages the

perceived reward function, pzaz′ is actually equivalent to

E
[
P̂(z′ | z, a)

]
=
∑
z′∈Z

P̂(z′ | z, a)P [zt+1 = z′ | zt = z, at = a] .

The latter is a function of z, a, and the agent’s history h.

The variables above include all elements stored and/or computed by the learning agent, and there-

fore summarize the agent’s history of interaction with its environment h. As for the operators used

by the GP algorithm, we considered the set O = {+,−,×, /,
√
·, exp, log}.

Computing the Optimal Reward Functions

We generate a total of 50 independent initial populations, each containing K = 100 elements, and

ran the evolutionary procedure described earlier for 50 generations for each population. For the

selection mechanism, we use a steady-state procedure that, in each generation, maintains the 10

most fit elements and generates 10 new random elements. The remaining 80 elements are generated

by pairing elements of the previous population (through reproduction) according to a rank selection

that chooses parents with a probability which is proportional to their fitness.
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Table 5.1: Mean cumulative fitness and evolved reward functions for each scenario. The results
correspond to averages over 200 independent Monte-Carlo trials.

Scenario Reward Function Mean Fitness

Hungry-Thirsty Scenario
r = qza − vz − 2 10, 252.1 ± 6, 773.1

r = rza 7, 129.4 ± 6, 603.2

Lairs Scenario
r = qza − vz 8, 136.5 ± 1, 457.5

r = rza 7, 478.3 ± 791.6

Moving Preys Scenario
r = −n2

z 2, 452.6 ± 45.4

r = rza 381.1 ± 18.0

Persistence Scenario
r = qza − vz 1, 877.4 ± 11.6

r = rza 136.1 ± 1.5

Prey Seasons Scenario
r = rza + qza − pzaz′ 6, 426.1 ± 149.1

r = rza 4, 936.4 ± 1, 900.9

Poisoned Prey Scenario
r = 5rza − qza 5, 233.7 ± 715.3

r = rza 1, 284.3 ± 4.1

Also, as with the experiments of Chapter 4, in order to estimate the value F(r) for each reward

function, we run N = 200 independent Monte-Carlo trials of 100, 000 time-steps each, where in

each trial we simulate an RL agent driven by reward r in an environment selected randomly from

the corresponding environment set, E according to the distribution P (E).

When all 50 generations are run for a population, the best reward functions, i.e., those providing

the highest fitness to the agent according to F(r) are parsed for sub-expressions that may have

no effect on the fitness. Such parsing consists in running an additional set of 200 simulations for

each possible sub-expression of a top reward function. The different sub-expressions are evaluated

in terms of their impact in the fitness, and useless sub-expressions are then eliminated from the

corresponding GP tree.

5.2.4 Results

The results of the GP experiment are summarized in Table 5.1. We present the average fitness

obtained by the best agent selected using GP in each of the test scenarios, as well as a simplified

expression for the corresponding evolved reward function as described above. As a straightforward

baseline for comparison, we also present the fitness obtained by an agent driven by the fitness-based

reward function (for which r = rza), corresponding to an agent receiving only fitness-based reward.

One first observation is that, in all scenarios, the best evolved reward function clearly outper-

forms the fitness-based reward function. Our results are in accordance with findings in previous

works on the advantages of allowing additional sources of information to guide the agent decision-

making (Bratman et al., 2012; Sequeira et al., 2011b; Singh et al., 2010; Sorg et al., 2010a).
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Our results also confirm previous findings on the usefulness of an evolutionary approach to

search for optimal reward functions (Niekum et al., 2010). There is, however, one key difference

between our approach and that in (Niekum et al., 2010): we provide the evolutionary approach

with domain-independent sources of information relating to the agent’s history of interaction with

the environment, which were detailed in Section 5.2.3. Therefore, we expect that the reward

functions thus evolved can be applied in domains other than those used in this experiment which

were described in Section 4.3.

5.2.5 Discussion

We recall that the goal of our first experiment was to identify possible sources of information

that could improve the agent’s performance if taken into consideration in the process of decision-

making. In that respect we used GP to discover relations between genetic variables that provided

maximal fitness in some foraging scenarios. Given the parsing process used to simplify the best

reward functions’ expressions evolved through GP, each reward function indicated in Table 5.1

can be interpreted as a possible “signal” that can drive the agent’s decision process, allowing it to

maximize its fitness.

Discarding additive and multiplicative constants, we can distill from Table 5.1 a set of five

signals, Φ = {φfit, φadv, φrel, φprd, φfrq}, given by

• φfit = rza corresponds to the agent’s estimate of the fitness-based reward function. It eval-

uates the immediate impact on fitness associated with performing action a after observing

z.

• φrel = qza corresponds to the estimatedQ-function associated with rza. This function assesses

the relevance of executing action a after observing z in terms of long-term impact on fitness,

corresponding to the long-run counterpart to φfit.

• φadv = qza− vz corresponds to the estimated advantage function associated with rza (Baird,

1993). This function evaluates how good action a is when executed after observing z relatively

to the best action (thus its advantage). While φrel evaluates the absolute value of actions,

φadv evaluates their relative value.

• φprd = pzaz′ corresponds to the agent’s estimate of the transition probabilities. As discussed

in Section 5.2.3, it provides a measure of how predictable the observation at time t + 1 is

given that the agent performed action a after observing z.

• Finally, φfrq = −n2
z provides a (negative) measure of how frequently the agent observed z.

The signals φk defined above were obtained by combining the variables in V using different GP

operators. Each such signal is a function mapping observation-action-history triplets to a real-

value, and will henceforth be used as a source of information guiding the decision process of
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Figure 5.6: Agent framework resulting from the GP procedure, in which each signal φk can be used
as a reward feature contributing to the overall reward provided to the agent. We note that the
fitness component is directly perceived from the environment and thus is not internally processed.

the agent. The abstract agent architecture depicted in Figure 5.3 can then be realized by using

the sources of information discovered in this experiment. The resulting model is illustrated in

Figure 5.6.

5.3 Validation of Identified Sources

Section 5.2 focused on identifying general-purpose sources of information that can guide the decision

process of an IMRL agent while positively impacting its performance. These different sources of

information emerged from the interaction of agents with several different environments and, as

such, should be applicable in different scenarios.

This section investigates whether this is indeed so, i.e., whether the sources of information

identified earlier can be used in a broader range of scenarios than those considered so far. In

particular,

• We show that the set of “signals” Φ = {φfit, φadv, φrel, φprd, φfrq} can be used to construct

reward functions other than those in Table 5.1, establishing them as general-purpose sources

of information for IMRL agents;

• We show that it is generally advantageous to indeed combine one or more of the signals

in Φ to formulate the reward function driving our IMRL agents, thus establishing them as

universal sources of information for IMRL agents.

As we have seen, the agent architecture considered in this section specializes that in Figure 5.3,

specifically accounting for the sources of information in Φ (see Figure 5.6). In this architecture, the

reward signal driving the decision-making process is a linear combination of the different signals
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Figure 5.7: Structure and elements of the Pac-Man environment used in the second set of experi-
ments. Each square represents a possible location for the agent. Bold lines represent walls which
the agent cannot transpose.

in Φ. As such, this model can be used within the linearly parameterized approach to the ORP

described in Section 2.5.1.

5.3.1 Objectives

To validate the applicability of the signals emerged by means of the GP procedure identified in

Section 5.2.5, we conducted two sets of experiments. We start by performing an initial validation,

again resorting to the foraging scenarios described in Section 4.3. This first set of experiments is

essentially equivalent to those in Section 5.2, now using the linear formulation of the ORP instead

of the GP approach. The goal is merely to replicate the results reported in Table 5.1 with the

linear ORP formulation.

The second set of experiments is the central purpose of this section, and aims at providing a

more extensive validation of the applicability of the signals in Φ as useful sources of information

to complement the agent’s perceptions. To this purpose, we consider several significantly harder

domains inspired by the traditional computer game of Pac-Man. We use a total of four scenarios,

each with different goals and posing different challenges to the agent.

5.3.2 Pac-Man Scenarios

Figure 5.7 illustrates the structure of the environment and the elements used in the Pac-Man

scenarios. In this set of scenarios, we model our agent as the Pac-Man trying to eat as much pellets

as possible throughout time while avoiding encounters with the ghosts.

Power-Pellet Scenario: The configuration of the environment for this scenario is out-

lined in Figure 5.7. In this scenario, our agent co-exists in the environment with
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two ghosts, the Smart Ghost and the Keeper Ghost. One Power-Pellet is available per

episode, located in the central cell of the environment, as depicted. The Power-Pellet is

consumed and removed from the environment as soon as Pac-Man reaches its position,

contributing to its fitness with a value of ρ = 0.8.

In each episode, Pac-Man departs from the position depicted in Figure 5.7 and the

two ghosts depart from the central position. As with the original game of Pac-Man, the

Power-Pellet provides special powers to the agent. When one of the ghosts and Pac-Man

stand in the same cell, the ghost captures Pac-Man if the latter has not yet consumed

the Power-Pellet, and is consumed by Pac-Man otherwise. The episode terminates as

soon as one of the following conditions is met:

• Pac-Man consumes both ghosts, which contributes to its fitness with ρ = 1;

• Pac-Man is “captured” by one of the ghosts, contributing to its fitness with ρ = −1;

• 20 time-steps have elapsed after the Power-Pellet was consumed.

When an episode terminates, the environment is reset to its initial configuration and a

new episode starts. ♦

Eat-all-Pellets Scenario: In this scenario, our Pac-Man agent co-exists with only the

Smart Ghost. The environment has available a total of 20 pellets, one in each cell, as

depicted in Figure 5.7. The pellets are consumed and removed from the environment

whenever Pac-Man visits the corresponding cell. However, consuming a pellet does

not alter the agent’s fitness. The Pac-Man and ghost initial configuration is the same

as in the Power-Pellet Scenario. However, in this scenario, consuming the Power-Pellet

contributes to the fitness of the agent with a value of ρ = 0.5, but does not enable Pac-

Man to consume the ghost. Instead, episodes terminate as soon as one of the following

conditions occurs:

• Pac-Man consumes all 20 pellets, which contributes to its fitness with ρ = 1;

• Pac-Man is captured 3 times by the ghost before all pellets are consumed, which

contributes to its fitness with a value of ρ = −0.5.

When the ghost captures Pac-Man, their positions are reset. When an episode termi-

nates, the whole environment (including existing pellets) is reset to its initial configu-

ration and a new episode starts. ♦

Rewarding-Pellets Scenario: The general configuration for this scenario is outlined in

Figure 5.7. In this scenario, our Pac-Man agent co-exists with both the Smart Ghost

and the Keeper Ghost. The environment has available a total of 20 pellets (one in

each cell), which are consumed and removed from the environment whenever Pac-Man

visits the corresponding cell. Each consumed pellet contributes to the fitness of the
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agent with a value of ρ = 0.1, in the case of a regular pellet, or ρ = 0.8, in the case

of the Power-Pellet. The Pac-Man and ghost initial configuration is the same as in the

previous scenarios. As with the Eat-all-Pellets Scenario, consuming the Power-Pellet does

not enable Pac-Man to consume the ghosts. Instead, an episode terminates as soon as

one of the following conditions is met:

• Pac-Man consumes all 20 pellets, which contributes to its fitness with ρ = 1;

• Pac-Man is captured by a ghost before all pellets are consumed, contributing with

a value of ρ = −1 to its fitness.

When an episode terminates, the whole environment (including existing pellets) is reset

to its initial configuration and a new episode starts. ♦

Pac-Man Scenario: This scenario is a combination of all previous scenarios, and is

the one closest to the original game of Pac-Man. In this scenario, our agent again

corresponds to the Pac-Man, and co-exists with only the Smart Ghost. The environment

has available a total of 20 pellets (one in each cell), which are consumed and removed

from the environment whenever Pac-Man visits the corresponding cell. As occurred in

the Eat-all-Pellets Scenario, eating a pellet does not contribute to the agent’s fitness.

The Pac-Man and ghost initial configuration is the same as in the Power-Pellet

Scenario. In this scenario, consuming the Power-Pellet does not contribute to the fitness

of the agent, but does enable Pac-Man to consume the ghost if collocated with it. An

episode terminates as soon as one of the following conditions is met:

• Pac-Man consumes all 20 pellets, which contributes to its fitness with ρ = 1;

• Pac-Man is captured 3 times before all pellets are consumed (with no impact in

fitness).

When the Pac-Man is captured by the ghost, its fitness is decreased by a value of ρ =

−0.1, and their positions are reset. When an episode terminates, the whole environment

(including existing pellets) is reset to its initial configuration and a new episode starts.

♦

5.3.3 Methodology

As we have seen, the linear formulation of the ORP that we adopt in this section has been explored

in the IMRL literature by different authors (Singh et al., 2009, 2010; Sorg et al., 2010a,b). It was

also used in Section 4.3 to validate our approach for emotion-based design.

In the context of this section, the linear formulation has two appealing properties:

• First, by comparing the parameters associated with each source of information, we are able

to perceive their relative importance in each scenario: signals for which the corresponding
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parameter has only a residual value have little weight in the agent’s reward and, consequently,

in the decision process of the agent. This is useful to assess whether the sources of information

in Φ indeed provide useful information to guide the agent’s decisions;

• A second appealing aspect of this formulation is that it allows a relatively general agent

architecture, where all the signals in Φ are provided to the agent. The particular environment

with which the agent interacts will condition how the agent uses these different signals,

paralleling the evolutionary process by which natural organisms are conditioned to (see the

discussion in Section 2.7.1.

Agent Description

We refer to Section 4.3 for a detailed description of the foraging scenarios, including each environ-

ment’s dynamics and the description of the agent’s actions.

In the Pac-Man scenarios, our agent has 4 actions available, A = {Up,Down,Left,Right},

that deterministically move it in the corresponding direction. The regions delimited by solid blue

lines in Figures 5.7 correspond to obstacles that cannot be traversed. There is a “magic door”

in the environments that move the Pac-Man (and also the ghosts) from one side to the other.

Moving Right/Left in the leftmost/rightmost cell moves Pac-Man to the rightmost/leftmost cell,

respectively.

The motion of the ghosts respects the same restrictions as the motion of Pac-Man (e.g., they

cannot traverse obstacles). At every time-step, the Smart Ghost moves towards the Pac-Man with

probability 0.6. However, once the Pac-Man consumes the Power-Pellet, the Smart Ghost instead

moves away from the Pac-Man (in the Power-Pellet Scenario and Pac-Man Scenario). With a prob-

ability 0.4 it moves in a random direction. The Keeper Ghost moves towards the Smart Ghost with

probability 0.5 and towards one of the bottommost cells otherwise.3

In each scenario, our agent is modeled as a MDP whose state-dynamics follow from the de-

scription in Section 5.3.2. In this model, the Pac-Man agent is able to observe, at each time-step:

• Its current position (x : y) in the environment;

• Whether a ghost exists in the same corridor as the agent, in each of the 4 possible directions;

• Whether a pellet exists in the same corridor as the agent, in each of the 4 possible directions;

• When co-located with the Smart Ghost;

• When co-located with the Keeper Ghost;

• When co-located with a pellet;

3The Keeper Ghost, when present, makes it difficult for Pac-Man to reach the central cell, essential for the
completion of most scenarios.
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• When co-located with the Power-Pellet.

As with the previous experiments, the experiments in this section use RL agents using priori-

tized sweeping (Moore and Atkeson, 1993) to learn a memoryless policy that treats observations

as states, i.e., thus ignoring partial observability by the agent. The algorithm’s parameterization

can be found in Section 5.2.3.

Computing Agent Fitness

Recall from Section 2.5.1 that the linearly parameterized approach to the ORP proposes the def-

inition of a set of real-valued reward features to build the reward function space R in order to

search for the optimal reward function r∗. In our experiments, we use as reward features the set

of signals Φ = {φfrq, φrel, φprd, φadv, φfit} identified Section 5.2.5. By optimizing the associated

parameters—henceforth denoted θ = {θfrq, θrel, θprd, θadv, θfit}—in a broad set of scenarios, we can

analyze the relative importance of the different signals in each scenario and draw conclusions on

their general usefulness and applicability.

Recall also that solving the ORP involves the discovery of θ∗, i.e., the optimal parameter vector

providing maximal fitness in a set of environments of interest E according to F(r(θ)), as defined by

(2.12). As discussed in Section 2.5.1, this optimization can be conducted using different techniques

(Bratman et al., 2012; Singh et al., 2010; Sorg et al., 2010a,b). In the previous set of experiments,

we used GP to search for the optimal reward function. In these experiments we follow the linearly

parameterized approach to ORP and our focus is on the particular optimal parameter combination

θ∗ associated with the emerged reward features. We therefore adopt the same sampling procedure

and offline optimization method used in our experiments in Section 4.3.2. We generate a total of

M = 14, 003 parameter vectors θm ∈ [−1, 1]5,m = 1, . . . ,M , such that ‖θm‖1 = 1. We measure

the agent’s fitness during a particular history interaction f(hit) as the cumulative fitness-based

reward received during hit as defined by (2.8).

As with the previous experiments, we evaluate F(r(θ)) by running N = 200 independent

Monte-Carlo trials of 100, 000 time-steps each, where in each trial we simulate an RL agent driven

by reward r(θ) in an environment ei ∈ E selected randomly from the corresponding environment

set E , according to pE(ei). In our experiments we used a uniform distribution, i.e., pE(ei) = 1
|E| .

F(r(θ)) is approximated as indicated by (2.9).

5.3.4 Results

Foraging Scenarios

The results corresponding to the foraging scenarios are summarized in Table 5.2. Comparing these

results with those in Table 5.1, it is clear that the linear architecture is able to attain similar
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Table 5.2: Mean cumulative fitness and obtained parameter vectors for each foraging scenario. The
fitness results correspond to averages over 200 independent Monte-Carlo trials.

Scenario
Parameter Vector

Mean Fitness
θ = [ θfrq, θrel, θprd, θadv, θfit ]>

Hungry-Thirsty Scenario θ∗= [ 0.0, 0.0, −0.2, 0.5, 0.3 ]> 10, 718.8 ± 7, 226.5

Lairs Scenario θ∗= [ 0.1, 0.0, 0.3, 0.4, 0.2 ]> 9, 598.6 ± 1, 543.4

Moving Preys Scenario θ∗= [ 1.0, 0.0, 0.0, 0.0, 0.0 ]> 2, 394.5 ± 48.8

Persistence Scenario θ∗= [ −0.1, 0.0, 0.0, 0.5, 0.4 ]> 1, 879.9 ± 10.7

Prey Seasons Scenario θ∗= [ 0.0, 0.2, −0.5, 0.1, 0.2 ]> 6, 473.6 ± 136.5

Poisoned Prey Scenario θ∗= [ 0.0, 0.2, 0.0, −0.1, 0.7 ]> 5, 297.9 ± 529.4

Table 5.3: Mean cumulative fitness and parameter vector determined in each of the Pac-Man
scenarios. The results correspond to averages over 200 independent Monte-Carlo trials.

Scenario
Parameter vector

Mean Fitness
θ = [ θfrq, θrel, θprd, θadv, θfit]

>

Power-Pellet Scenario
θ∗ = [ −0.2, 0.2, 0.1, 0.5, 0.0]> 1, 265.0 ± 424.9

θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> −1, 902.6 ± 183.5

Eat-all-Pellets Scenario
θ∗ = [ 0.1, 0.1, 0.1, 0.6, 0.1]> 1, 005.5 ± 207.1

θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 25.3 ± 215.5

Rewarding-Pellets Scenario
θ∗ = [ 0.5, 0.0, 0.1, 0.2, 0.2]> 4, 343.7 ± 210.1

θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 3, 060.8 ± 208.6

Pac-Man Scenario
θ∗ = [ 0.2, 0.1, 0.2, 0.2, 0.3]> 1, 223.6 ± 117.5

θfit= [ 0.0, 0.0, 0.0, 0.0, 1.0]> 862.2 ± 95.7

fitness values by combining the reward features in Φ. In some scenarios, the obtained fitness is,

inclusively, slightly superior, although overall the differences are not statistically significant.

It is also interesting to compare the weights θk associated with each of the signals φk in Φ,

denoting that the resulting signals generally match those found in Section 5.2.4. As such, the

results from this experiment thus validate the signals in Φ as those responsible for the performance

reported in Section 5.2.

Pac-Man Scenarios

The results of the Pac-Man experiments are summarized in Table 5.3. We present the average

fitness obtained by the agent using the optimal reward function r(θ∗) in each of the test scenarios,

as well as the corresponding parameter vector θ∗. As a baseline for comparison, we also present

the fitness obtained by an agent driven by the fitness-based reward function, corresponding to the
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parameter vector θfit = [0, 0, 0, 0, 1]
>.

As with the scenarios in Section 5.2, our results show that the Pac-Man agents that use only

the fitness-based reward function are clearly inferior to those agents that use additional sources of

information. This settles the main issue addressed in this section, on the general applicability of

the sources of information identified in Section 5.2.5: not only using these signals is advantageous

in terms of the performance of the agent but also, as seen from the weights in Table 5.3, these

signals are generally more informative than the fitness-based reward function in most scenarios.

5.3.5 Discussion

We conclude this section by analyzing in greater detail some of the main challenges that the

Pac-Man agent must face in the scenarios used in the experiments. These challenges allow us to

evaluate the benefit of the reward features in Φ in guiding the agent.4 To aid in this analysis,

Figure 5.8 shows the evolution of fitness throughout time, where we also included the performance

of a “random” agent receiving no reward, corresponding to the parameter vector θ0 = [0, 0, 0, 0, 0]
>,

to serve as a baseline.

First of all, the Pac-Man scenarios are significantly larger and more complex than the foraging

scenarios used in Section 5.2. For example, the Rewarding-Pellets Scenario has over 8× 109 states.

Additionally, the Pac-Man agent is lacking information regarding significant elements of the game,

necessary to act optimally in the Pac-Man scenarios. In all scenarios, the agent cannot tell the

exact position of the ghosts unless it is collocated with one of them, which generally leads to the

end of an episode.

Considering some scenarios in more detail, in the Power-Pellet Scenario, the observations of

the agent were not sufficient to distinguish the different behavior of the ghosts before and after

the Power-Pellet was consumed. As such, the fitness-based agent ended up suffering a significant

number of captures, attaining significantly negative fitness, as depicted in Figure 5.8(a). Our

Pac-Man agent instead learned to avoid the ghosts in a first instance, and then to wait for the

ghosts just below the Power-Pellet, which allowed it to capture them both after consuming the

Power-Pellet. We thus note the emergence of a behavior, “waiting below the Power-Pellet”, that

according to what the agent is able to observe in that situation, nothing has to do with fitness.

In the Eat-all-Pellets Scenario, the fitness-based agent learned a very conservative strategy,

avoiding being eaten by the ghost and aiming only at the fitness increment provided by eating the

Power-Pellet. Because the small pellets did not provide any direct fitness increment, it never got to

eat all pellets and get the largest fitness increment. Our agent, guided by a balanced consideration

of all available sources of information, was able to partially disregard the largest reward provided

by the Power-Pellet and instead learned to avoid the Smart Ghost throughout the environment,

4Illustrative videos of the observed behaviors in different stages of the learning process are available online at
http://gaips.inesc-id.pt/~psequeira/emot-emerg.
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(a) Power-Pellet Scenario (b) Eat-all-Pellets Scenario

(c) Rewarding-Pellets Scenario (d) Pac-Man Scenario

Figure 5.8: Evolution of the agents’ fitness in each of the four Pac-Man scenarios. Results are
averages over 200 independent Monte-Carlo trials. “Optimal” corresponds to an agent learning
using r∗, “Fitness-based” to an agent receiving only fitness-based reward using rF , and “Random”
is an agent acting randomly, i.e., receiving no reward.

eating all small pellets in the process and, when possible, eating the Power-Pellet.

In the Rewarding-Pellets Scenario however, the small pellets did provide an immediate, albeit

small reward. Although the fitness-based agent also developed a “preference” towards the reward

provided by the Power-Pellet, it developed an approach strategy to the small pellets, and as such

the difference for the optimal agent was attenuated, as illustrated in Figure 5.8(c). This difference

in the structure of the scenario brings up the advantage of considering sources of information other

than those related to fitness when the agent’s observations are not informative enough.

The Pac-Man Scenario, being a variation of the other scenarios, denotes some of the problems

that the fitness-based agent has in the other Pac-Man scenarios. Particularly, the fitness-based

agent performs poorly when it encounters inconsistent elements in the environment—provided by

the different behavior of the ghosts before and after consuming the Power-Pellet— and by not

being able to observe the number of pellets eaten so far—necessary for optimal performance. On

the contrary, an agent guided by the emerged sources of information considers other aspects of

its history of interaction with the environment, allowing it to overcome challenges that cannot be

directly observed.
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5.4 Overall Discussion

Thus far we have emerged informative signals relating the agent’s relationship with its environment

and tested the applicability of using such sources of information in several scenarios. In this section

we provide evidence on the similarities between the characteristics and effects of the emerged

sources of information and those of emotions in nature. We analyze the nature of the signals

from the perspective of emotion theory— particularly that of appraisal— and also discuss the

implications of our approach and results to IMRL and the field of AC.

5.4.1 The Perspective of Appraisal Theories of Emotion

Recall from Section 3.3 that appraisal theories propose that emotions are elicited by evaluations

(appraisals) of the significance of a situation for an individual’s well-being or goals (Ellsworth and

Scherer, 2003). Also, the most common theories of appraisal proposed in the literature model the

elicitation of emotions as the result of a set of appraisal variables, each evaluating a particular aspect

of the individual-environment relationship (Ellsworth and Scherer, 2003; Roseman and Smith,

2001).

For the purposes of our work, we now analyze the structural and dynamical properties of each

of the sources of information emerged from the GP experiments that were detailed in Section 5.2.5.

For each emerged source of information we relate to the evaluative properties of commonly proposed

appraisal variables in the psychology literature. As such, our objective is to examine whether the

emerged optimal sources of information have any kind of an emotional tone associated with them.

Specifically, we base our analysis in the work of Ellsworth and Scherer (2003) discussed in

Section 3.3.2 in which five major dimensions or groups of appraisal are identified. Table 3.1 depicts

the major dimensions and the kinds of appraisal variables usually related with each of them. For

each emerged source of information we analyze characteristics of the signals and compare them

with the criteria defined by several appraisal variables for the emotional evaluation of events to see

whether some connection can be made.

Fitness: The expression for this source of information, φfit = rza, signals behaviors that directly

enhance or reduce fitness. As we have seen, computationally this feature corresponds to the

agent designer’s reward function that directly ascribes preferences over the behavior of the

agent. As such, fitness does not correspond to a subjective evaluation of the situation by

the agent, a condition necessary for the process of emotional appraisal. This feature rather

corresponds to external, innate preferences over certain characteristics of the environment

that, depending on the scenario, the agent may choose to ignore. The most flagrant example

of this occurred in the Moving Preys Scenario, where the best strategy focused only on the

frequency of occurrence of stimuli, independently of their impact on fitness (see Table 5.2);

Relevance: This source of information denotes the impact of executing actions in some states
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for the agent’s fitness in the long-run, as given by the expression φrel = qza indicating the

expected return of executing actions in states according to the fitness-based action-value

function. This signal has properties related to appraisal dimensions that assert the motiva-

tional significance or conduciveness of a situation in relation to the individual’s long-term

goals or the satisfaction of its needs (Ellsworth and Scherer, 2003; Lazarus, 2001; Leventhal

and Scherer, 1987) (see Table 3.1). By ascribing preference over actions that seem to lead to

higher degrees of fitness in the long-run in a particular situation, this source of information

directly denotes the contribution and future consequences of the behavior for the agent’s

goal—which, as we have seen, is to maximize its fitness in some environments of interest.

In nature, an evaluation of the goal relevance of a situation is essential for the adaptation

of an individual to its environment, favoring behaviors that seem to promote its goals and

desires (Ellsworth and Scherer, 2003). In our experiments, the emerged feature of relevance

fostered behaviors that the agent believed conducive for its goals, especially in scenarios

where the environment changed constantly, as is the case of the Prey Seasons Scenario (see

Table 5.2) or the Power-Pellet Scenario (see Table 5.3);

Advantage: This source of information, expressed by φadv = qza−vz, denotes the disadvantage of

executing actions in some states considering their future impact on fitness. It thus gives origin

to learned, acquired preferences by the agent towards behaviors it currently believes will lead

to future high degrees of fitness in the environment. This feature is in accordance with the

perspective that the implicit value of things changes as a consequence of experience and

associative learning processes (Cardinal et al., 2002; Ellsworth and Scherer, 2003; Leventhal

and Scherer, 1987). Unlike the static external preferences attributed by the fitness signal,

this signal indicates the emotional valence of stimuli acquired through experience (Cardinal

et al., 2002).

In nature, valence is considered an evaluation of the value of stimuli according to what the

individual currently believes is the impact of the situation for its fitness (Leventhal and

Scherer, 1987). We believe that advantage captures the essence of valence by rewarding

(and thus promoting approach to) fitness-inducing states, and punishing (which leads to

aversion towards) fitness-hindering situations, and also by being a continuous process biased

by learning. While relevance corresponds to an estimate of future fitness gain, the advantage

feature denotes the relative loss of executing some actions in certain states, which is sometimes

important in situations where the value of stimuli changes throughout time, as is the case

of the ghosts in the Power-Pellet Scenario, which impact on fitness changed depending of

whether the Power-Pellet had been consumed by the agent (see Table 5.3);

Prediction: As stated earlier, this source of information, expressed through φprd = pzaz′ , indicates

how predictable the transition to some state is after the execution of an action in a previous
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state. According to many appraisal theorists of emotions, one important group of appraisal

variables, referred to as coping potential dimension in Table 3.1, assess the ability that an

individual believes to possess in order to cope with some emotion-eliciting situation (Ellsworth

and Scherer, 2003; Frijda and Mesquita, 1998; Lazarus, 2001; Leventhal and Scherer, 1987).

Situations which outcome is more predictable are more easy to cope with than those with

more uncertain results. According to appraisal theories, an assessment of control tells the

subject whether some situation can be altered to favor its current objectives, which often

involves determining the degree of predictability or probability of the events being considered

(Ellsworth and Scherer, 2003; Leventhal and Scherer, 1987; Scherer, 2001). In our framework,

the emerged prediction feature indicates the level of correctness of the agent’s world model,

disfavoring the execution of actions that do not provide guarantees in terms of the future

state of environment and favoring behaviors leading to more certain, expected situations;

Frequency: As the expression φfrq = −nz2 indicates, this source of information punishes visits

to states to which the agent is more accustomed to, somehow favoring states that have been

visited less often. One of the most basic and low-level dimensions proposed by many appraisal

theorists has precisely to do with the novelty or matching between the perceived stimuli and

the agent’s acquired knowledge, usually referred to as the dimension of familiarity (Frijda

and Mesquita, 1998; Leventhal and Scherer, 1987), as informed in Table 3.1.

In nature, the objective of this dimension is to focus the organisms’s attention to changes per-

ceived within the environment that might be relevant to its survival (Ellsworth and Scherer,

2003; Frijda and Mesquita, 1998). Likewise, the information provided by the frequency signal

mainly punishes visits to states regularly encountered. As such, it is a feature that fosters

exploratory behaviors, necessary to deal with always changing, unpredictable environments,

such as the Moving Preys Scenario in the GP experiments (see Table 5.2), or situations where

the agent has to continuously traverse its environment to achieve optimal performance, as

was the case of the Rewarding-Pellets Scenario, in which it was advantageous for the agent to

eat all the pellets in the environment as opposed to eating only one small pellet or even the

Power-Pellet (see Table 5.3).

5.4.2 Coverage of the Emerged Signals

In the previous section we saw that the optimal sources of information indeed share structural and

dynamical characteristics with some appraisal variables described in the specialized literature. This

section complements this analysis and examines whether the appraisal as whole can be described

with our sources of information, i.e., whether the emerged signals cover all the dimensions defined

by common appraisal theories.

As can be seen from Table 3.1, not all appraisal dimensions (or variables) are covered by the

108



5.4. OVERALL DISCUSSION

sources of information emerged in the first experiment in Section5.2. Although our main objective

was to inspect the emotional properties of the emerged signals, we believe there are two main

reasons behind the absence of some of the appraisal variables:

• The main reason has, perhaps, to do with the particular characteristics of the environments

used to search for the optimal sources of information in the GP experiments, and not the

variables provided to the evolutionary genetic algorithm.

On one hand, the dynamics of the environments promoted the appearance of strategies that

favored some (combinations of) specific sources of information in order to tackle with the

challenges offered by each environment. On the other hand, different environments would

possibly favor different (combinations of) sources of information. Nevertheless, the results

of both experiments demonstrate the general-purpose and domain-independent character

of the emerged signals, an attribute commonly associated with emotions in nature, where

such mechanism seems to be necessary for the adaptation of organisms to ever-changing and

sometimes unpredictable habitats;

• Another reason for the non-emergence of some of the appraisals proposed in the literature has

to do with the characteristics of the agents themselves, which make the sources of information

they have access to to be of a very “statistical nature”, which in terms of appraisal corresponds

to being made at a rather low-level, i.e., requiring little cognitive processing (Ellsworth and

Scherer, 2003; Leventhal and Scherer, 1987). For example, evaluations such as the causality in

Table 3.1 determine the responsibility or agency for the occurrence of some event (Ellsworth

and Scherer, 2003; Scherer, 2001), which is difficult to assess in our experiments, where each

new state is the consequence of: (a) the agent’s own actions; (b) the environment’s dynamics

which in turn are dependent, for example, upon time.

Also, we assume that the agent is always capable of performing a given action in some state

according to its decision-making. Because of that, an evaluation of the agent’s power, within

the appraisal of the coping potential, does not make much sense in our framework, whereas

the notion of control, depending as we have seen on an evaluation of the predictability of

action execution, can be easily assessed by the kinds of learning agents we model.

Furthermore, the absence of the social significance variables is easy to explain, as we test the

agents in single-agent scenarios. Appraisals like evaluating the compatibility of some behavior

against socially-defined norms or moral, individual values would require the interaction of

several agents within the same environment and a notion of expected social norms or values

to be accessible to the agent, for example through its reward function.5

5We refer to Chapter 6 for the multiagent case where we propose intrinsic reward functions regarding information
about the social context of the agents.
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Table 5.4: Parallel between the influence of evolution and learning for the development of emotions
in nature and our approach for the emergence of emotion-like reward signals.

Nature Our Approach

Fitness adaptive capability / reproductive
success

fitness function measures agent’s
behavior according to designer’s
expectations

Evolution favors the development of adaptive
behaviors through natural selection

GP procedure optimizes reward
functions providing maximal fitness

Specific
heredity

phylogenetically innate behaviors
providing optimal response
mechanisms in a specific environment

evolved reward functions allow for
optimal performance in some set of
environments

Learning development of innate mechanisms to
adapt to changing environments

RL algorithm allows the agent to learn
the task / adapt to its environment

Emotions

general purpose processing mechanism
evaluating the person-environment
relationship

domain-independent rewards
evaluating the agent’s history of
interaction with the environment

directs behavior towards solving
problems

guides the agent into solving the
intended task

shaped by evolution throughout time emerged from evolutionary procedure

5.4.3 Parallel with Natural Evolution

In the context of our study, an appealing feature of GP over other search methods (such as gradient

ascent (Sorg et al., 2010b)), is its close parallel with natural evolution. As discussed in Section 1.3,

in nature, the individual’s adaptive capabilities are shaped both by evolution, providing organisms

with species-specific, phylogenetic processing mechanisms that enable advantageous behaviors in

specific environments, and also individual learning, responsible for the ontogenetic development

of organisms adapting to their environment throughout their lives (Anderson, 2000; Ginsburg and

Opper, 1988). Table 5.4 summarizes this parallel between evolution, learning and emotions in

nature and the experiments and validation performed in this chapter.

Likewise, the evolutionary-based procedure used in our experiment allowed us to discover those

sources of information, encoded in the form of reward functions, providing maximal performance

in some environment as measured by a fitness function. In some way, the reward functions used

represent the agent’s chromosomes, i.e., innate phylogenetic (and internal) mechanisms for the

agent to evaluate its environment during its lifespan. They make the agent to focus on those

aspects of the environment it is predisposed to address. Similarly, the RL algorithm used by the

agent is an ontogenetic mechanism as it allows it to adapt to its environment according to its

innate characteristics. As denoted in Table 5.4, within this analogy, the fitness-function has the

role of nature itself, evaluating the agents’ performance according to a (external) fitness measure.
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This analogy alone does not make the optimal sources of information have a more “emotional

tone” or be more “emotion-like”. However, the way they emerged parallels the way emotions have

developed over time. The results from our experiments show that the reward signals emerging

from the GP optimization procedure exhibit dynamics and properties that can be related to the

way natural agents evaluate their environment, according to appraisal theories of emotions. The

emerged features result from reward functions that provided optimal performance as measured

by a fitness measure that nothing has to do with emotions. Moreover, these features, much like

emotions in nature, also proved to be useful in different environments, providing a general-purpose

reward mechanism for artificial learning agents.

5.4.4 Designed vs. Emerged Emotion-like Features

One of the contributions of this chapter is the establishment of a connection between the optimal

sources of information complementing RL agents’ perceptions, which emerged from the evolution-

ary procedure, and some appraisal variables of emotions evaluating the individuals’ relationship

with their environment in nature. Although that is not the main purpose of this study, we should

compare the emerged reward features and the emotion-based features proposed in the previous

chapter in Section 4.2.3 since their design was inspired by the same appraisal theories used in the

analyzis in this chapter.

The first thing to note is that unlike the hand-designed emotion-based reward features of the

previous chapter, in this chapter we used reward functions based on features that were emerged from

an evolutionary procedure. The features proposed in Section 4.2.3 were guided by an interpretation

over some appraisal dimensions, i.e., we tried to mimic the types of evaluations proposed by

appraisal theorists when designing the expressions for each feature. On the contrary, the GP

algorithm in Section 5.2 was guided by variables relating the agent’s history of interaction with

the environment that have nothing to do with emotions. Moreover, the experiments had different

objectives: in Section 4.3 we tested the usefulness and efficacy of using emotion-inspired rewards,

regardless of the biological validity of the features proposed; in this chapter, the experiments aimed

at verifying the emergence of features having an emotional tone and providing maximal fitness to

the agents.

It is therefore expected that the majority of the expressions for the reward features developed

in both chapters to be somehow distinct. In fact, we can only find similarities between the Novelty

expression given by (4.1) in Section 4.2.3 and the Frequency feature defined in Section 5.2.5: they

both promote exploration by rewarding states and actions less experienced. Also, the expression

for Valence in (4.5) is similar in effect as that of Advantage defined in Section 5.2.5: they both

evaluate how good it is to execute some action in a given state relatively to the best action in that

state. In general, the emerged features are simpler in form than those proposed in the previous

chapter.
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Nevertheless, in both cases, a right combination of the emotion-based/emotion-like reward

features allowed the agents to learn the intended task in the same set of foraging scenarios. For

a comparison we refer to the results of the emerged features in Table 5.2 and the results of the

emotion-based features in Tables 4.1–4.6.

5.5 Contributions

In this section we analyze in detail the contributions stemming from our second set of experiments

in the context of this thesis. Generally speaking, these contributions help indicating the emer-

gence of general-purpose informative signals in the context of reward function optimization. They

complement the contributions of the previous chapter pointing towards the importance of emotion-

based reward design in the performance of artificial learning agents, especially in the presence of

perceptual limitations.

5.5.1 Implications for RL/IMRL

In this chapter we contribute for research within IMRL by emerging four domain-independent,

general purpose reward features that can be applied in different scenarios with distinct purposes.

Therefore, all the advantages of using these types of features to design reward functions, discussed

in detail in the previous chapter in Section 4.5, are also true for the emerged features. Specifically,

combining the emerged features enables the construction of:

• more robust agents, by being able to mitigate perceptual limitations inherent to artificial

systems;

• more flexible agents, by successfully operating in a wide range of domains despite using the

same reward base mechanism in each environment;

• more autonomous agents, by reducing the need for agent designers within RL to hand-code

reward functions for a specific scenario.

Unlike the hand-designed reward features used in the previous chapter, these features were

emerged from an evolutionary procedure using GP.

• In contrast with the approach in (Niekum et al., 2010) which used the same method within

IMRL to solve the ORP but using domain-related information, in our experiments the GP

algorithm departed from a set of primitive variables summarizing the agent’s history of in-

teraction with its environment.

• By using such domain-independent variables, the evolutionary algorithm is able to discover

rewards that are useful in a wider range of domains. Although evolutionary computation in

general can be used to optimize solutions in a particular domain (just like evolution shapes
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individuals for optimal performance in some environment), our experimental results show

that our solution is more flexible—when linearly combined, the emerged reward features can

be used to learn in environments different from those in which they evolved;

• Moreover, the resulting reward functions fit the notion of intrinsic rewards according to the

IMRL framework by: (a) providing motivation for behaviors not directly related to fitness;

(b) evaluating aspects of the agent’s history of interaction with its environment.

5.5.2 Implications for AC

We also contribute to the area of AC. Generally speaking, we go beyond the idea that emotions

are only a useful mechanism for artificial agents by showing that emotions might indeed be natural

candidate when considering several possible complements for the agent’s perceptions.

• We used a novel method for assessing the significance of embedding emotions into artifi-

cial agents that, unlike previous approaches within AC, uses an evolutionary computation

mechanism for the emergence of “emotion-toned” informative signals;

• The signals emerging from the GP procedure can be seen as optimal sources of informa-

tion as they complement the agent’s perceptual capabilities and guide it towards optimal

performance in some environments of interest;

• The emerged sources of information have dynamics and evaluative characteristics matching

appraisal variables proposed by common appraisal theories of emotions within the psychology

literature;

• Some of the appraisal variables and dimensions are not covered by the emerged features, but

this is mainly due to particular characteristics of the agents and the environments used in

our experiments and not the primitive variables used by the genetic procedure;

• As discussed above, the evolved sources of information can be encoded as reward functions

providing a general-purpose attention-focusing and guiding mechanism, as emotions are in

nature;

• The evolutionary procedure used to determine the emotion-like reward mechanism resembles

the way emotions are thought to have evolved in nature, i.e., guided by a measure of their

benefit to the individual’s survival. This enables an interesting computational parallel to

the existing evidence in biological systems—where indeed, the organisms with most complex

emotional processing (humans) are arguably those better fitted to their environment;

• On the other hand, from the thousands of reward functions generated and tested by the

evolutionary procedure, the ones providing maximal fitness for the agent have characteristics

resembling the way humans use emotions to appraise their environment. This fact may
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also reinforce research in neurology and psychology attesting the necessity of a processing

mechanism like emotions for the proper adaptation of individuals to their environment—the

lack of which, as our results show, can lead to maladaptive behaviors;

• All the above findings resulting from our study thus point towards the idea that emotions

might have a greater impact for the adaptation of artificial agents to their environments than

thought before.

5.6 Summary

In this chapter we addressed the question relating the impact of emotion-based signals for the

performance of autonomous agents. We followed a novel approach that is inspired by the way

emotions have developed in nature throughout evolution as a mechanism that allows individuals

of better adapting to their environment. We used an evolutionary computation algorithm guided

by a measure of the agent’s fitness to its environment within IMRL. As a result, we emerged a set

of basic reward signals complementing the agent’s perceptions and providing optimal performance

in a set of foraging scenarios.

We then verified the generality and applicability of these sources of information by testing their

use in a set of scenarios different from those in which they were evolved. In order to assess if

these emerged signals have an emotional tone, we analyzed them from the perspective of appraisal

theories of emotions. Indeed, we found that the kinds of evaluations they make about the agent’s

relationship with its environment share some structural and dynamical properties with common

dimensions of emotional appraisal that, according to appraisal theorists, are used by individuals in

nature to evaluate the impact of some situation for their goals and needs and respond accordingly.

In the following chapter we start to expand the work developed in the two previous chapters to

multiagent domains. In that respect we use IMRL within multiagent learning to discover whether

socially-aware, altruistic behaviors can emerge in a population of self-interested agents competing

with each other for “food resources”.
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This chapter represents a first step towards extending the work developed in Chapter 4 and Chap-

ter 5 into multiagent systems (MAS). For that purpose we expand the IMRL framework into the

multiagent paradigm and propose the design of reward functions inspired by the way humans and

other animals signal socially-aware behaviors within a social group. Our approach is delineated in

Figure 6.1.1
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Figure 6.1: Outline of our approach for socially-based intrinsic reward design.

6.1 Introduction

In this chapter we explore the impact of intrinsic motivational systems in multiagent scenarios.

Multiagent systems (MAS) encompass groups of intelligent agents interacting within the same

environment. Having sometimes little or no knowledge about the other agents’ decision-making

processes they are expected to share resources in their environment, coordinate to perform specific

tasks or maximize some measure of joint utility. On top of this, each agent needs also to fulfill

its own individual goals and needs, often divergent from the other agents. Over the years, MAS

research has focused on creating languages, organizational paradigms and mechanisms that help

structure the interactions in groups of agents (Wooldridge, 2002). In this context, RL has been

widely applied within MAS as a means to gradually improve the performance of the agents in the

environment (Busoniu et al., 2008; Claus and Boutilier, 1998).

As described throughout Chapter 2, RL is best described as a set of techniques aimed at

helping agents facing a sequential decision problem to learn an intended task by gathering as much

positive environmental feedback—or reward—as possible. Many such techniques come with proofs

of convergence to a strategy that maximizes the agent’s reward in the long-run, as long as some

conditions are met (Kaelbling et al., 1996; Sutton and Barto, 1998). However, these guarantees

seldom hold in multiagent settings, where an agent’s reward depends on the other agents’ actions

(Busoniu et al., 2008; Claus and Boutilier, 1998). Additionally, when considering MAS, one may

1Part of the contributions within this chapter are included in (Sequeira et al., 2011b).

116



6.1. INTRODUCTION

no longer be interested in maximizing a single agent’s return overtime, but rather that the agents’

strategies converge to some global maximum across agents.

As noted in (Schuster and Perelberg, 2004), cooperation in nature is an intrinsically social phe-

nomenon that goes beyond physiological events like eating or mating. Cooperative behaviors like

altruism have emerged throughout evolution between organisms who are inherently competitive,

mainly due to the conditions of their habitat (Axelrod, 1984; Dawkins, 2006). Although this seems

to contradict classic theory of evolution (focusing on the “survival of the fittest”) (Darwin, 2009),

the advantages of engaging in such “socially-aware” behaviors can be explained by other factors:

individuals can take interest on the well-being of others by means of close relatedness. Either

through kin selection or familiarity (e.g., belonging to the same social group), closely-related in-

dividuals may engage in altruistic behaviors despite possible losses for the contributor (Axelrod,

1984; Dawkins, 2006; Hamilton, 1964; Schuster and Perelberg, 2004); even weakly or non-related

organisms, by means of reciprocation, are able to evaluate the “kindness” of others and respond

accordingly (Axelrod, 1984; Falk and Fischbacher, 2006; Trivers, 1971). Cooperation between in-

dividuals (even of different species) can then be promoted as a means to achieve benefits for all

the interveners in the long-run (Axelrod, 1984; Trivers, 1971).

In this chapter we focus on the emergence of cooperation in groups of competing, self-interested,

independent RL agents interacting with one another in a common environment. We investigate

mechanisms that aid the individual learners in reaching cooperative behaviors without observing

or explicitly reasoning about the strategies or rewards of other agents. For this purpose we explore

intrinsic motivation mechanisms in multiagent settings. As we have seen in Section 2.4.3, most

of the works within IMRL focus on single-agent scenarios, where the motivational system drives a

single agent to engage in behaviors that are not directly “survival”-related. In this study, however,

we examine how these same mechanisms may drive an agent to engage in behaviors that are

“socially aware”, in a sense to be made clear.

We explore social motivational mechanisms for groups of agents coexisting in limited-resource

environments. In that respect we adopt ideas about how biological agents engage in cooperative

behaviors despite their inherently competitive environment (e.g., Axelrod and Hamilton, 1981; de

Waal, 2008; Dörner, 1999). We formally extend to multiagent settings the framework of IMRL and

study the impact of social signaling and reciprocity in the design of social intrinsic rewards. Our

approach is fundamentally different from recent work on the multiagent optimal reward problem

(Liu et al., 2012), as we do not assume shared perception across agents. We test our approach

in several multiagent scenarios involving complex interdependences between the behaviors of up

to 3 interacting agents. Our results show that the proposed rewarding mechanism indeed enables

the emergence of “socially-aware” behaviors that drive the agents to learn strategies that exchange

immediate individual gains for long-run group benefits. We analyze environmental conditions in

which some group phenomena (such as alliances) may emerge, and examine possible implications
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of evolutionary game theory and certain social phenomena on our approach and results.

6.2 Background

6.2.1 Social Mechanisms for Cooperation

In order to develop reward signals that take into consideration social interactions among agents,

we consider the notion of affiliation from Dörner (1999) Psi-theory Dörner (1999). Generally-

speaking, Psi-agents have an urge to affiliate with other agents by sending and receiving legitimacy

signals, also referred to as l-signals, that express the sender’s belief in the social acceptability of

the receiver’s actions (Bach, 2009). According to this theory, individuals have an urge to affiliate

with each other so as to enhance their legitimacy within the social group. Dörner (1999) defines

three types of legitimacy signals that are of interest to our study:

• l-signals provide positive social reinforcement, thus rewarding successful interactions;

• anti-l-signals punish unsuccessful social interactions, thus diminishing the receiver’s legit-

imacy within the group (which is equivalent to the expression of a “frown”);

• internal l-signals, as the name indicates, are generated internally by the individual to

reward socially-acceptable behaviors, without the need of having other sending the signals

(they represent a notion of “honor”).

Psi-theory does not identify any specific social behavior susceptible to be rewarded with legitimacy

signals. It rather proposes signals that can be measured by evaluating the “okayness” of some

behavior being considered within a social context (Bach, 2009). Moreover, according to this theory,

as a result of exchanging these signals, individuals end up engaging in cooperative behaviors as a

means to gain legitimacy within the social group.

6.2.2 Partially Observable Markov Games

In this study, we adopt a game-theoretic model to describe our multiagent system, the partially

observable Markov game (POMG) with K players, where each player corresponds to an agent in

our system. A POMG is an extension to the POMDP model described in Section 2.2.2 and can

be denoted as a tuple Γ = (K,S, (Ak), (Zk),P, (Ok), (rk), γ), where

• K is the number of agents;

• S is the set of all possible environment states;

• Ak denotes the action repertoire of agent k;

• Zk is the set of all possible observations of agent k;
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• We write Ok(zk | s) to denote the probability of agent k observing zk at time-step t. Formally,

this corresponds to

Ok(zk | s) , P
[
zkt = zk | st = s

]
;

• rk(s, a) represents the average reward that agent k expects to receive for performing action

a in state s;

• 0 ≤ γ < 1 is some discount factor.

The model proceeds as follows. Just like in a POMDP, at each time-step t, the game is in one of

a finite set S of possible states, denoted by st = s. Each agent k has access to a partial view of st,

henceforth referred as the observation of agent k at time-step t and denoted as zkt ∈ Zk. At each

time-step t, every agent k in the game selects, simultaneously and without explicit communication,

an action from a set Ak of possible actions. We write akt to denote the individual action of agent

k at time-step t, and write at = 〈a1
t , . . . , a

k
t 〉 to denote the joint action of all agents at time-step t.

We define the set of joint actions as A = ×Kk=1Ak. The game then transitions, at time-step t+ 1,

to a state st+1 ∈ S that depends only on st and at. Denoting by ht the history of the game up to

time-step t, we have

P [st+1 = s′ | ht] = P [st+1 = s′ | st, at] , P(s′ | s, a),

for s ∈ S and a ∈ A. Each agent k is awarded a reward rkt+1 that depends only on st and at and

is such that

E
[
rkt+1 | st = s, at = a

]
= rk(s, a),

for some bounded real-valued (reward) function rk : S × A → R. Each agent k receives a new

observation zkt+1 and the process repeats. Each agent is considered an individual learner (Claus

and Boutilier, 1998), meaning that just like in the POMDP model, each agent will pursue its

individual goal by selecting its actions so as to maximize the quantity in (2.1), i.e.,

V k(s) = E

[ ∞∑
t=0

γtrkt+ 1 | s0 = s

]
, (6.1)

for the POMG model.

Solving a POMG then amounts to computing, for each agent k = 1, . . . ,K, a mapping πk :

Sk → Ak that corresponds each possible state in Sk an action in Ak in such a way that (6.1) is

locally maximized for all agents (a situation known as equilibrium). As we have seen, such mapping

is known as a policy, and is intractable to compute except for the simplest games (Goldsmith

and Mundhenk, 2007). However, several specialized models, like the single-agent MDP model

(Puterman, 2009), are manageable to efficient solutions. An MDP is a POMG where K = 1,
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Z = S, and O is the identity mapping2. In the same manner, a single-agent POMG is known as a

POMDP.

As we have seen throughout Section 2.2.2, RL develops algorithms for individual learners that

are able to compute the optimal policy π∗ by gathering information from successive interactions

with the environment and building estimates P̂ and r̂ of P and r. However, in spite of their

expressive power, the computational complexity involved in solving POMGs renders this model

impractical for our purposes. In contrast, MDPs can be solved efficiently (Littman et al., 1995),

although they are unsuitable to describe most multiagent problems of interest, since they do not

accommodate for the possibility of an agent explicitly reasoning about how other agents influence

its performance.

In this study we are mainly interested in studying the emergence of cooperative behavior in

groups of self-interested agents co-existing in a common environment. Such agents can be seen as

computational counterparts of simple fitness-maximizing individuals, and it may debatable whether

such agents would reason extensively about the behavior of other agents in the environment (Ax-

elrod, 1984). In such conditions, an ability to reciprocate to and distinguish between interacting

individuals is fundamental for coordination to emerge from the complex patterns within the inter-

action history.

In that manner, in this study we follow our previous approach of considering agents that reason

about the world as if it were an MDP, ignoring both the existence of other agents (to the extent

that such existence is not evident from its observations) as well as the possibility that its perception

of the state st of the world may be imperfect. Therefore, like with the previous experiments, each

agent k can use prioritized sweeping (Moore and Atkeson, 1993) to build an approximated MDP

model of its environment, M̂k = (Ŝk,Ak, P̂k, r̂k, γ), where Ŝk = Zk and P̂k and r̂k are built by

averaging over the perceptions of agent k.

6.3 Socially-Motivated Learning Agents

In this section we introduce our main contribution, extending the IMRL framework to multiagent

scenarios. We discuss two (social) reward signals to be used within IMRL and how these relate to

specific social interactions studied in the specialized literature.

6.3.1 Multiagent IMRL

In general, the above approach will lead to a very crude model and have a significant impact

in terms of the performance of the agent (Littman, 1994). As we have seen however, recent

work on IMRL shows that, in single agent scenarios, it is possible to use richer reward functions

that implicitly encode additional information about the task of the agents to overcome some of

2Since there is a single agent, we can drop the superscript k.
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the agents’ perceptual limitations. To extend the IMRL framework to multiagent settings, we

introduce some additional notation. Formally,

• let hkt = {zk0 , ak0 , ρk1 , . . . , ρkt , zkt } to denote the individual history of agent k up to time-

step t under partial observability settings. We denote the joint history of all agents as

ht = 〈h1
t , . . . , h

K
t 〉 taken from a set H of possible (finite) joint interactions. Recall that

{ρkτ , τ = 1, . . . , t} corresponds to the agent designer’s “external” evaluation signal that, at

each time step t, depends only on the underlying state st−1 of the environment and the

action akt−1 performed by agent k. In general, the distribution governing hkt depends both

on the environment e ∈ E and on the task, where E is some set of environments we want our

group of agents to perform well;

• let h−kt = 〈h1
t , . . . , h

k−1
t , hk+1

t , . . . , hKt 〉 denote a reduced joint history ;

• just like in single-agent IMRL, rF,k denotes the fitness-based reward function of agent k that

is formally defined as

rF,k(s, ak, hk) = E
[
ρkt+1 | st = s, akt = ak

]
. (6.2)

• the task is encoded by the set of individual reward functions rk, k = 1, . . . ,K. We write

r = [r1, . . . , rK ] to denote the vector of all individual reward functions and henceforth refer

to the vector-valued function r : S × A × H → RK , with kth component corresponding by

rk(s, ak, hk), as the POMG reward function;

• following the POMG model described in Section 6.2.2, each agent k is an individual learner

that tries to maximize the reward provided by rk overtime;

• given a particular joint history ht, we write pH(ht | r, e) to denote the probability of the

agents (as a group) observing the history ht in environment e given the (POMG) reward

function r;

In extending IMRL to multiagent settings, we now measure the combined performance of a

group of K agents in terms of their average fitness. In particular, given a finite joint history ht,

we compute the combined fitness as

f(ht) =
1

K

K∑
i=k

fk(hk) =
1

K

K∑
i=k

∑
τ

ρkτ , (6.3)

where fk(hk) corresponds to the individual fitness of agent k. From (6.3), we get that the fitness

of the POMG reward function r can be given by

F(r) ,
∑
i

f(hit)pH(hit | r, ei)pE(ei) =
1

K

∑
i,k

fk(hk)pH(hi,kt | rk, ei)pE(ei), (6.4)
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where hi denotes a particular joint history of interaction and ei is sampled according to the

distribution pE(E). Given a set R of POMG reward functions, a set E of possible environments

and a distribution pE(E), the optimal reward problem (ORP) defined in Section 2.4.3 extended

for multiagent settings can then be formalized as that of determining the optimal POMG reward

function r∗ ∈ R such that

r∗ = argmax
r∈R

F(r). (6.5)

We note that, as discussed in the previous section, our agents do not explicitly reason about

other agents, and whatever “collaborative” behavior emerges from their interaction does not result

from any explicit social considerations that they may have on the well-fare of others. In scenarios

where the fitness F depends critically on the ability of the individual agents to cooperate, IMRL

provides a natural framework to study the emergence of cooperative behavior.

6.3.2 Multiagent Linearly Parameterized ORP

In this chapter we again follow the linearly parameterized approach to ORP described in Sec-

tion 2.5.1 and extend it to multiagent settings. In this manner, each POMG reward function

r ∈ R is the linear combination of a family of vector-valued reward features {φα, α ∈ Λ}, where

Λ is some index set and each φα is, in itself, one possible (POMG) reward function that captures

relevant elements of the history interaction of the agents with the environment.3 Therefore, every

r ∈ R can be written (componentwise) as

rk(s, ak, hk) =
∑
α

φkα(s, ak, hk)θkα, (6.6)

where φkα is the value of the kth component of φα and, at each time-step t, is a function of st, akt
and hkt . Similarly, θkα is the value of the parameter associated with φkα. Abusing the notation, we

sometimes write

r(s, a,h) =
∑
α∈Λ

φα(s, a,h)θα,

with the understanding that the products are taken componentwise as indicated in (6.6), and refer

to the resulting reward function as r(θ). Like with the single-agent ORP, our goal is then to

determine θ∗ such that

θ∗ = argmax
θ

F(r(θ)).

6.3.3 Social IMRL Model

We now introduce our second contribution in this chapter—namely, a set of reward features that

lead to the emergence of cooperative behavior in multiagent IMRL. Figure 6.2 depicts our model

3Given the set {φα, α ∈ Λ}, we henceforth write φα to denote the (vector-valued) reward feature with components
[φkα]Kk=1, and φk to denote the vector of (individual) reward features [φkα]α∈Λ.
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Figure 6.2: Proposed framework for intrinsic social rewards. Adapted from (Singh et al., 2009).

for an individual learner within social IMRL. It extends the general IMRL model in Figure 2.7 and

parallels our model for emotion-based rewards in Figure 4.2. In this case, a social agent is modeled

as having a social critic as a reward mechanism providing two intrinsic social reward features

based on the notion of l-signals provided in Section 6.2. This critic can be seen as the mechanism

evaluating the behavior of the agent from a social legitimacy point-of-view. We consider social

reward features depending on social variables accessible to the agents of a social group in the

context of resource sharing foraging scenarios.

Our approach is inspired by existing theories about how groups of individuals coordinate in na-

ture. Specifically, we adopt the notions of group relatedness and reciprocity from kinship (Dawkins,

2006) and reciprocity (Falk and Fischbacher, 2006; Trivers, 1971) theories. The social structure is

simplified and assumes that the interacting agents belong to the same social group and that their

relatedness is assured by an urge to affiliate with each other (Dörner, 1999). We thus propose a

set of reward features that can be interpreted as computational counterparts to the several social

l-signals discussed in Section 6.2.1 (Bach, 2009; Dörner, 1999) depending on social variables ac-

cessible to agents of a certain social group in the context of resource sharing foraging scenarios,

together with ideas from kinship and reciprocity theories (Dawkins, 2006; Falk and Fischbacher,

2006). Formally, we consider a set of three reward features, Φ = {φkext, φkint, φkfit}, where

• φkext(s, ak, hk) can be interpreted as a computational counterpart to the (external) l-signals.

can be interpreted as a computational counterpart to the (external) l-signals. It indicates the

change in the legitimacy of agent k within the social group when the latter executes action

ak in state s after observing history hk, as implicitly determined by the other members of

the group;

• φkint(s, ak, hk) can be interpreted as a computational counterpart to the internal l-signals and

indicates the adjustment of the agent’s social legitimacy by trying action a in state s after

observing history hk, as internally dictated by the “social standards” of agent k;
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• φkfit(s, ak, hk) = ρk(s, ak, hk) is agent k’s fitness-based reward for performing action ak in

state s after observing history hk.

For each agent k, the reward features above can be interpreted as representing either how

satisfied the affiliation need of agent k is, or the change in social legitimacy decurrent of having

performed action ak in state s after observing history hk.4

For each α ∈ {ext, int, fit} and each agent k = 1, . . . ,K, we restrict θkα to lie in the interval

[−1.0; 1.0]. Each θkα determines the relative contribution of the corresponding social reward-feature,

φkα, in the overall reward. For example, a parameter vector θk = [0; 0; 1] indicates that agent k

values only fitness-based reward and completely ignores the social rewards, i.e., it disregards its

social context. Different scenarios will “demand” that each agent pays attention to its social context

in a specific manner, so that cooperation is achieved and the fitness of the group of agents as a

whole is maximized. Like in single-agent IMRL, we consider the specific configuration of θ to be

fixed during learning, meaning that the agents are somehow predisposed to acknowledge social

information in some “innate” manner.

We remark that our general formulation of multiagent linearly parameterized ORP enables us

to model each agent as having its own “personality”. In other words, by agent-specific features,

φkα and agent-specific weights, θkα, it is possible to have agents with different innate personalities,

that perceive different reward features and weight them differently in the overall reward, which

in turn implies that each agent will have specific motivations towards its (social) environment.

Moreover, by studying the absolute value of the weight θα associated with each feature φα, it is

possible to assess whether our proposed social features indeed provide useful information for the

coordination of the group as a whole—in which case we would expect ‖θα‖ � 0. Finally, one third

advantage is that we can compare across the different agents in the group the corresponding weight

vectors, {θk, k = 1, . . . ,K}, and assess the (non-)homogeneity of the agents’ personalities, allowing

a richer analysis of the structure of the group fostering maximal global fitness in the environments

of interest.

6.3.4 Resource-Sharing Environments

In order to evaluate the proposed framework for multiagent IMRL and the social reward features

discussed in the previous section, we analyze their impact on the behavior of a group of agents

inhabiting an inherently competitive environment, where a limited amount of resources is avail-

able. Each resource, if consumed, directly enhances an agent’s (individual) fitness. In our study,

we adopt simplifications of several foraging scenarios introduced in (Singh et al., 2009, 2010) and

design several new scenarios in which coordination can only occur if the agents learn to perform

4We note that, although the above reward features are indicated as generally depending on the state st of the
environment, in most cases of interest they will depend only on akt and hkt . We included the explicit dependence of
st for generality, since it allows us to trivially consider situations with full-state observability.
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cooperative joint actions to obtain the shared resources. It is important to note that the intro-

duced simplifications focus mainly on the dimension of the environments used, not in terms of the

corresponding coordination problems. Therefore, they do not impact our purpose of investigating

the usefulness of the proposed social intrinsic rewards for the emergence of cooperative behaviors.

To instantiate the social reward features discussed in Section 6.3.3 in the context of resource

(food) sharing scenarios, we note that legitimacy signals provide “social feedback” on the agent’s

feeding behavior, and the agents are able to reciprocate through an implicit signaling mechanism

that rewards “kind” behaviors and punishes “unkind” ones (Falk and Fischbacher, 2006).5

The social critic in Figure 6.2 can determine when the agent was the last to consume a resource

from the environment. Each agent is also able to detect if another agent is collocated in the

environment. For all scenarios considered in this chapter, we define the following local events, used

to determine the different social reward features for each agent k:

• foodk(t) denotes the event that, at time-step t, agent k is collocated with a food resource;

• fullk(t) denotes the event that, at time-step t, agent k is in a fully satiated state;

• hungryk(t) denotes the event that, at time-step t, agent k is in a hungry state. We note that

each agent cannot be hungry and full at the same time, i.e., ∀tfullk(t)→ ¬hungryk(t), but

they can be in an intermediate satisfied state, when they are neither full or hungry;

• eatk(t) denotes the event that, at time-step t, agent k decided to consume a food resource;

• other_eatk(t) denotes the event that, at time-step t, agent k is collocated with some other

agent, and that the other agent decided to consume a food resource;

• other_atek(t) denotes, at time-step t, the number of agents (other than agent k) that ate

a food resource since k last consumed a resource itself.

Fitness-based Reward Feature

In the proposed environments, consuming food resources is the only behavior that directly con-

tributes to the fitness of each agent (and therefore that of the population), while being hungry

decreases the fitness. Therefore,

φkfit(t) = I
[
fullk(t)

]
− βhp · I

[
hungryk(t)

]
(6.7)

for agent k, where βhp is the (environment-specific) hunger penalty and I [ε] denotes the indicator

function for event ε.
5We again emphasize that our agents do not have any prior common knowledge or shared information except

that which is conveyed by their individual observations. Therefore, there is no way for the agents to explicitly
communicate their individual behaviors. In particular, the social signals are implicitly encoded in the associated
intrinsic reward features received by each agent as part of its reward and, as such, do not involve any means of
explicit information sharing.
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6.3.5 Intrinsic Social Reward Features

The above events can be perceived by each agent k from its observation zk at time t. Using these

definitions, we can now define the social intrinsic reward features φkext and φkint and discuss their

relation with the internal and external l-signals. In the context of this thesis we only provide

a possible interpretation of these quantities. Moreover, we do not claim this interpretation to

be universal or even biologically plausible. However, as will become apparent, our interpretation

facilitates the discussion of the results. Depending on the social environments being considered,

especially if not related with resource sharing, other features may be defined.

In the context of resource sharing φkext and φkint should signal whether the feeding behavior of

an agent was “considerate” to the other members of the social group. For example, a socially aware

agent takes into consideration whether it was the last to eat before deciding to consume some

resource. Therefore, we define the strength of the social feedback to agent k at time-step t as

σk(t) =
K − other_atek(t)− 1

K − 1
.

Note that σk(t) = 0 if all other agents have eaten since agent k last ate, and σk(t) = 1 if agent k was

the last to eat. The strength of the social feedback signals to agent k the severity/thoughtfulness

of its behavior.

External Social Reward Feature

Formally, we define the external social reward feature for agent k as

φkext(t) = σk(t) · I
[
foodk(t)

]
· I
[
other_eatk(t)

]
·
(
I
[
¬eatk(t)

]
− I

[
eatk(t)

] )
.

The feature φkext is provides a “positive signal” to agent k whenever it allows other agents to eat,

given that agent k was the last to eat. Conversely, it provides a “negative signal” when agent k

eats a food resource in the presence of another agent, if agent k was the last to eat.

Recall from Section 6.2 that the Psi-theory defines l-signals and anti-l-signals as somehow en-

coding the degree of acceptance of the conduct of an individual by other members of its social

group, i.e., its social legitimacy (Bach, 2009). In the proposed setting, φkext allows for reciprocation

by taking a positive value whenever agent k has the possibility to consume a food resource but

chooses not to because it was the last to eat, thus giving the other agents (in its social group)

the opportunity to be satiated. Since this corresponds to a thoughtful behavior, the positive value

of φkext can be seen as an implicit “acceptance signal” by the other agents that increase agent k’s

legitimacy. A similar argument can be made with respect to the negative values provided by φkext,

which can be interpreted as “social punishment” for agent k’s lack of consideration for the group’s

well-being.
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Internal Social Reward Feature

We define the internal social reward feature for agent k as

φkint(t) = σk(t) · I
[
foodk(t)

]
· (I
[
¬eatk(t)

]
− I

[
eatk(t)

]
).

The feature φkint provides a “positive signal” to agent k whenever it decides not to eat, given it

was the last to eat. Conversely, it provides a “negative signal” when agent k decides to consume a

resource, if agent k was the last to eat. The difference between the φkext and φkint is that the latter

does not require a conflicting eat action by another agent.

In Section 6.2 we saw that internal l-signals measure how much an agent’s actions are in accor-

dance to its own internal standards (Bach, 2009). In this manner, the reward feature φkint takes a

positive value whenever agent k has the possibility to consume a food but decides not to because

it was the last to eat—independently of the presence or absence of other agents. Because the envi-

ronments considered in our study deal with resource sharing, this reward feature somehow encodes

the degree of satisfaction that agent k gets for engaging in such altruistic behavior.

Socially-aware agents feel intrinsically rewarded when they feel they engage in a behavior for

the benefit of other members of its social group (de Waal, 2008). Moreover, altruistic behaviors

may carry an initial cost that is only compensated after a certain time period (Axelrod, 1984; de

Waal, 2008). In the proposed setting, φkint “rewards” agent k for altruistic behavior, even if this

implies a smaller momentary individual fitness. Similarly, it “punishes” inconsiderate behaviors,

even if the agent was not directly competing with another agent for a food resource.

6.4 Experiments and Results

In Figure 6.1 we outline the method to validate our approach for social-based intrinsic reward

design. To that purpose we design a series of experiments in resource sharing scenarios similar to

those used in the experiments in Section 4.3, in which two or three learning agents coexist.

6.4.1 Objectives

The purpose of our experiments is to determine whether socially-aware behaviors carry some benefit

for the agents which perform them. We model our experiments in foraging scenarios where a group

of agents inhabit some environment having limited resources available at each time step. We model

the agents as being rats within a classical “laboratory” type of experiment where to obtain food

the agents must first press one or two levers located in the environment.

We note that, in some of the environments, from an individual agent’s point-of-view there is no

need for each agent to share the resources with the other members of the social group—its fitness

depends only on the amount and frequency of consumed resources, as denoted by the fitness-based
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reward feature in (6.7). In some of the scenarios we model mutual dependencies between the

agents, i.e., consuming food resources no longer depends solely on the agents actions but also of

their interacting partners.

Our objective is therefore to investigate whether by paying attention to some signals perceived

from their social context, agents engage in socially-aware behaviors that trade-off individual well-

being in the short-term for the sake of the group’s fitness in the long-run. On the other hand, our

study can allow us to assert the conditions under which the exchange of social signals between a

group of agents becomes a crucial aspect of their mutual survival.

6.4.2 Methodology

As mentioned earlier, our agents are modeled as entities moving in the environment and trying to

eat resources at each time step.

Agent Description

In all the scenarios, each agent k has available 2 possible actions, Ak = {Left,Right}. We assume

that the agents automatically consume food when entering in a cell containing food, except if

there is another agent in the same position. In both cases, the directional actions move the

agent deterministically to the adjacent cell in the corresponding direction. When available, action

Eat consumes a food resource if one is present in the agent’s current location, and does nothing

otherwise. A lever in the environment controls the appearance of food—only when one or both

agents enter the lever position the food becomes available. Whenever an agent consumes a food

resource, it becomes full for one time step, after which it returns to the satisfied state. An agent

automatically becomes hungry if it does not consume any resources for βmh number of time steps,

depending on the specific environment. As described earlier, the fitness-based reward feature φkfit
for each agent k generally depends on the hunger status of that agent.

At each time step, each agent k is able to observe:

• its current (x, y) position;

• its satiation status, i.e., whether it is hungry, satisfied or full;

• whether food is present at its current location;

• whether another agent is present at its current location. There are K−1 binary observations

of this kind, K being the number of agents in the environment;

• how many agents have consumed a food resource since Bk last ate.

As with the previous experiments our agents treat such individual observations as if they were

states. Importantly, because agents cannot observe each others’ positions or hunger status, from
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the perspective of each agent the environment is non-Markovian, since there are elements of the

underlying state which the agents cannot observe that are needed for them to perform optimally.

Once again we resorted to prioritized sweeping (Moore and Atkeson, 1993) to learn an approx-

imate (single-agent) model of the environment that it then uses to compute an individual policy,

according to the its (perceived) reward function r̂k. In our implementation, we used a learning

rate α = 0.3, a discount factor γ = 0.9, a backup limit of 10 state-action pairs and a minimum

priority threshold of 10−4. Each agent follows an ε-greedy policy with a decaying exploration rate

εt = λtε, with λε = 0.999.

Computing Social Group Fitness

As mentioned earlier in Section 6.3, to determine the optimal reward parameters, θ∗, we adopt a

simple search strategy similar to the one described in (Singh et al., 2010) that was already used in

the experiments in Section 4.3 and Section 5.3. We sample a set ofM different reward parameters,

{θi, i = 1, . . . ,M}, such that ‖θki ‖1 = 1. Specifically, we sampled a total of M = 4, 359 for 2-

agent scenarios and M = 287, 499 for 3-agent scenarios. For each θm,m = 1, . . . ,M , we deploy K

agents driven by the (POMG) reward function r(θi) in each of the test scenarios and run, for each

scenario, a total of N = 200 independent Monte-Carlo trials of T = 5, 000 time-steps each, during

which the agents are allowed to interact and learn in the environment. The fitness associated with

each θi is then computed as

F(r(θm)) ≈ 1

N

N∑
n=1

f(hnm) =
1

N

N∑
n=1

1

K

K∑
k=1

T∑
τ=1

ρk,nt,m,

where hnm denotes the nth joint history sampled with r = r(θm) and ρk,nm is the corresponding

fitness-based external evaluation signal for agent k.

6.4.3 Multiagent Scenarios

We ran a total of 9 different experiments, each consisting of a variation of the general problem

defined above.6 All scenarios are episodic: whenever one of the agents consumes a resource, each

agent is placed in one of the available “start-positions”. For ease of explanation, each scenario is

generically identified as “A-R-S(-L) Scenario”, where A is the number of agents, R the number of

resources, S the number of start-positions and L, for the Lever Scenarios, is the number of levers

available in the environment. We also present the values for βhp, the penalty for being hungry in

(6.7), and βmh, the maximum number of time steps an agent can be without becoming hungry.

2-1-1-1 Scenario: The environment for this scenario is represented in Figure 6.3. Only
6We refer to Section B.2 where we present a series of multiagent experiments in larger versions of these lever

environments. We conclude that despite their relative small size, the “game-like” situations that the environments
in this chapter present is what defines the complex multiagent tasks that we need in order to assess the usefulness
of our social intrinsic rewards in achieving cooperation.
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one agent is needed to press the lever for the food to become available. After eating,

both agents return to the start-position (middle cell) as indicated. In this scenario, we

set βhp = −0.3 and βmh = 6 time steps. ♦

Figure 6.3: Environment used in the 2-1-1-1 Scenario, 2-1-1-1-Heavy Scenario and 2-1-1-1-Electric
Scenario. See text for details.

2-1-1-1-Heavy Scenario: This scenario is identical to the previous one, except that

the food becomes available only when both agents enter the lever position at the same

time. βhp = −0.18 and βmh = 8. ♦

2-1-1-2 Scenario: The environment for this scenario is depicted in Figure 6.4. The

behavior and parameters are the same as in the previous scenario, only that there are

two levers available that must be pressed at the same time by the agents. ♦

Figure 6.4: Environment used in the 2-1-1-2 Scenario. See text for details.

2-1-1-1-Electric Scenario: In this scenario a food resource is always available in the

right cell as indicated in Figure 6.3. The difference is that the environment is electri-

fied unless one of the agents enters and remains in the lever position, upon which the

environment becomes normal. Eating a resource while the environment is electri-

fied decreases the fitness of both agents by one value, i.e., φkfit = −1. In this scenario

the agents’ receive an extra binary observation about the electrified status of the

environment. We set βhp = −0.3 and βmh = 6. ♦

2-1-2-2 Scenario: This scenario is depicted in 6.5. It follows the dynamics of the 2-1-1-

2 Scenario, meaning that the agent that “goes for the right lever” stays closer to the food

resource when it becomes available. Also, after eating, the agent remains in the same

position (middle-right) while the other is positioned in the middle-left start-position as

indicated. We set βhp = −0.18 and βmh = 8 for this scenario. ♦

2-2-2-2 Scenario: This scenario, the environment of which is depicted in Figure 6.6, is

similar to the previous one, only now two resources are provided whenever both agents

press the levers at the same time. βhp = −0.4 and βmh = 4. ♦
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Figure 6.5: Environment used in the 2-1-2-2 Scenario. See text for details.

Figure 6.6: Environment used in the 2-2-2-2 Scenario. See text for details.

3-1-1 Scenario: This scenario is represented by the environment in Figure 6.7. In it,

three agents, starting from the left cell, compete for one resource located on the right

side of the environment. We set βhp = −0.2 and βmh = 10. ♦

Figure 6.7: Environment used in the 3-1-1 Scenario. See text for details.

3-1-3 Scenario: This scenario, illustrated in Figure 6.8, is identical to the previous one

except for the positioning of the agents after eating. We assume that the agents have

a specific number associated, from 1 to 3. There are 3 possible start-positions and the

agent that consumes the resource starts closer to it, in the middle-right location. The

other two agents are then placed in one of the other start-positions, from left to right,

according to their number7. ♦

3-2-3 Scenario: The environment for this scenario is depicted in Figure 6.9. Three

agents, each starting in a different location, compete for the two resources available

in the positions indicated. Agents are positioned from left to right according to their

number, priority given to the ones that ate. In this scenario, βhp = −0.7 and βmh = 6.

♦

6.4.4 Results and Discussion

Table 6.1 summarizes the results of our experiments by comparing for each scenario the mean

cumulative fitness obtained by the group of agents using the optimal parameter vector θ∗ against

a group of agents each receiving only fitness-based reward. When relevant, we provide charts

depicting the evolution of the cumulative fitness of the group.8

7For example, suppose that Agent 3 just ate. In that case, Agent 1 is positioned in the left-most cell while Agent
2 starts from the middle-left cell, thus closer to the food resource (see Figure 6.8).

8Illustrative videos of the observed behaviors in different stages of the learning process in all the scenarios are
available online at http://gaips.inesc-id.pt/~psequeira/multi-coop/.
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Figure 6.8: Environment used in the 3-1-3 Scenario. See text for details.

Figure 6.9: Environment used in the 3-2-3 Scenario. See text for details.

Table 6.1: Mean cumulative group fitness attained in each scenario. In each scenario, we indicate
the optimal parameter vector θ∗,k, and the parameter set corresponding to a group of agents that
receive only the fitness-based reward. In all but the 3-1-1 Scenario, θ∗,1 = . . . = θ∗,k = . . . = θ∗,K .

Scenario θext θint θfit Mean Fitness

2-1-1-1 Scenario θ∗,k 0.25 0.50 0.25 914.7 ± 20.2
Fit. 0.00 0.00 1.00 −93.5 ± 437.6

2-1-1-1-Heavy Scenario θ∗,k 0.75 0.00 0.25 360.5 ± 16.6
Fit. 0.00 0.00 1.00 −81.0 ± 85.8

2-1-1-1-Electric Scenario θ∗,k 0.25 0.50 0.25 745.8 ± 21.7
Fit. 0.00 0.00 1.00 515.2 ± 196.7

2-1-1-2 Scenario θ∗,k 0.25 0.50 0.25 447.6 ± 71.7
Fit. 0.00 0.00 1.00 −145.5 ± 36.0

2-1-2-2 Scenario θ∗,k 0.25 0.50 0.25 74.9 ± 98.1
Fit. 0.00 0.00 1.00 −367.8 ± 132.3

2-2-2-2 Scenario θ∗,k 0.00 −1.00 0.00 699.0 ± 176.7
Fit. 0.00 0.00 1.00 556.0 ± 225.6

3-1-1 Scenario

θ∗,1 0.25 −0.25 −0.50
163.5 ± 7.7θ∗,2 0.50 0.25 0.25

θ∗,3 0.75 0.00 0.25

Fit. 0.00 0.00 1.00 −272.5 ± 24.5

3-1-3 Scenario θ∗,k 0.25 0.50 0.25 209.7 ± 7.2
Fit. 0.00 0.00 1.00 160.2 ± 8.1

3-2-3 Scenario θ∗,k 0.50 0.25 0.25 1, 085.3 ± 43.4
Fit. 0.00 0.00 1.00 144.1 ± 34.6

Overall Analysis

Generally speaking, our results indicate that socially motivated agents attain greater degrees of

fitness as a group when compared to agents using only the fitness-based reward during learning.

These agents are implicitly “selfish” and, combined with the structure of the environments, this

behavior typically leads one of the agents to starvation. An interesting fact of the experiments is

that with the exception of the 3-1-1 Scenario, the optimization procedure discovered similar reward

parameters for all agents, i.e., θ∗1 = . . . = θ∗K . This homogeneity in the social group is in line with
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findings in concurrent learning9 and other team learning schemes stating the importance of the

agents’ individual skills and the environment’s structure for the heterogeneity of the group (Panait

and Luke, 2005). In our experiments, because all agents have the same skills (actions) available

and interact within the same closed space, competing for the same resources, task specialization

cannot emerge, and therefore agents tend to behave the same way so that the group’s fitness gets

maximized. As will shortly be analyzed in detail, the 3-1-1 Scenario presented a particular coor-

dination challenge with few resources for the number of agents in competition, allowing “sacrifice”

or “alliance-like” behaviors to emerge therefore creating heterogeneous groups.

Having More Agents than Resources

In general, the results of our experiments show that in inherently competitive scenarios, i.e., where

the number of food resources available is less than the number of agents, the optimal parameter

vector θ fairly distributes the importance of the three reward features considered. In fact, as

indicated in Table 6.1, 5 out of the 9 experiments determined θ∗,k = [0.25; 0.50; 0.25], k = 1, . . . ,K,

to be the optimal set of parameters. This suggests that the proposed features, inspired by the social

legitimacy-signals of (Dörner, 1999), do provide a relevant trade-off between fitness-based reward

and the social intrinsic reward features. Each agent takes into consideration not only its own

well-being but are also sensible to the social “reinforcement” received for allowing food sharing.

As an example of this effect, coordination under competitive conditions emerged in the 3-1-3

Scenario and 3-2-3 Scenario. As indicated in Figures 6.10(a) and 6.10(b), our social were able

to coordinate and share food resources thus achieving a higher degree of fitness as whole group.

Figure 6.10(c) illustrates the individual performance of the 3 optimal agents in the 3-2-3 Scenario.

As we can see, Agent 1 and Agent 2 learned to take turns to eat while Agent 3 benefited from the

positioning policy to be able to consume more food resources. However, by looking at the individual

performance of the fitness-based agents in Figure 6.10(d) we see that this positioning policy was

actually a disadvantage to Agent 3 as it had more competition with the other agents. Overall, as

can be seen from Figure 6.10(b), this deeply impacted the group’s performance, especially when

compared with the optimal group of agents.

Mutual Dependencies

Figure 6.11(a) shows the performance of the learning agents in the 2-1-1-1 Scenario. We can see

that our agents, by means of the reciprocity mechanism, were able to feed in turn despite not having

any impediment not to do so, i.e., either agent could press the lever alone and then consume the

resource. On the contrary, in the 2-lever scenarios the agents’ fitness is dependent on the other

agent’s actions. Unlike the 2-1-1-1 Scenario, in the 2-1-1-1-Heavy Scenario both agents have to press

9In concurrent learning, each agent tries to improve the performance of the group by learning through independent
processes (Panait and Luke, 2005).
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(a) 3-1-3 Scenario (b) 3-2-3 Scenario
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(c) 3-2-3 Scenario “Optimal” indiv. performances
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(d) 3-2-3 Scenario “Fitness-based” indiv. performances

Figure 6.10: Evolution of the individual or group fitness in the 3-1-3 Scenario and 3-2-3 Scenario.
Results correspond to averages over 200 independent Monte-Carlo trials. “Optimal” corresponds
to a group of agents learning with the optimal set of agent parameters, θ∗. “Fitness-based” corre-
sponds to a group of agents receiving only fitness-based reward, and “Random” is a group of agents
acting randomly, i.e., receiving no reward at all.

the lever to allow food delivery and as such cannot exploit the other. Despite being unaware of

this mutual dependency, our “socially-aware” agents were able to cooperate by learning the mutual

press behavior and the reciprocity mechanism allowed them to coordinate food consumption. We

note that pressing the lever is a learned, intrinsically motivated behavior that does not have any

direct relation to fitness enhancement by itself. As depicted in Figure 6.11(b), the “selfish” agents

on the other hand could not learn how to coordinate feeding and as a consequence failed to solve

the mutual lever-pressing problem. The 2-1-1-2 Scenario presents a similar problem but in which

each agent chooses its own lever to press. As soon as they learned this cooperative behavior, the

optimal group was able to outperform the “selfish” group once more, as indicated by the results in

Table 6.1.

The 2-1-1-1-Electric Scenario presents a different kind of mutual dependency—the change in

fitness for eating a resource depends on whether some agent presses the lever. As depicted in

Figure 6.11(c), despite some initial loss during exploration, both the “Fitness-based” and the “Op-

timal” groups were able to cooperate, going for the lever in turns in order for the other agent to

eat. This is due to the fact that in this scenario, pressing the lever is related to fitness, as both
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(a) 2-1-1-1 Scenario (b) 2-1-1-1-Heavy Scenario

(c) 2-1-1-1-Electric Scenario (d) 2-2-2-2 Scenario

Figure 6.11: Evolution of the group fitness in the 2-lever scenarios.

agents received the negative reward associated to the “electric shock”. Receiving the negative re-

ward therefore helped the agents towards learning the intended coordination, the difference being

that socially motivated agents did it faster.

Having Sufficient Resources

The 2-2-2-2 Scenario provides insights on situations where food resources are “abundant” in the

environment. In this scenario there needs to be no food sharing or competition over the available

resources—in fact, agents learn to go to one of the levers and consume the closest resource, unaware

of the dependence on the other agent to be able to do that. Interestingly, the optimal set of

parameters for each agent k values behaviors in which the agents are inconsiderate with each

other: as indicated in Table 6.1, θ∗,kint = −1. Because there was no direct competition for food,

φkext did not pay any relevant role—in fact, if regarded positively, it would prevent the agent from

eating in certain situations and impact its individual fitness, with no group benefit. This scenario

is an example in which the conditions of the environment, i.e., resource abundance, shaped the

agents in behaving ungenerously. Moreover, we can observe from Figure 6.11(d) that without a

need for cooperation, the group fitness achieved by either the optimal and the fitness-based agents
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were very similar.10

Emerging Alliances

In the 3-1-1 Scenario and 3-1-3 Scenario our objective was to see whether coordination could emerge

in a group where the resources available were scarce for the number of agents therein. The results

for solving the ORP for these scenarios showed the emergence of interesting social phenomena by

means of our social intrinsic rewards. Like in the previous scenarios, the optimal social group

attained a significantly higher (p < 10−4) than the group of fitness-based agents, as indicated in

Table 6.1.

The results obtained in the 3-1-1 Scenario showed the emergence of the only heterogeneous social

group within all experiments. The difference to the best uniform parameter vector is depicted in

Figure 6.12(a), and the results show a statistically significant difference (p < 10−4). An analysis to

the individual agent parameters of the optimal social group enables us to see that for the population

to thrive, one of the agents had to be “sacrificed” while the other two coordinated to obtain food.

Agent 1’s reward parameters, θ∗1 = [0.25;−0.25;−0.50], pushed it to ignore food and therefore

starve, leaving the other agents the ability to coordinate in food consumption, as illustrated by

the individual performances in Figure 6.12(b). Because the agents started from the same position,

they all had equal opportunity to get to the food resource. However, resources were very scarce

for coordination to occur and one of the agent’s had to ignore fitness enhancement “for the sake”

of the social group.

A similar effect occurred in the 3-1-3 Scenario, as shown by the individual performances depicted

in Figure 6.12(c). However, in this scenario this was a consequence of the placement policy of the

agents, based on their predefined cardinality. In these conditions, Agent 1 has a greater chance of

appearing in the left-most cell of the environment, further away from the food. This scenario kind

of simulates a “ranked” population in which higher-numbered agents have a greater possibility of

increasing fitness. By looking at the optimal parameter set, θ∗k = [0.25, 0.50, 0.25], k = 1, . . . ,K, we

see that a careful consideration of the social and fitness-based aspects of the environment allowed

Agent 2 and Agent 3 to form an “alliance” and coordinate their feeding behavior while leaving Agent

1 to starve.

6.5 Overall Discussion

This section contextualizes our approach and results in this paper within social theories analyzing

the dynamics of populations as a result of social interactions. We examine how our approach relates

to those theories and how our experiments can be analyzed to enable a more formal discussion.

10Nevertheless, the difference in mean fitness observed between the two groups of agents in the 2-2-2-2 Scenario,
registered in Table 6.1, is statistically significant (p < 10−4).
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(a) 3-1-1 Scenario
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(b) 3-1-1 Scenario “Optimal” indiv. performances
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(c) 3-1-3 Scenario “Optimal” indiv. performances

Figure 6.12: Results for the 3-1-1 Scenario and 3-1-3 Scenario.

6.5.1 Related Work

The first thing we want to remark is that within MAS, coordination in the general case implies

that the agents’ strategies converge to a Nash equilibrium (NE), basically meaning that the agents

reach a consensus where none of them benefits from departing from it (Abdallah and Lesser, 2008;

Busoniu et al., 2008). To facilitate coordination many multiagent reinforcement learning (MARL)

algorithms use explicitly communicated information or implicit shared knowledge between the

agents. This often requires that the actions and rewards of the other agents or the underlying

game structure (and correspondent NE) are known (Abdallah and Lesser, 2008; Busoniu et al.,

2008; Claus and Boutilier, 1998; Sen et al., 1994). Other approaches include taking advantage of

the heterogeneity in the agents’ knowledge of the task either through expert learning or imitation.

In realistic settings however, such information sharing assumptions are too restrictive and these

techniques usually induce exponential growth with the number of agents (Abdallah and Lesser,

2008; Claus and Boutilier, 1998). Coordination is also possible with no information sharing when

the actions of the other agents provoke only small perturbations in the environment’s dynamics

(Sen et al., 1994) or when the gradient of the expected return is known (Abdallah and Lesser,

2008).

Our approach for social intrinsic reward design allows the agents to consider the implicit impact
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of their behavior on the social group’s welfare. Our results show that this mechanism enables them

in achieving coordination without any explicit communication or even awareness of the other agent’s

existence or the impact of their actions in the fitness of others. Also, just like our emotion-based

rewards proposed in Chapter 4 or the features emerged from the experiments in Chapter 5, the

mechanism behind the intrinsic social rewards proposed in this chapter is domain-independent as

long as there is a notion of “considerate” and “selfish” actions within a specific social context.

Moreover, within IMRL, recent work by Liu et al. (2012) already considered the ORP problem

in a multiagent setting. However, the focus of the paper was strong mitigation in the context of

ORP, where the computational effort must be balanced between fitness optimization and reward

optimization. In light of the different focus, the multiagent setting considered in (Liu et al.,

2012) addresses decentralization in reward optimization and planning, but simplifies considerably

the agent model. In particular, they consider Z1 = . . . = ZK = S (all agents have full state

observability), ρ1 = . . . = ρK (all agents receive the same external “fitness-based” evaluation signal)

and the environment parameters are known. Moreover, although action selection is decentralized,

all agents observe the actions of the other agents once they are performed. In this sense, the

decision problem faced by our agents is significantly harder.

6.5.2 Evolutionary Game Theory

In the experiments within this chapter, and given the evolutionary interpretation proposed for the

IMRL framework and the social nature of the scenarios considered, there is a close relation between

our approach and Evolutionary game theory (EGT) (Maynard Smith and Price, 1973). EGT, as

the name indicates, is an extension to game theory (GT)11 (von Neumann and Morgenstern, 1944)

that tries to explain how a population of strategies evolves over time by merging ideas from ecology

and economics (Sigmund and Nowak, 1999; Tuyls and Nowé, 2005).

EGT was formulated to address games in biological settings, where individuals are unable to

take hyper-rational decisions but are still able to optimize their behavior to increase their chances of

reproduction, i.e., their fitness. EGT follows the approach on evolution by considering a population

whose members are players, strategies are phylogenetic traits and fitness is measured as the game’s

resulting payoff (Sigmund and Nowak, 1999). As opposed to traditional GT, games in EGT are

played repeatedly between the members of the population each following some strategy. In its

simplest form, EGT analyzes the dynamics of a population when invaded by a small group of

mutants playing some strategy. The interaction between individuals (mutant or non-mutant) is

modeled as a strategic game in which the payoffs measure the fitness of the individuals after each

interaction (game). Game theoretic notions are then used to analyze the dynamics of the fitness

of the population and predict whether a given strategy will eventually extinguish or not (Axelrod

11Game theory (von Neumann and Morgenstern, 1944) addresses problems as games between decision makers (the
players) who have to choose between different strategies whose payoff depends on the decisions of other players. To
choose between the strategies, the players take into account their own preferences and the decisions of others.
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and Hamilton, 1981; Maynard Smith, 1982). When a population using some strategy cannot be

invaded by a rare mutant adopting a different strategy, the first is referred to as anevolutionary

stable strategy (ESS) (Maynard Smith and Price, 1973).

In the context of our study, each parameter vector θ used by the agents within a social group

influences the strategy used by the agents in the environment by focusing in different aspects of

their social context. For example, a parameter vector θfit = [0, 0, 1] will drive the agents into a

“selfish” strategy by focusing only on fitness-based rewards. As such, the optimal parameter vector

θ∗ obtained after the optimization procedure can be seen as a stable equilibrium in a population

of siblings (i.e., having the same “genetic characteristics”), as discussed in (Bergstrom, 1995).

6.5.3 Reciprocation Factors

The results of the 2-1-1-1 Scenario are in line with theories about the importance of a proper

reciprocation mechanism for the maintenance of cooperation (Axelrod, 1984; Falk and Fischbacher,

2006). In this scenario, both agents were trying to compete for the same resource and could easily

exploit the other by waiting for it to press the lever and then consume the resource. In such cases,

“greedy” agents cease to cooperate by not receiving any kind of reinforcement for the behavior.

On the contrary, by examining the agents’ behavior in the optimal case we can observe a “socially-

aware” strategy in which the agents feed in turns.

Discrimination is one of the abilities allowing individuals to engage in cooperation by reciproca-

tion (Hamilton, 1964). Distinguishing interacting partners allows for different degrees of relatedness

to evolve throughout time, therefore influencing the marginal inclusive fitness gained by an altruist

during cooperation. In our study we consider that all agents belong to the same social group, thus

meaning their relatedness and probability of future interactions is (implicitly) high. Although we

do not model an explicit memory about past interactions with other agents of the group, the fact

that each agent is able to distinguish the presence of others in its current location makes that

distinct strategies towards different agents can emerge. This fact could explain the appearance of

the “alliances” reported in Section 6.4.4. Two of the agents acquire a cooperative strategy (i.e., re-

source sharing) between each other but not with the third agent due to their implicit “relatedness”

being higher—recall that one of the agents had a greater chance of being farther from the food

resource, and as such it was less likely to have encounters with the other agents.

6.5.4 Social Pressures

Another aspect of our approach relates to the altruism vs social pressure dualism in motivating

selfless behavior (DellaVigna et al., 2012). For example, pure charity is seen as utility-maximizing

in individuals that simply enjoy giving, while others feel obligated to doing so in the presence of

others because of social pressure (DellaVigna et al., 2012). In our model, pure altruism is somehow

encoded within the internal social reward feature, rewarding “charitable” behaviors for the sake
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of the social group. On the other hand, social pressure is encoded by the external social reward

feature, directly rewarding and punishing behaviors of an agent when in the direct presence of

other agents.

Our experiments somehow confirm the importance of social pressure in influencing the behavior

of altruistic individuals (Becker, 1974; DellaVigna et al., 2012). The difference in strategies attained

in the 2-1-2-2 Scenario relative to the 2-2-2-2 Scenario shows this dual effect. By having sufficient

food resources in the 2-2-2-2 Scenario, the agents did not have to share resources and could exploit

the environment at their will. As such, an agent not eating in the presence of a food resource is

not contributing in any way for the well-being of the other agent. In fact, being altruistic under

those conditions has no utility for the “selfless agent”, and therefore being “selfish” is the best

global strategy in this scenario. On the other hand, competition for scarce food resources shows

the importance of “social pressure”, by punishing situations where both agents disputed the same

food resource. In conclusion, it seems that by being able to (externally) exchange social signals

and having an internal mechanism representing an ideal of “social standards”, our agents are able

to achieve cooperation in resource-sharing contexts.

6.6 Contributions

In this chapter we extend the IMRL framework and ORP formulation described in Chapter 2 to

multiagent settings. We develop social intrinsic reward features for IMRL agents that take into

consideration social interactions among agents, inspired by the notion of group affiliation from

MAS research (Bach, 2009; Dörner, 1999).

6.6.1 Implications for RL/IMRL

We formally develop an extension of the IMRL framework for multiagent settings. This involved

defining the following concepts within multiagent IMRL:

• a social group of agents acting within the same environment where each agent has access to

only a partial, individual view over the shared environment;

• each agent is considered a self-interested, individual learner trying to compute its own optimal

policy with respect to its observations and its individual social intrinsic reward function;

• a new measure of group fitness within the ORP formulation that takes into account the joint

history of the interacting agents.

We propose two social reward features for IMRL based on legitimacy signals from Psi-theory

(Bach, 2009; Dörner, 1999) and a reciprocity mechanism (Axelrod, 1984; Falk and Fischbacher,

2006; Trivers, 1971) in the context of resource-sharing scenarios. Namely, we propose:
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• an external social reward feature rewarding and punishing individual agent’s feeding behaviors

when in the presence of other agents that can be related to the kinds of social pressures

individuals are subject to within their social groups;

• an internal social reward feature rewarding and punishing individual agent’s feeding behaviors

independently of the presence of other agents that relates to a notion of altruism or self social

standards.

We show that the IMRL framework can be used to endow agents with social motivation provided

by the intrinsic reward features that drives them to learn “socially-aware” behaviors that benefit

the group of agents as a whole;

• Particularly, we show that it is possible for agents to individually acquire socially aware

behaviors that trade-off individual well-fare for social acknowledgment, leading to a more

successful performance of their social group.

6.6.2 Implications for Multiagent Systems

We now analyze the impact of our approach and the results of our experiments for multiagent

research. Our approach relates to EGT in that the agents’ parameterization encodes the strategies

that they will follow during learning within the social context.

• Recall that in almost all of the multiagent scenarios used in our experiments, the agents

of the optimal group shared the same parameter configuration. Because all the agents are

influenced by the same social strategy, our social groups of agents relate to populations of

siblings in nature (Bergstrom, 1995);

• Although tested in simple multiagent scenarios, our formulation of social rewards allow for

the investigation of emerging stable equilibria within social groups of agents.

The results of our experiments are in accordance with social theories claiming that altruistic

and cooperative behaviors can thrive in populations with high relatedness and in which reciprocity

is possible (Axelrod and Hamilton, 1981; Falk and Fischbacher, 2006; Trivers, 1971). Specifically,

our approach supports:

• a high relatedness between the agents within a social group due to the high probability of

future encounters between them;

• a reciprocity mechanism that is able of rewarding and punishing behaviors that are consid-

erate (or not) for the well-being of the social group that is based on the exchange of social

signals.

By being able to both exchange social signals between each other and having an internal

mechanism representing an ideal of “social standards”, our agents are able to achieve cooperation
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in resource-sharing contexts even in the presence of mutual-dependencies for their fitness. This

means that in the context of MAS our model is able to incorporate:

• the effects of pure altruistic behaviors by means of the influence of the internal social reward

feature on the agent’s behavior;

• the effects of social pressure by means of the influence of the external social signals (implicitly)

exchanged between the agents during learning.

Moreover, our model does not require that the agents share any information about the task or

structure of the environment.

• Particularly, our method does not require any explicit communication or that the “game”

dynamics behind each scenario are known.

• Our agents are also unaware of the existence of other agents or the impact of their actions

in for their fitness.

6.7 Summary

In this chapter we investigated the impact that a social motivation system can have in the emer-

gence of socially aware behaviors in groups of learning agents. The framework for IMRL was

extended to multiagent settings in order to explore social reward features inspired by the notion

of social legitimacy and a need for affiliation proposed in the Psi-theory (Bach, 2009; Dörner,

1999). The results of our experiments in multiagent environments show that, indeed, the socially

motivated agents as a whole perform much better than “selfish” agents only focusing on their own

well-being, while having little impact in their individual fitness. Also, the results show that even

in the presence of dominating agents, i.e., agents that do not require socially-aware behavior to

maximize their individual fitness, socially-aware behaviors lead to an improved social group fitness.

Finally, the results show that the social motivation does not blindly lead to selfless behavior: in

scenarios where resources abound, the agents learn to disregard social legitimacy within their social

context, since its actions do not impact the fitness of others.

The next chapter summarizes the main contributions stemming from our approach throughout

this thesis and projects possible future developments.
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In this chapter we summarize all the work developed throughout this thesis and the contributions

stemming from it, and also propose some research directions that can be followed.

7.1 Conclusions

In this section we summarize the main results stemming from Chapters 4, 5 and 6 and relate them

with our problem and hypothesis formulated during Chapter 1.

Recall that the behavior of RL agents is guided by a reward mechanism embedded into the

agent by its designer. The analogy made in Section 1 parallels the design of reward functions

with robot training procedures—just like training a robot to perform some desired task, designing

flexible reward mechanisms, i.e., capable of guiding the agent in learning the task intended by its

designer, is a very demanding endeavor. On one hand artificial agents have inherent limitations—

particularly, they cannot perceive everything from their environment in order to perform optimally

therein. On the other hand, traditional approaches to RL pose elegant solutions that are however

too restrictive given the agents limitations, potentially leading to poor performances. Therefore,

applying RL in complex problems often requires a great amount of manual fine-tuning on the

agents so that they perform well in a given scenario. This demand grows even more when we want

to design agents that are able to perform well in a variety of different situations, often involving

complex interactions with other agents.

Let us now reconsider our hypothesis to address the aforementioned challenges within RL that

we introduced in Section 1.3:

In this thesis we take inspiration from information processing mechanisms shaped through-

out evolution that are behind the adaptive success of humans and other biological organisms.

We focus on the role of emotions and also on the way individuals interact and cooperate with

each other as a social group to design more flexible and robust reward mechanisms that enhance

the autonomy of RL agents in both single and multiagent settings.

Throughout this thesis, we conducted a series of studies targeted at developing mechanisms that

are able to mitigate the mentioned problems by following the above stated approach. By being a

predominantly multidisciplinary approach, our results have implications to different computational

areas. We now summarize the contributions detailed in Sections 4.5, 5.5 and 6.6 in light of these

different areas.

7.1.1 RL and IMRL

In general, our approach contributed to the area of RL by alleviating common limitations with

learning agents and also modeling effort by the agents’ designers. We follow the IMRL formulation
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by designing reward features that fit the notion of intrinsic rewards, thus providing motivation

for behaviors not directly related to the task intended by the agent’s designer. Furthermore, the

results of all the conducted experiments within IMRL and the analyses performed support our

claim that by following our approach we end up building more autonomous, robust and flexible

agents.

Autonomy

As discussed earlier, autonomy refers to the ability of an artificial agent operating without the

intervention of external assistants, especially without that of humans. It thus implies that the

less intervention and fine-tuning an agent needs to be able to perform well a given task, the more

autonomous it is. Recall that the main technical contribution in Chapter 4 is a set of four domain-

independent emotion-based reward features, namely novelty, valence, goal relevance and control.

When tested in a variety of scenarios each posing distinct challenges for a learning agent in the

context of IMRL, the use of these reward features alleviates the need for the agent designer to

handcraft reward functions for a specific domain, thus making the agents more autonomous.

We again note that having to determine the correct parameter vectors or the best GP combina-

tion to discover the optimal reward function for a specific scenario does not reduce the autonomy

of our agents and should not be seen as a limitation of our approach. In parallel to what occurs

with natural organisms, agents accustomed to a certain type of environment should perform well

in similar environments which dynamics and challenges offered do not vary much from those of the

original task. For example, in the Hungry-Thirsty Scenario experiment in Section 4.3.3, the “chal-

lenge” is that the agent must first drink before eating, independently of the resources locations, so

the strategy that was learned by the discovered “optimal” agent allowed it to cope with the change

in position of the water and food on the several environments. On the other hand, it is expected

that when faced with environmental characteristics contrasting with those where learning took

place, agents do not perform so well (even when comparing with the “standard” RL agent), just

like animals are sometimes unable to survive to sudden and drastic changes of their habitat.

Therefore, our focus in this thesis is in the design of the rewards and the quality of the behaviors

and autonomy that emerge from their practical use. In a sense, we can say that a greater concern

is placed on the end result rather than the means that lead to it, what has been termed “weak

mitigation” (Bratman et al., 2012). Nevertheless, we acknowledge that the time optimizing the

parameters/discovering the GP reward functions must be taken into account when aiming at prac-

tical solutions. When that is the case, other methods exist that take into account computational

resources limitations of the agents and make use of available information to improve the agent’s

reward function online (Bratman et al., 2012; Sorg et al., 2010b). We note that our implementa-

tion of the domain-independent features is compatible and can be used in conjunction with such

solutions in order to reduce the time used to search for good reward functions, in order to achieve
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“strong mitigation”.

Robustness and Flexibility

By flexible and robust we refer to agents that are able to operate in a wide variety of different

situations without having to specifically program them for each possible problem encountered.

In Chapter 5 we emerged domain-independent, general purpose reward features by using a GP

algorithm departing from a set of variables summarizing the agent’s history of interaction with

its environment. Together with our emotion-based approach in Chapter 4, our results show that

by using domain-independent reward features evaluating the agent’s history with its environment,

our agents were able to not only mitigate perceptual limitations but also to perform well in a

variety of environments, including non-stationary environments or complex environments providing

ambiguous outcomes. Moreover, our rewarding mechanisms are flexible enough to be used in

conjunction with any RL algorithm and are independent of the state-representation used or the

exploration strategy employed.

Of particular interest for our approach is its close parallel to the development of individuals in

nature, whose reward mechanisms are optimized through evolution to allow optimal performance

in particular environments. By using reward functions based on natural processing mechanisms,

as emotions are (Chapter 4), or evolutionary computation algorithms to discover reward functions

(Chapter 5), our agents came to benefit from the same kinds of survival tools found in nature,

thus being able to adapt to different situations without having to embed in them specific domain

knowledge.

Multiagent IMRL

In Chapter 6 we develop an extension of the IMRL framework for multiagent settings, which

involved defining the concepts of social group of agents acting within competitive resource-sharing

environments and a new measure of group fitness within the ORP formulation that takes into

account the joint history of the interacting agents. We also consider our agents to be self-interested,

individual learners in the sense that each learns according to its own partial observations over the

environment and its individual intrinsic reward function. In order to validate our approach for

multiagent IMRL we developed two social reward features based on social theories about the way

humans approve/reprehend considerate/selfish behaviors within their social context. We tested

our solution in resource-sharing scenarios and our results show that “social IMRL agents” are able

to learn behaviors that trade-off individual benefit for their social group’s well-fare.

7.1.2 Affective Computing

A great part of our approach focuses on emotions and the benefits that they bring to natural

organisms. It is therefore natural our results to have implications for the field of AC and related
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areas. Generally speaking, our experiments and results in Chapter 4 reinforce previous approaches

within AC advocating the benefits of adapting emotion-based mechanisms to enhance the percep-

tual and information-processing capabilities of artificial agents. We however depart from previous

works by creating an emotion-based reward mechanism that does not interfere in any way with

the RL algorithm used by the agent. We also did not focus in any particular set of basic emotions

to influence the behavior of our learning agents. We rather provide them with a general purpose

mechanism inspired by appraisal theories of emotions and let an optimization procedure to dis-

cover what combinations of appraisals are best for a given situation, in a similar manner to what

occurs in nature, where emotional mechanisms are shaped by evolution to allow adaptation to the

environment.

The work on Chapter 5 further reinforces the role of emotions as a fundamental complement to

the agent’s information-processing capabilities. Specifically, we proposed a novel method for assess-

ing the significance of embedding emotions into artificial agents that, unlike previous approaches

within AC, uses an evolutionary computation mechanism for the emergence of emotion-like in-

formative signals. Once emerged, we discovered that those signals have dynamics and evaluative

characteristics matching some common appraisal variables, and that by using them as reward fea-

tures provides learning agents a general-purpose attention-focusing and guiding and mechanism, as

emotions are in nature. The analogy that can be made between the way the emotion-like reward

features emerged and the way emotions evolve in nature contributes to the idea that the inclu-

sion of emotions in artificial agents may have a greater impact for their performance than before

thought.

7.1.3 Multiagent Systems

Our approach in Chapter 6, besides extending the IMRL framework into multiagent scenarios,

contributes to research to MAS in general and also related areas. Our approach relates to re-

search within EGT by having the parameterization of socially-inspired reward functions influence

the strategy used within a social group. A formal study about the dynamics of reward function

optimization may allow for the investigation of emerging stable equilibria within the social group.

Moreover, we model our agents as closely related individuals, i.e., sharing the same parameteriza-

tion and making their interaction frequent during learning, and having a reciprocity mechanism, by

means of the external social reward feature. The results of our experiments in resource-sharing sce-

narios thus confirm previous research within EGT claiming that altruistic and cooperative behaviors

can thrive in populations with high relatedness and in which reciprocity is possible. Furthermore,

having agents that can exchange social signals and have internal mechanisms representing an ideal

of social standards enables an interesting parallel with what occurs in nature, where both pure

altruism and social pressures influence individuals in engaging in cooperative, unselfish behaviors.
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7.2 Future Work

In this section we discuss several possible directions for future research stemming from our results.

7.2.1 Single Agent Research

Let us start by analyzing future developments to our single agent models, especially relating

computational aspects to RL/IMRL and emotion research in AC.

More Complex Applications

An interesting development to our approach is to apply the proposed reward features, both in

Chapter 4 and 5 in more practical and complex domains. In Chapter 4 each of the scenarios our

experiments were designed in order to assert the utility of appraisal-based mechanisms embedded

in learning agents, so each scenario stressed the utility of one or more emotional reward features.

In Chapter 5 the emerged reward features had a different purpose—we were trying to examine

the emergence of signals having emotional properties. Although we did test the features in the

more complex Pac-Man scenarios in Section 5.3.2, it would be interesting to test our approach in

more practical problems aside from game-like or grid-world domains, e.g., robotic-control due to

our connection with biology. There are also well-studied problem domains within the POMDP

researchfield in which our reward features could be tested (e.g., Cassandra, 1998).

Increasing Adaptability

As we noted throughout this thesis, our focus on reward design makes us abstract from the partic-

ular algorithm that is used to discover the combination of feature weights or the genetic program

that leads to the optimal reward function. Nevertheless, it could be useful to impose limitations

in the agent’s learning/decision-making capabilities and therefore compare the solutions discov-

ered under those conditions with those emerged from our offline optimization procedures. In that

perspective we could assess under which circumstances the “computationally-bounded” solutions

would allow the learning agent to solve the complex tasks presented in our proposed scenarios.

On the other hand, the quality of the optimized reward functions can also be assessed by

the strategy that it allows the agent to learn in some scenario. In order to evaluate whether a

reward function optimized for a specific environment is indeed domain-independent one could test

whether an agent, interacting with a different environment whose task relies on a similar strategy

to be solved, is able to learn such strategy and have a performance comparable to the optimal

reward function for that environment. Consider for example the Persistence Scenario experiment in

Section 4.3.4, where the agent learned that it should “persist” in taking the Up action in order to

cross the fence and achieve the desired reward provided by the hare. Because the optimized reward

function allowed the agent in learning this “persisting” behavior, it would be interesting to discover

148



7.2. FUTURE WORK

other scenarios where such strategy would also be useful. One could envisage environments where

the fence is placed elsewhere in the environment, or the structure of the environment is different,

or even where the number of actions required or the values provided each type of reward, and

then evaluate whether the same reward function parameterization allows the agent to learn the

required task. In the same manner, it would be interesting to asses how the performance of the

agent is affected according to the changes in the environments, or how easily it is to cope with such

changes, using for example an online optimization procedure similar to those above-mentioned.

Comparing with Other Approaches

Another aspect that can be addressed about the usefulness of the single agent reward features has

to do with the comparison of their performance against the fitness-based reward function defined

by the agent’s designer. Recall that both in the foraging scenarios of Section 4.3 and the Pac-Man

scenarios in Section 5.3.2 we defined a single fitness-based reward function for each scenario that

relied on aspects of the scenarios themselves, e.g., the number of preys eaten in foraging scenarios.

There are some ways in which we could assess the impact of our reward features in the performance

of the learning agents.

For example, one option is to compare the performance of our agents with limited perception

using the optimized reward functions against that of fully-observing agents using the fitness-based

reward function having access to the underlying MDP for each scenario. We could also compare

those performances with that of reward shaping when applied in the above conditions, i.e., with the

fitness-based reward function learning on the MDP. An obvious examination that can be made is to

consider other domain-independent reward features proposed in the IMRL literature and compare

the performances with our emotion-based and GP-generated features in a variety of scenarios.

Recall that we define domain-independent reward features throughout our studies, in contrast

with the majority of previous approaches within IMRL proposing domain-dependent features. We

could therefore also expand the set of reward features available in each experiment by adding these

domain-dependent features and then examine the results of the optimization procedure to assess

the impact (relative contribution) of our features in the optimal reward function attained.

Research on Emotions

Within the area of AC, an interesting development to our study performed in Chapter 5 is the

comparison between the emerged reward features and human data relating emotions. Recall that

for the examination of the “emotional tone” of the emerged features we analyzed the types of

evaluations they make with those performed by common appraisal variables, according to appraisal

theories of emotions. As suggested in (Gratch et al., 2009), one way of validating appraisal-based

computational models of emotions is to compare the predicted emotions generated by the model

in typified emotion-eliciting situations with human studies relying on self-reported data. Although
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in our studies we never build an explicit computational model of emotions, in Section 4.4.4 we

discussed how we could generate emotion labels or determine the emotional state (e.g., happy, sad,

afraid, etc.) of the agents based on the values of the emotion-based reward features at each time

step. Having this extension to our model would thus permit us to better analyze emotional nature

of the reward mechanisms.

7.2.2 Multiagent Research

The work developed in this thesis, especially our study in Chapter 6, opens the door to future

investigations within MAS.

Emerging Social Reward Features

One of the aspects of our socially-inspired learning model defined in Section 6.3 is that it fosters

heterogeneous social groups, i.e., in which each member uses its own reward function to learn in

the environment. By extending the ORP formulation to multiagent settings, we are no longer

trying to optimize one but a combination of agent reward functions. In the experiments described

in Section 6.4, the optimization procedure discovers the best combination of parameters guided by

a fitness function evaluating their joint performance. We used a linearly parameterized approach

to perform an exhaustive search over the possible combinations of parameters for each agent and

select the one maximizing the overall fitness measure of the group.

A natural step to take is to extend the approach used in Chapter 5 to multiagent settings

in order to discover interesting domain-independent social reward features. Besides the primitive

sources information used to discover interesting single-agent reward expressions, one could include

information shared by the agents when they encounter each other. A possible solution for the

discovery of the reward functions is to consider coevolving cooperative algorithms (CCEAs) for

MAS (e.g., Colby and Tumer, 2012) that consider evolutionary approaches to optimize cooperative

populations of agents. In this manner, each agent would evolve its own reward function with

respect to the group’s fitness measure being optimized. Following such approach could allow for

a richer analysis of the emergence of cooperative behaviors, e.g., by analyzing which factors of its

own/shared history of interaction make for the appearance of cooperation in highly competitive

scenarios.

Enhancing Social Simulations

One of the appealing features of our social model is the ability to test the emergence of interesting

interactions between the individuals and being able to analyze them in the perspective of different

social theories (e.g., see the discussions in Section 6.5). The main objective with our experiments in

Chapter 6 was to test the emergence of cooperative behaviors in simple resource-sharing scenarios.
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There are however some developments to the current experiments that could make our social

simulations more interesting. For example:

• our current simulations do not model explicit cooperation, i.e., our agents do not explicitly

choose (by means of action selection) to cooperate with other members of their group, we

rather examine whether they are considerate with each other in terms of resource sharing.

Having explicit cooperative behaviors (e.g., in the sense of the prisoner’s dilemma (Rapoport

and Chammah, 1965)) can allow us to perform a more formal analysis of the impact of our

social reward features in the behaviors of the agents and group fitness attained, and also

formally relate the optimized strategies as evolutionary stables strategies as defined within

EGT (Maynard Smith and Price, 1973);

• we can also design more complex scenarios, meaning larger environments with more (and more

complex) agents interacting with each other. Specifically, we can extend our simulations

so that the agents have more behaviors available where each agent can contribute to the

enhancement of the social group in different ways. Together with the development of CCEAs,

we could observe the emergence of specializations among populations of agents and thus yield

more elaborate interactions therein.

Emotions in MAS

Recall that in Chapter 4 we proposed a set of emotion-based reward features inspired by appraisal

theories of emotions. Throughout evolution emotions evolved due to their adaptive advantage in

social contexts (de Waal, 2008; Oatley and Jenkins, 2006). As discussed in Sections 4.2 and 5.4.2,

we did not consider the so-called “social dimensions” in our models because single agent scenarios

did not allow the agents to take considerations about their social context. Having a more formal

and complex social model would then allow us to integrate the emotion-like reward features into

the multiagent simulations. In turn, this would allow us to assert the impact of emotions for the

cooperation of groups of agents, thus extending existent work in MAS (e.g., Nair et al., 2005).

7.3 Thesis Summary

In this thesis we addressed problems within the computational framework of RL. We adopted the

IMRL framework as a testbed for our approach inspired by information processing mechanisms

commonly found in natural organisms. We specifically focused on the importance of emotions as

an evaluating and coping mechanism for humans and other animals and also on how people interact

with each other within their social context.

In Chapter 1 we introduced and motivated the general problem we were trying to solve and

advanced our hypothesis on how to solve it. Chapter 2 described the computational framework of
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RL and IMRL and detailed the technical challenges that each pose, thus posing open questions to

be addressed throughout the thesis. Because most of the contributions herein relate to emotions,

Chapter 3 provided theoretical background on the importance of emotions in nature and introduced

the area of AC, describing related research on using emotions to improve the performance of

learning agents. The following three chapters detailed the work from which our contributions

result: in Chapter 4 we introduced our approach for emotion-based reward design inspired by the

way humans and other animals appraise their environment in nature; in Chapter 5 we examined the

importance of emotions for the performance of learning agents by analyzing their emergence within

IMRL; in Chapter 6 we provided the first steps towards extending the previous results into MAS

within IMRL by designing reward inspired by the way humans signal socially-aware behaviors.

Having into account the results of our experiments and all the discussion throughout the thesis,

we conclude that by embedding into artificial agents processing mechanisms that relate to the way

humans and other animals interact with their natural environment, agents come to benefit from

the same kinds of survival and adaptive skills that have been shaped by evolution since the origins

of time. We therefore contributed to build more autonomous, robust and flexible learning agents.
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In the main chapters of the thesis we have discussed some approaches to reward design based

on natural processing mechanisms. In this chapter we take a different approach by considering

a mechanism based on classical conditioning that alleviates some of the problems discussed in

Section 2.3.1. Classical conditioning is a behaviorist paradigm that allows organisms to acquire

predictive associations between stimuli in the environment whenever co-occurrences between them

are frequent. In this chapter we propose a novel associative metric based on classical conditioning

that, much like what happens in nature, identifies associations between stimuli perceived by a

learning agent while interacting with the environment1.

We use an associative tree structure to identify associations between the perceived stimuli and

measure the degree of similarity between states in RL scenarios. Our approach provides a state-

space metric that requires no prior knowledge on the structure of the underlying decision problem

and which is learned online, i.e., while the agent is learning the RL task itself. We combine

our metric with Q-learning, generalizing the experience of the agent and improving the overall

learning performance. We illustrate the application of our method in several problems of varying

complexity and show that our metric leads to a performance comparable to that obtained with

other well-studied metrics but which require full knowledge of the decision problem. We conclude

the chapter by analyzing the impact of our metric in typified conditioning experiments, showing

that combining our associative metric with standard TD(0) learning leads to the replication of

common phenomena described in the classical conditioning literature.

A.1 Introduction

Associative learning is a paradigm from the field of behaviorism that posits that learning occurs

whenever a change in behavior is observed (Anderson, 2000). It comprises a set of simple mecha-

nisms that allow animals to avoid harm and seek resources, and even simpler organisms to adjust

their behavior according to associations detected between events in the environment (Anderson,

2000; Cardinal et al., 2002). Classical conditioning is one of the best-known associative learn-

ing paradigms. It is one of the most basic survival tools found in nature that allows organisms to

expand the range of contexts where some of their already-known behaviors can be applied. By asso-

ciating co-occurring stimuli from the environment, the organism can activate innate phylogenetic

responses (e.g., fight or flight responses) to new and previously unknown situations (Anderson,

2000).

In this chapter we leverage associative mechanisms based on the classical conditioning paradigm

to RL problems. As discussed in Section 2.2.3, many classical RL methods, such as Q-learning,

allow the agent to successively estimate how good each action is in every state, eventually conveying

to the agent the information necessary to select only the best actions in all states. This typically

1Part of the contributions within this chapter can be found in (Sequeira et al., 2013).
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requires the agent to experience every action in every state a sufficient number of times (Sutton

and Barto, 1998). This need for “sufficient” visits to every state-action pair is often impractical,

particularly in large environments, and several general approaches have been proposed to mitigate

this need, relying mostly on function approximation (Szepesvári, 2010) or state abstractions (Li

et al., 2006).

However, certain scenarios present some particular structure that can be leveraged by the

learning algorithm to improve the learning performance—namely, by alleviating the requirement

of sufficient visits to every state-action pair. For example, in scenarios where the state is described

by a finite set of state-variables (i.e., where the state is factored), it is possible to leverage this

structure to improve efficiency of RL methods (Guestrin et al., 2002; Kearns and Koller, 1999).

Our approach follows the classical conditioning paradigm and identifies associations between

stimuli perceived by a learning agent during its interaction with the environment. Given a learning

scenario with a factored state space, we use a pattern mining technique to build an associative

tree that identifies the occurrence of frequent patterns of state-variables (henceforth referred as

stimuli) (Sequeira and Antunes, 2010). These associations are similar in spirit to those that natural

organisms identify in their interaction with the environment, and are used by the agent to build an

associative metric that identifies two states as being “close” if they share multiple/frequent stimuli.

This metric is learned online and then combined with Q-learning. The proposed method improves

the learning performance of our agents by using current information to update the Q-values of

states that are considered similar according to the associative metric.

The main contribution of our approach is to provide a general-purpose state-space metric that

requires no prior knowledge on the structure of the underlying decision problem. Furthermore,

the associative tree and the similarity metric are both learned online, i.e., while the agent is

learning through successive interactions with its environment. We illustrate the application of our

method in several factored Markov decision processes (MDPs) of varying complexity and show that

our metric leads to a performance comparable to that obtained when using well-studied metrics

from the literature (Balkenius and Morén, 1998; Ferns et al., 2004). Finally, and because we

draw inspiration from the classical conditioning paradigm, we further explore the validity of our

approach by combining the associative metric with the TD(0) algorithm (Sutton and Barto, 1987)

in typified conditioning experiments. We analyze the appearance of several learning phenomena

associated with classical conditioning which are observed in nature (Balkenius and Morén, 1998).

A.2 Classical Conditioning

While measuring the salivation level of dogs when tasting meat powder, Pavlov (1927) observed

that after a few measurement sessions, the animals started to salivate as soon as he entered the

test room, before feeding the animals. This allowed the discovery of a behavioral phenomenon
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Figure A.1: Example of the classical conditioning paradigm in a dog, inspired by Pavlov’s experi-
ments.

known as classical (or Pavlovian) conditioning (Anderson, 2000).

Figure A.1 illustrates a typical setting for a classical conditioning experimental procedure. In a

first phase, known as initial pairing or training, an organism’s biologically significant unconditioned

stimulus (US) is paired with a neutral, biologically meaningless stimulus, called the conditioned

stimulus (CS) (Anderson, 2000; Pavlov, 1927). The US, such as food or an electrical shock, reflex-

ively evokes innate, automatic unconditioned responses (UR), for example, salivating or freezing.

The neutral CS can be any event that does not result in an overt behavioral response from the

organism under investigation, like the sound of a bell, a light or even a person. In a second phase

(testing), and after a few pairings between the US and CS, have occurred, the experimenter mea-

sures the level of response from the organism when exposed to the CS alone, with no US being

presented. The experimenter typically observes a change in response from the organism in the

presence of the CS, which now evokes a conditioned response (CR) similar to the UR evoked by

the US. Following the example in Figure A.1, the presence of Pavlov alone made the dogs start

salivating in anticipation of food delivery. This change in response is due to the development of

an association between a representation of the CS and one of the US. This is the main idea behind

Pavlov’s stimulus substitution theory (Pavlov, 1927), where the CS “substitutes” the US in evoking

the reflexive response.

The evolutionary purposes behind this associative mechanism are the ability of organisms in

augmenting the space of contexts where to apply some advantageous response and to anticipate the

biological significance of co-occurring events (Cardinal et al., 2002). By determining associations

between stimuli in the environment, animals are able to:

1. recognize contexts (states) of the environment and thus anticipate rewards or punishments

and consequences of behavior that are similar to those observed in previous interactions;

2. integrate information from previous observations with new, never before experienced stimuli.

Our learning approach follows these ideas from classical conditioning and applies them to RL

problems by:

1. spreading action and reward information (the Q-values) between similar states;
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2. integrating information in new, unknown states, from the Q-values of previously experienced

similar states.

A.3 Background

In this section we introduce the necessary technical background on factored MDPs and learning

with spreading functions, all on which we base our approach for the associative metric.

A.3.1 Learning with Spreading

The need for infinite visits to every state-action pair is unpractical in many situations, and several

general approaches have been proposed to mitigate this need. We adopt a simple technique pro-

posed in (Ribeiro and Szepesvári, 1996), where Q-learning is combined with a spreading function

that “spreads” the estimates of the Q-function in a given state to neighboring states. Formally,

given a similarity function σt(x, y) that measures how close two states x and y are, the Q-learning

with spreading update is given by

Q̂(x, at)← (1− αt)Q̂(x, at) + αtσt(x, xt)
(
rt + γmax

b
Q̂(xt+1, b)

)
. (A.1)

As discussed in (Ribeiro and Szepesvári, 1996), convergence of Q-learning with spreading to the op-

timal Q-function can be guaranteed as long as the spreading function σt converges to the Kronecker

delta-function at a suitable rate.2

A.3.2 Learning in Factored MDPs

In many MDPs the state can be described by a finite set of state-variables known as factors. In

such cases, the MDP is referred to as a factored MDP where we can denote by X a finite set of

states that can be factored as X = X1 × . . . × Xn. Each factor Xi can take on values xi ∈ D(Xi)

where D is a finite domain. Let us further refer to an element x = (x1, . . . , xn) ∈ X as a state and

to an element xi ∈ Xi as a stimulus.

In the context of our study we consider stimuli in domains of categorical nominal data, i.e., vari-

ables that describe discrete values with no ordering between them. One aspect about factored

MDPs that we explore is that often not all the factors contribute to the state or the reward in the

next time step (Kroon and Whiteson, 2009). In such cases it is possible to leverage the structure

of the factored MDP to improve the efficiency of RL methods (Guestrin et al., 2002; Kearns and

Koller, 1999). This is particularly important if many of the state-variables are irrelevant for the

task that the agent must learn, and it is possible to improve the learning performance by identify-

2Actually, the algorithm described in (Ribeiro and Szepesvári, 1996) also considers spreading across actions. In
this study we consider only spreading across states, as this is sufficient for our purposes.
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ing such irrelevant state-variables and allowing the learning agent to focus only on those that are

relevant (Jong and Stone, 2005; Kroon and Whiteson, 2009).

A.4 Associative Metric for RL

In this section we introduce a new associative metric to be used in factored MDPs. For that we

combine the classical conditioning paradigm and the RL framework introduced in the previous

section, as a mean to improve the performance of a learning agent.

To better explain our learning procedure let us consider a behavior phenomenon associated with

the classical conditioning paradigm known as secondary conditioning or sensory preconditioning as

an example to follow throughout this section. These phenomena take place when a CS (CS1) that

is trained to predict some US is paired with a different CS (CS2), either before or after CS1 and US

are paired. By means of this secondary association, CS2 also becomes associated with the US value

through its association with CS1, and ends up evoking the same kind of CR (Balkenius and Morén,

1998). Figure A.2 illustrates an example of the secondary conditioning phenomenon, where, for

explanatory purposes, we consider that the stimuli come from different perceptual modalities.

shock freezing

light freezing

sound

…

CS1

CS2

US UR

CR

ti
m
e

light freezingsound

CS1 CS2 CR

…

Figure A.2: Example of a secondary conditioning phenomenon.

Biologically speaking, the objective is that the agent, after being trained with sound-shock

pairings followed by sound-light pairings, is able to predict the presence of the shock whenever it

perceives the light. In a more computational perspective, the objective of the learning procedure is

to discover that the environmental states involving the light and the shock are somehow “similar”.

In this manner, both states should have similar “value”, and executing similar actions in those

states should lead to similar outcomes.

We can therefore decompose the agent’s problem into two sub-problems: one of identifying

similar states and another of using the information gathered in some states in states that are

similar. Sections A.4.1 and A.4.2 explain our approach in solving the first subproblem, where

we propose the combination of a sensory pattern tree and a new associative metric to measure

the distance between similar states. In Section A.4.2 we also explain how this metric can then

be combined with Q-learning with spreading in factored MDPs to improve the performance of a
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Figure A.3: The steps involving the construction of an associative sensory tree after an initial
observation of state x1 = (CS1,US, ∅), where the sensory itemsets associated with each new node
are explicitly indicated. The updated and inserted nodes at each step are marked with a dashed
line. See text for detailed explanation.

learning agent.

A.4.1 Sensory Pattern Mining

As we have seen in Section A.2, one of the fundamental aspects in the classical conditioning

paradigm is the ability of individuals to establish associations between the stimuli they perceive.

Stimuli that are frequently perceived together are more likely to lead to similar value and outcome

than stimuli that seldom co-occur. Departing from this idea, our learning agents can later use such

associations to determine how “similar” two states are. To determine such associations we follow

the method from (Sequeira and Antunes, 2010), where a sensory pattern mining technique identifies

associations between stimuli occurring in the agent’s perceptions online, while the agent interacts

with its environment. This method identifies such associations by incrementally constructing

an associative sensory tree, using a variation of the FP-growth algorithm (Han et al., 2004) for

transactional pattern mining.

Building the Associative Tree

Let us denote any possible subcombination of stimuli s = (xi1 , . . . , xik) with k <= n as a sensory

itemset. We assume without loss of generality that the sets Xi, i = 1 . . . , n, are ordered sets.3

Following the example provided in the beginning of this section, let us consider states in the

form X = X1 × X2 × X3, where X1 = {CS1, ∅}, X2 = {US, ∅} and X3 = {CS2, ∅} are binary

variables and symbol ∅ represents the absence of a stimulus in the observed state. Figures A.3

and A.4 shows the steps involving the construction of the tree when the agent perceives the state

x1 = (CS1,US, ∅) (sound-shock pairing) from the environment followed by state x2 = (CS1, ∅,CS2)

3We note that the specific order of the elements Xi ∈ X is not important, as long as it remains fixed throughout
learning. This is a requirement of the tree construction algorithm that guarantees a minimal representation (Sequeira
and Antunes, 2010).
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CS1 : 2 US : 1

ROOT

US : 1 CS2 : 1

CS2 : 1

depth = 0

depth = 1

depth = 2

Figure A.4: Updated tree after observing state x2 = (CS1, ∅,CS2). The depth of each node is
explicitly indicated. See text for detailed explanation.

(sound-light pairing). The general sensory pattern mining algorithm in (Sequeira and Antunes,

2010) dynamically builds a sensory tree as follows:

• At every time-step t, the agent observes state X(t) = (x1(t), . . . , xn(t));

• For each state X(t), the algorithm updates the tree by keeping at each step two lists: an

“open” list, initially containing all elements xi(t) to be inserted into the tree; an “ancestor”

list containing the nodes in the tree updated so far for the current state insertion, which

initially only contains the ROOT node (see Figure A.3);

• The algorithm then picks one element xi(t) from the “open” list at a time, ignoring absent

elements (∅). For each element, a child node s is created for each node in the “ancestor” list,

with counter n(s) = 1. If the child node already exists, its counter is incremented by 1 (see

Figure A.4). Each new node in the tree represents a sensory itemset, i.e., a subcombination

of stimuli within X(t). Therefore, the nodes’ counters represent the number of times the

corresponding itemset was observed by the agent so far.

Measuring the Degree of Association

At each time, one can measure the degree of association between the stimuli in some sensory itemset

s by using the Jaccard index (Jaccard, 1912). Given the sensory itemset s = (xi1 , . . . , xik), let

d(s) and n(s) denote, respectively, the depth of and the counter associated with the corresponding

node in the tree. For nodes not directly below the root node, the Jaccard index associated with s

is given by

J(s) =
n(s)∑

sd
(−1)d(sd)+1n(sd)

, (A.2)

where the summation is taken over all nodes sd in the dependency tree of s, i.e., the sensory subtree

containing all nodes in the “ancestor” list obtained after introducing itemset s in the tree.
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Following our example, we can now calculate the Jaccard index of state x1 by solving (A.2):

J(s) =
n(CS1,US, ∗)

n(CS1, ∗, ∗) + n(∗,US, ∗)− n(CS1,US, ∗)
=

1

2

As expected, the index is inferior to 1, as stimulus CS1 also appears in x2, where the US is absent.

A.4.2 Associative Metric for Factored MDPs

To define a metric using the sensory tree described in the previous section, we introduce some

additional notation that facilitates the presentation. For any state x ∈ X , let S(x) denote the

set of all sensory itemsets associated with x which, as we have seen, represents the set of all

subcombinations present in the dependency tree of x.

We are now in position to introduce our state-space metric. Given the sensory tree at time-step

t we consider the distance between two states x and y as

dA(x, y) = 1−
∑

s∈S(x)∩S(y) J(s)∑
s∈S(x)∪S(y) J(s)

. (A.3)

Mapping dA is indeed a proper metric, as it can be reduced to the Tanimoto distance (Lipkus,

1999) between two vectors associated with x and y, each containing the Jaccard indices for the

sensory patterns associated with x and y, respectively.

Having defined the associative metric we can tackle the first problem defined in the be-

ginning of the section and determine whether two states are similar or not. We can define

S(x1) = {(CS1,US, ∗), (CS1, ∗, ∗), (∗,US, ∗)} and S(x2) = {(CS1, ∗,CS2), (CS1, ∗, ∗), (∗, ∗,CS2)}.

The distance between x1 and x2 can then be calculated from (A.3) as

dA(x1, x2) = 1− 1

0.5 + 0.5 + 1 + 0.5 + 0.5
=

2

3

This means that the degree of similarity between the two states is 1/3. It follows that our proposed

model supports the secondary conditioning phenomena described above: the light and foot shock

stimuli have some degree of association by means of the sound stimulus, although CS2 and US were

never observed together by the agent.

Now that we are able to identify similar states we describe how the metric in (A.3) can be

combined online with Q-learning with spreading. In the experiments reported in this chapter, we

use two different spreading functions:

• for the computational experiments in Section A.5.1, we use σ1,t(x, y) = e−ηtdA(x,y)2 ;

• for the biological experiments in Section A.5.2, we use σ2,t(x, y) = (1− dA(x, y))ηt(y).

In both cases, ηt is a slowly increasing value that ensures that σt approaches the Kronecker delta

function at a suitable rate, and dA is the metric defined in (A.3). As seen in Section A.3.1, at each
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time step t the spreading functions σi,t use information from the current state X(t) to update all

other states y ∈ X , depending on the similarity between X(t) and y calculated according to the

structure of the sensory tree at t.

A.5 Experimental Results

In this section we describe several experiments carried out in order to validate our method from

both computational and biological perspectives. The main results stemming from the experiments

are analyzed and discussed.

A.5.1 Computational Experiments

In this set of computational experiments we show the potential of combining the proposed associa-

tive metric with spreading in Q-learning, providing a boost in the agent’s performance in several

factored MDP problems.

Methodology

To better assess the applicability of our method, we applied Q-learning with spreading using σ1t

defined earlier and our associative metric in several factored environments, with a state-space that

could be factored into between 1 and 4 factors, with a number of states between 20 and 481, and

5 actions. The transition probabilities between states and the reward function were generated

randomly. We present the results obtained in 4 of those environments having, respectively, 20

states (5 × 4), 60 states (5 × 4 × 3), 120 states (5 × 4 × 3 × 2) and 481 states (9 × 7 × 7, where

the dimension and number of factors was chosen randomly). In all scenarios we use γ = 0.95 and

uniform exploration.

We compare the performance of standardQ-learning (with no spreading) with that ofQ-learning

with spreading using several metrics. In particular, we compare 3 metrics:

• A local metric, d`, computed from the transition probabilities of the MDP. Given two states

x, y ∈ X , d`(x, y) corresponds to the average number of steps necessary to transition between

the two states. The distance between states that do not communicate was set to an arbitrary

large constant.

• A simplified bisimulation metric, db (Ferns et al., 2004). The distance db is a simplified

version of the bisimulation metric that relies on the total variation norm proposed in (Ferns

et al., 2004, Section 4.2).4 We note that this is a theoretically sound metric that, however,

requires complete knowledge of both P and r.

4To simplify the computation of this metric, we treat each state as an equivalence class. We refer to (Ferns et al.,
2004).
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(a) Random MDP with 20 states (2 factors).
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(b) Random MDP with 60 states (3 factors).
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(c) Random MDP with 120 states (4 factors).
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(d) Random MDP with 481 states (3 factors).

Figure A.5: Performance ofQ-learning with spreading in different factored scenarios, using different
metrics with varying knowledge of the MDP parameters.

• The associative metric dA described in Section A.4.2.

For each of the test scenarios, we ran 10 independent Monte-Carlo trials, and evaluated the learning

performance of the different methods by comparing the speed of convergence to the optimal Q-

function. The parameter ηt was optimized empirically for each metric in each environment so as

to optimize the performance of the corresponding method.

Results

The average results are depicted in Figure A.5. We note, first of all, that our method always

outperforms both standard Q-learning and the local metric. The fact that our method learns

faster than standard Q-learning indicates that, in these scenarios, the associations between stimuli

provide a meaningful way to generalize the Q-values across states. It is also not surprising that

our method generally outperforms the local metric, since it implicit assumes that there is some

“spacial” regularity that can be used to generalize Q-values across neighboring states. However,

this is generally not the case, meaning that in some scenarios the local metric does not provide a

significant improvement in performance—see, for example, Figures A.5(a) and (d).

The bisimulation metric, although simplified from (Ferns et al., 2004), is a metric that takes

into consideration both the transition structure and the reward function of the MDP. As such, it

is not surprising that it allows for good generalization. The fact that our metric performs close
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to the bisimulation metric in several scenarios—see, for example, Figures A.5(a), (b) and (c)—is,

on the other hand, a significant result, since our metric is learned online, while the agent interacts

with the environment and so uses no prior knowledge on the MDP.

Finally, we note that our metric relies on the factorization of the state-space to build the

sensory tree, since the latter is built by associating state-variables that co-occur frequently. In a

non-factored MDP, our method would essentially reduce to standardQ-learning. The reliance of our

metric on the factorization of the state-space justifies, to some extent, the result in Figure A.5(d).

In fact, this corresponds to a large MDP where the “factors” of the state-space are also large.

Therefore, not only is the problem larger and, thus, harder to learn, but also our method is able

to generalize less than in other more factored scenarios.

A.5.2 Biological Considerations

From a more biological perspective, it is important to assess whether the proposed method repli-

cates common learning phenomena observed in nature as a consequence of conditioning. As we

have seen in Section A.2, these phenomena are the result of the dynamic learning process that takes

place in classical conditioning and allows animals to change their behavior according to changes

observed in the environment. In order to evaluate the capacity of our model to emulate such

phenomena we designed a set of experiments inspired in real-world experimental procedures.

Methodology

In our experiments, the state of the agent corresponds to the stimuli generated according to the

schedule of the experiment, possibly including the US, the CS, and other stimuli relevant for

that particular experiment. Whenever US is presented, the agent receives a reward of +1, and

0 otherwise. Our agent learns the value of each state using TD(0) algorithm (Sutton and Barto,

1987), which is equivalent to using Q-learning and setting γ = 0, since we are concerned with

immediate values, and having only one action available, since we are interested only in the value

of the states. We then combine TD(0) with our associative metric as described in Section A.3.1.

Because we give positive reward whenever stimulus US is presented, the value learned for each

state can be interpreted as the activation probability of the CR. We use spreading function σ2t

defined in Section A.4.2. Both during training and testing, the presentation of stimuli to the agent

took place in cycles of 60 steps. The particular stimuli presented in each phase of the different

experiments are detailed below. The presentation of the conditioned/unconditioned stimuli is

intertwined with intervals of 70 to 100 time-steps during which either no stimuli or (depending on

the experiment) only contextual stimuli/clues are present.
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(b) Reacquisition.

Figure A.6: Evolution of the probability of CR activation for the Acquisition, Extinction and
Reacquisition experiments for both the conditioned (Associative) and standard TD(0) agent.

Results

Acquisition and extinction are the most basic and fundamental phenomena within the classical

conditioning paradigm. Acquisition represents the ability of a CS to evoke a CR after some number

of CS+US pairings had occurred. Extinction occurs after acquisition and is defined as the loss of

the ability of the CS to elicit the CR (Anderson, 2000; Balkenius and Morén, 1998). As we can see

from Figure A.6(a) our model correctly reproduces both phenomena, showing a high probability

of activation when only the CS is presented after the CS+US pairing phase. This probability

eventually decreases to zero, corresponding to the extinction phenomena since CR is not observed.

For comparison, we also present the results obtained with standard TD(0). As expected, the state

“only CS’’ is treated as a completely new state and acquires no value from the previous observations

of US.

Spontaneous Recovery is a phenomenon which occurs some time (for example a day) after

a series of extinction trials, when the body shows some recovery of the CR when exposed to the

CS, meaning that its value (and the association with the US) was not forgotten (Anderson, 2000).

Reacquisition occurs when a second acquisition phase is presented to the individual after

extinction has taken place (Pavlov, 1927). The number of CS+US pairing trials necessary for the

CS to evoke again the CR decreases with the number reacquisition phases occurred (Balkenius and

Morén, 1998; Bouton, 2002). Our model also reproduces this effect, as can be seen from the CR

activation probability during the second CS presentation phase in Figure A.6(b). As desired, the

starting CR activation level is higher in the second CS+US acquisition phase than it was in the

first one. For reference, we again show the performance of the standard TD(0) algorithm.

Blocking is the ability of a previously trained CS (CS1) to block another CS (CS2) from
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(b) Secondary conditioning.
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(c) Sensory preconditioning.
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Figure A.7: Evolution of the probability of CR activation for the Blocking, Secondary conditioning,
Sensory preconditioning and Reinstatement experiments for the conditioned (Associative) TD(0)
agent.

predicting the same US. Because CS1 is already associated with the US, CS2 is unable to form an

association and predict its value when paired together with CS1 and US. Therefore no CR will occur

in the presence of CS2 alone (Balkenius and Morén, 1998). As can be seen from Figure A.7(a), our

model does not reproduce this effect. This is due to the fact that the reward given to the agent

when the US is presented is independent of the presence of other stimuli. Because of that, CS2

also benefits from the value of US and thus reproduces CR activation.

Secondary conditioning and sensory preconditioning, are two behavioral phenomena

presented in Section A.4. The proposed metric allows the reproduction of these kinds of phenomena.

To better illustrate this result in a more experimental procedure, Figures A.7(b) and (c) show that

our model reproduces both conditioning phenomena through the CR activation curve when only

CS2 is presented.

The next set of experiments is focused in conditioning phenomena that occur as a consequence

of the context where the procedures take place. Due to secondary conditioning and relapse mech-

anisms, some animals come to evoke CRs in the presence of contextual or background clues from

where acquisition took place (Bouton, 2002). Such clues can be generated from different perceptual

modalities like sounds, colors, etc.5

Reinstatement is a phenomenon that causes the CS to evoke a CR after being extinguished,

by presenting the US alone a certain number of times after extinction (Bouton, 2002). This occurs

because contextual clues are being provided along with the US whenever acquisition is taking place.

This way, when the US is presented alone, the context gains the power of producing a CR, even

5These results are based on the experiments reported in (Bouton, 2002).
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(a) ABA renewal.
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(b) ABA renewal reduction (A).
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(c) ABA renewal reduction (B).

Figure A.8: Evolution of the probability of CR activation for the ABA renewal, ABA renewal
reduction (A) and ABA renewal reduction (B) experiments.

when CS is again presented. Thus, CR is being produced via context and not via CS (Bouton,

2002). As we can see from Figure A.7(d), our model reproduces this phenomenon by showing CR

activation in the presence of CS after the US is presented alone (during the experiment, contextual

stimulus CA is always presented). We note that, unlike with the previous experiments, we include

in these graphs the intervals between the presentation cycles, where only a contextual stimulus

(e.g., CA) is presented. This is important because extinction between cycles is already occurring,

as we can see from the descending probability curves between the presentation peaks.

ABA Renewal is a conditioning procedure in which CS+US acquisition occurs in a certain

context (CA), extinction occurs in a different context (CB), and testing occurs again in the initial

context (Bouton, 2002). One could expect that because CS was previously extinguished, it should

no longer produce a CR when presented again in the first context. However this is not the case, as

the contextual elements where extinction took place are different from the ones where acquisition

took place. Therefore, CA “renews” the value of CS and still evokes a CR, as the animal is able

to discriminate between the places where the US was present or absent (Bouton, 2002). From

Figure A.8(a) it is clear that our model supports such phenomenon. Although the extinction in

CB made the CS value to decrease, it did not extinguish it completely, showing a CR activation

curve when the CS occurs again in CA.

ABA Renewal Reduction (A): renewal effects can be reduced in several ways. One of them

is to include during the test phase occurring in CA contextual elements from CB, the context where

extinction took place (Bouton, 2002). Figure A.8(b) shows that our model produces this effect,

showing a slightly lower activation level when CS is presented in CA without contextual clues from

CB.
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(a) ABC Renewal.
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(b) AAB renewal.

Figure A.9: Evolution of the probability of CR activation for the ABC Renewal and AAB renewal
experiments.

ABA Renewal Reduction (B): another way of reducing the renewal effect in CA is to present

the US in CB where the extinction took place, after extinction. This way, the animal somehow

shifts the attribution of US occurrence to context CB, while diminishing the CR activation in CA.

Figure A.8(c)

ABC Renewal is another renewal phenomena where testing occurs at a different context (CC

than those where acquisition (CA) and extinction (CB) took place. In such case, one can still

observe CR responding to a completely new context, although such responding is lower than in

the ABA renewal case (Bouton, 2002). Again this is due to the fact that the animal associates

extinction to context CB, and because of that, CS still evokes CR activation when presented alone

in CC. Figure A.9(a) shows that our conditioned agent produces such effect, showing a slight CR

activation level when in context CC. Also as desired, this degree of responding is lower than in the

ABA renewal case (Figure A.8(a)).

AAB Renewal occurs when testing occurs in a different context (CB) from where both acqui-

sition and extinction occurred (CA). This procedure reveals that the CS, although extinguished in

CA is still capable of evoking a CR in a different context (although more difficult to detected than

ABA or ABC renewal cases), which is another proof that unlearning did not occur (Bouton, 2002).

To demonstrate this effect in our model we had to restrict the range of CR activation to 0.01, as

depicted in Figure A.9(b). As desired, our agent showed a small degree of responding when in

context CB, showing that the ability of CS in evoking a CR was not completely forgotten during

extinction, although such degree of activation would be despised in real settings.

A.6 Discussion

We conclude this section with some relevant observations concerning our proposed method. First

of all, the size of the associative sensory tree exhibits a worst-case exponential dependence in the

number of state-factors (not states). However, aside from the memory requirements associated

therewith, the structure of the tree is such that the computation of the distance is linear in the

number of factors, which is extremely convenient for the online processing of distances. Moreover,
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the adopted tree representation can safely be replaced by other equivalent representations, such as

the FP-tree (Han et al., 2004) that, while more efficient in terms of memory requirements, render

the computation of the distance computationally more expensive, as they typically imply explicitly

searching the (much smaller) tree.

Secondly, we note that the maximal size of the tree is only achieved when all the state space has

been explored. However, it is in the early stages of the learning process—when little of the state

space has been explored—that the use of associative metric may be more beneficial. In other words,

when the size of the tree approaches its maximum size, the contribution of the associative metric

to learning is generally small. Therefore, limiting the tree size to some pre-specified maximum or

using tree-pruning techniques as those discussed in (Sequeira and Antunes, 2010) should have little

impact on the performance of our proposed method.

Thirdly, and independently of the representation used, our approach does not require the learn-

ing agent to know the set X of possible states in advance. In fact, the agent can build an estimate

set X̂ that contains all states visited so far. Every time the agent enters a new state x, it can

“add” it to its current estimate X̂ and modify Q̂ to accommodate for the new state. The Q-values

associated with the new state can be initialized using information from similar (known) states, gen-

eralizing the information from these states to the new state. Therefore, our model can to reproduce

classical conditioning behaviors observed in nature and already discussed in Section A.2:

1. anticipate consequences of behavior from previous interactions in similar states;

2. integrate information from previous observations with new, never before experienced states.

This ability to generalize experiences to states never visited before leads not only to an im-

proved learning performance, as illustrated in Section A.5.1, but also to the appearance of several

phenomena that can be matched to those observed in typical conditioning experiences in nature, as

discussed in Section A.5.2. Furthermore, we note that the sensory tree update algorithm explained

in Section A.4.1 runs online and interleaved with the agent’s learning in the MDP. This means

that as time goes by and the tree structure changes, so the distance between the several observed

states will change by means of the associative metric. As a consequence, the spreading makes the

agent’s model of the environment to dynamically change according to its experience with it.

A.6.1 Future Work

As we have seen, the learning mechanism proposed in this chapter builds an association tree of

state-variables. It is then expected that, in more realistic scenarios involving a larger state space

with more state variables considered, the proposed data structure may require a large amount of

data in memory to contain the associations. Tests will be carried out to measure the efficiency

of the proposed state-distance metric when operating in such conditions. A validation procedure
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could be performed that compares such computational demand with the degree of generalization

provided by using such method.

Also, a future study can compare the proposed metric with other generalization methods to test

the robustness of the solution being proposed. In a more biological perspective, it is be important

to compare the proposed conditioning model with other models developed for the same effect, for

example by performing more profound tests as the ones performed in (Balkenius and Morén, 1998).

A.7 Summary

In this chapter we deviated from previous approaches within this thesis relating reward design

for IMRL and proposed a new state-space associative metric for factored MDPs that draws inspi-

ration from classical conditioning in nature. Our metric relies on identified associations between

state-variables perceived by the learning agent during its interaction with the environment. These

associations are learned using a sensory pattern-mining algorithm and determine the similarity be-

tween states, thus providing a state-space metric that requires no prior knowledge on the structure

of the underlying decision problem. The sensory pattern-mining algorithm relies on the associative

sensory tree, that captures the frequency of co-occurrence of stimuli in the agent’s environment.
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In this chapter we include the results and discussion on other experiments that were performed

in the preparation of this thesis. They aid to support and further illustrate the outcome achieved

during the experiments described in the main document.

B.1 Universal Parameter in the Pac-Man Scenarios

In this experiment we assess the universality of the parameter vectors optimized in the foraging

experiments of Chapter 4 by using such parameterization in the Pac-Man scenarios described

in Section 5.3.2. The objective is to test our hypothesis for the non-universality of particular

parameter vectors, especially in cases of scenarios which task demands very different strategies

from the agents.

B.1.1 Methodology

We test the universal agent discovered in the experiments in Section 4.3.6 in the 4 Pac-Man scenar-

ios. The universal agent thus uses a parameter vector θU = [0.0, 0.0,−0.3, 0.0, 0.7]
> in conjunction

with the emotion-based reward features defined in Chapter 4. The methodology is the same as

the foraging experiments described in Section 4.3.2, i.e., the agent uses prioritized sweeping with

parameters α = 0.3, γ = 0.9, λε = 0.9999, λn = 1.001, a backup limit of 10 state-action pairs and

a minimum priority threshold of 10−4. We generate a total of N = 200 histories as independent

Monte-Carlo trials for the reward function r(θU ) where we simulate the agent for T = 100, 000

learning steps.

B.1.2 Results and Discussion

Table B.1 compares the performance of the universal agent, a fitness-based agent and the optimal

agent for each Pac-Man scenario using the emerged reward features in the experiment in Section 5.2.

As we can see, the universal parameter vector, that showed to be “good enough” for the foraging

scenarios, performs very poorly when put in scenarios which dynamics are very different from

those environments where it was optimized. In the case of the Pac-Man scenarios, the universal

agent performed much worse than the agents being guided solely by the fitness-based, external

reward. This means that in these scenarios, the specific “emotional motivation” provided by the

configuration of the parameter vector θU was in fact detrimental for the agent’s fitness attainment.

In a sense, this configuration made the agent to incorrectly appraise its environment and weight

the different aspects of its environment in a maladaptive fashion, ultimately leading it to very poor

performances.

This result thus reinforces our claim that there are no universal parameter vectors that perform

well—even when compared to the fitness-based agent—in all kinds of scenarios with all kinds of
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Table B.1: Comparison of the performance of the universal emotion-based agent and the optimal
and fitness-based agents in each Pac-Man scenario. The results correspond to averages over 200
independent Monte-Carlo trials.

Scenario
Mean Fitness

Universal Optimal Fitness-based

Power-Pellet Scenario −4, 303.8 ± 135.8 1, 265.0 ± 424.9 −1, 902.6 ± 183.5

Eat-all-Pellets Scenario −591.5 ± 44.1 1, 005.5 ± 207.1 25.3 ± 215.5

Rewarding-Pellets Scenario 1, 118.6 ± 102.1 4, 343.7 ± 210.1 3, 060.8 ± 208.6

Pac-Man Scenario 126.7 ± 37.4 1, 223.6 ± 117.5 862.2 ± 95.7

different challenges presented by them. For each scenario we have to optimize the specific config-

uration of the parameter vector, especially in cases where the task demands different strategies to

be solved.

B.2 Multiagent Foraging Experiments

This set of experiments follows those described in Section 6.4 in the context of social intrinsic reward

design. We design a series of experiments within a multiagent context of up to 3 learning agents in

foraging scenarios similar to those included in the experiments of Section 4.3. We therefore test the

impact of having larger environments where the agents can explore the existence of food resources

with a lower probability of encountering other agents. In this manner we can test the robustness

of the social intrinsic reward features proposed in Chapter 6 in scenarios with such characteristics.

In these experiments we model our agents as predators trying to eat available preys in the

environment. We abstract from the fact that, in nature, some species of predators have strict social

hierarchies or that some may not even engage in socially-aware behaviors. We rather simulate the

fact that there are resources within the environment, available for any agent to consume them, and

that agents have the choice to eat them or not at some point in time.

B.2.1 Methodology

In all the foraging scenarios, each agent k has now available 5 possible actions, Ak = {Up,Down,

Left,Right, Eat}. The directional actions move the agent deterministically to the adjacent cell in

the corresponding direction. We explicitly included an Eat action that consumes a food resource

if one is present in the agent’s current location, and does nothing otherwise.

Like the experiments reported in Section 6.4, at each time step each agent k is able to observe:

• its current (x, y) position;

• its satiation status, i.e., whether it is hungry, satisfied or full;

• whether food is present at its current location;
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• whether another agent is present at its current location. There are K−1 binary observations

of this kind, K being the number of agents in the environment;

• how many agents have consumed a food resource since k last ate.

We recall that whenever an agent consumes a food resource, it becomes full for one time step,

after which it returns to the satisfied state. Also, an agent becomes hungry if it does not consume

any resources for βmh time-steps. In all the multiagent foraging scenarios we set βmh = 30 and

the penalty for being hungry βhp = 0.15.

We again used prioritized sweeping (Moore and Atkeson, 1993) to learn an approximate (single-

agent) model of the environment that it then uses to compute an individual policy, according to

the its (perceived) reward function r̂k. We used a learning rate α = 0.3, a discount factor γ = 0.9,

a backup limit of 10 state-action pairs and a minimum priority threshold of 10−4. Each agent

follows an ε-greedy policy with a decaying exploration rate εt = λtε, with λε = 0.99995. To

compute the social group’s fitness we used the method described in Section 6.4.2 but running a

total of N = 100 independent Monte-Carlo trials of T = 100, 000 time-steps. Also, given the results

of the experiments in Chapter 6 we considered only populations of “uniform” groups, i.e., where

the parameter vectors are the same for all the agents in the group (θ∗,1 = θ∗,2 = . . . = θ∗,K).

B.2.2 Multiagent Foraging Scenarios

We follow the notation used in Section 6.4.3 to describe the scenarios but adding the prefix “For-

aging”, i.e., each scenario is identified by “A-R-S Foraging Scenario”, where A is the number of

agents, R the number of resources, S the number of start-positions in the environment.

2-1-2 Foraging Scenario: The environment for this scenario is depicted in Figure B.1.

In this scenario, two agents try to eat a rabbit that is always available in the indicated

position. Agent 1 departs from the top-left position while Agent 2 departs from the

top-right position. Whenever one agent consumes the food resource it is repositioned in

top-left, while the other agent is repositioned at top-right. Whenever the two agents try

to consume the same resource simultaneously, neither of them succeeds. The placement

of the agents thus gives an advantage to the last eating agent, as it can reach the food

source faster and allow the other to starve. Whenever the two agents try to consume

the resource simultaneously, neither of them succeeds. ♦

2-2-2 Foraging Scenario: In this scenario there are always two food resources available

in the positions indicated in Figure B.2. As before, Agent 1 departs from top-left while

Agent 2 departs from top-right. Also, whenever one agent consumes a resource, it is

repositioned in top-left and the other agent is repositioned at top-right. Also trying to

eat the same food resource simultaneously results in neither of the agents succeeding.
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Figure B.1: Environment used in the 2-1-2 Foraging Scenario. See text for details.

However, the fact that there are two food resources available allows both agents to eat

simultaneously. ♦

Figure B.2: Environment used in the 2-2-2 Foraging Scenario. See text for details.

2-1-1 Foraging Scenario: In this scenario there is always one rabbit available in the

position indicated in Figure B.3. Both agents depart from the top-right position. When-

ever one of the agents consumes a food resource they are both repositioned in that

location. In this scenario, however, Agent 1 is stronger than Agent 2 and whenever the

two agents try to consume the resource simultaneously, only Agent 1 succeeds. This

gives an advantage to Agent 1, as it can always overpower Agent 2 and allow it to starve.

♦

Figure B.3: Environment used in the 2-1-1 Foraging Scenario. See text for details.

3-1-1 Foraging Scenario: In this scenario there are three agents competing for one

food resource which is always available at the location specified in Figure B.4. All the

agents depart from the top-left position, and whenever one of the agents consumes the

food resource all are repositioned in the same departing position. The placement of

the agents makes that none of them is in advantage because they are all at the same

distance to the food resource. Like with the previous scenarios, if two or more agents

try to consume the food resource at the same time, none of them succeeds. ♦
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Figure B.4: Environment used in the 3-1-1 Foraging Scenario. See text for details.

3-1-3 Foraging Scenario: Like with the previous scenario, three agents try to eat a

food resource always available in the position indicated in Figure B.5. However, similar

to what occurred in the 3-1-3 Scenario, in this scenario the agents always depart from

different positions. There are 3 possible departing positions as indicated, located at the

top-left, top-middle-left and top-right positions. This scenario has a placement policy

similar to the 2-1-2 Foraging Scenario as the agent that just ate is placed closer to the

food resource, i.e., in the top-right position. The remaining agents are placed in the

other starting positions according to their number k within the social group, from left

to right. For example, imagining that Agent 2 eats, then Agent 1 is placed in top-left

and Agent 3 in the top-middle-left position. In this scenario we simulate a kind of

social ranking structure within the group that implicitly favors agents with the highest

numbers. ♦

Figure B.5: Environment used in the 3-1-3 Foraging Scenario. See text for details.

3-2-3 Foraging Scenario: In this scenario we used an extended version of the previous

environments which is depicted in Figure B.6. The three agents compete for two food

resources which are always available in the specified locations. Like in the previous

scenario, each agent departs from a different location, positioned at top-left, top-middle

or top-right. In this case, the agent that eats at some time goes to the top-middle

position, thus starting from an equal distance relative to both food locations, and the

other agents are positioned according to their “social rank” as described above. ♦

B.2.3 Results and Discussion

Table B.2 summarizes the results of our experiments by comparing for each scenario the overall

fitness obtained by the group of agents using the optimal parameter vector θ∗ against a group of
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Figure B.6: Environment used in the 3-2-3 Foraging Scenario. See text for details.

Table B.2: Mean cumulative group fitness attained in each scenario. In each scenario, we indicate
the optimal parameter vector θ∗,k, and the parameter set corresponding to a group of agents that
receive only the fitness-based reward.

Scenario θext θint θfit Mean Fitness

2-1-2 Foraging Scenario
θ∗,k 0.50 0.25 0.25 2, 426.3 ± 104.4

Fit. 0.00 0.00 1.00 −1, 377.4 ± 40.1

2-2-2 Foraging Scenario
θ∗,k 0.75 0.00 0.25 8, 068.6 ± 90.2

Fit. 0.00 0.00 1.00 8, 059.3 ± 74.2

2-1-1 Foraging Scenario
θ∗,k 0.50 0.25 0.25 2, 512.7 ± 75.4

Fit. 0.00 0.00 1.00 −2, 038.4 ± 95.3

3-1-1 Foraging Scenario
θ∗,k 0.25 0.50 0.25 431.5 ± 265.0

Fit. 0.00 0.00 1.00 −1, 643.5 ± 187.7

3-1-3 Foraging Scenario
θ∗,k 0.50 0.25 0.25 −41.4 ± 182.8

Fit. 0.00 0.00 1.00 −2, 443.0 ± 192.3

3-2-3 Foraging Scenario
θ∗,k 0.75 0.00 0.25 5, 213.8 ± 73.6

Fit. 0.00 0.00 1.00 4, 753.2 ± 125.4

agents receiving only fitness-based reward. The results correspond to averages of 100 independent

Monte-Carlo trials. As can be seen from the results, socially motivated agents attain greater

degrees of fitness as a group when compared to the group of agents using only the fitness-based

reward during learning. These agents are implicitly “selfish” and, combined with the structure of

the environments, this behavior typically leads one of the agents to starvation. To better illustrate

these results, Figures B.7-B.9 depict the evolution of the fitness of the social group in each tested

scenario.

In general, the results of these experiments follow the ones described in Section 6.4 for the

lever environments and show that we do not get much different results by increasing the size of

the environments used. In fact, what matters for the emergence of cooperation are the specific

“game-like” situations behind the dynamics of each environment. Generally speaking, the results

in this chapter also show that in the scenarios where the number of food resources available is less

than the number of agents in the social group, the optimal parameter vector θ∗ fairly distributes

the importance of the three reward features considered. For example, we can clearly see this effect
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(a) 2-1-2 Foraging Scenario (b) 3-1-1 Foraging Scenario

Figure B.7: Evolution of the fitness of the social group in the 2-1-2 Foraging Scenario and 3-1-
1 Foraging Scenario. Results are averages over 100 independent Monte-Carlo trials. “Optimal”
corresponds to a group of agents learning with the optimal parameter vector θ∗. “Fitness-based”
corresponds to a group of agents receiving only fitness-based reward rF , and “Random” is a group
of agents acting randomly, i.e., receiving no reward at all.

in the 2-1-2 Foraging Scenario, where the “socially-aware” agents attain a much greater fitness than

the group of “selfish” agents, as illustrated in Figure B.7(a). The usefulness of the social reward

signals can also be seen in the 3-1-1 Foraging Scenario, the only difference being the number of

agents that compete for the food resource. Because the agents start from the same position, the

fitness-based parameter vector θfit makes them compete for the resource without being able to

consume it, leading to a generalized starvation as depicted in Figure B.7(b). On the contrary, by

examining the agents’ behavior in the optimal case we can observe a “socially-aware” strategy in

which the agents feed in turns, each waiting for the other two agents to eat before consuming the

food themselves.

Having Sufficient Resources

Much like the lever experiments in which the food resources are sufficient in relation to the number

of agents within the social group, the results of the 2-2-2 Foraging Scenario and the 3-2-3 Foraging

Scenario show that “selfish” behaviors can thrive in situations where resource sharing is not needed.

However, unlike the 2-2-2-2 Scenario, the optimal parameter vectors θ∗ for these scenarios, pre-

sented in Table B.2, completely ignore φkint while giving more importance to the fitness-based

reward provided by eating food (θ∗,kint = 0). In this case, by having unlimited food resources avail-

able to both agents, they don’t have to signal each other for socially-acceptable feeding behaviors.

However, this does not mean that in such cases they should ignore all intrinsic motivation provided

by the social reward features. For example, due to the placement policy after eating, in the be-

ginning the agents might learn to obtain reward by always trying to eat the food resource located

on the left side while ignoring the fact that there is also another resource in the right side of the

environment. In such cases, as the optimal parameter vector θ∗ indicates, φkext plays an important
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(a) 2-2-2 Foraging Scenario (b) 3-2-3 Foraging Scenario

(c) 2-1-1 Foraging Scenario

Figure B.8: Evolution of the fitness of the social group in the 2-2-2 Foraging Scenario, 3-2-3 Foraging
Scenario and 2-1-1 Foraging Scenario.

role by reprehending “selfish” behaviors during direct competition for food.

Having a Stronger Agent

In the 2-1-1 Foraging Scenario the objective was to examine whether the social behavior of the two

agents observed in the 2-1-2 Foraging Scenario arose out of a need to cooperate with each other to

avoid starvation if one agent gets to be the last to learn. In this scenario, by letting both agents

depart from the same position and having Agent 1 always overpower Agent 2, Agent 1 strictly has

no need to cooperate with Agent 2. However, even in this situation, we observe that socially-aware

behavior emerges leading to resource sharing, as illustrated in Figure B.8(c). This can also be

seen from the optimal parameter vector θ∗ obtained for this scenario in Table B.2, which places

significant consideration in both φkext and φkint reward features.

Emerging Alliances

The results of the 3-1-3 Foraging Scenario are in line with those reported in Section 6.4.4 for the

3-1-3 Scenario. Due to the placement policy of the agents in the environment based on a “social

ranking”, we again observe a behavior strategy where only two of the agents, namely Agent 2 and

Agent 3 feed in turns, leaving Agent 1 to starve, as can be observed in Figure B.9(b) depicting the
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(a) 3-1-3 Foraging Scenario (b) 3-1-3 Foraging Scenario individual

Figure B.9: Evolution of fitness in the 3-1-3 Foraging Scenario. (a) social group fitness; (b) indi-
vidual fitness of the three “optimal” agents.

individual fitness attained by each agent of the optimal group. However, in this experiment we

purposely set the penalty for being hungry, βhp, so that the group would not benefit as a whole if

any of its members was not increasing its fitness. As such, the result of having two agents sharing

food while leaving the more “low-ranked agent” to starve in this case is a negative net value in

terms of the fitness of the whole social group, as illustrated in Figure B.9(a). We again note that

this “alliance” strategy was the better strategy learned by the agents given the test conditions.
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