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Abstract

With the exponential growth of robotics and the fast development of their

advanced cognitive and motor capabilities, one can start to envision humans

and robots jointly working together in unstructured environments. Yet, for that

to be possible, robots need to be programmed for such types of complex scena-

rios, which demands significant domain knowledge in robotics and control. One

viable approach to enable robots to acquire skills in a more flexible and efficient

way is by giving them the capabilities of autonomously learn from human de-

monstrations and expertise through interaction. Such framework helps to make

the creation of skills in robots more social and less demanding on programing

and robotics expertise. Yet, current imitation learning approaches suffer from si-

gnificant limitations, mainly about the flexibility and efficiency for representing,

learning and reasoning about motor tasks. This thesis addresses this problem

by exploring cost-function-based approaches to learning robot motion control,

perception and the interplay between them.

To begin with, the thesis proposes an efficient probabilistic algorithm to

learn an impedance controller to accommodate motion contacts. The learning

algorithm is able to incorporate important domain constraints, e.g., about force

representation and decomposition, which are nontrivial to handle by standard

techniques. Compliant handwriting motions are developed on an articulated

robot arm and a multi-fingered hand. This work provides a flexible approach to

learn robot motion conforming to both task and domain constraints.

Furthermore, the thesis also contributes with techniques to learn from and

reason about demonstrations with partial observability. The proposed approach

combines inverse optimal control and ensemble methods, yielding a tractable
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learning of cost functions with latent variables. Two task priors are further incor-

porated. The first human kinematics prior results in a model which synthesizes

rich and believable dynamical handwriting. The latter prior enforces dynamics

on the latent variable and facilitates a real-time human intention cognition and

an on-line motion adaptation in collaborative robot tasks.

Finally, the thesis establishes a link between control and perception modali-

ties. This work offers an analysis that bridges inverse optimal control and deep

generative model, as well as a novel algorithm that learns cost features and em-

beds the modal coupling prior. This work contributes an end-to-end system for

synthesizing arm joint motion from letter image pixels. The results highlight its

robustness against noisy and out-of-sample sensory inputs. Overall, the propo-

sed approach endows robots the potential to reason about diverse unstructured

data, which is nowadays pervasive but hard to process for current imitation

learning.

Key words : learning from demonstrations ; inverse optimal control ; robot

motion synthesis and control ; deep generative model.
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Resumo

O crescimento exponencial da robótica associado ao rápido desenvolvimento

das capacidades cognitivas e motoras dos robôs, permite antever que huma-

nos e robôs venham a conseguir executar trabalho conjunto em ambientes não

estruturados. No entanto, para tal ser possível, os robôs necessitam de ser

programados para funcionar nesses cenários complexos, o que requer conheci-

mentos profundos no domínio da robótica e do controlo. Uma alternativa viável

é dotar os robôs de mecanismos de aprendizagem automática que permitam,

de uma forma flexível e eficiente, aprender a realizar novas tarefas com base

em demonstrações feitas durante a interação com humanos. Tal abordagem

permite tornar a criação de competências nos robôs num processo mais social

e, principalmente, menos dependente de programadores especializados. Con-

tudo, as abordagens atuais para aprendizagem por imitação apresentam ainda

limitações significativas, principalmente no que diz respeito à flexibilidade e à

eficiência nos processos de representação, aquisição e raciocínio sobre tarefas

motoras. Esta tese aborda esse problema, explorando abordagens baseadas em

funções de custo para a aprendizagem quer do controlo de movimento, quer da

percepção, quer da interação entre as duas componentes.

Numa primeira parte, a tese propõe um algoritmo probabilístico eficiente

para a aprendizagem de um controlador de impedância de forma a acomodar

contatos durante o movimento. O algoritmo incorpora restrições essenciais, por

exemplo no que diz respeito à representação e decomposição de forças, restrições

essas que não são triviais de incorporar utilizando técnicas standard. O algo-

ritmo proposto é exemplificado num cenário em que um manipulador dotado de

uma mão robótica com dedos individuais aprende a escrever manualmente. O

método desenvolvido para aquisição de movimento a partir de demonstrações
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permite lidar tanto com restrições específicas da tarefa como do domínio.

De seguida, a dissertação contribui novas técnicas de aprendizagem e raci-

ocínio baseadas em demonstrações com observabilidade parcial. A abordagem

proposta combina controlo ótimo inverso e métodos ensemble, permitido obter

um processo de aprendizagem tratável com base em funções de custo com va-

riáveis latentes. Este método permite também a incorporação de informação

prévia sobre a tarefa, por exemplo, acomodando informação sobre a cinemática

humana, resultando num modelo que sintetiza escrita manual dinâmica, rica e

credível. Este método acomoda informação prévia sobre o comportamento di-

nâmico das variáveis latentes, o que facilita a inferência em tempo real sobre a

intenção humana e permite uma adaptação online do movimento do robô em

tarefas colaborativas.

Finalmente, a tese estabelece uma ligação entre as duas modalidades explo-

radas: controlo motor e percepção. É oferecida uma análise onde se estabelece

a relação entre controlo ótimo inverso e um modelo de geração profundo. A

partir desta análise, é proposto um novo algoritmo que permite a aprendizagem

de features da função de custo incorporando conhecimento prévio sobre o aco-

plamento modal. Assim, a tese contribui com um sistema completo, capaz de

sintetizar o movimento das várias juntas de um manipulador a partir de imagens

de letras. Os resultados obtidos realçam a robustez do sistema face a inputs sen-

soriais com ruído e fora da amostra. No seu todo, a abordagem proposta dota

robôs com o potencial de raciocinar sobre dados não-estruturados de natureza

diversa, frequentemente encontrados em diversas áreas e aplicações mas que ofe-

recem significativa dificuldade de processamento para os atuais algoritmos de

aprendizagem por imitação.

Palavras-chaves: Aprendizagem por demonstração; controlo ótimo inverso;

síntese e controlo de movimento de robô; modelo de geração com aprendizagem

profunda.
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Résumé

Face à l’avancée exponentielle de la robotique et au développement rapide

de leur capacités cognitives et moteurs, nous pouvons dors-et-déjà envisager les

robots et les hommes travaillant ensemble sur une tâche partagée, dans le chaos

d’ environements non structurés. Pour l’instant, afin de rendre cela possible, les

robot doivent être programmés pour de tels types de sénarios complexes, ce qui

demande chez l’utilisateur des competances avancées en robotique et contrôle.

Une approche viable pour apporter aux robots la faculté d’aquérir des capacités

d’une manière à la fois flexible et efficace consiste à leur donner la possibilité

d’apprendre de façon autonome à partir de démonstrations faites par l’homme

et à force d’experimenter les interactions. Un tel cadre favoriserait la création de

nouvelles capacites chez des robot plus sociaux et réduirait le besoin d’expertise

en programmation et robotique chez l’homme. Jusqu’ici, cette approche d’ap-

prentissage par imitation souffre de limitations significatives, principalement en

ce qui concerne la flexibilité et l’efficacité du robot à se représenter, à apprendre

et à raisonner sur sa tâche. Cette thèse de doctorat contribue à résoudre ce

problème en proposant une approche basée sur des fonctions de coût pour l’ap-

prentissage de la gestuelle, pour la perception, et pour l’adaptation du geste à

la perception.

Pour commencer, cette thèse propose un algorithme probabiliste efficace

pour l’apprentissage d’un contrôle basé sur un modèle d’impédance pour l’adap-

tation d’un mouvement à des contacts physiques. L’algorithme d’apprentissage

est cappable d’incorporer d’important domaines de contraintes, e.g. la repré-

sentation et la décomposition d’une force, ce qui n’est pas trivial à prendre en

compte avec les techniques habituelles. La gestuelle liée à l’écriture manuscrite

conforme est implémentée pour un bras articulé de robot et pour une main
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robotique à plusieur doigts. Ce travail présente une approche flexible pour l’ap-

prentissage moteur des robots, qui s’adapte à la fois aux contraintes de la tâche

et du domaine.

En outre, cette thèse propose une approche pour apprendre et raisonner à

partir de démonstrations partiellement observées. L’approche combine des me-

thodes de contrôle inversé avec des méthodes de modelisation par des ensembles

de fonctions, optimisant des fonctions de coût au travers de variables latentes.

Deux a-priori sur la tâche sont alors incorporés. Le premier est un a-priori sur

la cinématique d’un mouvement humain, qui résulte d’un modèle synthétisant

une écriture manuscrite riche et convaincante. Le second a-priori impose la dy-

namique du la variable latente et facilite la compréhension de l’intention de

l’homme et l’adaptation à cette intention pour une tâche collaborative en temps

réel.

Finalement, cette thèse trace le lien entre le contrôle et la perception des mo-

dalités. Cette partie présente d’une part une analyse qui relie le contrôle optimal

inversé et les modèles génératifs profonds, et d’autre part un nouvel algorithme

qui apprend des caractéristiques de coût en vue d’incorporer un a-priori sur le

couplage lié aux modalités. Elle propose enfin un système complet pour synthé-

tiser les mouvements des articulations d’un bras méchanique à partir d’images

de lettres pixellisées. Les resultats mettent en valeur sa robustesse, émergant

d’un percept pourtant chaotique et inintelligible. Globalement, l’approche pro-

posée dotte les robots d’une capacité à raisonner sur des données diverses et

non-structurées, aujourd’hui omniprésentes mais encore bien difficiles à traiter

dans le cadre actuel de l’apprentissage par imitation.

Mots clefs : apprentissage par imitation, contrôle optimal inversé, synthèse

et contrôle de mouvement robotiques, modèles génératifs profonds.
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1
Introduction

1.1 Motivation

Embodied agents such as robots promise great economical and social ben-

efits for the humanity. The uniqueness of robots lies in their capabilities of

affecting the environment through physical motion effects. In the last decades,

the deployment of robotic systems, especially industrial ones, has largely re-

lived human labors from repetitive, tedious or hazard tasks. Recently, as robots

that work outside the factory cages, light-weight manipulators are emerging

thanks to the maturity of new actuation techniques (162, 3). This trend of soft

robotics opens a possibility for robots to work with humans in a close proximity,

envisioning not only small-patch manufacturing but also human-centered ser-

vice and assistance. However, for these applications, the hardware itself is not

the only barrier. Unlike the cases in factories, the tasks and environments in

human-centered applications are highly diverse and unstructured, soliciting sub-

stantially improved robot skill repertoires and adaptability. Current solutions

are inadequate here: most robots nowadays are meticulously hand-programmed,

which often requires extensive efforts and task domain knowledge. It is thus nec-

essary to investigate new strategies of synthesizing robot motion to bridge this
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gap.

By contrast, humans exhibit remarkable mastery and versatility in terms of

motor skills, ranging from nimbly manipulating objects in hand to harmoniously

twitching whole-body muscles in sprint. While this superiority highlights the

biomechanical properties of the human body, established sensorimotor research

has also attached great importance to the notation of internal model (230). An

internal model encodes the prior knowledge about motor commands and the mo-

tion result. The encoded knowledge is exploited in the so-called active inference

(58) for both perception (107) and motion control (219). For instance, to swing

a racket and hit a ball, humans are instructed and practise to attain knowledge

about the body and racket movement under the motor command. Skillful mo-

tion is developed, enabling humans to adapt to rackets of different weights and

to hit the ball with the whole body balanced. Meanwhile, previewing the ball

position helps humans to anticipate the hitting impulse, and as such, to timely

stiffen the arms for a strike with the expected angle and velocity. To this end,

progressively learning and refining an internal model is important in human

skill acquisition. Studies in sensorimotor learning identifies two main ways of

achieving this, including interacting with the environment and observing others’

behaviors (235).

As the relevant counterpart in agents, Machine Learning (ML) techniques

explore data-driven approaches to reason about and work out perceptual and

decision-making tasks. While ML has achieved significant successes in tasks like

image classification and game playing, the application in robotics faces some

unique challenges. To begin with, robotic tasks are executed by an integrated

system, which often involves multiple sensory and actuation modules. Thus, the

MLmethods need to be tailored to deal with different types of data and subtasks.

Secondly, robot learning rarely has the access to a massive labeled dataset.

Specifically, data instances with informative labels, e.g., success in executing the

task, are lacking. Gathering successful instances by exploring in the physical

world is expensive and even risky for robots. Synthesizing data from simulators

is relatively cheap but the accuracy of simulating certain effects, e.g., physical

contacts, is still unsatisfying. In that sense, human demonstrations are worth to

be exploited because they contain direct and dense information signaling how
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to execute the task. Thirdly, robotics and human motion science possess much

well-established research. The design of ML methods can benefit from merging

these pieces of research. Also, the incorporation of domain priors are useful for

learning from small dataset. Last but not the least, the computational cost of

ML techniques is critical in many robotic applications. With a rapid algorithm,

it is potential for robots to adapt by incrementally learning new data. An

efficient inference is also entailed because of the request of reasoning about

sensory data in real-time.

This thesis is concerned with the research question:

how can a robot incorporate human expertise to facilitate its

motion control, perception and the interplay of the two.

The main contents and contributions of the thesis are placed in the domain of

Learning from Demonstrations (LfD). The LfD paradigm enables robotic agents

to acquire desired behaviors based on expert demonstrations. The human ex-

pertises include both task demonstrations and domain priors. More specifically,

the thesis focuses on (inverse) optimal control and generative model, which re-

spectively situate in robotics and ML. Both of techniques realize LfD in a similar

way. The general idea is to interpret data with scalar functions or statistical

moments, which, for example, make the demonstrations incur low function val-

ues or high data likelihoods. Learning demonstrated behaviors boils down to

estimating the function or moments. The task synthesis can then be shaped

to generate samples that are subject to the same functions or moments, hence

imitating or learning from the demonstrations.

Learning motion control from demonstrations needs to consider domain

knowledge such as task-dependent constraints. For instance, controlling a reach-

ing movement requires identifying the reaching point and applying appropriate

corrections around the point to accommodate disturbances. When a trajectory

is of interest, the robot needs to extract the motion reference and decompose

the control directions along the trajectory. These constraints are useful from

the robotics point of view. However, as identified in Chapter 3, incorporating

task-dependent constraints sometimes makes the learning problem ill-posed to

standard techniques. Thus it is necessary to adopt new methods to address this

challenge.
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While a local trajectory control provides certain robustness to small dis-

turbances, humans demonstrate an adaptability beyond that. In fact, humans

can exploit the redundancy of performing the task, e.g., taking different paths

to reach an object and grasp it, to adapt to their preferences or contextual

conditions, such as the existence of an obstacle. However, the preferences or

conditions might not be observable due to the limited robot perception capabil-

ity. In that sense, the robot needs to learn from incomplete demonstration data

and discern the contextual conditions in execution. Current techniques solve

this through expensive numerical optimizations without explicitly considering

the unobservables. Efficient learning and inference techniques are desired to

reason about this type of demonstrations.

Finally, learning and linking robot perception and control often resorts to

handcrafting data features for each modules. Usually, this is tedious and not

straightforward for sensory modalities like images. Thus, it necessitates an

approach to automate the feature engineering process, as such boost the pro-

ductivity and flexibility of the LfD approaches. Progresses have been made in

representation learning to enable agents to abstract important features that are

relevant to the task. Leveraging these progresses in the LfD framework can

facilitate learning from complex types of data and devising the control loop in

an end-to-end manner.

1.2 Approaches

The main techniques explored in the thesis are optimal control (and its in-

verse problem) as well as generative modeling. The following sections introduce

basic principles, applications and the specific variants that are employed in the

thesis.

1.2.1 Optimal Control and the Inverse Form

Imagine you start stretching your arm from a certain posture to touch a

spot on the table. Such basic movement actually coordinates multiple joints

and muscles of the human body, implying a plethora of possible ways to execute

this task. Yet, it has been demonstrated that, though humans barely think over

this movement before acting, their behavior patterns are highly stereotyped.
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For instance, the motions are stereotyped in terms of consistent features such

as velocity profiles. This seemingly contradicting fact implies regularities and

structures that drive us to take selective actions. Research has suggested that

the possible principle behind is optimality: we choose to adopt and control a

motion trajectory that is optimal with respect to certain performance criteria.

The identified criterias include the motor effort (226, 5, 93) and the motion

variation under sensorimotor noises (74, 215). Interestingly, the applicability

of optimality principle is beyond neurophysiology. Even before the success of

calculus of variations in solving the brachistochrone curve problem, the early

optimal control ideas helped in describing physics phenomenas such as light

reflection and refraction (199), and eventually evolved to the Pontryagin maxi-

mum principle and correlated to more general topics including Hamiltonian and

quantum mechanics.

Optimization-based control has long been the workhorse method in robot

planning and control. After all, it is much more intuitive to design high-level

task metrics than to explicitly program commands for many robot degree-of-

freedoms (DOFs). Modern solvers based on direct optimization like Sequential-

Quadratic-Programming (SQP) can generate an optimal trajectory within a sub

second or even millisecond interval. Thus, real-time model predictive control is

possible in sophisticated robot systems such as quadcopter (61, 7) and humanoid

robots (115, 116). Instead of such a direct approach, this thesis bases most of

the control derivation on an indirect approach. An indirect approach relies on

the Hamilton-Jacobian-Bellman (HJB) equation and can provide a regulator or

a feedback control besides the optimal trajectory. The downside is that it is

often more expensive to apply indirect approaches to general problems, unless

the integral of system dynamics is simple and efficient. One seminal example

about this is the work from Kalman (88), who proposed an efficient algorithm

to obtain an optimal feedback controller for Linear Quadratic Regulator (LQR)

systems. In order to relax the constraints about the system form, differential

dynamic programming (44, 212) and iterative LQR (220, 228) advocate to ap-

proximately solve the problem in a successive manner. The HJB equation in

these indirect approaches correlates to a natural probabilistic interpretation,

which will be exploited throughout the thesis. Meanwhile, the indirect ap-
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proach is also fundamental to the adopted cost/cost-to-go function structure in

the inverse problem.

The inverse problem of optimal control is simply the opposite of searching the

trajectories that incur the minimum costs: with respect to which cost function

are a set of trajectories (locally) optimal. From a behavioral perspective, the

goal is to infer the driving forces or the motivations given the observation of the

agent behavior, assuming the agent is following the optimality principle. If the

estimated cost function is accurate, another agent can simply develop its own

behavior guided by the same goal via a forward optimal control. To this end,

Inverse Optimal Control (IOC) allows to imitate or transfer task skills among

agents, so it is of interest to the central topic of the thesis. The early IOC work

is again pioneered by Kalman, who discussed an “inverse LQR”: under which LQ

system a given linear feedback controller is optimal (89). The progress about

a more general formulation is, however, much more recent. Relevant works in-

clude apprentice learning (1) and the duality of nonlinear control-affine systems

(217, 91), opening much research ranging from the probabilistic formulation

of the inverse reinforcement learning to the recent efforts of interpreting the

IOC problem as a generative adversarial network (56). This thesis is generally

rooted in the probabilistic formulation of the IOC problem. This formalization,

specifically the linearly-solvable system and its variations (216, 52), provides a

general and sound foundation to bridge the HJB-based control synthesis and

the human prior embedding. Similar to (56), the thesis also takes an eye on the

connections and impacts of representation learning around IOC. However, the

motivation is rooted in robotics and the connection is established to a different

deep generative model.

1.2.2 Generative Model Learning

In machine learning, a generative model observes presented samples, extracts

hidden structures and synthesizes samples that are similar to the observed ones.

Therefore, the inherent problem of learning a generative model also concerns the

notion of imitation. In most cases, the purpose of having a generative model is

to unconditionally create plausible samples. Thus it differs from a discriminative

model, which makes predictions conditioning on an input. Learning generative
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models is gaining much momentum these days because the desire of processing

a huge amount of data and the high expense of exhaustively labeling them.

Also, comprehending the process of pattern generation appears to be important

for analyzing and understanding the pattern itself, just as stated by a famous

quote:

What I cannot create, I do not understand.

—Richard Feynman

Statistical learning searches a generative model in the hypothesis space to match

certain empirical evidences. Data likelihood is a common choice if the data is

assumed to be truly sampled from the candidate distribution. However, natural

data and standard distributions with nice properties often violate this assump-

tion. In light of this, advanced models choose to adopt non-trivial structures,

e.g., by adding hidden variables, and to surrogate the true likelihood or sim-

ilarity to the true model. Probabilistic models like Gaussian Mixture Models

(GMM) and Hidden Markov Models (HMM) have been vastly used in numer-

ous applications because of a good trade-off between the model capacity and

efficiency. On one hand they allow hidden variables for modeling complex data,

while on the other hand the efficiency is retained with well-behaved hidden

variables and their posterior distributions. In the recent renaissance of neu-

ral models, the intersection between the probabilistic model and representation

learning has become one of the research spotlights. Typical approaches in-

clude generative adversarial network (GAN) (64) and variational auto-encoders

(VAE) (100). In these approaches, the randomness is separated as a simple

prior distribution, such as an isotropic Gaussian. Models build their high ca-

pacity upon a non-trivial posterior with a complex and differentiable feature

mapping. These so-called deep generative models have been shown effective for

synthesizing highly unstructured patterns such as images (164, 170) and audios

(38, 229).

This thesis resorts to generative model techniques for learning and synthe-

sizing robot motion. The idea of hidden variables is adopted to tackle the

computational challenge in inverse optimal control as well as empirical appli-

cations such as learning from incomplete demonstration data. Moreover, the

thesis also incorporates the progress in the deep generative model research to
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Figure 1.1: Thesis structure concerning different robotics aspects: i) impedance-
based robot control; ii) encapsulating and interpreting motions of different
modes; iii) association between control and perception. Learning from human
demonstrations is central throughout all these aspects while the task is decoded
and instantiated on different robots.

deal with raw sensory data.

1.3 Thesis Structure and Contributions

This thesis is organized in alignment with the stated main research questions

about motion control, perception and sensory-motor association (Figure 1.1).

The next chapter starts by discussing the research background, including a sec-

tion of pinning the interested topics on the grand picture, a review of related

literatures and a brief description about the background CoWriter project. Be-

fore a final summary and discussion in Chapter 6, the main contributions for

each sub research question are presented. Large portions of the thesis work

have been published on or submitted to peer-reviewed conferences or journals.

A short summary about the main contributions and relevant publications are

given below.

Chapter 3 focuses on composing a motion controller based on learning from

human demonstrations. The main result is an efficient sampling-based IOC

algorithm that learns structured cost-to-go functions with the human-designed
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constraints embedded. The robotics application demonstrates that the approach

can be used to derive feedforward reference trajectory and gain parameters for

a compliance controller, of which the compliance parameter is described in a

moving reference frame. This part of work has appeared in the publications of

(238), (239) and (242).

Chapter 4 extends the first piece of work to model a skill repertoire rather

than a single reference trajectory. Similar to the first part, human inspired

priors are also incorporated. The presented ensemble approach is shown as an

efficient way of modeling multi-mode human behaviors, with the applications

including synthesizing human-like dynamical handwriting and online human

intention inference. This part of work has been presented as a conference paper

(240) and a journal paper (243).

A further extension about the LfD/IOC framework is presented in Chapter

5, where the difficulty of engineering the data features is alleviated. The robotics

motivation lies in the challenge of embedding the association among various sen-

sor modalities, most of which are not easy to be represented with a hand-crafted

feature. The key novelty is an idea of factorizing the LfD model for an efficient

inference upon high-dimensional data. As a result, the robot features the ca-

pacity of synthesizing a motion trajectory from a raw visual input, thus works

as an end-to-end system. The chapter also contributes with the approaches of

data augmentation and posterior trajectory optimization. These contributions

tackle limited and corrupted sensory data, which are empirical challenges to the

implementation on a robot. Techniques about human-like motion synthesis and

inference, which are developed in the prior chapters, are reused as part of these

approaches. The main contents have been included in the publication (241) and

part of results are also reported in (242).

Apart from a robotics-oriented view, the thesis organization can also be un-

derstood as a strand of ML algorithms with an increasing complexity (Figure

1.2). Specifically, Chapter 3 extends the basic IOC framework by incorporating

priors (the dashed loop) about the interested task feature. In Chapter 4, latent

variables are introduced to relax the assumption of full observability. Chapter

5 further eliminates the necessity of knowing the relation between the original

sensor representation and task-relevant features. Meanwhile, the learning algo-
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e.g., coordinate in workspace 

Original sensor representation 
e.g., coordinate in joint space/image pixels 
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I II III 

Figure 1.2: Thesis structure from the machine learning point of view: the chap-
ters progressively extend the IOC framework with added structures and com-
plexities.

rithm in Chapter 5 supports to learn from data with multiple modalities that

are conditionally independent on the task.

The contents in this thesis are also used or related to co-authored works

on other topics. (130) focuses on robot hand grasping and proposes to extract

the motion compliance under a set of adhoc constraints. These constraints ef-

fectively adapt the principled form presented in Chapter 3. The adaptation

removes the prior of representing task in a moving frame of reference, because

the motivated bulb insertion task only considers 1D rotational stiffness along a

fixed axis. The algorithms of modeling and synthesizing multi-mode handwrit-

ing are used in papers (31) and (30). These pieces of research eye on activity

design in the context of human-robot interaction. Specifically, human studies

are performed to assess how children perceive the robot learning capability and

if a smarter robot will engage the children more, and as such improve children’s

learning gains in a handwriting tutoring activity. In these studies, the syn-

thesis algorithm in Chapter 4 is used to efficiently generate legible dynamical

handwriting samples. At the same time, the experiment conditions about the

robot capability are intuitively controlled by specifying different levels of model

perturbation.
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2
Background

This chapter focuses on the thesis research background. The first section 2.1

comes with an overview of robot motion control and learning. The main purpose

of this part is to provide a brief introduction about some loosely relevant topics

and to situate the thesis work in the grand landscape. Detailed reviews about

the closely related works will be given in Section 2.2, along three main axes:

compliant motion learning, learning from demonstrations and representation-

learning-based sensorimotor control. Then technical preliminaries about the

approaches and a glossary of notations are in Section 2.3. The chapter closes

with Section 2.4. Setting up the scene of application of the thesis, CoWriter

project, which aims to build a robot agent system to help children acquire

handwriting skills, is discussed to provide more background information about

the thesis work.
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2.1 Robotic Motion Control and Learning: Set-
ting the Scene

2.1.1 Robot Motion Control: Feedback and Feedforward

Robot motion execution faces some substantial challenges due to conditions

in the real physical world. Specifically, the dynamics of most robot manip-

ulators often exhibits nonlinearity and coupling across multiple joints. Also,

uncertainties resulted from the unmodeled effects such as frictions or environ-

ment disturbances add more difficulties. A simple yet widely adopted scheme

exploits kinematic relations to represent and regulate motion in the joint space

(42). The joint space is often controlled through a linear PD or PID controller,

which simply assumes a local linearity and a weak joint dependency to cope

with the model complexities. In practice, the task specification might not be in

the joint space thus it can be insufficient to close the control loop in the joint

space. Operational space control (99) addressees this by directly expressing the

task dynamics in the operational space. The representations are transformed

through the Jacobian of kinematics. This scheme features more task dynamics

intuitions to the designers, while it requires invertible Jacobians and can be

complex to implement as a centralized system.

Many kinds of uncertainties source from the physical contacts between a

robot and the external environment. The collision event might drastically

change the dynamics mode and the operating point, leading to erroneous or

even unstable behaviors. Hence, an appropriate force accommodation is criti-

cal for contact-rich applications. In industrial assembly, an early solution is a

mechanical device called remote center of compliance (RCC) (47). The device

is a mechanical part providing a passive compliance to absorb the impact from

the rigid environments. Software solutions resort to a controller and the algo-

rithm design to address this problem. Direct force control approaches monitor

and track contact force by mounting force/torque sensors on the end-effector.

However, the conflict between force and position control loop implies that the

position and force tracking errors cannot be concurrently eliminated in the same

direction (135). This spurred the research about decomposing the task direc-

tions according to the importance of force or position tracking. The controllers
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along these orthogonal directions were then superimposed as a hybrid force-

position controller (166). Another approach avoided an explicit specification

about the task dimensions by applying parallel homogeneous controllers. To

resolve the target conflict, the parallel force-position controller (36) used an

integral loop to prioritize the tracking of force component.

One of the notable alternatives to direct force control is stiffness control

(182). This approach was extended in the seminal paper (76), which pivoted a

trilogy concerning the framework of impedance control. The impedance control,

instead of tracking the force signal in a direct way, argues to take the dynamic

relation between force and motion as the control objective. Specifically, the

casual relation between the velocity and torque was emphasized to design an

appropriate impedance and admittance pair for a stable interaction. For in-

stance, when interacting with a stiff environment, the robot oughts to behave

as an impedance, generating the reactive force with a positional input. This is

in accordance with the principle of RCC which also adds compliance units to the

robot. Meanwhile, the force-position relation can be exploited in the other way

around. Formalized from such an idea is admittance control, in which the robot

generates motion under a driving force. When the force measurement is avail-

able, admittance control is more feasible to realize an accurate low impedance

behavior. This is because, as argued in (151), the robot dynamical behavior is

dominated by its inertia, as such inherently resembles an admittance. The main

application of admittance control is physical human-robot interaction, such as

powered exoskeletons (95).

Most of these approaches, at least of their basic formalizations, assume a

predefined trajectory and focus on the feedback design. Yet for large deviations

and systematic uncertainties, it is inadequate to assume errors are rooted from

small disturbances and can be corrected through a local feedback. In that sense,

feedforward control addresses this by synthesizing the control reference based

on a prior model. One of the illustrative examples is that humans can preview

the muscle activation for catching a dropping ball based the experience and

knowledge about the object gravity (Figure 2.1).

Feedforward control has been widely investigated in the literature on ad-

vanced robot motion control. Typical approaches include inverse dynamic and
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Figure 2.1: (a): the robot manipulator anticipates the ball trajectory and de-
rives a feedforward motion based on this prior knowledge. Feedback control
regulates the executed motion under disturbances and noises. (b): a common
architecture containing both feedforward and feedback components in the robot
motion control.

computed-torque control (193, 189), where model-based dynamical terms are

computed to cancel nonlinear effects. Adaptive control estimates the unknown

model parameters (e.g., the inertia of external workloads) and then derives con-

trol based on the predicted values. It has been shown that, for the system

inertia uncertainties, one can obtain a linear parameterized inertia wrench so

as to design a stable estimator (192). Meanwhile, research efforts have been

made for synthesizing feedforward trajectories in an autonomous manner. A

large portion of motion planning literatures explored searching (94, 119) and

optimal control (220, 136, 210) to compose admissible or low-cost trajectories

given task criteria and constraints. Moreover, when models are unavailable, one

can explore a motion trajectory via trial-and-error, and as such learn the feed-

forward control. Among robotics control, a renowned approach based on this

principle is iterative learning control (ILC) (41, 9). Specifically, ILC assumes

the robot motion can be operated cheaply and repetitively, and suggests a PID-

like rule to update the feedforward input. For a control-affine dynamics and a

linear observation model, the iterations are guaranteed to converge to a mini-

mized trajectory error in stationary tasks (8). In (237), ILC was adopted and

extended to also adapt the gain scheduling in a human-like way. Consequently,

both reference trajectory and feedforward impedance profile were learned in a

repeated force regulation task.
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This thesis falls in the domain of feedforward control. In particular, the

focus is on the representation, evaluation and derivation of feedforward motion

from prior internal models or signals from other modalities, such as vision.

These priors are acquired by learning from humans and embedding the human

motion characteristics into the process. In the sense of learning-based methods,

the techniques developed in the thesis are in the similar vein as the ILC-like

approaches. However, the main thesis work concerns a human-guided learning

and correlates to more recent advancements in machine learning. A discussion

about motion synthesis in the modern machine learning will be expanded below.

The thesis also extensively exploits the results in optimal control and open-loop

impedance control for applications involving both humans and robots.

2.1.2 Robot Motion Learning: Discriminative and Gener-
ative

In machine learning, depending on the source of data labels, motion syn-

thesis is mainly addressed through two categories of approaches: reinforcement

learning (RL) and learning from demonstrations (LfD) 1. Although the thesis

is built upon the latter paradigm, both will be reviewed since RL directly cor-

relates to optimal control, its industrial counterpart, and was fundamental for

developing the thesis approaches.

2.1.2.1 Reinforcement Learning: Value-based and Policy-based Ap-
proaches

Reinforcement learning is promoted for solving a relatively general AI prob-

lem: how can an agent take a sequence of actions to maximize the received

rewards 2. The foundations of general RL approaches can trace back to dy-

namic programming and Bellman principle (14). Practical learning algorithms

emerge as an intersection of the Monte-Carlo method and boostraping for the

estimation of value functions (201, 203). Alternative value-based algorithms

include renowned Q-learning (232, 196) and SARSA (179). For a continuous

state space, function approximators could be utilized (18, 202, 172, 144). The

probabilistic stability was proved for the case of learning a linearly parameter-

ized Q-function under certain feature conditions (139). In these works, actions

1. Also known as “programming by demonstrations” or “imitation learning”.
2. Or equivalently, minimize the incurred costs.
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are implicitly derived from the learned value functions. Q-learning, for exam-

ple, needs to select the action which causes an optimal value to instantiate the

implied policy. Astounding achievements have been made in the applications

involving enumerable discrete actions, such as playing Atari (145) and board

games (211, 191).

Much of the research in robotics-oriented RL, however, relies on a direct

policy optimization: estimating the mapping between a control and a sensory

input. The main argument of policy optimization against the value-based ap-

proaches lies in its merits for naturally dealing with continuous action space and

control constraints, both of which are pervasive in robotics (104). Successful ap-

plications include locomotive robots (148, 209, 213, 48, 75), object manipulation

(103, 128, 129, 117, 69) and synthetic characters (131).

The policy optimization can be categorized as derivative-free and policy gra-

dient approaches. Derivative-free approaches iteratively fit and sample from a

stochastic policy proxy to make good performed rollouts more likely. Explor-

ing a variety of sampling and weighing mechanisms, relevant techniques include

finite difference method (152), expectation-maximization (45, 158, 108), cross-

entropy-like methods (73, 46, 105), approximate inference control (AICO) (221)

and path-integral-based methods (90, 213, 198). Latest research shows that,

although a large amount of samples is desired for a low-variance black-box op-

timization, a smart distributed cross-entropy-like approach is still scalable and

competitive for optimizing a high-dimension policy (181).

Gradient-based approaches are based on scoring the cost sensitivity under

the policy perturbation, with a similar idea developed in the early works (4, 177)

and a fundamental formulation well known as REINFORCE (234). A connec-

tion between the REINFORCE and importance-sampling was revealed in (206).

Departing from the vanilla formulation, one of the research concerns is determin-

ing an appropriate learning rate when applying the gradient. This is especially

of the interest in robotics, because the rollouts might be risky and expensive

to obtain so the chance of an overshoot should be minimized. Relevant work

includes natural gradient (159) and trust-region policy optimization (TRPO)

(184). The main idea is evaluating and constraining the policy shift according

to certain metrics, for which Fisher information matrix was used in (159) while
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(184) exploited the Kullback-Leibler divergence. Other research focused on re-

ducing the gradient variance of the vanilla REINFORCE. As proposed in the

original work (234), the key is enforcing an informative baseline to evaluate the

advantage of the rollout performance. This connects to the research on actor-

critic algorithms (68), where value functions are also learned at the same time

to bias the policy gradient. Henceforth, the actor-critic paradigm is somehow a

blend of value-based and policy-based approaches. The incorporation of value

(critic) learning has been well acknowledged in plenty of state-of-the-art RL al-

gorithms such as asynchronous actor-critic agents (A3C) (146) and generalized

advantage estimation (GAE) (185). The application of these algorithms ranges

from controlling the robot joint motion to synthesizing abstract agent actions.

It is notable that non-parameteric approaches, such as PILCO (48), were also

employed for an efficient policy gradient approximation.

2.1.2.2 Learning Policy from Examples

Learning an RL-based agent can be challenging because it requires to at-

tribute delayed observations to a sequence of actions in history, as such solving

a credit assignment problem (140). In particular, when the rewarding event is

rare, the agent might have to explore exhaustively to gather informative signals.

Much like the critic component in the policy optimization, one way to improve

the learning efficiency is to bias the exploration with a guidance from (poten-

tially) good examples. In light of this, a model-based approach called guided

policy search was proposed in (125) and its integration with path-integral RL

was discussed in (32). The idea was repeatedly searching the high performed

trajectories through optimal control and fitting the optimal state-control pairs

with a neural network policy. This effectively turns the hard policy learning

problem into a comparatively easier supervised learning problem. Such an idea

was also explored in a grasping synthesis problem, where solutions from a static

optimization were fit to a Gaussian Mixture Model (79).

2.1.2.3 Learning Policy from Human Demonstrations

Apart from optimization solvers, one can easily imagine another source of

the expert guidance: human demonstrations. As an independent research do-

main, the idea of programming robots based on human demonstrations has been
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explored for decades. The pace of LfD research is roughly synchronous with the

development of mainstream AI techniques. A line of the research originated in

the eighties focused on automating the robot motion planning through a sym-

bolic representation and graph-like connections (133, 186, 2, 134). Similar to the

typical expert systems, if-then rules were used to compose a high-level policy

before the concrete geometry motion planning (15).

Other recent approaches describe tasks with more details. Leveraging non-

linear regression techniques, demonstrations in these approaches were encoded

as state trajectories or parameterized dynamical systems (DS). Early works fo-

cused on fitting a time-dependent state trajectory with nonlinear basis functions,

such as splines (225, 224). A more formal DS-based treatment was proposed as

Dynamic Movement Primitives (DMP) in (83, 183) and gained much popular-

ity for its learning efficiency and the flexibility of encoding both discrete and

rhythmic movements. As a canonical system, DMP does not have an explicit

dependency on time. It comprises of a linear system with established attractors

and a nonlinear term that shapes the trajectory profile. A shared phase variable

is the factor of the nonlinear term and decays as the system progresses. Hence,

after the nonlinear fluctuation vanishes, the system is dominated by the linear

damping component so the motion stability is guaranteed. It is worth noting,

however, that the state variable of DMP is not completely autonomous. The

reason is that the evolution of the phase variable is exclusively governed by the

time so an implicit time dependency still exists 3.

Beyond representing a single trajectory, many works in the last decade fo-

cused on probabilistic dynamics, which provides a natural way of handling the

demonstration variations. (187) employed Gaussian Process (GP) and Corre-

lated Component Analysis (CCA) to build mappings between human and robot

joint DOFs via a latent variable. In (24), Hidden Markov Model (HMM) and

Gaussian Mixture Model (GMM) were respectively used to encode the temporal

and spatial demonstration correlations. A GMM-centric approach was explored

in (25, 27). Much like the DMP works, the temporal information is encoded as

a covariate in the state space so the demonstration variabilities are captured by

time-dependent covariance matrices. Variations of GMM approaches proposed

3. According to (83), one can of course introduce a state-dependent feedback, although it
is nontrivial to assure the stability in this case.
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to embed structures to the covariance matrices. Typical examples include (23),

where the covariance entries were correlated by assuming the data dimensions

are resulted from the views in different frames of reference. Reported as an-

other example in (207), the covariances across the GMM components were tied

to assume less model parameters. Both works showed an improved generaliza-

tion performance. As another popular statistical model, Probabilistic Move-

ment Primitives (ProMPs) modeled a trajectory distribution by estimating the

parameter statistics (156). The trajectories are often parameterized by linear

function approximators, which allow for an efficient trajectory adaptation. The

common choice about the statistics is the mean and variance of a multivariate

Gaussian, although multi-mode distributions like GMM can also be used (54).

Similar to the sparse GMM works, (40) also researched the dimension reduction

of ProMPs parameters.

More recently, this line of research also concerned fitting an autonomous

dynamical system. This formulation, be it deterministic or stochastic, is useful

when the robot is expected to learn a time-invariant policy. A relevant approach

was explored in (157), where the DMP is incorporated with a state feedback for

a sensor-based trajectory adaptation. (66) provided a more explicit autonomous

DS formulation, based upon a GMM for modeling the demonstrated position

and velocity pairs. This research was followed by variations that enforce the

desired system properties with various constraints. A notable example is Stable

Estimator of Dynamical Systems (SEDS) in (97). SEDS exploited the well-

established research on Lyapounov stability and added relevant constraints for

training a GMM. A global asymptotic stability was assured for the resulting

policy. In spite of these appealing properties, a constrained GMM like SEDS

is known as much more difficult to train in comparison of fitting DMP or a

time-dependent system (112). Besides the work of SEDS, other structures were

also explored. (188) adapted the training of Support Vector Machine (SVM)

for modeling a policy with multiple attractors. Local modulation matrices were

introduced in (114) to facilitate a GP-based incremental learning.
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Figure 2.2: Discriminative and generative models: (a)a discriminative model
learns a conditional distribution with an explicit labeling of y. (b)a generative
model estimates the structure and distribution with the labels of y as unknown
latent variables.

2.1.2.4 Learning Discriminative Policy vs. Generative Model

Most of the works reviewed above learn a reactive policy that predicts an

action on the given arguments (be it a state variable or a time index). This

can also be understood as a kind of behavior cloning (161). From the statistical

machine learning perspective, this type of imitation estimates a conditional

distribution 4 or learns a discriminative model, as such works as supervised

learning. This shares some similarities with the policy-based approaches against

the value-based ones in the RL literatures. Hence, a natural question is if

it is possible to perform LfD via a value-based approach. Relevant ideas for

robot motion synthesis have been investigated in the early works (98, 106),

where a scalar potential function was used to shape the task dynamics. Formal

learning-based methods are named as Inverse Optimal Control (IOC) or Inverse

Reinforcement Learning (IRL). The main task of IOC is, similar to the value-

based RL, estimating a task-relevant value function (or equivalently a cost-

to-go or instantaneous cost/reward), with the given samples assumed to be

high-performed ones. Playing a same role in the actor-critic RL, the value

function evaluates the preference of the states and provides an implicit guidance

in developing the policy or control. As such, this type of implicit LfD works as a

4. Though GMM and the model in (187) learn full probability distributions, they are
mainly used for regression and conditional inference in aforementioned works.
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generative model and can be considered as unsupervised learning (Figure 2.2).

The advantage of learning a value function can be argued from the perspectives

of policy robustness and data efficiency. Concretely, a generative model is a

complete probabilistic model of the data and one can conduct a robust Bayesian

inference via priors. For instance, if a state is evaluated as a low-rewarding or

high-cost one, the agent will tend to escape from it to the ones appear more

frequently in the expert demonstrations. Without such global information, a

discriminative policy will blindly predict an action and not take the optimality

of the resulting state into account. When demonstrations are not sufficient for

a good data coverage, the errors might be accumulated, possibly leading to a

catastrophic behavior (error cascading, see: 12).

The thesis focuses most of its algorithmic contributions on learning cost-to-go

functions to develop the robot control and perception mechanisms. Therefore,

the topic in this thesis belongs to implicit LfD and generative model. Section

2.2.2 will detailedly review closely related IOC approaches and spell out the

difference of the thesis contributions.

2.2 Related Work

This section reviews the literature that is directly related to the research

problems and contributions, including learning-based compliance motion syn-

thesis, inverse optimal control methods and the works about representation-

learning-powered robot control.

2.2.1 Learning Compliant Robot Motion

The necessity of robot compliance stems from the need to deal with tasks

requiring contact accommodation or force exertion. Direct force control or

impedance control, as reviewed in the above Section 2.1.1, are viable solutions

for these types of tasks. However, devising a proper force/impedance profile is

nontrivial, at least not as explicit as the case of position control which relies on

intuitive geometry constraints. This fact motivates a learning-based approach

to automate the design based on human or robot experience.

A large body of research proposes to derive the feedforward force or impedance

parameters via an iterative learning or adaptation. In (231), an iterative learn-
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ing method was designed to realize a target impedance. As with other works

in iterative learning, a zero impedance error could be theoretically guaranteed

and the method was demonstrated to be robust against system and sensory

uncertainties. As another example, a bio-inspired adaptation rule was adopted

in (60). The performance was principally formalized as a combination of the

tracking error and the muscle activation. When the control is assumed to be

linear with the activation, the general adaptive control law (192) was obtained

in the muscle space. The law was then applied to all relevant robot control

terms including the feedforward reference trajectory, force and impedance. As

the learning progresses, the accuracy of feedforward motion and force improved

gradually. Meanwhile, the impedance, correlating to the muscle activation, de-

creased hence a human-like modulation emerged. In (237), the same approach

was presented in the context of adapting interaction force under perturbations,

with an additional convergence proof provided. (67) drew a closer relation to

this thesis because the feedforward control and reference force/position were

learned from demonstrations. Autonomous dynamical systems were estimated

to generate stable trajectories terminating at a target. However, the impedance

parameters were not explicitly learned but predefined and subject to the online

adaptation, according to a similar rule in (60, 237).

As a more general formulation, optimal control was utilized as a principle to

design compliant behaviors (141). The advantage of an optimal-control-based

approach is twofold. First, beyond the tracking errors in ILC, more flexible task

objectives can be specified, such as maximizing the speed of links with variable

stiffness joints (71). Secondly, optimal control can exploit the model structure

of different systems. Exploiting the passive dynamics has been demonstrated as

crucial to generate highly dynamic, powerful and agile movements (20).

When the model is unknown, reinforcement learning (RL) can be used for

searching variable impedance policies. In (213, 22), path-integral RL was used

to explore an impedance profile, which was represented as an additional policy

output alongside the reference position. The trajectories of each independent

DOF were parameterized as DMPs. During the learning iterations, the DMP

parameters were randomly perturbed and estimated based on the episodic per-

formance, such as the locomotion distance or the success of jumping over ob-
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stacles. (197) adopted the same RL approach in various simulated force-field

tasks. The study showed that, a robot arm learned to adapt the feedforward

command in face of a predictable external force, while chose to increase the

motion impedance when the disturbance was unstable. As a result, interesting

human-like modulations were developed from the principle of minimizing errors

and control efforts.

LfD-based approaches have also been investigated for learning the robot com-

pliance. Early efforts relied on the mounted sensors to record a direct measure-

ment of the task force. By analyzing the force data, (11) proposed to decompose

task dimensions into force and position control components, hence obtaining a

hybrid controller from demonstrations. In (10), neural networks were used to

represent a nontrivial compliance relation with a nonlinear mapping between the

force and position data. Much of the research, on the other hand, advocated to

imitate the compliant behavior in the impedance control framework. For exam-

ple, the parameters of stiffness control were estimated from demonstrations in

(190). The implementation difficulty was that the stiffness control parameters

are redundant so one could not have a unique estimation by solely looking at

the trajectory data. The solution proposed in (190) enforced constraints and

heuristics to deal with this issue. The similar challenge was also addressed in

(223). Specifically, the authors assumed quasi-static human movements and a

constant impedance within a small time interval. The robot adjusted the damp-

ing parameters in proportional to the estimated human impedance to ensure a

stable physical interaction.

The research on learning impedance parameters from humans was then fol-

lowed by exploiting the trajectory statistics. This line of work is illustrated

in the research by (26) and (109). (109) learned the force profile as a feedfor-

ward control in addition to the estimated impedance parameters. The heuristics

used to determine the impedance is based on the trajectory variance: the robot

should adopt a high stiffness in the directions resembling low variance, and a

more compliant movement when the trajectory distribution is more flat. The

implicit goal behind the heuristics can be understood as tracking a trajectory

under the minimum intervention principle, in which the robot places less impor-

tance and efforts on rejecting disturbances when the deviation is not impacting
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the task performance. A similar idea was also exploited in (113), where a haptic

interface for human users to exert force variabilities and explicitly convey the

desired impedance. (227) applied the same principle to both force and position

demonstrations and analyzed the variabilities across different reference frames.

As a result, the task dimensions and temporal segments were again possible

to be decomposed to prioritize impedance and position control. Moreover, as

a task-parametrized formalization, the variances represented in the reference

frames helped to identify the critical scene marks, hence improved the general-

ization under a new task configuration. The trajectory variabilities could also be

captured as an autonomous GMM-based dynamical system, as was exemplified

in (96). The resulting control was a mixture of a set of impedance controllers,

whose weights were state dependent.

As reviewed above, there exists an optimality principle behind the impedance

shaping based on statistical heuristics. A more formal treatment in optimal

control was presented in (138). The authors characterized the trajectory con-

sistency with a quadratic cost function, whose weighting matrix was inversely

proportional to the motion variance. Moreover, a risk-aware formulation was

introduced, with the disturbance measured as the deviation from a recorded

force profile. Such a formulation provides a unified way to deal with the conflict

between position tracking and force yielding. Specifically, when the robot is risk-

sensitive, it will take a negative attitude to the external force disturbance, hence

adopting an increased stiffness to eliminate tracking errors. On the other hand,

a risk-seeking behavior will tend to increase the importance of force regulation

and yield to the external disturbance. (174) used a task-parameterized GMM

(TPGMM) to fit the demonstration trajectories and estimated the impedance

parameters separately. In the task reproduction, the impedance for each trajec-

tory segment depended on the similarity to each GMM component. TPGMM

was also explored in (29, 175, 176). In these works, a quadratic cost function

was parameterized by the regression mean and covariance then an impedance

controller was resolved from a finite-horizon LQR. (121) applied a Bayesian es-

timation to the covariance matrix. Only diagonal positive-definitive matrix was

allowed due to the constraint from the prior, so the impedance controllers of

joint DOFs were independent. Similar covariances were also learned, however,
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in a different manner in (178). The proposed method featured a quadratic cost

function and a sub optimal control system, which were termed as a planning

movement primitive in the paper. The quadratic cost function and a linear

system were fit based on the rollouts scored on an extrinsic signal. Finally,

research has been done to facilitate the cost design through inverse optimal

control approaches. Relevant work on the robot motion synthesis (87) used

a sampling-based to estimate the linear cost parameters. Impedance parame-

ters were explicitly transfered in (78), where apprentice learning was used to

estimate, again, a linear parameterized cost function.

The first thesis contribution mainly focuses on learning an impedance con-

troller, through inverse optimal control like (78) and (87). The cost/cost-to-go

parameters are nonlinearly correlated. With respect to the trajectory, the cost-

to-go function is a similar quadratic form resembling a clear statistical intuition

as (138) and (29). Like (121) and (178), a structure about the parameters will

be enforced in the cost-to-go function. Much different from learning a diagonal

covariance, however, the work in this thesis assumes a representation in the local

frame of reference, in the same spirit of (149). This structure raises certain chal-

lenges for the standard gradient-based inverse optimal control. The thesis work

exploits the problem duality and proposes a sampling-based inference method

like (87), while with an adapted trajectory parameterization.

2.2.2 Implicit Learning from Demonstrations

In the early work as (89), Kalman investigated the problem about what

quadratic cost function makes a given linear control optimal. In particular, a

mono input system was discussed in the paper and a necessary and sufficient

condition for such a cost function was established in the frequency domain. The

same problem, with a less constrained control penalty matrix, was addressed

in (19) through the linear matrix inequality (LMI). Concretely, the optimality

and feasibility were respectively captured by an adapted Riccati equation and a

constraint from the Lyapounov stability. The resulting formulation searched the

cost matrices and the existence of an auxiliary matrix under the LMI constraints,

yielding a convex optimization problem.

Focusing on empirical applications, the machine learning community de-
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velops similar pieces of research under the motivation of understanding and

imitating agent behaviors. Inverse reinforcement learning (IRL) was formally

introduced in (153), proposing a condition that the expert performance should

be no worse than any alternatives. This is, however, a necessary condition and

there might exist rewards, such as a constant function, that fulfill the condition

while encodes no interesting information. In light of this, the authors suggested

an additional constraint to enlarge the performance gap between the actions

following the expert policy and the non-expert ones.

Apprenticeship learning in (1) proposed to use IRL for an agent to perform

nearly as good as the given expert policies. Apprenticeship learning exploited

the linearity of reward parameters and the integral operation, allowing to match

the apprentice policy through a feature expectation. The learning runs as an

adversarial game involving two competing modules. On one hand, a reward

parameter was searched as to maximize the discrepancy between expert and

apprentice policies. On the other hand, the other module tried to shrink the

gap by mixing a new optimal policy derived from RL. The game would terminate

until the feature expectation error is within a predefined threshold. Successes

were demonstrated in modeling and learning a car-driving behavior (1) and

maneuvering a robot helicopter (39). Following this method, (204) proposed

an extended multiplicative weights apprenticeship learning, which advocated to

estimate an ε−optimal policy through linear programming (163). In addition,

the authors also exploited a dual form to obtain a stationary policy based on

the counts of state visitation, while a mixture of policies was returned in the

original apprenticeship learning.

In (168), the policy optimization was first replaced by its dual form, which

implied a value function and a Bellman inequality. Slack variables were searched

to be as small as possible. On the other hand, the variables need to ensure a

sufficiently large performance gap between the expert examples and the opti-

mal policies with respect to an augmented loss and the Bellman-flow constraint.

For an efficient optimization, the problem was then transformed into a form

with a hinge-loss so the subgradient method could be used. Such a formaliza-

tion amounts to the maximum margin prediction like Support Vector Machines,

hence named as maximum margin planning. All the methods reviewed above
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include a forward policy optimization subroutine. Actually this is one of the

general challenges for IOC/IRL approaches, although sometimes it appears as

an equally difficult problem, e.g., evaluating a partition function in the proba-

bilistic models.

Apprenticeship learning was formalized as a Bayesian approach in (167). The

regularization of parameters in (153) was then understood as a Laplacian prior.

More importantly, the authors formulated the greedy policy as a probabilistic

distribution parameterized by a state-action value function. The policy and the

reward were updated by sampling and rejecting states based on the distinction

to the expert trajectories. This is also different from the standard apprentice-

ship learning where a set of mixed policies are used. (150) presented a similar

approach with a value-parameterized policy. However, unlike the derivative-free

algorithm in (167), gradients were derived and evaluated through an empirical

estimation of the partition function. In (246, 247, 245), this type of models was

principally identified as a class of maximum entropy distributions (MaxEnt).

(248) made an extension and proposed a maximum causal entropy model whose

actions were only depending on part of the prior observations. As a proba-

bilistic approach, MaxEnt IOC/IRL naturally handles the demonstration noise

and intuitively interprets the imitation learning as maximizing the likelihood of

expert trajectories.

Much of the research about probabilistic models focused on the computa-

tional challenge of partition function evaluation. While most pioneering IOC/IRL

literatures were developed on agents with a discrete state-action space, robotic

applications often face a high-dimensional continuous space, making a discretiza-

tion impractical. One way to address this is approximating the integral with

a tractable probabilistic density. In (126), the cost function was approximated

with a quadratic form along the demonstration trajectories, hence obtaining a

Laplacian approximation from the probabilistic point of view. The quadratic

approximation was also implicitly used in (78), where iterative LQR (220) was

used to search the Laplacian mode. Another type of approximation relies on

sampling-based methods. (16) proposed to approximate the original probabilis-

tic model with a proposal one and regulate the difference to the empirical distri-

bution via a relative entropy. In (87), a group of samples centered at the mean
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in the trajectory parameter space was taken to approximate the full probability.

The partition evaluation was thus solved through path-integral RL with a local

optimality. This effectively estimated the partition integral under a Gaussian

distribution, instead of the uniform one in the original MaxEnt formalization.

As a third way, non-parameteric approaches in Reproducing Kernel Embeddings

Hilbert Space (RKHS) could be used to realize a closed-form evaluation (194).

An example of such work is (169), which performed a one-shot path integral

with an RKHS embedding. In spite of the appealing theoretical properties, ker-

nel methods often suffer from a nearly cubic complexity as the number of data

increases. Hence, practical implementations often approximate the kernel oper-

ations with linear parameterized random features (165). Lastly, the structure

of the planning problem can also be exploited to facilitate the evaluation. The

work of (50), for example, decomposed the transfer of a multi-target reaching

task into goal and trajectory prediction stages. The predicted goal could help

discriminate other unlikely trajectories under an optimality assumption so as to

efficiently derive a good mode approximation.

Other research works also explored variations in terms of the function pa-

rameterization and MaxEnt principle. Gaussian Process was used in (127) as

a non-parametric representation. The partition function evaluation, however,

still resorted to a local optimization. (37) proposed another non-parameteric

representation, which contained compositional kernels for a feature selection in

the cost function learning. Furthermore, a hierarchical IOC was presented in

(110). The hierarchy lied in a decomposition of the original task into subtask

segments, which were revealed through a GMM model. Then the state was aug-

mented with a variable indicating the GMM membership and the task progress.

Such a formalization helps for a sparse or delayed reward signal, such as a {0, 1}

setting for encoding the success and failure of the task execution.

In (52), the kernel width was also learned in additional to the linear param-

eters. This resulted a non-convex problem, which was proposed to be addressed

by alternating the optimization steps. More importantly, the authors of (52)

identified the MaxEnt model as a special case of a broader linearly-solvable

system framework. The framework was developed on the basis of the stochastic

optimal control of a control-affine dynamical system. Specifically, it showed that
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when the dynamics is a continuous one and Gaussian-noised, the model knowl-

edge could be exploited to bias the MaxEnt sampling in the partition function

evaluation.

Finally, more recent works reported learning a cost function parameterized

by deep neural networks (236, 57). A connection between a Generative Adver-

sarial Network (GAN) and the MaxEnt IOC (or broadly speaking, a Boltzmann

energy model) was established in (56). The discriminator network effectively

trains the cost parameters in a way like the critic in the actor-critic methods.

Correspondingly, the refinement of the generator network proceeds like the ac-

tor, which involves searching a good proposal distribution for evaluating the

partition function.

All the thesis chapters develop IOC approaches, which differ from the afore-

mentioned ones in that the motivation and adaptation are rooted in learning

human-robot applications. In the first part, the MaxEnt model and a sampling-

based partition function evaluation like (87) are used. However, unlike the

popular linear parameterization, the thesis explores a structured cost-to-go for

realizing an intuitive and human-like force/motion control decomposition. The

second part of the thesis takes a unique way to deal with the partition function in

that it intentionally to adopt a simple quadratic cost form to make the linear-

solvable framework tractable. The loss of the expressiveness is compensated

with an aggregation of these “weak” models, as such introducing the ensemble

principle into the IOC approaches. This part also incorporates human kinemat-

ics features and interpretable parameters for motion synthesis and adaptation.

The final contribution is relevant to the latest deep-learning-powered IOC works.

However, the thesis method is developed based on variational auto-encoders,

enjoying a straightforward probabilistic interpretation and stable training in

comparison with the GAN-style methods. Also, this part of work motivates

a factored distribution in light of learning from redundant and unstructured

demonstrations, which was less explored in other LfD literatures.

2.2.3 Representation Learning in Sensorimotor Control

Representation learning differs from general machine learning techniques in

that it promises an easier way to handle unstructured patterns, which often

29



desire a laborious feature engineering and domain knowledge. This appears

compelling for the robotic sensorimotor control since such kind of data presents

in many sensor modalities.

The main instantiation of representation learning is often formed as connec-

tionist models such as neural networks (NN). One of the pioneering works about

modeling an NN controller is (161), in which a real-time video stream was fed

in an autonomous vehicle task to keep the car on the track. However, the early

efforts of implementing an NN controller were often limited to small-scale mod-

els with a careful design (82). This is due to the fact that learning large-scale

neural networks often requires a great amount of data and computational power

which had not been available by then.

In recent, witnessing the encouraging success in pattern recognition and gen-

eration (111, 200), roboticists have regained the enthusiasm towards this type of

controller. A successful story was reported in (123), where the authors consid-

ered a robot cutting task and a model predictive control (MPC) approach based

on the latent feature learning. The necessity of inducing the latent features was

argued, that the MPC should account for dynamics variations due to different

materials and cutting stages. Importantly, the success of this framework was

ascribed to carefully-tailored feature structures and recurrent latent units for

capturing a long-term time dependency. Offline unsupervised learning was per-

formed for a good initialization of the latent features. An analogous pretraining

and domain regularization design were presented in (124), where the graspable

regions of an object were identified from an RGB-D image.

In a large body of works, NNs powered by convolutional operations (CNN)

(59, 120) were used to reason about the raw image inputs and develop visuo-

motor controllers. As a seminal work in this line of research, (128) presented a

practical system in which the robot executed various contact-involved manip-

ulation tasks with pixel-based visual feedbacks. Stacked convolutional layers

were used as detectors to filter out a representation corresponding to the 2D

coordinate of the interested operating point. The representation was then con-

catenated with the robot configuration as the neural network input to predict

the desired torques. Much like the MPC work (123), pre-training data was

collected. Concretely, the object poses were labeled so it avoided optimizing
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trajectories in the pixel space. The collected vision-pose pairs were used to

extract the interested representation, which then replaced real poses in pre-

dicting the torque trajectory. In general, an offline prior training is important

to the success of a neural controller or policy. The extraction of informative

representations often requires large amount of data as is demonstrated in other

deep learning works. However, acquiring data through real physical explorations

tends to be expensive and risky. Besides the prior data collection, the learning

stability is another concern. (128) utilized guided policy search which turned

to fit a supervised learning model on trajectories from a model-based optimal

control, as such alleviating the difficulty of tunning high-dimension policy pa-

rameters based on delayed signals. Also, algorithms which update the policy

with certain guarantees, such as trust region and natural gradients, perform bet-

ter in benchmarking tasks (51) and expect to have an improved data efficiency.

(244) attempted to realize a cheap data acquisition via exploring in a simula-

tion environment. However, negative results were reported by the authors that

the trained controller, even though generalized well in the simulated scenarios,

failed with a zero success rate under the real-world camera input.

A recent trend in robot learning focuses on approaches that address the

challenges from the data starving problem. The first solution lies in a dis-

tributed architecture with multiple homogeneous robots to parallelize the data

acquisition. (129) realized such a system with about 10 robots to learn picking

and grasping objects based on mono-camera inputs. The images and a kine-

matic motor command were combined to predict if a successful grasp could be

achieved. The cross-entropy optimization was performed to determine the ac-

tion to take when a test image was presented. It took about two months to

collect 80, 000 trials before the emergence of a controller with a satisfying suc-

cess rate. In (69), the A3C RL (146), which allows for an asynchronous policy

update for multi-agents, was utilized in a group of two robot manipulators. The

authors showed a boosted learning efficiency by sharing the experience between

the robots, which learned to open a door in around 2.5 hours. The second av-

enue taken by researchers is associating the simulation data to the real world.

Exploring such an idea, (72) proposed to improve the fidelity of a simulator by

adjusting its parameters to fit the collected rollouts on a real humanoid robot.
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The real-world data could be task irrelevant and the interested task policy was

optimized in the adjusted simulation environment. With a sufficient training in

the simulator, a humanoid robot achieved a faster walking velocity in compari-

son with an off-shelf strategy. In another work (180), the authors first trained

a robot skill with an encoder representation in the simulator. The encoded

information was then used to bias the training of another model on the real

robot. Exploring a more principled way, other research eyes on how the new

task learning can be facilitated by reusing the prior task knowledge. A two-

stage approach was proposed in (6). In the first step, a mapping that bridges

different task spaces was established with an unsupervised manifold alignment

algorithm. The mapping was then used in the second step to initialize the policy

searching for the target task. In (70), a common feature space between tasks was

learned to facilitate the target task learning. Importantly, the reuse of the task

knowledge was implemented across multiple robots, which potentially differed

in their embodiments. The invariant feature space was learned through a proxy

task which should be mastered by both source and target agents. It is worth

noting that, this third avenue belongs to transfer learning, which is currently an

active research topic and mostly focuses on patterns like images in the general

machine learning. As a last type of paradigm, (205) explored a layer design for a

better generalization performance, thus less demanding about the data volume.

Specifically, the authors noticed the equivalence between the value iteration in

RL and the convolution operation in CNN, and proposed to stack convolutional

layers to embed an implicit planning computation. Empirical results showed

that a policy with the induced structure generalized well in a collision-free path

planning task.

Instead of directly modeling a neural controller, other researchers embrace

networks models as a good complement to the probabilistic modeling. The ar-

gument is that one can exploit the expressiveness and differentiable structure of

NNs to represent complex yet tractable statistical moments (143). This implies

the possibility of building a full probability model and conducting various infer-

ence tasks, linking to a broader topic of probabilistic programming (118, 222).

Relevant works in a robotics scenario includes (33) and (233). In (33), auto-

encoders and DMPs were combined to obtain a compact and structured latent
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space for whole-body joint movements. (233) proposed to learn a latent repre-

sentation from high-dimension unstructured observations (e.g., image pixels). A

policy in the extracted low-dimension space was efficiently searched for balanc-

ing an inverted pendulum with the pixel feedback. Much like (233), a similar

method with a more rigorous derivation was proposed and validated in the pixel

inverted pendulum task (92).

As a nonparameteric option, kernel machines were also applied in robotics.

As was pointed in (165), a certain type of kernel representation (e.g., a radial

basis kernel) could be cast as an equivalence to a random projection feature,

which somehow justified the effectiveness of the so-called extreme learning ma-

chine (ELM) (80). Such models in effect suggest a linear parameterized neural

network, with randomly chosen intermediate layers and only the output layer

tuned. This is beneficial in some situations. One can easily, for instance, achieve

a stable online learning by exploiting the kernel representation in a ridge regres-

sion. Employing such a method, an incremental robot dynamics learning was

reported in (63). Moreover, linear parameters are generally favored for the sys-

tem analysis and synthesis. As an example, (122) utilized an ELM to learn

a vector field to model handwriting motion with a locally ensured Lyapounov

stability.

The thesis extends the inverse optimal control framework in the third part, in

alignment with the progress of NN-based frameworks. The proposed adaptation

is similar to (33) and (233), which emphasize the importance of learning a

latent space rather than the direct policy. Meanwhile, the relevant chapter also

shares some similarities with (6) and (70) in terms of learning an overlapped

manifold or space, although here the motivation is not mapping between tasks

but sensor modalities. Also, unlike (6), the representation is simultaneously

extracted alongside the task learning. The thesis also reports a practical end-

to-end system, while most of the preceding works were showcased in simulators

with virtual visual inputs. To achieve this, the data-starving problem is also

alleviated in a different way. The image data in this work is obtained from the

synthesis of the other modality. The quality of synthetic data is ensured by the

other contribution (240), which incorporates kinematic features for a human-

like variability. The thesis demonstrates the generalization to new tasks as well.
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This is achieved with the sampling-based trajectory optimization proposed in

(238). The method in effect solves a variant of the cross-entropy optimization,

whose standard form was also employed in (129) to infer the motion from a

neural model.

2.3 Technical Preliminaries

This section gives a brief overview about the main technical foundations.

The terminology and notations will also be established as the section expands.

Section 2.3.1 reviews the topic of impedance control with its most basic for-

mulation. The core method about the forward and inverse optimal control is

introduced in 2.3.2, targeting the particular type of linearly-solvable dynamical

system used in the thesis. Gaussian Mixture Models and its task-parameterized

variant are reviewed in 2.3.3. Including these materials will provide background

information about the algorithm connection and experiment implementation in

Chapter 4. The adopted representation learning technique, variational auto-

encoders, is introduced in 2.3.4 with an aim to support Chapter 5.

2.3.1 Impedance Control

Impedance control concerns steering a dynamical system (DS) with respect

to a desired dynamic relation between the physical effort and effect. Taking

the example from robotics, impedance control is usually used to regulate the

force effort and motion effect. Let u ∈ Rd denote a d-dimension force input

to the robot system and x ∈ Rd represent a d-dimension robot state, such as

the coordinate in the Cartesian space or joint space. The goal is to control the

robot so as to follow a dynamics like

H
d2x

dt2
+D

dx

dt
+K(x− xr) = u (2.1)

where H, D, K ∈ Rd×d are desired inertia, damping and stiffness matrices

and xr denotes the reference state. The dynamic relation is fully governed by

the matrices and the reference state xr, which are not necessarily constant.

Hence, the central task of an impedance control is to choose proper H, D, K

matrices to indirectly accommodate the exerted force u. In practice, the inertia

term is often ignored due to the difficulty of obtaining an accurate acceleration
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estimation. The remained two terms in effect emulate the behavior of a damped

spring, which generates proportional forces according to the displacement and

velocity of the endpoint. The stability can be assured for certain matrices when

the reference is fixed (regulation), although tracking a slowly-varying reference

also works fine in practice. The thesis implements an impedance control by

learning both the stiffness matrix K and reference xr. The damping matrix is

determined according to K and the critical damping ratio. A control rule can

be derived from the relation in 2.1 with an additional term to compensate the

gravity:

uc = G(x) −K(x− xr) −D
dx

dt
(2.2)

with G(x) denoting the state dependent gravity from the manipulator mass.

One can apply the rule to a standard robot dynamics model subject to an

external wrench ue:

M(x)
d2x

dt2
+C(x,

dx

dt
)
dx

dt
+G(x) = uc + ue (2.3)

where M and C denote the robot inertial and Coriolis terms. As a result, a

second-order dynamics will be obtained as

M(x)
d2x

dt2
+ [C(x,

dx

dt
) +D]

dx

dt
+K(x− xr) = ue (2.4)

Therefore, when the system is stable, the free-space robot motion (with ue = 0)

could converge to the reference xr. When an external wrench exists, the refer-

ence xr becomes a virtual target, which can be modulated together with K to

accommodate the contact. Note that in impedance control, the system input uc

is wrapped by the spring-damping law, hence the high-level algorithm interfaces

with the system by specifying the virtual target and the desired compliance.

2.3.2 Optimal Control and Inference for Linearly-Solvable
Dynamical System

Nonlinear Dynamical System (DS) is an important tool for modeling robot

dynamics. This section will briefly review a special type of nonlinear DS used in

the thesis. Among different forms, the thesis specifically considers the discrete-

time nonlinear DS with a continuous state and system input as

xt+1 = f(xt,ut) (2.5)
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which subscripts the system state and input with the time index t. The thesis

considers a control-affine variant of this general form, by separating the trans-

formation into two parts according to their dependencies on u:

xt+1 = f(xt) +But (2.6)

The independent nonlinear transformation f : Rd → Rd is called passive dynam-

ics as it captures how the dynamics proceeds in absence of the control input.

The input u linearly applies to the system with a gain matrix B ∈ Rd×d. It is

worth noting that a more general formalization allows a state dependent gain

matrix. The thesis takes the constant B as a simplification, though the main

conclusions still hold for the general form. Also, the B could be non-square for

an under-actuated system. However, u is assumed to be of the same dimension

as the state x hence a fully controlled system is considered. This control-affine

formulation is sufficient to describe many practical systems, such as the robot

dynamics model in Equation (2.3).

The dynamics can be steered by a scalar function assigning scores to the state

and input at each time step. In particular, one can accumulate the instantaneous

scores to evaluate a rollout as:

Jς(x0, t0) =

T∑
t=t0

C(xt, t) +
1

2
uTt Rut (2.7)

where the rollout is denoted as a sequence of the state and input ς = {xt,ut}t=0:T .

C(·) denotes a state dependent cost for each time step and the additional term

on ut penalizes a large input magnitude through R ∈ Rd×d. The Jς is termed

as the cost-to-go function, as it summarizes an accumulated value for a rollout

starting at x0 and following ς 5. A control or policy u = {ut}t=0:T−1 or its

resulting rollout is regarded as optimal if:

ς∗u = argmin
u
Jςu (2.8)

Therefore seeking an optimal control aims to minimize the cost-to-go along the

state trajectory. It is known that, for a control-affine system and a cost-to-go

function like Equation (2.6) and (2.7), the optimal control can be derived as:

u∗t = −R−1B
∂Jς∗(xt+1)

∂xt+1
(2.9)

5. The time horizon can also be indefinite for the general first-exit problem. Most parts of
the thesis consider a finite horizon case.
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Note the control here is not explicit due to its dependency on the future state.

Nonetheless, it can be efficiently solved through a backward sweeping or equiva-

lently, solving a linear differential equation in the continuous time setting, hence

named as a linearly-solvable dynamical system (216). Moreover, the solution

could be efficient and less implicit under a linear-quadratic assumption, resulting

in an LQR problem as its special case:

f(xt, t) = Atxt

C(xt, t) =
1

2
(xt − rt)TQt(xt − rt)

Jς(xt) =
1

2
(xt − µt)TΛt(xt − µt)

(2.10)

where At denotes a linear state transformation. C(·) takes a quadratic form

with rt as the reference state and Qt is a positive-definite (PD) weight matrix.

Thus the sum-up of these instantaneous costs will yield another quadratic cost-

to-go Jς , with the remaining constant term ignored. Λt+1 is the corresponding

PD matrix which can be computed from the Riccati equation 6. µt denotes

the reference state which takes the feed-forward reference trajectory {rt} into

account. In this case, an optimal controller depending on the current state is

explicitly given by:

u∗t = −(R+BTΛt+1B)−1BTΛt+1At(xt − µt). (2.11)

It is worth pointing out that, this controller is much like the impedance control

in (2.2) if the velocity of the regulation point is augmented into the system state.

An inverse optimal control problem can be cast as inferring the unknown

parameters in J (·) or C(·) given a set of optimal rollouts {ςi}i=1:N as the

demonstrations. Taking the quadratic case as an example, the candidate cost

can be parameterized as the ones in Equation 2.11, with an unknown parameter

θ = {rt,Qt} or θ = {µt,Λt}. In this thesis, the inverse problem is solved under

a stochastic formalization, with the consideration of handling noisy demonstra-

tions. Also, the thesis focuses on learning the cost-to-go function for incorpo-

rating constraints about a trajectory. In a stochastic form, the control-affine

dynamics in Equation (2.6) is first adapted by adding a white noise:

xt+1 = f(xt) +But + dW t (2.12)

6. Namely, by recursively evaluating Λt = Qt + AT
t Λt+1At −AT

t Λt+1Bt(B
T
t Λt+1Bt +

Rt)−1BT
t Λt+1At for a finite-horizon problem, with ΛT = QT .
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where dW t ∼ N (0,Σ0) and the covariance Σ0 is inversely proportional to R

as Σ0 = BTR−1B. Prior research (52) has shown that the stochastic optimal

control of Equation (2.12) can be derived from the follow probabilistic model

over the system rollouts:

p(ς|x0,θ) =

p0(ς|x0) exp[−
T∑
t=0

C(xt,θ)]

∫
ς′|x0

p0(ς ′|x0) exp[−
T∑
t=0

C(x′t,θ)]dς ′
(2.13)

or in a factorized form:

p(xt+1|xt,θ) =
p0(xt+1|xt) exp[−Jς(xt+1,θ)]∫

x′t+1
p0(x′t+1|xt) exp[−Jς(x′t+1,θ)]dx′t+1

(2.14)

The factorization exploits the Bellman equation and softening the maximization

with a log-exp-sum operator:

J (xt) = C(xt) + log

∫
p0(x′t+1|xt) exp[−J (x′t+1)]dx′t+1 (2.15)

Here p0 denotes the stochastic passive dynamics with f(·) as the deterministic

part. When the passive propagation is uniformly distributed, which assumes

no control penalty, one can obtain a Boltzmann distribution over the state

trajectories:

p(ς|θ) =

exp[−
T∑
t=0

C(xt,θ)]

∫
ς′

exp[−
T∑
t=0

C(x′t,θ)]dς ′
(2.16)

As is revealed in (52), this form is in accordance with the maximum-entropy

(MaxEnt) IRL (246). The trajectory cost can be interpreted as the statis-

tic moments, which generate the optimal trajectories with a high probability.

Therefore, the inverse optimal control can be solved as inferring the distribution

parameters through maximizing the demonstration likelihood, hence transform-

ing the original formulation into an unsupervised statistical learning problem.

2.3.3 Gaussian Mixture Models and Task Parameteriza-
tion

A Gaussian Mixture Model (GMM) represents a probability density over the

interested data, be it a single state or an entire trajectory. The GMM combines

multiple Gaussians to describe complex data distributions that a single Gaussian
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fails to model. This is achieved by introducing a latent variable z, which is

constrained to be categorical as z = 1, ...,K for a tractable posterior evaluation.

A marginal data distribution with z integrated out can be written as:

p(x) =

∫
z

p(x|z)p(z) =

K∑
k=1

wz=kN (x|µk,Σk) (2.17)

where wz=k parameterizes a multinomial prior distribution p(z) and indicates

the probability of generating x from the k-th Gaussian component. The mean

and covariance of the component are denoted as µk and Σk. Therefore, fitting

a GMM estimates the parameters θ = {wz=k,µk,Σk}k=1,...,K . This is often

realized through maximizing a lower bound of the log-likelihood:

log p(x) = log[
∑
k

p(z = k)p(x|z = k)]

≥
∑
k

p(z = k) log p(x|z = k) = Ep(z)[log
p(x, z)

p(z)
]

(2.18)

which uses Jensen’s inequality to swap the logarithm and expectation opera-

tions and separate Gaussian statistic moments. The expectation is not directly

evaluable since p(z) is unknown. One can, however, take the expectation with

respect to another distribution q(z), which is assumed to be in the same family

as p(z). The Equation (2.18) is re-written as:

log p(x) ≥ Eq(z)[log
p(x, z)

q(z)
] = Eq(z)[log

p(x)p(z|x)

q(z)
] = log p(x)−KL[q(z)‖p(z|x)]

(2.19)

Hence, a proper choice of q(z) should minimize the gap between the actual like-

lihood and the lower bound, implying a minimized Kullback-Leibler (KL) di-

vergence KL[q(z)‖p(z|x)] = 0. Applying the Bayes rule to the posterior p(z|x),

the optimal q(z) can be explicitly written as:

q(z = k) = p(z = k|x) =
p(z = k)p(x|z = k)∑

k′
p(z = k′)p(x|z = k′)

=
wz=kN (x|µk,Σk)∑

k′
wz=k′N (x|µ′k,Σ

′
k)

(2.20)

Training a GMM model thus takes iterative steps of

– evaluating the expectation of the full probability Eq(z)[log p(x, z)] with the

estimation of θt in the last step.

– maximizing Eq(z)[log p(x, z)] to obtain a new θt+1 given that the Gaussian

component likelihoods are factored and q(z) is independent of θt+1.
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This can be summarized as the Expectation-Maximization (EM) algorithm (49).

Equation (2.20) means that, with a trained model, one can infer the latent

variable via the Bayes rule. Similarly, the missing dimensions could also be part

of x = [xo,xu]T , and inferred upon the observable dimensions xo:

p(xu|xo) =
∑
k

p(z = k|xo)P (xo,xu)

p(xo)

=
∑
k

wz=kN (xo|µok,Σ
o
k)∑

k′ wz=k′N (xo|µok′ ,Σ
o
k′)
N (xu|µu|ok ,Σ

u|o
k )

(2.21)

where µok and Σo
k denote the Gaussian mean and covariance of the observable

dimensions. µu|ok and Σ
u|o
k are the conditional Gaussian means and covariances:

µk =

[
µok
µuk

]
Σk =

[
Σo
k,Σ

ou
k

Σuo
k ,Σ

u
k

]
µ
u|o
k = µuk + Σuo

k (Σo
k)−1(xo − µok)

Σ
u|o
k = Σu

k −Σuo
k (Σo

k)−1Σou
k

(2.22)

As a result, the mean of Equation (2.21) could be determined by taking a

weighted combination of multiple Gaussian linear regressions, hence obtaining

the name of Gaussian Mixture Regression (GMR).

The GMR is often used to predict the control or the desired state from

the observation, after a GMM has been fit over the demonstrated state pairs

[xo,xu]. An extension called task-parameterized GMM (TPGMM) allows the

prediction to take account of the importance of each state dimensionality (23),

and improves the generalization performance under new task configurations.

Concretely, the GMM is trained on the data with an augmented state, which

involves descriptions relative to the configuration parameters. For instance, the

robot pose can be measured from the perspective of M landmarks, such as:

x̄ =

 x1

...
xM

 =

 T 1
w

T
xw − b1

...

TMw
T
xw − bM

 (2.23)

where [Tm, bm] (orientation and offset) indicate the m-th landmark pose ex-

pressed in an inertial reference frame. Although the resulting x̄ is an augmented

high-dimension variable, its mean and covariance possess structures since the de-

scriptions are redundant. Specifically, the TPGMM assumes the demonstration

variations are independent with respect to landmarks so the Gaussian covari-
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ances are block diagonal:

Σk = diag(Σ1
k, ...,Σ

M
k ) (2.24)

This could further factorize the Gaussian components in GMM/GMR when the

pose in the inertial reference frame is of the interest, such as:

N (xw|µwk ,Σ
w
k ) =

M∏
m=1

N (xw|µwmk ,Σwm
k )

µwmk = Tmwµ
m
k + bm

Σwm
k = TmwΣm

k (Tmw )T

(2.25)

Therefore the estimation of xw becomes a fusion of estimations from different

reference perspectives, yielding another Gaussian:

Σw
k = [

M∑
m=1

(Σwm
k )−1]−1 µwk = Σw

k

M∑
m=1

[(Σwm
k )−1µwmk ] (2.26)

The above equation implies the means associated with smaller covariances will

be more significant in the final linear combination. This is in accordance with

the intuition of assigning more importance to predictions with less uncertainties.

The thesis derives an inverse optimal control formalization that draws a

connection to the popular GMM model. TPGMM will be used as a way to

handle task configurations in a robot experiment.

2.3.4 Deep Generative Model: Variational Auto-encoders

Generative models like GMM provide powerful tools to represent various

data distributions. However, high-dimension unstructured data such as images

or audios are often notoriously hard to learn with a GMM. In particular, GMM

is inherently a local linear model and its covariance matrices will be extremely

large as the data dimension increases. To address this shortcoming, recent gen-

erative models incorporate representation learning to enrich the model capacity.

Typical examples include Variational Auto-encoders (VAE) (100) and Genera-

tive Adversarial Networks (GAN) (64). This section focuses on the background

knowledge about VAE, which is utilized and adapted in the thesis for its clear

probabilistic interpretation and training stability .

In a similar spirit of GMM, the VAE models capture complex data with a
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continuous latent variable z ∈ Rdz :

p(x) =

∫
pθ(x|z)p0(z)dz (2.27)

where p0 denotes the prior. pθ is analogous to the Gaussian distribution in the

GMM while its parameters are determined with a continuous mapping instead

of a categorical one. Facing the same difficulty of evaluating the likelihood,

a variational lower bound is derived. The VAE model proposes to use a φ-

parametrized proposal distribution qφ(z|x) to approximate the real posterior

p(z|x). The approximation is again regulated through a KL divergence:

KL[qφ(z|x)‖p(z|x)] =Eqφ [log qφ(z|x)− log p(z|x)]

=Eqφ [log qφ(z|x)− log pθ(x|z)− log p0(z) + log p(x)]

(2.28)

Applying Bayes rule and noticing that total probability p(x) is independent of

z, the above equation can be rearranged as:

L(θ,φ,x) =KL[qφ(z|x)‖p(z|x)]− log p(x)

=KL[qφ(z|x)‖p0(z)]− Eqφ [log pθ(x|z)]
(2.29)

Because of the non-negativity of KL-divergence, the right hand side can be

viewed as an upper bound of the negative logarithm of (2.27). Hence L can be

used as a valid surrogate to optimize the original data likelihood when (2.28) is

small. Usually, qφ and pθ are parameterized by nonlinear mappings like deep

neural networks, hence named as recognition and generation networks. Param-

eterizing nonlinear mappings allows for a rich representation and an improved

modeling power. This, however, trades-off the necessity of evaluating the ex-

pectation term via sampling-based method, which might suffer from the high

variance of gradient evaluation. Specifically, unlike the categorical posterior in

the GMM, here the optimal qφ is not readily available. In that sense, one has

to also evaluate the gradient of the expectation with respect to the recogni-

tion network parameter φ. If the gradient is evaluated in a standard way like

REINFORCE:

∇φEqφ [log pθ(x|z)] = Eqφ [log pθ(x|z)∇φ log qφ(z|x)] (2.30)

The estimation might be quite poor when qφ is far from the real p(z|x) and the

quality itself depends on the parameter φ.
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(100) adopted a reparameterization trick to alleviate this issue. The trick

is to rewrite the stochastic z as a combination of a deterministic part and a

random variable whose distribution does not depend on φ:

z = µφ(x) + σφ(x)ε ε ∼ N (0, I) (2.31)

As such, the φ-parameterized recognition network actually outputs the statistic

moments of a Gaussian latent encoding. The prior p0 is often chosen as an

isotropic Gaussian to obtain a closed-form KL evaluation. Similarly, the gener-

ation network pθ can be constructed as a Gaussian whose mean is determined

by z in a nonlinear way 7:

pθ(x|z) ∝ exp(−‖x− gθ(z)‖2
2

) (2.32)

The logarithm in the expectation thus leads to a squared reconstruction loss.

Stochastic gradient descent with an adaptive moment estimation (ADAM)

(101) was proposed to adjust the learning rate in training the network parame-

ters. ADAM keeps a decayed average of the history gradient mt and its square

vt:

mt =β1mt−1 + (1− β1)∇t

vt =β2vt−1 + (1− β2)(∇t)2
(2.33)

and the gradient is eventually estimated as:

∇̂t =
η√
v̂t + λ

m̂t m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(2.34)

The network parameters are thus optimized with a quasi-second-order update.

The hyper parameters are suggested as fixed values by the authors of ADAM:

β1 = 0.9, β2 = 0.999, λ = 10−8 and η = 10−4. These default settings are

thoroughly used in the thesis and lead to a good empirical performance.

2.4 About CoWriter

Part of the thesis work situates in the background project of CoWriter,

which aims to build a robotic companion that helps children to acquire the

handwriting skill. Unlike an instructor who provides a direct guidance, the

robot is assigned with the role of a learner, exhibiting writing difficulties and

7. Similarly, a Bernoulli density can be used for binary data like image pixels.
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Figure 2.3: CoWriter: a robotic companion interacts with children and facil-
itates the development of their handwriting skills. The robot plays the role
of a learner, engaging the children to practising the skill and improving their
self-esteem.

requesting children’s assistance. This so-called “learning by teaching” paradigm

is believed as an effective approach to motivate and engage children learners in

education activities (173).

The central scenario of the CoWriter project is an interaction activity be-

tween children and robots. For example, the robot can demonstrate a character

sample which could be poorly written in the initial, while gradually improved

under the help of children. Such an activity has been prototyped and its social

and technical feasibility has been validated in (Figure 2.3, 77). Many research

works, ranging from the robot control to the high-level activity design, are worth

an effort to improve the system autonomy, the behavior effects, and as such, the

ultimate learning gains of children. Among many research dimensions, the thesis

focuses on the representation, formation and control of the handwriting skills,

contributing to the project as a technical foundation and exploration.

Based upon the project motivation, handwriting is used as a running example

to highlight the technical contributions throughout the thesis, even though most

proposed algorithms are of a general purpose and their applications on other

tasks are also included. Besides that, handwriting is also a motor skill that

involves all the concerning aspects in the thesis. First, unlike a free-space move-

ment, handwriting involves many contacts: the robot needs a careful balancing

of the finger grips, and at the same time, an appropriate force accommodation on

44



the writing surface to generate legible characters. Hence, an impedance control,

as is researched in the first part, is desired in this motor task. Secondly, hu-

man handwriting samples exhibit so many variabilities and regularities that the

robot needs a proper representation for an efficient modeling and a diversified

synthesis. The second part of the thesis eyes on this challenge from the broader

view of modeling human behavior modes. Moreover, the proposed algorithm

is extended with the features incorporating human movement characteristics

so the character deformities can be intuitively controlled. This is shown to be

helpful in the CoWriter interactions by generating more autonomous and richer

robot handwriting samples (31). Finally, the handwriting proficiency is relevant

to the development of both cognitive and motor capabilities (85). Therefore, the

importance should be attached to task modalities beyond the motor movement.

The third part of the thesis takes steps in the direction of jointly considering the

character image and the motion generation, exploring the technical potential of

introducing more sensor modalities in human-robot interactions similar to the

CoWriter project.
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3
Learning Structured Cost
Functions and Controllers

3.1 Introduction

This chapter considers incorporating human priors in learning and synthesiz-

ing controllers. As reviewed in Section 2.1, the specification of motion trajectory

and impedance is central and challenging for robots with many degrees of free-

doms (DOFs). The learning from demonstrations (LfD) framework can mitigate

this difficulty. On the other hand, the research about robot task decomposition

and human movement has identified valuable properties for a convenient robot

implementation and motion representation. For instance, the hybrid and par-

allel force/position control (166, 36) decompose a task specification into multi-

ple orthogonal directions. Representing task parameters in a moving reference

frame will be convenient to describe this decomposition. The description is sim-

ilar to the natural curve representation, which is also applied in expressing the

human movement regularities (81). One natural question is thus how to incor-

porate domain structures, such as a representation in the local reference frame,

into LfD to synthesize controllers with the desired properties. This request,
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Figure 3.1: Learning a compliant robot motion through inverse optimal control.
The motion trajectory and variability, together with the prior of a local reference
representation, are encoded as a structured cost function. The task decoding
derives an optimal impedance controller implemented as a robotic handwriting
task on both single and multiple robot manipulator systems.

as shown below, sometimes adds complications that are not straightforwardly

tractable for a conventional formulation. Henceforth, the central research ques-

tion of this chapter, from both robotics and machine learning perspectives, can

be summarized as:

– Robotics: how to synthesize the robot motion and impedance profiles

with the certain constraints fulfilled.

– Machine learning: how to learn a structured task representation with

the incorporated human priors.

Concretely, this chapter considers the IOC problem of extracting a tracking

trajectory as well as the deviation penalty defined in the local frame of reference.

This problem leads to a nonlinear parameterization, different from the popular

IOC assumption that the cost function is linear with the unknown parameters.

Also, the commonly used gradient-based methods are ill-suited for solving the

non-convex optimization problem in this case, as they tend to end up with

poor local optima. As another difficulty, the gradient derivation to explore the

feature design for each model is error-prone and not applicable under a model-

free setting.

Based on the optimal inference duality, this chapter proposes to use the

cross-entropy method, a stochastic optimization algorithm to tackle the IOC
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problems. The cross-entropy method evaluates samples without knowing the

explicit model, which resembles a model-free approach. Importantly, the cross-

entropy-method is flexible and efficient to incorporate the correlation of model

parameters with a structured sampling. The sampling and learning is further

facilitated by adopting a cost reparameterization. These novelties lead to an

efficient approach with the desired compliance behavior encapsulated. Figure

3.1 illustrates the overall flow of our approach .The main contributions of this

part are:

– A parameterization that naturally describes the impedance in the local

moving reference frame, which connects the task decomposition in or-

thogonal control directions.

– A cross-entropy-like method for a model-free cost function learning with

a nonlinear parameterization form.

– A nullspace sampling schema that embeds task priors and facilitates the

trajectory optimization in the task decoding phase.

Most of the contents in this chapter have appeared in the publications (238, 239).

Section 3.3 extends the published works with a more detailed analysis about the

connection between cost-to-go and impedance parameters. The results (Section

3.6) also include some samples that were omitted due to the page limit.

3.2 Problem Statement

Following the notations in Section 2.3.2, this chapter considers the problem

of transferring skills to a robot with demonstrated trajectories ς∗ = {x∗t }, where

x∗t denotes the pose of the interested frame, e.g., the robot end-effector. The star

indicates the motions are optimal with respect to the underlying task goal. The

goal is implicit and can be abstracted as a sum-up of the cost function C(x,θ)

along the trajectory ς = {xt}. θ is the parameter to infer for encoding the

task. Note that the index t is a phase variable indicating the task progression.

The skill transfer requires the robot to derive its own compliance behavior,

mimicking the demonstrations as an impedance controller like Equation (2.2):

ut = G(xt)−Kt(xt − xrt )−D
dxt
dt

(3.1)
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(a) Global reference frame (b) Local reference frame

Figure 3.2: Representing the motion compliance in a global or a local reference
frames: (a) the stiffness ellipse is aligned with a fixed global reference frame
so the compliance description fails to consider the geometry of the interaction
space. (b) varying the control stiffness in a local reference frame which moves
according to the interaction surface. The local representation is desired as an
intuitive way to decompose the control design for implementing the standard
hybrid force/position scheme.

whereG(xt) is a robot model dependent feedforward control, such as the gravity

compensation term. Kt and xrt are the control parameters subject to the design

or learning. In addition, much like the classical force/position control schemes

(166, 36), the stiffness matrixKt is expected to decompose the control directions

and defines the local compliance behavior with respect to the motion trajectory.

Effectively, this implies that the impedance behavior is described in the local or

Frenet reference frame, as is shown in Figure 3.2.

The advantage of having a local representation lies in its intuitiveness for

synthesizing and interpreting the controlled behavior. An example of the ben-

efits can be demonstrated through a polishing task depicted in the Figure 3.2.

In this case, it is desired to decouple the control directions in a way that one

can orthogonally modulate the exerted forces in the normal and tangential direc-

tions. Adopting a global reference frame like Figure 3.2a ignores the geometry of

polishing surface, describing and interpreting the task in a less explicit manner.

However, unlike the standard hybrid force/position control setup, here the

reference trajectory is unknown and needs to be extracted from the noisy demon-

strations. The problem can thus be divided into two phases. The first part which

aims to reveal the unknown cost can be formulated as an inverse optimal con-
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trol problem. In general, this problem is ill-posed as there are ambiguous results

(e.g., constant cost) that always fulfill the optimality of demonstrations. One

elegant way to address this, as is reviewed in Section 2.3.2, is the maximum-

entropy framework (MaxEnt) (246), where trajectories are assumed to be sub-

ject to a Boltzmann distribution. By extending this concept, the estimation of

the cost parameters effectively maximizes the demonstration likelihood under

this distribution and a parameter prior:

θ∗ = argmax
θ

p(ς∗|θ)p(θ) = argmax
θ

exp(−J (ς∗,θ))∫
ς

exp(−J (ς,θ))
p(θ) (3.2)

where ς∗ = {x∗1:T } and ς = {x1:T } denote demonstrated and all possible trajec-

tories with a time horizon of T , respectively. J (ς) =
∑T
t=1 C(xt,θ) defines the

accumulated cost-to-go the along trajectory ς. The incorporated prior, such as

the local reference representation, is encoded as p(θ), whose concrete form is

nontrivial and will be discussed in the following sections.

The second stage is to derive a robot optimal trajectory under its own dy-

namics given the learned cost. The remarks below about the robot dynamics

are given as the additional problem assumptions:

– The execution upon a real robot dynamics desires a smooth variation of the

impedance parameter, for both the force magnitude and exerting direction.

The model parameter θ thus also needs to take this into account.

– The MaxEnt formulation effectively assumes a stochastic dynamics with a

uniform noise. Hence the learning stage is agnostic to the robot dynamics.

Nevertheless, the control derivation can still exploit the concrete robot

dynamics, which could be known as Equation (2.9), learned from the data

or be unknown in a model-free trajectory optimization.

– The construction of the state feature xt varies according to the robot

dynamics. For instance, the recorded demonstrations might be featured

in joint space but the feature of the cost function might be the trajectory

of the end-effector or a manipulated object. Here the forward/inverse

kinematics is assumed to be available to convert back and forth between

the state feature xt and the robot configuration.
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3.3 Optimal Impedance Controller with Struc-
tured Cost Functions

The compliance design is determined by the stiffness matrix K, which is in

turn implied by the estimated cost-to-go function. For an illustrative purpose,

let the interested operating point be a 2D particle with the state variable x̂ =

[x, ẋ] representing its combined position and velocity. The control u is the

acceleration or the scaled applied force. The motion dynamics for a unit mass

can be written as: [
xt+1

ẋt+1

]
︸ ︷︷ ︸
x̂t+1

=

[
I dtI
0 I

]
︸ ︷︷ ︸

A

[
xt
ẋt

]
︸︷︷︸
x̂t

+

[
1
2dt

2I
dtI

]
︸ ︷︷ ︸

B

ut (3.3)

where I denotes a 2× 2 identity matrix. According to the optimal LQR control

reviewed in the background chapter, one can obtain:

u∗t = −(R+BT Λ̂t+1B)−1BT Λ̂t+1At(x̂t − µ̂t)

= −(R+BT Λ̂t+1B)−1
[

1
2dt

2I dtI
] [Λt+1 0

0 Λ̇t+1

] [
I dtI
0 I

] [
xt − µt
ẋt − µ̇t

]
= −(R+BT Λ̂t+1B)−1

[
1
2dt

2I dtI
] [Λt+1(xt − µt) + dtΛt+1(ẋt − µ̇t)

Λ̇t+1(ẋt − µ̇t)

]
= −(R+BT Λ̂t+1B)−1[

1

2
dt2Λt+1(xt − µt) + (

1

2
dt3Λt+1 + dtΛ̇t+1)(ẋt − µ̇t)]

(3.4)

where Λ̂ = diag(Λ, Λ̇) is the block-diagonal weight matrix for the cost-to-go

J (x̂) = (x̂ − µ̂)T Λ̂(x̂ − µ̂). Note that here Λ̇ is a bit abused for denoting

the weight matrix for the velocity term ẋ instead of the time derivative of Λ.

Comparing with the feedback term of Equation (3.1) and fixing the velocity

reference to zero, one can reveal a design for the impedance parameters:

Kt =
1

2
dt2(R+BT Λ̂t+1B)−1Λt+1

Dt =
1

2
dt(R+BT Λ̂t+1B)−1(dt2Λt+1 + 2Λ̇t+1)

(3.5)

On the other hand, when the cost-to-go is formalized as a quadratic one like

above, the Boltzmann distribution in Equation (3.2) boils down to a Gaussian

distribution with block-diagonal covariance matrices. When the cost parameters

are estimated as the Gaussian statistics, both R +BT Λ̂B and Λ̂ are at least

semi-positive-definitive. So the impedance control is stable given the derived

stiffness and damping matrices.
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The relation between the cost parameter Λ̂ and the impedance design pro-

vides a perspective on a widely used heuristic, that the stiffness is designed to

be inversely proportional to the trajectory covariance. To see this, consider the

stiffness matrix with the cost parameter expanded:

Kt =
1

2
dt2(R+

1

4
dt4Λt+1 + dt2Λ̇t+1)−1Λt+1

=
1

2
dt2[(R+ dt2Λ̇t+1)Λ−1

t+1 +
1

4
dt4]−1

(3.6)

where it can be seen that the stiffness co-varies with the inverse of the Gaussian

covariance Λt+1. In fact, a positive-definitive matrix parameterizes an ellipse (or

an ellipsoid in the high-dimensional case). The cost parameter thus controls the

impedance profile via two orthogonal dimensions: the magnitude of the ellipse

axes which correlate to the reaction force; the orientation of the ellipse which

specifies the control directions. From the point of view of a cost function, the

magnitude and direction define which task dimensions are more sensitive to the

disturbances. The preference of reducing the control effort refrains the stiffness

magnitude along the less important dimensions. This is in accordance with

the minimum intervention principle, and yields a compliance controller which is

not only systematically synthesized but also optimal in terms of its impedance

parameters.

For a uniform prior p(θ), the estimation of θ is efficient as fitting a Gaussian

trajectory distribution. In that case, the trajectory reference and variability are

decoupled and the description of the impedance ellipse is independent of the

desired movement. When considering a description in the local reference frame

(Section 3.2), the parameters are correlated and result in a less tractable form.

To see this, the connection between the ellipse orientation and the trajectory

local reference frame is written as:

α = arctan(ẋ2, ẋ1)

Λ =

[
cosα sinα
− sinα cosα

] [
Λ1 0
0 Λ2

] [
cosα − sinα
sinα cosα

] (3.7)

where the principal compliance components [Λ1,Λ2] are decoupled from the

original weight matrix and α denotes the angle of the local frame with respect

to the world reference. One way to express this prior is to write p(θ) in a

factored form:

p(θ) = p(θΛ|θµ)p(θµ) (3.8)
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Figure 3.3: Varying impedance el-
lipse represented in the local reference
frame. This is utilized for an intu-
itive force/position hybrid task spec-
ification, where the length and orien-
tation of the principle axes correlate
to the force magnitude and control di-
rection.
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Figure 3.4: Graphical model of the
observed variable x and the model
parameters {µ,Λ}. Left: the infer-
ence of model parameters is indepen-
dent and relevant to the heuristics of
variable impedance design based on
the demonstration variability. Right:
representing the impedance ellipse in
the local reference frame yields a
structured parameter prior so the cost
parameters cannot be independently
inferred.

where p(θΛ|θµ) conditions the weight matrix with the above constraint. The

task prior eventually imposes a structure into the space of parameter θ. Synthe-

sizing the target impedance controller requires the IOC problem to learn with

a structured cost-to-go function. Apparently, in this case, p(θΛ|θµ) is not of a

standard form for an efficient learning like fitting a Gaussian trajectory distri-

bution. Moreover, the nonlinear parameter structure raises a few challenges to

the standard gradient-based IOC approaches. On one hand, these approaches

often learn a linearly parameterized cost function in order to guarantee a convex

optimization. The estimation might be poor under a nonconvex optimization

with respect to the nonlinear parameterization. On the other hand, it could

be error-prone to derive the gradient from the parameter constraint and an ap-

proach based on less customizations is desired for handling other general task

priors.

3.4 Cost Reparameterization

The thesis proposes a sampling-based probabilistic inference to address the

dependency between cost parameters, as identified in Equations (3.7) and (3.8).

Before its development, this section discusses a reparameterization of the cost
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to facilitate the sampling procedure and the practical implementation.

In order to achieve this, the reparameterization encodes the evolution of

reference states, eigen value and vectors of the weight matrices as parameter

trajectories. The parameter trajectories are proposed to be represented with

linear function approximators. Sampling from a featured trajectory space alle-

viates the issue of learning in a high dimension space. The linearity of the ap-

proximator parameter allows for an efficient sampling from the null space of the

trajectories, hence handling constraints on the via-points. Moreover, a variety

of basis functions could be adopted to enforce a smooth prior to the parameter

variation. This is advantageous for a robust learning from noisy demonstrations.

The smoothness prior could also prevent a drastic and impulsive change to the

variable impedance, ensuring a safe robot implementation.

Concretely, a trajectory can be approximated with a linear combination of

M normalized Radial Basis Function (RBF) plus a linear feature, taking the

reference state xrt as an example:

xrt (ω) = ωTΦ(t) =

M∑
i=1

ωi
exp(−γ(t− ti)2)∑M
j=1 exp(−γ(t− ti)2)

+ ωM+1t (3.9)

where t indicates the phase variable for a general representation. The extra

linear feature ensures a sparse representation to encode a straight line. For

the nonlinear terms, when the phase variable is defined within the interval of

[0.0, 1.0], the basis center ti can be selected to uniformly distribute the basis

functions in the interval. γ shapes the width of the basis function and then

entries of ω weigh the contributions of each basis component, as shown in Figure

3.5.

Sometimes one might expect the sampled trajectories to fulfill some con-

straints, e.g., to pass through a specific point. This is especially useful in tra-

jectory optimization when all the samples are supposed to start from an initial

state x0 or to fix both their boundary points. Such constraints can be imposed

by sampling in the nullspace of the feature parameter space. Concretely, let ω

be constrained to generate trajectories passing through a set of points Xr
const

ωT [Φ1, ...,Φc] = Xr
const = [x1

const, ...,x
c
const] (3.10)

A linear transformation matrix U can be found through the Singular Value
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Figure 3.5: Representing a trajectory
with a function approximator combin-
ing nonlinear and linear features. The
parameters of the function approxima-
tor are the weight of each component:
magnitude of the Gaussian RBF and
slope of the linear feature.

Figure 3.6: Sampling constrained
trajectories from the nullspace of
the approximator parameter. Top:
fixing the start point; Down: fixing
two end points.

Decomposition (SVD) to ensure

(ω +Uδω)T [Φ1, ...,Φc] = [x1
const, ...,x

c
const] (3.11)

to hold for any δω sampled in the subspace of the feature parameter space. In

that sense, the parameter trajectories are efficiently explored without needing to

reject those that violate the constraints. Figure 3.6 shows sampled trajectories

with fixed end points. Also, when δω is sampled as Gaussian noise, the per-

turbed trajectory parameter ω + Uδω is still subject to a normal distribution

in that U is a linear transformation.

Like the reference trajectory xrt , other variables that control the weight

matrix entries are encoded as:

tanαt =
sinαt
cosαt

=
ẋ2

ẋ1
=
ωTα2

Φ′(t)

ωTα1
Φ′(t)

Λt =

[
cosαt sinαt
− sinαt cosαt

] [
ωTΛ1

Φ(t) 0
0 ωTΛ2

Φ(t)

] [
cosαt − sinαt
sinαt cosαt

] (3.12)

where Φ′(·) denotes the derivative of the basis function with respect to the phase

variable, yielding another nonlinear basis for the function approximation. Com-

paring with Equation (3.7), all the unknown parameters are now defined (up to

a constant scale) in the form of trajectory function approximators. Henceforth,

56



the cost learning is reparameterized to estimate θ = {ω,ωα,ωΛ}.

3.5 Sampling-based Inference

The duality of optimal control and the probabilistic IOC like Equation (3.2)

motivate to address the cost parameter optimization as an inference problem.

The inference consists of two stages, each of which needs a sampler. The first

sampling step takes samples from the parameter prior p(θ) to evaluate the

posterior demonstration likelihood. The second routine samples x to estimate

the likelihood denominator. Note that the latter in effect performs a trajectory

optimization thus can also be used to derive the optimal control on another agent

to execute the transferred task. Therefore the first stage of optimizing the cost

parameter can be considered as task encoding while the trajectory optimization

in the second stage decodes the task under the cost representation. Here both

the task encoding and decoding are uniquely addressed through a cross-entropy-

like method under the importance sampling scheme.

The importance sampling scheme suggests take samples from a proposal

distribution when the target distribution is not of an easy form to take samples

from. For instance, the posterior

p(θ|ς∗) ∝ p(ς∗|θ)p(θ) (3.13)

is intractable for its component of the general Boltzmann form. The cross-

entropy method usually uses a multivariate Gaussian q(θ|µθ,Σθ) as the pro-

posal to approximate the intractable distribution. The q(θ|µθ,Σθ) is iteratively

estimated based on the weighted samples {θ̂i}:

µ∗θ,Σ
∗
θ = argmax

µθ,Σθ

∑
i

I(θ̂i) log q(θ̂i|µθ,Σθ) (3.14)

where I(·) denotes the sample importance. The importance function I(·) is sub-

ject to the user design. For example, in a standard cross-entropy method (46),

I(·) is a binary function screening out top performed samples, which construct a

so-called elite set. In a similar spirit of the path-integral approaches (90, 213),

the method presented here defines the importance function as:

I(θ̂i) =
exp(−ηL(θ̂i))∑
j

exp(−ηL(θ̂j))
(3.15)
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Figure 3.7: Iterative sampling and importance evaluation in cross-entropy-like
inference: (a)(c) - samples are taken from the current estimated proposal dis-
tribution q (black curve); (b)(d) - evaluating the importance of samples with
respect to the target distribution p and fit a new proposal q. The transparency of
dots indicates the sample importance evaluated under the target p (gray curve).

where L(·) denotes the target cost function, e.g., the negative logarithm of the

likelihood in Equation (3.2). In contrast with the binary I(·) in the standard

form, this importance function defines a soft elite-set membership, which is

influenced by the Boltzmann temperature η. Such an importance assignment

strategy has been demonstrated to be effective in robotics-related stochastic

optimization (198).

Solving {µ∗θ,Σ
∗
θ} in Equation (3.14) simply fits a Gaussian distribution with

weighted samples:

µ∗θ =
∑
i

I(θ̂i)θ̂i

Σ∗θ =
∑
i

I(θ̂i)(θ̂i − µ∗θ)(θ̂i − µ∗θ)T
(3.16)

where the covariance estimation is a biased one and in practice the evolution

of its eigen values are often truncated to assure a stable search and the chance

of exploration in all dimensions. The general cross-entropy-like inference thus

alternates between the score evaluation of the proposal samples and the esti-

mation of the new distribution under weighted samples, as illustrated in Figure

3.7.

3.5.1 Learning Cost Function for Task Encoding

The cross-entropy method and feature sampling presented above are em-

ployed to learn the task cost by solving Equation (3.2). The partition function

is evaluated with K locally sampled trajectories from another proposal distri-

bution r (e.g., a Gaussian centered at the optimal solution). This is eventually
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Algorithm 1 Encoding - An iteration step for learning the cost function based
on cross-entropy stochastic optimization

Require: ς∗,θ = {xrt ,Λt}, q(µθω ,Σθω ), r(ς̂),K,N - Number of parameter and
trajectory samples, D - Demonstrations of T length

Ensure: θNew, q(µNewθω
,ΣNew

θω )
for all i in 1:N do
θ̂
i

ω ← q(µθ,Σθ) . Sample parameters according to current
distribution. Apply the nullspace projection if necessary.
θ̂
i

= {x̂rt , Λ̂t} ← Equation (3.9) . Recover the reference trajectory and
weight matrices from the feature space.

for all k in 1:K do
ς̂k = {xkt , t = 1, ..., T} ← r(ς̂) . Sample locally perturbed

trajectories for evaluating partition function.
end for
Li ← −

∑D
j=1 log

exp(−J (ς∗j ,θ̂
i
))∑K

k=1
1

γ(ς̂k)
exp(−J (ς̂k,θ̂

i
))

end for
{θ̂

i

ω}elite ← EliteSet({θ̂
i

ω,Li}) . Construct the elite set.
θNew,µNewθω

← Mean({θ̂
i

ω}elite)
ΣNew
θ ← Covar({θ̂i}elite) . Update parameters through Equation (3.16).

solving the forward trajectory optimization and the sampling-based algorithm

is given in the next section 1. Assuming a uniform prior p(θ), Equation (3.2) is

rewritten as minimizing the negative log-likelihood

θ∗ω = argmin
θω

−
D∑
i=1

log
exp(−J (ς∗,θω))∑K

k=1
1

r(ς̂k) exp(−J (ς̂k,θω))
(3.17)

where ς̂k = {x̂k1:T } is the locally sampled trajectory. θω = {ω,ωα,ωΛ} are

the learning parameters in the feature space of the function approximator.

D denotes the number of demonstrations. The proposal sampler for the pa-

rameter distribution q(θω) is factorized as q(θω) = q(ωΛ)q(ωα|ω)q(ω), with

q(ωα|ω) defined as a deterministic mapping or a Dirichlet distribution. The

remained components follow the Gaussian assumption in the standard cross-

entropy method to assure efficient distribution sampling and fitting in the Al-

gorithm 1.

1. One can calculate a closed-form solution for a Gaussian distribution and quadratic
function. However, a sample-based evaluation is used here to be consistent with the decoding
algorithm.
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Algorithm 2 Decoding - An iteration step for deriving trajectory based on
cross-entropy stochastic optimization

Require: ωy,Ψ, r(µωy ,Σωy ), C(xt, t), N - Number of samples
Ensure: {yt}, r(µNewωy ,ΣNew

ωy )
for all i in 1:N do
ω̂iy ← r(µωy ,Σωy ) . Sample trajectory parameters according to

current distribution. Apply the nullspace projection if necessary.
ςi = {xt}i ← (ω̂iy)TΨ(t) . Take a rollout by following the trajectory

for each DOF to obtain task-featured states.

Li ← J (ςi) =
T∑
t=1

C(xt, t)

end for
{ω̂iy}elite ← EliteSet({ω̂iy,Li}) . Construct the elite set.
{yt},µNewωy ← Mean({ω̂iy}elite)
ΣNew
ωy ← Covar({ω̂iy}elite) . Update parameters through Equation (3.16).

3.5.2 Generating Motion Trajectory as Task Decoding

A state trajectory ς = {x} can be derived to facilitate the partition function

evaluation in Algorithm 1. This also effectively solves the trajectory optimiza-

tion given the learned cost function, as such, decoding the task representation.

Sample-based inference, such as the cross-entropy method, can approach the

problem as a model-free method. This property is desired because the task

relevant state x might depend on other actuated states. For instance, the un-

derlying motion is exercised in the joint space as {yt}, and can be converted

to the interested state space of the cost function through κ(yt). Note that the

complexity of κ depends on the robot embodiment as well as the task defini-

tion. It can be a kinematic function for characterizing the joint movement of a

single manipulator in the Cartesian workspace, or other nontrivial forms, e.g.,

consider a κ(·) that correlates the joint trajectory of a anthropomorphic hand

to the motion of a manipulated object.

Similar to the encoding algorithm, the iteration step of trajectory optimiza-

tion is given as Algorithm 2. It works as a cross-entropy method with function

approximators yt = ωTyΨ(t) for all of the actuated robot DOFs 2. The only

extra requirement is the measurement of the task state xt = κ(yt) though the

feature mapping κ(·) itself could be unknown.

2. Ψ(·) could be same as or different from the task trajectory feature Φ(·). A new symbol is
used here to differentiate the feature design of the cross-entropy optimization in the decoding
stage.
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3.6 Implementation and Results

This section reports the implementation of the algorithms and obtained re-

sults on a robotic handwriting task. The first part illustrates how the structured

cost parameters are learned under the proposed cross-entropy like inference. The

robotic handwriting motion is then developed on both simulated and real robots,

including implementations on both a single manipulator and a mult-fingered

robotic hand. In the last experiment, the impedance controller is examined in

a contact-involved motion to validate the learned compliant behavior.

3.6.1 Encoding Task Cost for Letter Trajectories

In this experiment, Algorithm 1 is implemented to learn handwritten letter

trajectories. The purpose of this experiment is to extract from demonstrations

an informative cost as the task representation. The cost will be further exploited

to reproduce the writing task on robot agents with different embodiments.

The letter trajectories are from the dataset reported in (97). Only position

coordinates are considered, thus the data consists of a series of 2D coordinates.

In this experiment, the trajectories are aligned to the same time horizon by

curve fitting and subsampling. All letter coordinates are within a comparable

range and defined with respect to the trajectory end points.

Figure 3.8 illustrates some particular iteration steps of the learning process

for letters “G”, “N” and “P”, where for each letter seven demonstrations are used

as the training data. For all these letter examples, the reference trajectory is

naively initialized as a straight line, and the initial sampling distribution is set

with a variance of 0.05 to ensure that a large enough parameter space is explored.

We use 9 RBF basis functions to approximate the reference trajectory and

modulation of eigen values of the precision matrix. The function approximator

is set to represent trajectories with both the two end points fixed and such

a constraint can be observed from all of the samples throughout the iteration

steps of importance sampling, for which 15 parameter samples are used. As a

result, the learned reference trajectory {xrt} , which is encoded by the mean

parameter of sampling distribution, rapidly converges to capture the profile of

demonstrated trajectories. Only tens of steps are needed to achieve this even

the naive initial guess might be far from the demonstration data. On the other
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(i) Iteration Step = 1
−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

X Coordinate

Y
 C

oo
rd

in
at

e

Demonstrations
Average Reference Trajectory
Sampled Reference Trajectory

(j) Iteration Step = 5
−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

X Coordinate

Y
 C

oo
rd

in
at

e

Demonstrations
Average Reference Trajectory
Sampled Reference Trajectory

(k) Iteration Step = 15
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(l) Iteration Step = 70

Figure 3.8: Evolution of the reference trajectory as the learning algorithm iter-
ates. The iterations begin with a straight line as a tentative initial guess. The
average trajectory evolves towards demonstrated profile to increase the likeli-
hood of demonstrations. The proposal distribution converges as covariance of
the sampled trajectories shrinks at the final stage.

hand, it can be seen that, the variance of the sampling trajectories also decreases

as the iteration evolves. This implies that the sampling distribution shrinks its

entropy thus the estimation of the reference trajectory tends to be certain.

The other cost parameter dimension is shown in Figure 3.9. Here, the vary-

ing weight matrix Λt is highlighted. The positive definite matrix is illustrated as

a heating ellipse whose center is located at the current reference point, and the

axes represent principle directions and the inverse of eigen values. Taking the

letter “G” as an example, it is clear that the direction of the principle axes varies

with respect to the local reference frame along the tracking trajectory. Also, the

length of principle axes, which indicates weight parameter in the corresponding

direction, captures the sensitivity of deviance from reference trajectory at each

regulation point. Similar to the heuristic of variable impedance design based

on trajectory variance, the IOC algorithm encapsulates this as the structured

cost parameter. As an example, the ellipse expands its length of axis along the
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radial direction of the curve in 3.9b. On the contrary, in 3.9d, the ellipse shrinks

its axis length along the radial direction as the demonstrated trajectories are

more consistent within these sections. Moreover, since the demonstrations are

aligned with respect to the termination point. The ellipse size is minimized cor-

responding to the truncated covariance eigen values in the cross-entropy method.

Indeed, the deviation along these directions will incur a large cost penalty and

the reference trajectory is expected to be well tracked. Note that at certain

positions, such as Figure 3.9b, the ellipsoid is almost circular so the orientation

of local reference frame is not very obvious. This is because the demonstrations

are widely distributed in this section so the motion is flexible along different

directions. Also, the RBF basis functions implicitly assume a smooth varia-

tion of cost parameters. This indeed results in a biased estimation so that the

parameters are not fully determined by the data under the original Equation

3.2. However, during the execution, the noise of data might lead to a drastic

impedance change, which can be harmful to the robot hardware. Embedding a

dynamical parameter in the space spanned by these basis functions suppresses

such drastic changes, establishing a smooth transition of the ellipsoid shape

from Figure 3.9a to 3.9c.

Following the derivation of an optimal impedance controller in Section 3.3,

it is thus natural to transfer a varying stiffness profile to the robot agents. The

concrete compliant behavior subject to an external human interaction will be

demonstrated in the robot experiments.

3.6.2 Decoding Task Cost: Robot Handwriting Motion

In this experiment, robot handwriting motion is derived as a decoding of the

learned task cost. Although the quadratic cost pertains to a trajectory-based

representation, it is still flexible to incorporate different task-relevant features

and additional models such as inverse dynamics control.

To see this, the Algorithm 2 is instantiated on an anthropomorphic robot

hand, on which the feature x is constructed with the κ(·) of a non-trivial form.

The 16-DOFs Allegro (Figure 3.10) can be considered as a system consisting of

multiple manipulators. The interested feature x is the pose of the manipulated

pen and has to be realized by coordinating the joint motion of the involved
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Figure 3.9: Results of learning a variable weight matrix as the task proceeds.
The inverse of the matrix Λt is illustrated as a moving heating ellipse by eval-
uating cost value over the entire state space. The task phase horizon is scaled
between 0 and 1.0.
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Figure 3.10: 16-DOFs Al-
legro robotic hand with 4
joints for each finger manip-
ulator.

𝑂 

𝑂 ′ 

Virtual frame 

Tooltip frame 

𝑂𝑂′ 

Figure 3.11: Approximating the object pose
through a virtual frame. The interested fea-
ture x, the tooltip frame, is then defined in
an object-level reference.

fingers. To simulate the mapping function κ to get the task feature from the

finger joint motion, a virtual object frame, which is commonly used in the

grasping and dexterous manipulation community, is adopted here. As shown in

Figure 3.11, the virtual frame is statically defined by the position vector of the

tips. For the case of three fingers, the origin (O in Figure 3.11) of the virtual

frame is the average position of involved end-effectors, and the orthogonal axes

can be determined with the cross products of relative position vectors. The pen

tip (O′ in Figure 3.11) is assumed to be fixed, with respect to this virtual frame

via a known transformation along the pen axle. Note that κ is designed for

evaluating the cost and it is not known to the algorithm. More details about

the principle and application of the virtual frame is off the main thesis topic

and interested readers can refer to (130).

In the experiment of writing a letter “e”, N = 15 samples are sufficient

for exploring an optimal result. As per the parameterization of the function

approximators, candidate trajectories are initialized as straight lines in the joint

space. 15 samples are used in the importance sampling process. The evolution of

cost values within 1000 iterations is shown in Figure 3.12. Indeed, the proposed

algorithm is effective for the trajectory optimization, as the cost monotonically

decreases to a relatively stable level within a few hundred iterations. Also,

the variability (gray area) of the costs of sampled trajectories decreases as the

samples tend to be identical, implying the exploration variance vanishes and as

such, a convergence to a near optimal solution is achieved.

65



Figure 3.12: Logarithm of the cost in the it-
erations of running the decoding algorithm.
15 samples (curves of different colors) are
taken to evaluate the rollouts and re-fit the
proposal parameter distribution. The black
bold curve indicates the averaged perfor-
mance.

(a) (b)

(c) (d)

Figure 3.13: Multi-finger joint
motion for writing a letter “e”
via the pen-tip.

(a) (b) (c) (d) (e)

Figure 3.14: Cursive handwriting motion implemented on a manipulator with
the pen compliantly grasped by the Allegro hand.

As a more general example, cursive handwriting is implemented on a real

7-DOFs KUKA LWR arm, hence applying the algorithm to a different kine-

matic structure and task feature. In this experiment, the pen is held by the

Allegro hand mounted on the robot arm, and the motion is realized as writing

a word “allegro” on a board grabbed by a human. Figure 3.14 demonstrates the

success of derived motion. Besides the motion itself, the learned compliance is

also approximately specified through the object-level impedance controller on

the Allegro hand. As a result, the motion exhibits certain robustness to accom-

modate unmodeled uncertainties, which include the surface texture and more

importantly, a varying board orientation under the human manipulation.
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(a) Start writing (b) Large deviation un-
der perturbation

(c) Small deviation un-
der perturbation

(d) Finishing writing

Figure 3.15: Snapshots of writing “G” with the developed impedance param-
eters: (b) Low stiffness along radial direction - large deviation and vibration
incurred under the perturbation; (c) and (d) High stiffness - small oscillation
amplitude under perturbation; Reference trajectory is illustrated as the dash
line and the perturbed sections are shown in detail in (d). Note to compare
with the weight ellipse shape from Figure 3.9a to 3.9f

3.6.3 Decoding Task Cost: Handwriting Impedance Con-
trol

In this experiment the developed impedance is examined through a closer ob-

servation. Concretely, the end-effector motion compliance in Cartesian space is

implemented by the 7-DOFs KUKA LWR robot. The encapsulated compliance

is validated by subjecting the robot to disturbances during the writing execu-

tion. Figure 3.15 shows robot’s compliant behavior with the developed varying

impedance parameter. As expected, the robot exhibits relatively compliant be-

havior to perturbation in Figure 3.15b. This property can be understood by

revisiting the learned cost in Figure 3.9b. Note that in Figure 3.9b, the heating

ellipse indicates the inverse of weight matrix Λt thus a smaller axis length im-

plies a larger desirability to keep the motion on track. In contrast to this, the

robot is comparatively stiff in the radial direction in Figure 3.15c and one can

observe even more resistance under perturbation in Figure 3.15d. Correspond-

ingly, this can be explained by a larger Λt in these sections, with an increased

impedance parameter developed.

Finally, the learned weight matrices are applied for writing other letters,

with the aim of showing the generality of the learned cost function. As is

shown in Figure 3.16, letters “N” and “W” are written with the impedance

trajectory derived from the local structure of Λt of "G". The eigen values of Λt

is independent from the reference trajectory. These values hence encapsulate

the knowledge about how to shape the stiffness ellipse in the motion tangential
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Figure 3.16: Generalizing the cost parameters to other letters: writing “N” and
“W” with the impedance by exploiting the local Λt extracted from “G”.

and radial directions. The robot is then enabled to still execute a modified

trajectory by overcoming the friction, which is the main disturbance along the

motion velocity direction.

3.7 Discussion

The approach presented in this section addresses learning and decoding

structured cost-to-go functions. The special function structure incorporates the

local reference frame representation, a robotics-related prior, while also results

in tractability issues for a standard IOC solution. The presented algorithms

take a probabilistic inference perspective to tackle the original problem, secur-

ing efficient computations for learning and reasoning about the task objective.

As an answer, the discussed approaches employ the structured cost to address

the identified domain research questions:

– Robotics: the task constraints, e.g. the impedance variation with respect

to the local motion, can be incorporated as the dependencies within cost-

to-go parameters, e.g., the correlation between the reference and weight

matrices. Shaping the control synthesis is achieved by optimizing this

structured cost-to-go function.

– Machine learning: the duality between optimal control and inference

can be utilized to solve the IOC as a probabilistic inference problem, as

such incorporating the parameter priors in the form of a structured dis-

tribution for the sampling-based inference.
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The cross-entropy-based inference is a general stochastic optimization thus

the cost-to-go and trajectories are not limited to be quadratic or linearly pa-

rameterized. The adopted cost form is advantageous for this specific task in

two aspects: on one hand it explicitly draws a connection to existing heuristics

about impedance design; on the other hand, it exploits the structure (depen-

dency between the reference trajectory and local frame) to improve the sampling

efficiency. The principle of inference-based IOC itself is applicable to a broader

range of cost parameterizations and applications, as long as the interested struc-

ture can prompt an efficient sampling process.

The presented cost parameterization and trajectory approximation allow to

learn a variable impedance profile while assuming a single reference trajectory.

The question arising from this limitation is how one can learn multiple adapt-

able reference trajectories. This is interesting from the robotics point of view in

that the human motor control not only modulates the limb impedance but also,

in certain cases, systematically adapts the motion trajectory. From a machine

learning perspective, the presented IOC algorithms assume similar demonstra-

tions and only capture the data with a single dynamics or behavior mode. This

assumption helps to simplify the hypotheses space while faces difficulties in

modeling diversified human data. Some of these limitations will be discussed

and addressed in the following chapters.
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4
Modeling Latent Behavior

Modes

4.1 Introduction

The learning from demonstration (LfD) approach presented in the last chap-

ter models data variabilities around a reference trajectory. Sometimes the vari-

abilities should be interpreted as the consequence of other task parameters, in-

stead of the ignorable factors such as motor noise. For instance, humans might

perform an identical task in their own preferred ways, exhibiting different be-

havior modes. The variety of demonstrations could be driven by the personal

intention, contextual cues or social factors. The behaviors can be less ambigu-

ous with these factors labeled. However, usually the labels are implicit due to

the limitation of robot perception capability. As a result, the robot might have

to learn from demonstrations that are not completely observable.

This chapter tackles the problem of learning from human data with latent

behavior modes. An LfD approach is developed for programming rich behaviors

without the need of labeling each demonstration. Reasoning about an incom-

plete task observation solicits the inference of what is unknown from what is
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known. In light of this, the LfD model can be used in a pipeline that com-

plements the perception and then derives the control. As an example, in a

collaboration task, the intended behavior mode of a human operator might be

implicit to the robot. A model about these latent behavior modes can be lever-

aged for the robot to resolve the perceptual uncertainty and act cooperatively,

as such achieve an improved task performance.

Modeling diversified behaviors entails an LfD algorithm that disambiguates

local and global distinctions. This requires estimating a multi-modal demon-

stration distribution. When the distribution is parameterized with nonlinear

cost functions, the estimation is feasible under the standard probabilistic IOC

framework. However, the generality of the standard formulation trades-off a

high computational cost and approximation arising from the partition function

evaluation. Also, the interpretability of the popular parameterization, which

linearly combines a set of nonlinear basis functions, is not explicit for under-

standing the mode of an observed behavior. Noting these challenges, the re-

search questions are set from both the robotics and machine learning (ML)

perspectives:

– Robotics: how to facilitate the robot perception and adaptation by rea-

soning about multi-mode task demonstrations.

– Machine learning: how to efficiently learn an IOC model from demon-

strations with unobservable modes.

The proposed approach exploits the problem structure about the behavior

mode, which is cast as a discrete latent variable. A divide-and-conquer strat-

egy is adopted to break the problem into efficient pieces that deal with similar

demonstrations. The difficulty of grouping similar demonstrations is mitigated

by bagging a collection of naive models. Therefore, the idea is leveraging en-

semble principle and aggregating simple cost-to-go representations to yield a

powerful model. The validity of learning simple models is ensured by focusing

on locally consistent data. The data grouped in the subset is labeled with a

discrete latent state that can be cast as the mode of these demonstrations. The

posterior estimation of the latent variable is efficient, leading to an online mode

inference and supporting realtime motion adaptation. As a summary, the main

contributions are:
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– An Ensemble IOC algorithm based on the linear-solvable system for learn-

ing cost-to-go functions and tackling incomplete demonstrations.

– A new perspective on Gaussian Mixture models (GMM) in the context of

IOC. The results shed light on what GMMs actually learn (local MaxEnt

models) and how can they be used as a guaranteed approximation.

– Integration of the task dynamics with the latent state to handle the chal-

lenge from incomplete state observation, for which a direct multi-mode

policy encoding fails. The augmented dynamics provide a strategy to ex-

ploit the task redundancy to accommodate the disturbances or human

intervention on-the-fly.

This chapter is based on the published work (240) and a submitted journal

paper. Most of the sections are based on journal submission, which encompasses

and extends the approach presented in (240). The contents of Section 4.5 and

4.7.2 only appear in (240). These sections focus on unique kinematics features

and results of synthesizing human-like handwriting motion, pertaining to the

main application of (240).

4.2 Problem Statement

4.2.1 Learning and Synthesizing Multi-mode Behaviors

Let the expert demonstrations be a datasetD = {ςi} with i as the data index.

Taking the handwriting task as an example, the demonstrated data could be a

set of trajectories that form different styles of written letters in the Cartesian

space, with the planar position coordinate the features xit ∈ ςi. Similar as the

trajectory parametrization in Section 2.3.2 and Chapter 3, the subscript t refers

to the phase index. The demonstrated trajectories can be aligned by scaling the

horizon to the same phase interval, e.g., from 0.0 to 1.0.

Unlike Chapter 3, the demonstrated trajectories are not necessarily with a

distribution of one mode. Indeed, the driving factor of forming a stereotyped

trajectory is abstracted as a discrete variable zi ∈ N, which is, however, not

explicitly observed in D. To put it into perspective, the latent variable zi

indicates a particular way of executing the task. Taking Figure 4.1b as an

example, the stroke direction of forming the circle in writing the two types of

"D" depends on the global style instead of the local geometry. Depending on
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𝑃(𝜍|𝜽) 

(a) Unimodal

𝜍 

𝑃(𝜍|𝜽) 

(b) Multi-modal

Figure 4.1: Unique and multiple modes of demonstration trajectories to exe-
cute a task, with handwriting motion as an example. 4.1a is a poor model to
encapsulate the diversity and redundancy of styles in forming the letter "D".
Actually, the unique mode, which approximately represents the mean trajectory,
is not legible, and should be assigned with low probability (high cost value) in-
stead. Also, the state itself (the point coordinate on the arc) is not sufficient to
determine the next desired position.

the context, zi is interchangeably interpreted as “style” or “mode” throughout

this chapter.

The human and robotic agents are constrained by their corresponding dy-

namical models, as the linearly-solvable dynamical system reviewed in Section

2.3.2 :

xt+1 = f(xt) +B(ut + dw)

dw ∼ N (0,Σ0)
(4.1)

where dw is the additive noise. The parameters of the dynamical system are

assumed to be known or empirically determined.

The cost-to-go function that steers the desired behavior, is of a similar form

in 2.3.2 but now dependent on z:

Jς(x0, z,θ, t0) =

T∑
t=t0

C(xt, z,θ) +
1

2
uTt Rut (4.2)

Learning multi-mode behaviors is thus estimating the parameter of the condi-
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tional distribution:

P (xt+1|xt, z,θ) =
P0(xt+1|xt)e−Jς(xt+1,z,θ)∫

x′t+1
P0(x′t+1|xt)e

−Jς(x′t+1,z,θ)dx′t+1

(4.3)

where P0 denotes the stochastic dynamics in Equation (4.1) without an active

control. This likelihood cannot be directly evaluated as z is not observable.

Merging z and θ for estimating a joint variable is viable for fitting the likeli-

hood. However, this might result in a nontrivial partition function evaluation

because of the general form of J . On the other hand, it would be beneficial to

disentangle z from the unknown parameters for the efficiency of recognizing a

given trajectory (p(z|ς)) and synthesizing motion of a specified mode (p(ς|z)).

4.2.2 Our Approach

This chapter takes a divide-and-conquer strategy to approach the problem.

It is based on the results in Chapter 3, where one or a set of simple quadratic

cost-to-go function can be used to model locally consistent demonstrations. The

problem then boils down to grouping trajectories of the same mode. Clustering-

based preprocessing is an option to achieve this, for which the cost-to-go func-

tions themselves serve as a natural metric: a pair of trajectories are similar if

both of them are locally optimal with respect to quadratic cost-to-go functions.

For sake of efficiency, the proposed approach develops an ensemble method. The

key idea is to randomly group trajectories in a suboptimal while quite efficient

way. An improved performance is then obtained by aggregating a set of such

“naive” models.

The followings of this chapter first develop the IOC result under the weak

quadratic cost-to-go function. Random subspace embedding is then employed

to realize the suggested trajectory grouping. The chapter continues with the

incorporation of human kinematics features and latent dynamics. These exten-

sions target practical applications about synthesizing handwriting and inferring

motion intention, both of which are correlated to modeling and reasoning about

the latent behavior modes.
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4.3 Quadratic Cost Learning under a Linearly-
solvable System

Let the discrete z be considered as a known variable. In that sense, it can

be seen that the integral of the denominator in Equation 4.3 can be efficiently

evaluated if J is of a quadratic form. A quadratic cost-to-go implies that the

demonstrations, which quantitatively expect a low entropy Gaussian probabilis-

tic model in (4.3), roughly follow a unique behavior mode. By exploiting this

fact, the demonstrations labeled with the same z, when factored as state pairs,

can be modeled by setting Jς(xt,θ) = 1
2 (xt−µt)TΛt(xt−µt) in (4.3), yielding

P (xt+1|xt, z) =
1√

(2π)d|Σ|
e−

1
2 (xt+1−µ′)TΣ−1(xt+1−µ′),

µ′ = Σ[Σ−1
0 f(xt) + Λt+1µt+1],

Σ = (Σ−1
0 + Λt+1)−1,

(4.4)

where Σ0 is covariance of the Gaussian noise of the passive dynamics. Σ is the

covariance matrix, which depends on Λt+1, and d denotes the state dimension.

Therefore, the likelihood in (4.3) can be written in an explicit way, thanks to the

closed-form evaluation of the integral of the product of two Gaussian functions:∫
1√

(2π)d|Σ0|
e−

1
2 [xt+1−f(xt)]

TΣ−1
0 [xt+1−f(xt)]e−

1
2 (xt+1−µt+1)TΛt+1(xt+1−µt+1)dxt+1

=

√
|Λ−1

t+1|√
|Λ−1

t+1 + Σ0|
e−

1
2 [f(xt)−µt+1]T (Λ−1

t+1+Σ0)−1[f(xt)−µt+1]

(4.5)

Moreover, a maximum-entropy (MaxEnt) formulation implies a standard Gaus-

sian distribution xt+1 ∼ N (µt+1,Σt+1), with the stochastic dynamics tends to

be uniform with ‖Σ0‖ → ∞. It is apparent the maximum likelihood estimation

of this approximation is even more trivial. This is because y is dependent on Z

in Equation 4.4 thus estimating the original µ and Σ requires an iterative opti-

mization. Given these observations, the MaxEnt result appears as a reasonable

starting point to guess the model or decouple the parameters. In fact, such a

surrogate has a following guarantee:

Proposition 1. The optimal estimation of {µt,Λt} for a MaxEnt formalization

ensures a lower bound of the original likelihood (4.4) and the gap depends on

Σ0. In particular, the gap decreases as ‖Σ0‖ → ∞.

76



See Appendix A.1 for the proof. The above conclusion means, if the as-

sumption for learning quadratic cost-to-go function holds, the estimation can

be efficiently performed through a MaxEnt approximation.

Note that the learning considers identifying cost-to-go functions as the local

IOC problem because it is arguably more efficient than learning a cost function

(See discussions about OptQ in (52)). Another advantage of having a cost-to-go

function is a local controller can be immediately derived, as is shown in Section

2.3.2:

u∗t = −R−1B
∂Jς∗(xt+1)

∂xt+1
(4.6)

The quadratic cost-to-go functions can be either time-independent or time-

dependent for modeling time-invariant task and finite-horizon trajectories. It is

known that, for first-exit problems, the cost-to-go function corresponds to the

cost function in the Bellman equation:

C(xt) = J (xt) + log

∫
P0(xt+1|xt)e−J (xt+1)dxt+1 (4.7)

In (52), the relation is suggested to be used for the inference of the cost func-

tion. This is, however, not exploited in the thesis and the focus is about the

development of learning cost-to-go functions.

4.4 Ensemble IOC with a Random Subspace Em-
bedding

The efficiency for learning a quadratic cost function based on the linear-

quadratic (LQ) assumption is useful. Indeed, this fact motivates to address

the original problem in two phases. In the first stage, similar trajectories are

grouped to ensure the applicability of the LQ assumption. The following-up

learning can then exploit the problem structure for a rapid estimation over

grouped demonstrations. The grouping subroutine is expected to be cheap so

the overall pipeline can save computational cost comparing with tackling the

original problem.

There exist numerous clustering techniques for the preprocessing purpose.

For example, a simple and rapid method such as K-means could be a possible

option. However, the performance of a clustering algorithm usually relies on a

proper metric characterizing the data similarity. The popular Euclidean distance
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in the standard K-means might work when the task is time-invariant and the

latent variable z depends on the state x (p(z|x)). However, for certain tasks, the

style of a demonstration might depend on the global trajectory feature (p(z|ς)).

As discussed in Section 4.2.1, handwriting exemplifies such a kind of task. The

challenge raised is that the Euclidean distance might no longer be viable for

state trajectories, which are often of a high dimension. Section 4.7.3.2 will

demonstrate a general trajectory task where the similarity metric is nontrivial.

Here the thesis proposes an approach which is, on one hand flexible for

the dependency on both local and global features, and on the other hand, still

simple and efficient for its implementation. The approach works in an iterative

manner by recursively dividing the dataset. Take the trajectory grouping as

the example, each iteration of the algorithm seeks to maximize the information

gain from introducing a partition on the current dataset:

∆H(D, φ(·)) =H(D)− [H(Dφ(ς)≥0) +H(Dφ(ς)<0)], (4.8)

whereH denotes the entropy of the data trajectories under a probabilistic model.

Dφ(ς)≥0 and Dφ(ς)<0 are the partitioned subset based the criterion φ(ς) = 0.

The reduction of entropy implies the partitioning reveals useful structure from

the data space. Upon noting the simplicity of a Gaussian entropy, a MaxEnt

model with the quadratic parameterization can be used to evaluate the entropy..

φ defines the function to decide the membership of each demonstration. For

an efficient searching, this function is often constrained with a simple form.

Existing research (43) provides popular options to obtain decision boundaries

of different levels of complexity. The optimization in searching φ can be further

relaxed by randomly selecting the effective features and the candidate solutions,

as is suggested in (62). Among these options, the thesis employs a naive form,

letting φ(ς) = ςt,l−η where ςt,l denotes the l-th dimension of the t-th state xt in

trajectory ς. η is the intercept to be decided together with t and l in the random

search. This in fact explores in a family of axis-aligned decision boundaries in

the temporal and spatial space of the trajectories.

The above process can be performed recursively to obtain K subsets, as

is demonstrated in Figure 4.2. The recursive process can be terminated when

the dividing violates the constraints of the minimum number of demonstrations
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Figure 4.2: An ensemble of cost-to-go functions over partitioned datasets
through random feature bagging. The demonstrations are grouped according to
suboptimal yet efficient decisions, resulting in trajectories with consistent styles
so that a simple IOC model is plausible.

Nmin
D in the subsets. By randomly searching in a constrained parameter space,

the formation of partitions is efficient and effective in grouping demonstrations

with a similar style (low entropy distribution). The pseudocode for this recur-

sive partitioning subroutine is given as Algorithm 3. The algorithm returns

K subsets Dk=1:K taking as input the complete demonstration set D. Further

explanation about the other parameters will be given later.

Local cost-to-go functions can be estimated based on the each subset of the

demonstrations as shown in (4.4). However, the estimation is unstable as the

local learning depends on the results of data partitioning, which only considers

the data correlation in a suboptimal way. An idea to mitigate this undesired

effect is to replicate the partitioning for multiple times to build an ensemble of

M models. This strategy is called bagging, which is widely accepted and applied

as a scheme to reduce model variance (21). For a bagged model ensemble, there

exist multiple mechanisms for generating the ultimate prediction: estimating

the unknown cost-to-go function. One standard option is to take a weighted
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Algorithm 3 RandomSubSpace - Partitioning dataset through feature bag-
ging

Require: D, Nx, Nmin
D

Ensure: Dk=1:K

Dk=1:K ← Split(D, Nx, Nmin
D )

function Split(Din, Nx, Nmin
D )

{ςit,l}i=1:Nx ← RandomSelect(ς)
j, η∗j ← argmax

i,ηi

∆H(Din, {ςit,l}, ηi)

if |D
ςjt,l>η

∗
j

in | > Nmin
D and |D

ςjt,l<η
∗
j

in | > Nmin
D then return Concate-

nate(Split(D
ςjt,l>η

∗
j

in ), Split(D
ςjt,l<η

∗
j

in ))
else return Din . Discard this split
end if

end function

log-sum over local predictions with a similar form as (218):

J ∗(x) ≈ − log

M∑
m=1

Km∑
k=1

wmk e
−Jmk (x) (4.9)

where J ∗ is the target cost-to-go approximated by the ensemble of quadratic

{Jmk }. The state trajectory ς was omitted and m indexes the models in the

ensemble. {wmk } denotes the weight of each local model (4.4). The weights

can be defined as {wmk } = { card(Dmk )
card(D)M }, with card(·) denoting the cardinality of

dataset.

The above ensemble strategy resembles a mixture of multiple simple proba-

bilistic IOC models. The indices of {m, k} can be understood as discrete latent

variables, which loosely corresponds to trajectory styles s. It can be seen that,

the number of subsets is a partially controlled value from the random partition-

ing. In some cases, one might like this value to be deterministic, e.g., when the

number of clusters is known. In fact, the above random partitioning result is

flexible to be used to enforce this model prior. To see this, one can consider the

memberships of all subsets as a one-hot encoding of the data. In that sense, the

random partitioning embeds the original data into a manifold, yielding a high

dimensional but sparse representation. Thus, the result of random partitioning

can also be used as a random trees embedding (62), which hashes the input

features and constructs a non-Euclidean affinity matrix. Applying the affinity

to standard techniques like K-means or spectral learning, the trajectories can

be assigned into a given number of clusters with a nonlinear feature embedding.
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With the cost-to-go functions estimated, the control synthesis can be re-

trieved through standard backward passing or solving an invariant point prob-

lem. For instance, under a finite horizon LQR condition, the backward Ricatti

iteration allows for efficiently deriving the reference trajectory together with the

local feedback gain, in a similar way as Section 3.3.

For a further understanding of the above model, it is also worth remarking

its relation to other approaches:

– One way to explain the cost evaluation (4.9) is to see it as a soft version

of pointwise minimum of a collection of cost-to-go functions. With such

an evaluation, (4.6) yields:

u∗t = −R−1B
∂Jς∗(xt+1)

∂xt+1
=

−
∑
m,k

[
wmk e

−Jmk (xt+1)∑
m′,k′

wm
′

k′ e
−Jm′

k′ (xt+1)
R−1BΛm

k (xt+1 − µmk )]
(4.10)

The control can thus be explained as a combination of state dependent

local impedance controllers, which are analogous to the form proposed in

(96). The thesis, however, will adopt another type of control based on the

most probable cost-to-go model.

– As another way, the local cost-to-go models depending on z encode dif-

ferent potential action modes that are applicable to the task. If the

model weights {wmk } can be adaptively estimated, the most plausible

mode z can be inferred with certain decision-making mechanisms, such

as z∗ = max
z

p(z|ς). This observation offers the possibility of trajectory

adaptation in face of unmodeled disturbances. See Section 4.6.

– GMM can be cast as a special case of the ensemble with a MaxEnt as-

sumption (4.4). Hence this framework can interpret GMM from the in-

verse optimal control perspective. Actually, the framework extends the

standard GMM by enforcing the passive dynamics, which is arguably im-

portant for physical plausibility (52). Conversely, the connection to GMM

implies a possible model parameter refinement through the expectation-

maximization iteration though this is not formally explored here.

The complete learning algorithm is presented as Algorithm 4. The algorithm

receives demonstrations and parameters for both global trajectory clustering
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and local state partitioning. The partitions are used to obtain an approximated

MaxEnt estimation of parameters µ̂ and Λ̂, as well as the partition weights wmk .

The parameterized model Equation (4.4) can then be used to evaluate the data

membership to each local model:

Imk (xt+1,xt) =
wmk P (xt+1|xt, µ̂mk , Λ̂

m

k )
Km∑
k′=1

wmk′P (xt+1|xt, µ̂mk′ , Λ̂
m

k′)

(4.11)

In turn, the new parameters for each local model are solved the MaxEnt relax-

ation of likelihood (4.4), with I(·) as the weight of data.

The algorithm relies on a few arguments to trade-off the modeling power

and the computational overhead. Mς and Mx denote the number of aggregated

models in the ensemble. Like other randomized methods, the performance of

model ensemble improves monotonically as the ensemble size grows (21). Nς

and Nx define the number of features that are involved to decide a split (Also

see Algorithm 3). Nmin
D specifies the minimum size of a set for the next split.

These arguments can be modulated to control the model complexity. A practical

way of choosing Nς or Nx is to take the square of the feature dimension (62).

Intuitively, a smaller Nmin
D leads to finer partitioning, implying a reduced bias

while an increased variance and computational cost.

4.5 Cost Parameterization with Human Kinemat-
ics Features

The Algorithm 4 estimates a cost-to-go function over the original trajec-

tory feature. Similar to Section 3.4, the function can be reparameterized to

incorporate priors about the trajectory formation. Specifically, this section con-

siders embedding character trajectories into a representation inspired from the

log-normal model, which is based on the research of natural human movement

(160, 155).

The log-normal model is based on the observation that the velocity magni-

tude of human motion stroke is of a asymmetric bell shape. It is shown that the

shape can be described by a Gaussian function over the logarithmically trans-

formed time index. A further assumption is that the path curvature remains

constant within one stroke. Specifically, for a planar motion, the trajectory pro-
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Algorithm 4 Learning - Learning cost-to-go ensembles from demonstrations

Require: D = {ςi}, Mς , Mx, Nς , Nx, Nmin
D , M(optional)

Ensure: Dm=1:M , θmk , k = 1, ...,Km, m = 1, ...,M
Dm=1:M ← RandomSubSpace(D, Nς , Nmin

D ) with Mς model ensemble
for all m in 1:M do
Dx ← StatePairs(Dm)
Dxk=1:Km

← RandomSubSpace(Dx, Nx, Nmin
D ) with Mx model ensemble

for all k in 1:Km do

µ̂mk , Λ̂
m
k ← argmax

θ

|Dxk |∑
i=1

logPMaxEnt(x
i|θ)

wmk ←
|Dmk |
|D|

end for
for all {xt+1,xt} in Dx do

Îmk (xt+1,xt)← wmk P (xt+1|xt, µmk ,Λmk ) . Membership of data to each
partition under the MaxEnt approximation

end for
Imk (xt+1,xt)← Normalize(Îmk (xt+1),xt
for all k in 1:Km do

µmk ,Λ
m
k ← argmax

θ

|Dx|∑
i=1

Imk (xit+1,x
i
t) logPMaxEnt(x

i|θ) .

Approximately solving (7) with the data weight I(·)
end for

end for
θmk ← {

wmk
M , µmk ,Λ

m
k }

file is reconstructed from velocity and angular position, which are respectively

calculated as:

ςt =

N∑
j=1

|v(t)|
[
cos(φj(t))
sin(φj(t))

]
(4.12)

|v(z)| =
N∑
j=1

Aj√
2πσj(t− tj0)

exp(− (ln(t− tj0)− µj)2

2σ2
j

) (4.13)

φj(z) = αjs +
αje − αjs

2
(1 + erf(

ln(t− tj0)− µj
2σj

)) (4.14)

where the time index is generalized as the phase variable t. The velocity profile is

estimated by combining N log-normal models, as show in (4.13). Similar to the

radial basis function approximators, tj0 and µ define the location of the impulse

and σj defines the basis function width. The angular positions can be revealed

by interpolating between the start and end positions αjs and αje.. According

to the constant curvature assumption, the angular displacement depends on

the integral of the log-normal function, resulting in the Gaussian error function

erf(·). Figure 4.3 depicts the velocity profile v(t) for each log-normal stroke.
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Figure 4.3: Modeling handwriting motion with curvature and lognormal veloc-
ity profile: the trajectory section is parameterized with a bell-shaped velocity
magnitude and a constant curvature.

It is easy to see that certain model parameters shape the resulting motion

in an interpretable way. For instance, A affects the velocity magnitude; αs

and αe impact the stroke alignment and straightness. Thus the original local

cost-to-go J k(ς) can be re-parameterized with respect to model parameters

ς̂ = {Ak, zk0 , µk, σk, αks , αke}.

Embedding a trajectory into the model parameter space is achieved through

the RXZERO estimation (155). This routine first roughly segments a trajectory

at inflection points and fit a log-normal model for each segmentation. The initial

log-normal models are recursively refined through nonlinear optimizations to

minimize the reconstruction error of the velocity and position profiles. Extra

log-normal models will be added or subtracted to eliminate the residual errors.

The challenge of directly estimating the statistics of ς̂ is the representation

of different trajectories might not be of a same length because the number of

log-normal models depends on the trajectory. Here, an approach that directly

converts the parameters of J k(ς,θ) to the ones of J k(ς̂ , θ̂) is considered. The

µ̂ in θ̂ is retrieved from the reference trajectory {xt} = µt derived from θ.

Because the trajectories are assumed to be distributed around the reference,

the variability of ς̂ can be locally captured by a linear projection:

Σk
ς̂

−1
= (Gkµ̂)TΣk

ς

−1
Gkµ̂

Σk
ς

−1
= diag(Λ0, ...,ΛT )

(4.15)

where Σk
ς

−1
concatenates weight parameters {Λt} as a block-wise diagonal ma-
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trix. Gkµ̂ is the Jacobian matrix evaluated at µ̂ that locally embeds original

state variability into the kinematics parameter space.

The advantage of having an ensemble of J k(ς̂ , θ̂) instead of J k(ς,θ) is that

one can learn handwriting motion with features that are both human-inspired

and interpretable comparing with the position coordinates. Randomly sampling

handwriting motion is efficient by evaluating (4.12) and (4.14) with a perturbed

ς̂. The synthesis is also constrained by the incorporated kinematics structure so

the variations are expected to be human-like, as will be shown in Section 4.7.2.

4.6 Mode Inference and Adaptation

This section discusses another extension to the proposed ensemble frame-

work. Specifically, the latent variable z is proposed to be explicitly inferred

for realizing adaptive behaviors. This is different from Equation (4.6), where

a fixed and known mode variable z is assumed. If a potential mode change is

expected, e.g., the human operator might change his/her intention during the

execution, this variable should be dynamically inferred and conditioned. To see

this, consider a toy task, where the robot end-effector is perturbed when writing

a letter with a certain mode. The benefit of online mode adaptation is exem-

plified in Figure 4.4. Specifically, a spring-like local feedback control, which

always rejects the perturbations, would undermine the legibility of the letter.

On the other hand, if the deviation can instead be considered as an intention

altering the task mode, the perturbation can be exploited to write the letter

with another plausible style.

The Equation (4.6) is also an adaptive one by integrating out the mixture of

z. This is applicable if z can be fully determined from the instantaneous state

xt because J (xt, z) does not consider the performance before xt. However, this

is not usually the case. As exemplified in Figure 4.5, the perturbed pen-tip is

supposed to adopt a correct adaptation based on the plausible motion modes.

Unfortunately, the preferred mode is ambiguous if the inference is based on

the instantaneous position 1. In this case, the adaptation needs to consider the

deposited trajectory, which complements the cost-to-go function J (xt, z).

1. One can of course argue to extend the state variable with velocity information to resolve
the ambiguity. This effectively also considers the motion history, though a very short one.
Section 4.7.3.2 demonstrates a task involving a long-term dependency.
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Deposited trajectory Reference trajectory Adapted reference 

Figure 4.4: Accommodating pertur-
bation through trajectory tracking or
adjusting the reference to another
mode. Local feedback control is in-
adequate while adapting the reference
to a redundant style is desired to re-
tain the letter legibility.

Deposited trajectory Reference trajectory Adapted reference 

Figure 4.5: Accommodating pertur-
bation considering the motion his-
tory. Looking at the instantaneous
state (tip position) might not be suf-
ficient to decide the motion direction
and an undesired adaption might fail
the writing task.

To this end, in additional to the dynamical mode inference based on J (xt, z),

a prior is also introduced: the latent task mode passively evolves as a Markovian

process. The goal of the prior is twofold. On one hand, it biases the estima-

tion process to ensure a more robust inference, because in practice the state

measurement inevitably suffers from sensory noises. On the other hand, the

temporally propagated prior provides a compact way to accommodate global

trajectory information, which is necessary if the mode is not fully determined

by instantaneous state measurements.

The pipelines of mode estimation and control synthesis are schematically de-

picted in Figure 4.6. Here, the (unknown) state is denoted as z = [z1, z2, ..., zM ].

Hence z is an M -dimensional vector representing the belief over all possible

modes and the i-th entry is the likelihood of mode i. The evolution of the belief

is modeled with a transition matrix T , whose entry T ij characterizes a prior

possibility of switching from mode i to mode j. The learned cost-to-go func-

tions provide evidence, evaluating the expected cost of all possible modes at the

current state. Concretely, after observing xt+1, the mode belief zt+1, can be

recursively inferred as:

zt+1(zt,xt+1) ∝ (Tzt)�


e−J1(xt+1)

...
e−Ji(xt+1)

...
e−JM (xt+1)

 (4.16)
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Figure 4.6: Pipelines of mode estimation and control synthesis based on learned
cost-to-go functions ensemble.

where � denotes an element-wise product.

It is easy to find that such a recursive inference works as Kalman filtering.

From this perspective, the likelihood of each feasible demonstration mode is

tracked as the latent state. The learned cost-to-go functions can be viewed as

observational models, measuring the performance of each mode starting from

the current state. Also, the latent dynamics T can be estimated by counting

the occurrences of mode transition given the observation model and data. This

shares similarities to learning an HMM-like model, though here the emission

probability is separately learned and the distribution is nontrivial comparing

with a categorical or a Gaussian one in HMM.

Note that here T is determined in an ad-hoc manner. The reason is that

the latent state is understood as the trajectory mode, which is ideally invariant

throughout each expert demonstration. This is conceptually different from most

HMMs, whose latent state appears to be the label of a trajectory section. More

importantly, the flexibility of designing T offers an intuitive way for users to

shape the expected behavior, which requires a trade-off between the robustness

against disturbances and responsiveness of mode adaptation. In fact, the pro-

posed extension somehow blends Equation (4.6) and (4.10). Specifically, when

T is selected as a uniform transition, the responsiveness to mode adaptation is

maximized, while robustness might be compromised. The reason is that the sys-
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tem will immediately adopt the new mode as long as its current state appears to

be more likely with respect to the corresponding cost-to-go function. Moreover,

this special case follows a multi-mode policy similar to Equation (4.10), which

adapts by only considering the immediate state. On the other hand, a diago-

nally dominant T tends to assume an invariant the mode, unless the cost-to-go

functions provide strong evidence that another mode is more plausible. In the

extreme case where the diagonal entries are Dirac functions, the system, behav-

ing like Equation (4.6), will reject any attempt of eliciting a mode adaptation,

resulting in a maximized robustness.

4.7 Implementation and Results

This section demonstrates the implementation of the proposed approach and

extensions, as well as the obtained results. It starts with a simulated inverted

pendulum task to analyze the influence of algorithm parameters and the per-

formance in comparison to other approaches. The results of modeling latent

behaviors are reported in the applications based on the two extensions. The

effectiveness of incorporating human kinematics features in Section 4.5 will be

demonstrated in synthesizing hardly distinguishable handwriting motions (Sec-

tion 4.7.2), while the proposed motion adaptation mechanism in Section 4.6 will

be examined in two robotic tasks involving human intervention (Section 4.7.3).

4.7.1 Inverted Pendulum: An Illustrative Example

This task focuses on controlling an inverted pendulum, with the goal of

applying torque u so as to let the pendulum stay upright (Figure 4.7a). The

system has typical second-order dynamics, with one degree-of-freedom (DOF)

and nonlinear passive dynamics. Thus the cost-to-go function is of a nontrivial

form while simple enough for visualization.

The system parameters for the test are: pendulum mass m = 1.0kg; length

l = 0.5m; joint damping b = 0.1N·m/(rad/s); gravity coefficient g = 9.81kg·m/s2.

The state comprises the angular position x and its derivative ẋ. A quadratic

instantaneous cost function encoding the goal of control could be

Cpend(x) =
1

2
(x− π)2 (4.17)
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(a) Inverted Pendulum
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Figure 4.7: An illus-
trative example: in-
verted pendulum reg-
ulation and the op-
timal cost-to-go func-
tion

(a) M=5 (b) M=10 (c) M=20

(d) M=30 (e) M=50 (f) M=75

Figure 4.8: Cost evaluation of the learned ensemble
models over the inverted pendulum state space: M =
{5, 10, 20, 30, 50, 75}

where π denotes the target angular position in radians, indicating the upright

configuration here. The optimal cost-to-go function can be derived through

system discretization and standard value iteration. The control input saturates

with a range imposed: u ∈ [-5.0, 5.0]. The heat map of the underlying optimal

cost-to-go is shown as Figure 4.7b.

A total of 200 motion trajectories of 100 steps each, steered by the optimal

cost-to-go function, are generated as demonstrations. Of these, 150 are used for

sampling state-control pairs. The training dataset is corrupted by an additive

noise with a standard deviation of 0.02 to simulate the sensory noise. The task

for the proposed ensemble method is to determine the time invariant cost-to-go

function from the demonstrations, assuming the passive dynamics p0(x′|x) are

known. Also, the angular position is truncated to [0, 2π] to ensure the Euclidean

distance is properly defined, though such approximation does bias the outcome

due to the bound effect. It is worth noting that the inverse problem is addressed

in continuous state and control space without discretization, though the data is

generated from the standard value iteration of the discretized system.

The result begins with examining the necessity of a model ensemble, whose

size is controlled by the number of aggregated models. The learning results are
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depicted throughout Figure 4.8a and 4.8f. Comparing with the target (Figure

4.7b), it can be observed that as more models are incorporated, the learning

performance improves in terms of visual consistency. The observation demon-

strates the anticipated advantage of model ensemble: each of the sub-models

is limited due to its high sensitivity and dependence on the data partitioning

(Figure 4.8a and 4.8b), while a prediction from the aggregated models leads

to a better estimation than any individual model, with the overall variance

significantly reduced.

For a comparison, other approaches (MaxEnt+Laplacian (126), GPIRL (127)

and OptV (52)) are also applied. Two dimensions of performance, including the

cost reconstruction error and training efficiency, are considered on the bench-

mark problem. All approaches use 64 demonstration trajectories and retrieve

the estimated state value of 2, 600 test state samples. The reconstruction error

is obtained as the sum of errors between the estimated value and the target

cost-to-go. For algorithms that estimate a cost function (MaxEnt+Laplacian

and GPIRL), the cost-to-go functions are computed based on the inferred cost

function. The computation time for this additional step is not included for a

fair comparison of the efficiency of original learning algorithms.

The estimated cost-to-go functions from these approaches are depicted in

Figure 4.9a to 4.9d. Apparently, one of the MaxEnt setting (Figure 4.9b) shows

the best qualitative results. This is expected because it learns a quadratic cost

function which is consistent to the real goal. For more general cost parame-

terizations, such as RBFs (Figure 4.9a and 4.9d) and Gaussian process (4.9c),

the recovered cost-to-go functions show some similar local geometry in certain

regions but fail to capture the overall landscape comparing with Figure 4.9b

and Figure 4.8f. Quantitatively, in Figure 4.10, one can observe a trend simi-

lar to the qualitative results: the reconstruction error of the ensemble method

steadily decreases as more models are included. Regarding the training time,

it is notable that the ensemble method is superior in terms of training speed

thanks to the efficiency of learning naive local models. For the sake of compar-

ison, the result also includes a MaxEnt version of the proposed method, which

effectively works as a GMM over the demonstration state. It is not surprising

to find a slight decrease in performance (in terms of sum-of-errors) since the
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Figure 4.9: Estimated cost-to-go
functions from the MaxEnt (linear
combination of RBF or quadratic
functions), GPIRL and OptV results.
An additional value iteration is per-
formed for MaxEnt and GPIRL to
visualize the cost-to-go function over
the state space. OptV uses RBFs
for the cost-to-go function approxi-
mation. 25 basis functions are used
for all of the RBF-based approaches.
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Figure 4.10: Cost-to-go function er-
rors and training time of different ap-
proaches for the inverted pendulum
problem. The proposed approach is
tested by integrating different num-
ber of models in the ensemble. The
MEIOC indicates the application of
the approach without considering the
passive dynamics (MaxEnt formula-
tion). Note the training time is trans-
formed to its logarithm for the visu-
alization.

MEIOC is agnostic to the real passive dynamics model. The results for other

algorithms are mixed because the visually best result (Figure 4.9b) does not

lead to a smallest prediction error of the cost-to-go function values. This im-

plies that the learning performance cannot be fully described by one metric and

other dimensions need to be examined.

To have a more thorough conclusion, a policy perspective is taken in the

following analysis, which examines whether the learned cost-to-go function in-

deed leads to behaviors that match the demonstrations. Two experiments are

included with the first one focusing on the difference between the derived and

demonstration trajectories, and the second one evaluating the trajectory per-

formance under the real task cost function. Predicting the next state under the

optimal policy requires a maximum posterior estimation in Equation (4.3). This

boils down to a nonlinear optimization, for which the MaxEnt mean estimation

is used as the prior guess to ensure the optimization performance and efficiency.

The initial states of 10 test trajectories are exposed to the algorithms, seeding a
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tings with a SVR-based prediction.
The regression of behavior cloning is
fast for each iteration of the prediction
but suffers from error cascading along
the trajectory horizon.

recursive prediction of states or a trajectory optimization for the same number

of steps to compare against the ground truth.

For the first experiment, the derived trajectories are visualized in Figure

4.11, where the stars denote the terminal states. It is clear that the predicted

trajectories generally follow the demonstrated behavior. A quantitative result

is given in Figure 4.12, where a support vector regressor (SVR) is trained as

a baseline. The SVR-based prediction works as behavior cloning by predicting

the next state given the current one so it is very efficient for the synthesis.

Unfortunately, the accuracy of overall trajectory prediction is poor, due to the

error cascading effect. The IOC-based prediction is more reliable, thanks to

the bias about the future from the extracted cost-to-go. Again, the model

aggregation improves the performance, while in exchange, it takes longer time

to conduct the optimization when more models are integrated.

The result of the second numerical experiment is shown as Figure 4.13.

Specifically, the accumulated trajectory costs are evaluated under the true cost

function. The proposed ensemble approach outperforms all the other algorithms

on this metric, except the MaxEnt approach with the true quadratic feature.

Note that both of these two approaches achieve better performance comparing

with the test trajectories themselves. This is because the test trajectories are

obtained from a more limited action set due to the discretization, while the IOC
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Figure 4.13: The performance of the predicted trajectories under the true cost
function: comparing test trajectories and the results obtained from ensemble
method, MaxEnt, GPIRL and OptV.

algorithms use continuous optimization to derive trajectories under the learned

cost or cost-to-go functions.

4.7.2 Synthesis of Multi-mode Handwriting Motion

The success of learning latent behavior modes can be demonstrated in a syn-

thesis task. Indeed, the quality and diversity of the generated samples depend

on if the model ensemble correctly identifies and captures the demonstration

modes. Here the synthesis is about dynamical handwriting motion, for which

the cost parametrization based on the log-normal model is used.

4.7.2.1 Learning and Synthesizing Handwriting based on Human
Data

The dataset used is the UJI Pen Characters repository (132). This reposi-

tory contains online handwriting samples collected from 60 adult subjects, who

could write in many different styles. Alphabetical instances with either single

or multiple strokes are considered. Each stroke letter stroke is learned indepen-

dently. Yet this is by no means true as the strokes are correlated temporally

and is possible to be captured by introducing extra conditional models (118).

The independence assumption is adopted here to focus on the ensemble method

93



(a) "A" (b) "D" (c) "e" (d) "S" (e) "y"

Figure 4.14: Illustration of the learned ensembles that encapsulate the pat-
terns of character profile. This is demonstrated in the Cartesian space but not
the log-normal feature space for the illustrative purpose. The statistics of the
curvature-based features is captured by taking samples and convert them to
the original planar Cartesian space. The heat value of a point in the Cartesian
space is evaluated by folding the learned cost function along the time horizon
and counting the occurrences of the coordinates in the trajectory samples.

itself, and such simplification turned out to work well in practice to synthe-

size reasonable motion trajectories. The results are depicted as Figure 4.14a

to 4.14e. The most obvious observation is that the learned models successfully

capture the legible shapes for either single or multiple-stroke characters. The

variabilities of the heating magnitude can be explained by the inconsistency of

forming the specific letter sections. For some strokes, human behavior tends to

be comparatively consistent, such as the short straight strokes in Figure 4.14a,

and 4.14b or the overall shape of "S" in 4.14d. The variability of this consistency

implies multiple modes in writing a specific letter. The encodement of such di-

versity can be best illustrated as Figure 4.14e, which explicitly resembles the

superimposition of two distinctive ways of forming a legible "y" in the Carte-

sian space. Note that the number of these patterns is not explicitly enforced

beforehand but emerged from the ensemble of models which assign cost-to-go

functions on random subsets of data.

The diversity of encoded motion patterns can be further demonstrated by

synthesizing letter instances from the learned models. Shown here are a few

typical sampling results, again for either single or multiple strokes, as Figure

4.15. The synthesis samples illustrate rich writing patterns that are diversi-

fied in the aspects of size, orientation, and most importantly, the style. For

instance, the "d" that is constituted by a circle and a straight stroke, are suc-

cessfully detected and encoded. Interestingly, the incorporation of log-normal

features supports generating poorly written characters. Intuitively, a sample of
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Figure 4.15: Synthesized motion samples from the learned cost ensemble models
for different characters. The diverse modes and styles illustrate the multi-modal
motion patterns encoded by the aggregation of simple cost functions
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Figure 4.16: Synthesized motion of poor written samples by sampling from the
learned model with random perturbations. The deformities can be intuitively
controlled by modulating the local proportion, alignment and curvature of a
specific component, as well as the continuity between the components.

θ̂ that significantly deviates from µ̂ would result in symbols that are different

from demonstrations, while with the deformation constrained by the incorpo-

rated feature. This is realized by perturbing the distribution parameters with

an increased noise. Figure 4.16 shows synthesized samples, which resembles

various types of deformities such as inappropriate component proportion, mis-

alignment or jerkiness in stroke transition. This demonstrates the potential of

the framework to generate various good or poor handwriting motion. These re-

sults are applied in implementing human-robot interaction activities, where the

children imitate and correct the letters generated by the algorithm and written

by a robot. Refer to (31) for more details.

4.7.2.2 Evaluating the Human-likeness of the Synthesized Motion

One question remains to answer regarding the handwriting synthesis is that:

how can one assess the quality of synthesized samples and as such be convinced

that the behaviors are successfully modeled. This correlates to evaluating the

similarity between samples from an unsupervised learning model and the train-

ing data. Qualitative results like Figure 4.15 are usually used as evidences

because a unified metric is absent in general. In order to obtain a quantitative

result, an online user study is run to examine how humans perceive the synthe-

sized motion. Due to the obscurity of "human-likeness", the presented study
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was performed in a form of Turing-like test, where the participants were pre-

sented with a mixture of human and artificial dynamic motion, without showing

the physical body of both the robot or of the human. The participants were

instructed to choose among these motion samples the one they believe was gen-

erated by the algorithm. Besides the rate of correct prediction, another interest-

ing dimension that could be measured is the confidence of the humans on their

decisions, serving as a fidelity measurement from the subjective perspective.

A – Study Hypothesis

H1. By observing the dynamic motion of the characters, the participants

cannot distinguish between the agent synthetic and human written charac-

ter samples. The classification performance is close to a random guess. It

is expected the samples from learned ensemble models possess believable

variabilities that are consistent with natural human handwriting. Thus

most sampled motion parameters should result in characters which are

hard to be identified from the mix up of synthesized and human sam-

ples. Quantitatively, this hypothesis implies an equivalence which can be

numerically expressed as

‖ĉ− c‖ ≤ δ (4.18)

where ĉ and c denote the classification performance from the experiment

estimation and the random guess respectively. δ is a threshold quantify-

ing the equivalence of the two tested values. The selection of δ will be

presented in the results and analysis section.

H2. Participants will not detain high confidence levels towards their choice.

This hypothesis checks the indistinguishability from a subjective perspec-

tive of the humans. It is expected to see the quantified confidence is lower

than a certain level. It will also be interesting to examine the relation

between the human confidence and concrete performance.

B – Study Procedure

The Turing-like test was carried out in the form of an online questionnaire. Con-

cretely, the participants were instructed to evaluate 20 characters, containing
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both synthesized and human handwritten ones, by accessing web pages anony-

mously. They were explicitly instructed that there was only one synthesized

sample for each character question. They could neither skip character pages

nor browse back to the past ones to modify the previous responses. Their eval-

uation was based on two questions for each character:

Q1. Which letter do you believe is written by a robot?

To answer to this question, participants were presented with five dynamic

handwriting motion for the character. The animation could be intuitively

resumed or stopped by moving the cursor on or off the images. The

participants were allowed to replay the motion as many times as they

wanted before they made the decisions.

Q2. How confident are you about your choice?

The second question could be answered in a five-point type-Likert scale

ranging from 1 to 5: 1-very low; 2-low; 3-neutral; 4-high; 5-very high

The sequences of characters and answer options were randomized to counter

balance ordering effects. Moreover, demographic information was also collected.

Participants were notified not to respond the questionnaire for multiple times

at the beginning of the web page. Each individual questionnaire took about 10

to 15 minutes to complete.

C – Study Analysis and Results

The participants were recruited through the mailing lists within a university. A

total of 68 participants completed the online questionnaire. The sample ranges

from 18 to 60 years old (M = 28.7; SD = 8.7).

In order to test H1, the threshold c = 0.2 is chosen as there were five

options in each character question. δ is defined according to the deviation of

random classification performance δ = σ ≈ 0.089, if the number of correct

classification is subject to a Binomial distribution. The analysis shows that on

average the participants achieve ĉ = 0.226 ± 0.086 classification performance,

which is close to the random guess c = 0.2. A further analysis show that the null

hypotheses of H1, ĉ > c+δ and ĉ < c−δ, are both rejected by the corresponding
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one-sided t-test (t1(67) = 6.04; t2(67) = 11.03; p < 0.01). Therefore, the

results show statistically significant equivalence between the performance from

empirical data and a theoretical value from a random guess, thus H1 is strongly

supported which suggests that participants were not able to distinguish between

the character motion (synthesized versus human handwritten), wherein their

choices translate the same as the random guess.

For H2, the averaged confidence level is 2.71 ± 0.70. One sided t-test

concludes that this value is significantly below the neutral confidence level

[t(67) = 3.38; p < 0.01], which also supports H2. Note that there is indeed

a small fraction of participants who exhibit high confidence levels, however,

analysis shows that such high confidence is not necessarily related to a good

classification performance. A selection of the performance and confidence for

the most contrasting results regarding the selected characters are shown in Fig-

ure 4.17, where it is obvious that the confidence levels are relatively consistent

across characters and are not complying the performance trend. Also examined

is the confidence level associated to correct answers. The level turned out to

be 2.71 ± 0.98, which is not significantly different from the overall confidence

level (considering a threshold of 0.2; t1 = 4.63; t2 = 3.79; p < 0.01). A further

analysis yields a rather weak Pearson’s correlation (ρ = 0.126) between the per-

formance and confidence level. Therefore the participants are indeed uncertain

about their answers, even for the ones that happen to be correct.

To sum up, these results demonstrate the capability of the algorithm for

generating hardly distinguishable handwriting motions, which in turn implies

the success of apprehending rich data modes stemming from natural human

handwriting with multiple styles.

4.7.3 Motion Adaptation based on Mode Inference

This section exploits the model to reason about the real-time sensory input,

to estimate the desired task mode so as to realize adaption under execution

uncertainties.

4.7.3.1 Handwriting Motion Adaptation

The goal of this task is to extend the result of encoding multiple handwrit-

ing styles with the adaption mechanism proposed in Section 4.6. The robot
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Figure 4.17: Classification performance and confidence levels for the selected
characters on which the participants performed best and worst. The characters
are sorted according to the performance, while the confidence levels are compar-
atively consistent. The overall performance 0.226±0.086 is close to the random
guess (p < 0.01).

acquires redundant ways of writing the target letter from the ensemble model.

This knowledge is exploited to assess and modulate the task execution. As

a consequence, the synthesized handwriting motion is implemented on a real

robot and the writing style could be altered to accommodate disturbances, e.g.,

a human intervention.

The framework is exemplified on an ensemble model which learns a set of

120 planar trajectories of the letter "D", with two replications for each of the

60 people. The ensemble parameters were set to allow a maximum of 240 local

models as we are not certain about how many styles are there in the demon-

strations. The robot, a 7-DOFs KUKA IIWA manipulator, is used to follow

the commanded trajectory, which is initially sampled from the learned model

ensemble.

Figure 4.18 showcases the expected behavior. Specifically, the robot follows

the initial mode that deposits a downward stroke at first, and plans to finish

writing on the top of the canvas (Figure 4.18e). Then a human subject inter-

venes, making the compliant robot motion yield to moving upwards instead of

following the planned direction. As a result, the perturbation elicits the al-

ternation to other task modes, as depicted in the mixture of letter profiles in

Figure 4.18f. These modes are regarded as more probable ones, which jointly
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Figure 4.18: Adapting the motion of writing a “D” on a KUKA IIWA 7-DOFs
manipulator. The lightness of the reference trajectories indicates the associated
mode weights and the star marks the current regulating point. Under the human
intervention, the task mode shifts to the alternative modes that are plausible
w.r.t. the deposited trajectory and future cost. The online adapted writing
motion yields a different letter profile comparing with the original intention.

consider the history (the downward stroke) and the probable future motion

styles. The mode estimation proceeds with the shifted mode reinforced and

finally resembles an adapted written letter, which retains the legibility under

the perturbation (Figures 4.18c and 4.18d).

As a descriptive experiment, the above process shows the evolution of mode

estimation serves as a compact dynamical encoding of the latent letter style,

which may change subject to the human intervention. This is necessary as

the position state itself is not sufficient to determine the motion, because the

velocities might be conflicting at a same position for different writing styles.

Here, the instantaneous position helps to decide which trajectory mode will

cost less if the subsequent writing departs from the current state. Therefore,

the learned cost-to-go representation enables the robot to evaluate, comply and,

as such, exploit a perturbation when there exist potential modes that turn out

to be suitable with the future steps taken into account.
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Mailbox 0 

Mailbox 1 

Mailbox 2 

Figure 4.19: Assisting in a mail delivery task. The robot needs to learn multi-
mode behavior that manipulates the mail to different target boxes. The validity
of the targets depends on which path was taken in the intermediate step.

4.7.3.2 Assisting Mail Delivery

This section envisions the application of the framework in a more general

scenario: a mail delivery task, where a robot assists in picking, transporting

and delivering mail to different target mailboxes (Figure 4.19). In this task, the

mail messages are supposed to go via specific locations in the workspace (marked

by colored crosses in the figure), for a hypothetical intermediate processing—

such as stamping or labeling mails with different priorities. The delivery target

depends on the spots by which the mail has passed. Moreover, during the

execution, humans may intervene through a physical interaction. The robot,

on the other hand, should decide if it will adapt its motion to collaborate the

human intervention, or insist on its current motion plan.

A – Experimental Setup

The task is carried out on a Baxter robot platform, with the setup illustrated

in Figure 4.20. The AR trackers are used to label the reference frames that

might be relevant to specific task modes. The poses of these frames are esti-

mated through a camera. The locations of these interested frames are defined

as the task configuration. 12 demonstrations are recorded through kinesthetic
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Figure 4.20: Setup for the mail delivery task: the candidate objects/frames
(mailbox, cyan/orange regions and mail location) are labeled by AR trackers,
which can in turn be detected by a mono-camera at the right wrist of Baxter.
The left arm is used for manipulation.

teaching, with four replications for each mode. Three task modes correspond to

motion trajectories via different landmarks:

– {mail location, cyan area, mailbox-0};

– {mail location, orange area, mailbox-1};

– {mail location, orange area, mailbox-2}.

Note that the constraints of the sequence modes, e.g., which area should pass

and then which mailbox to deliver to, are unknown to the robot. Humans

can only program them through demonstrations. For each demonstration, the

locations of the scene objects are rearranged, but the aforementioned sequences

are always followed. The recorded states have a dimensionality of 18, with the

position in each reference frame and the time index included. The trajectories

are clustered with a random embedding from 1, 000 ensemble trees. For each

extracted mode, an ensemble of 10 models under a finite horizon formulation are

trained, and the resulting models are used to infer the task mode and derive the

command for the next step. Except the baseline methods, a latent transition

dynamics

T =

1.0 0.0 0.0
0.0 0.8 0.2
0.0 0.2 0.8


is used throughout all the experiment sessions. Such a latent dynamics repre-

sents a prior knowledge that the motion mode tends to keep constant, although

there is a moderate possibility to switch between mode 1 and mode 2.
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Figure 4.21: An illustration of the task-parameterized representation: the inter-
ested state, e.g., the pose of the robot end-effector E, is projected into different
reference frames in the scene. The resulting state is an augmentation of all
relative representations, yielding a high-dimensional state variable.

B – Task Goal and Task-parameterized Feature

The learning goal of this task is to encode constraints regarding both the static

environment configuration and the process dynamics. On one hand, the robot

needs to extract important task-relevant landmarks in order to adapt the syn-

thesis for a general environment configuration (e.g., untrained locations of mail-

boxes and intermediate via-points). On the other hand, constraints about the

task dynamics also need to be conveyed in the form of cost-to-go function learn-

ing. It is critical for the robot to exploit this knowledge to evaluate and react to

the deviations, which can source from the motor noise or human intervention.

In a nutshell, the robot should resist the deviation when it is due to the motion

noise or a human intervention that violates the task constraints, while adapt to

human intended motion when it is compatible to the task constraints. Notably,

here the constraints stem from the trajectory history—namely, which via point

has been passed through. This implies that the adaptation cannot be exercised

based on static or time invariant observations.

In order to generalize to different static configurations, the quadratic cost-

to-go function is generalized to incorporate a task-parameterized representation

(29). The representation augments the interested state with representations

in different reference frames of the task scenario. For instance, as illustrated
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in Figure 4.21, the interested robot end-effector pose could be represented in

different reference frames, such as A, B and C in the scene. The final state

is the augmentation of these local descriptions thus is of a higher dimension

than the original pose. A task-parameterized feature encapsulates the informa-

tion relative to landmarks that are potentially important to the task execution,

as such supports the generalization under an unseen arrangement of the land-

mark configuration. (29) uses this representation to obtain a task-parameterized

Gaussian Mixture Model (TPGMM). Here the representation is used under the

proposed IOC framework. Specifically, the model learns a varying quadratic

cost-to-go function over this representation:

J(xt,θt) =
1

2
(xt − µt)TΛt(xt − µt) (4.19)

with xt denoting the concatenate state similar to Figure 4.21. Note here Λt is

block diagonal to factorize the cost with respect to landmark reference frames

and impose a model sparsity to fit finite demonstrations.

The parameters vary because the importance of the via-points and destina-

tions is not static. The inference of model parameters is compatible to TPGMM

because the local models are also Gaussian. For the detailed Gaussian inference

with a task-parameterized model, interested readers might refer to (23) and

Section 2.3.3.

C – Challenges for Baseline Approaches

As discussed in Section 4.4 and 4.6, one might imagine that the task can be

simply addressed by first grouping the trajectories with a simple clustering,

e.g., K-means, and then following the closest reference trajectory given the

current state. To illustrate the challenges involved in this scenario, this section

shows this is not applicable in terms of both learning and exercising the task

constraints.

First, for each demonstration sample, the locations of the starting point

and the via-points are different. The invariant constraint of reaching correct

via-point and destination is implicit and cannot be trivially revealed from an

isotropic distance. Figure 4.22 shows that the K-means result is poor for as-

signing demonstrations to the correct behavior mode. As a comparison, the

proposed approach obtains a better result because it assesses the similarity
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(b) Random Embeddings

Figure 4.22: Clustering demonstration trajectories (dot lines) into three modes:
The trajectories are transformed to the mailbox reference frame and projected
into the XY surface for the clarity of comparison. The KMeans method takes
the best result from 500 random initializations of the cluster centroids. An
ideal clustering is supposed to group the demonstrations with a similar behavior
mode: trajectories of a same color should reach a same destination.

with an aggregated nonlinear metric. Here the insight is that the importance

of the state dimensions is non-uniform and implicitly correlated to the critical

reference frames which depends on the task mode. The proposed approach iden-

tifies discriminating feature dimensions through a consideration over a group of

naive selections, and as a result, a nontrivial metric emerges and captures the

implicit static task constraints.

Secondly, even though a perfect demonstration clustering is given, it is in-

sufficient to decide the mode straightforwardly based on the current observable

state. To see this, a TPGMM is trained over the perfectly clustered data. A

reproduction instance is then exercised by starting to follow mode 1: {mail lo-

cation, orange area, mailbox-1} and adapted according to the likelihood of the

observed state with respect to each mode.

Figure 4.23 illustrates a typical reproduction instance. Ideally, the execution

should follow the initial mode in the absence of any perturbations. However,

the robot actually deviates from the intended intermediate target by heading to

the cyan area. This is due to the intrinsic motor noise and the mode ambiguity.

Concretely, the robot motor noise will occasionally result in an end-effector

position that is more close to one other mode than the current one. Even worse,

this effect is aggravated in earlier stages of the execution, in which all modes
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Figure 4.23: Task reproduction with the baseline multi-mode behavior cloner.
(a)(b): The robot starts with the intention to follow mode 1 (mail location-
orange area-mailbox-1) but heads to the wrong intermediate area under its own
motor noise. (c)(d): The location of mailbox is perturbed hence the mailbox-1
is again the most probable target given the current motion status. The robot
delivers the mail to the mailbox-1 even the mail passed the cyan area.
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Figure 4.24: History of mode activation for a multi-mode behavior cloner: the
robot agent always follows the most likely mode given its observation at each
time step. This will result in undesired adaptations in certain cases.

are following similar trajectories to reach and collect the mail. Due to this

ambiguity, the likelihood of all three modes is close and a change of mode will

be triggered even under a small perturbation.

The figures illustrate yet another type of failure, which results from extrinsic

disturbances. The robot, having passed via the cyan area, is moving towards

mailbox-0. While it is approaching, the mailbox is relocated by humans. There-

fore, the motion trajectory is heading to mailbox-1 in that instant. Given the

likelihood of the current state, the mode 1 is regarded as a more likely one so an

erroneous mode shift is triggered. The above analysis can be evidenced from the

evolution of the mode belief, which is depicted in Figure 4.24. In brief, due to

lack of robustness against both intrinsic and extrinsic disturbances, the baseline

adaptation cannot reliably reproduce the intended behavior and conform to the

demonstration constraints.
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D – Results

In contrast to the above results from the baseline methods, Figure 4.25 illustrates

successful reproductions, with the proposed latent dynamics enforced. In the

first case (the snapshots in the upper row), the robot successfully follows the

task mode 1 in a constant way. In second case (snapshots in the middle row),

the robot correctly passes the cyan region and reaches the mailbox-0, even if

the mailbox is moved on-the-fly. The difference from the baseline adaptation

mechanism (Figure 4.24) is evidenced from the belief estimation (bottom row of

Figure 4.25). Although the belief about the initial mode still decreases because

of the ambiguity in the early parts of the trajectory, the prior biasing towards

the current mode persists. As a result, the task reproduction is robust to the

uncertainty about the robot intrinsic dynamics or a step disturbance such as

pulling the mailbox away.
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(i) Belief evolution under new configuration
(upper reproduction)
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(j) Belief evolution under perturbation on-the-
fly (lower reproduction)

Figure 4.25: Task reproduction with the proposed framework under a novel
task configuration. The robot adapts the intended motion (mail location-cyan
area-mailbox-0) against the external perturbation of moving the mailbox away.

The baseline results are further compared by setting different configurations

of the via-points. Here the metric is the success rate of the multi-mode con-
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Table 4.1: Results of task reproduction under different targets and configura-
tions: a reproduction is marked as a success if the robot follows the intended
task mode and deliver the mail to the correct target. For each target mode, five
trials are taken with the via-point layout randomly arranged.

Mode 0 Mode 1 Mode 2
Baseline 1/5 0/5 0/5
Proposed Approach 5/5 5/5 4/5

trollers for delivering mails to the correct targets under randomly arranged task

configurations. The results are given in Table 4.1. The baseline multi-mode

adaptation seldom succeeds. Especially when the intended targets are mailbox-

1 or mailbox-2, the robot tends to lose the target while collecting the mail, as

already exemplified in Figure 4.24. Thus it is quite frequent for the baseline

method to fail in this task, even the task-parameterization is also used. On the

contrary, the proposed method performs consistently better, reliably generaliz-

ing and executing the motion under various task configurations.

The robustness to external disturbance can also be seen from the point of

view of collaboration, where the robot chooses to dominate the execution and

reject the human guidance. This is shown in Figure 4.26. In this situation, the

human intervenes with a manual guidance, aiming to redirect the delivery to

mailbox-0. In light of the intervention, the “human preferred mode” is temporar-

ily more likely w.r.t. the cost values of the current state, as seen in Figure 4.26d.

However, since the robot has passed the orange intermediate area, a strong prior

(that mode 0 is very unlikely) has been established. Thus the robot chooses to

ignore the guidance so as to not violate the constraint imposed by the already

executed trajectory.

On the other hand, the robot may also adapt and yield to the human inter-

vention, when such intervention is in accordance with the learned constraints.

Figure 4.27 demonstrates a similar execution but where the human interven-

tion pushes the delivery towards mailbox-2. This example is different from one

previously discussed, since the orange via-point is admissible for both modes.

Therefore, there is a moderate possibility of switching modes and it does not

require much effort from the human to enforce his/her intention and get the

robot to collaborate accordingly.

Table 4.2 gives more results about adaptation under different configurations.
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(c) Estimated mode belief
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(d) Observation Likelihood

Figure 4.26: Reject to human intervention of guiding the delivery to an unlikely
goal: the robot holds a low belief about the mode of reaching mailbox-0 since
it has passed the orange area.
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(c) Estimated mode belief
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(d) Evolution of observation likelihood

Figure 4.27: Yielding to the external perturbation: the robot collaborates by
adjusting the motion (mail location-orange area-mailbox 1) to an alternative
target mailbox-2. The prior of mode 1 is not completely dominant against
mode 2.
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Table 4.2: Results of task adapta-
tion under human intervention for
different configurations: an adapta-
tion is marked as a success if the
robot (R) follows the human (H)
intended task mode under the in-
tervention and deliver the mail to
the correct target. For each tar-
get mode, five trials are taken with
the via-point layout randomly ar-
ranged.

R Mode 0 1 2
H Mode 0 5/5 5/5 5/5
H Mode 1 5/5 5/5 4/5
H Mode 2 4/5 5/5 4/5

Figure 4.28: Contour of the learned
cost-to-go functions with the time
and Z axes collapsed. The areas
with dense contours indicate the
demonstrations are locally consis-
tent hence some of the regions will
be discriminative for differentiating
motion modes.

In this experiment, a human supervisor has his/her own intended task mode in

mind, and intervenes by physically moving the robot motion if he/she thinks

that the robot is not behaving correctly. All combinations of the robot initial

mode (R Mode) and the human intention (H Mode) are tested. The metric is

the success rate of the collaboration. A collaboration is considered as a success

if: 1) the robot identifies the human intention and follows the guidance when the

task constraint is fulfilled; 2) the robot follows its own intended motion when

the human guidance violates the task constraints. The results demonstrate that

the proposed framework allows the robot to understand the human intended

target and adapt its motion accordingly throughout almost all of the test cases.

Some additional insights regarding the emerging behavior can be elicited

from Figure 4.28. This figure overlaps the layout of the workspace and the cor-

responding cost evaluation, with the dimensions of mode z, time and vertical

spatial axis collapsed. It is clear that the peaks of the cost coincide with the

key objects in the scene. Moreover, steep cost gradient is visible due to the

high consistency of the demonstration behaviors around these objects, espe-

cially the two intermediate spots. They are automatically identified as critical

and discriminative frames. Passing either of them will lead to very strong con-

straints, preventing the follow-up motion to switch to the other modes, unless if

such switching is compatible to the constraint (for example, switching between

modes 1 and 2).
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In all, this experiment showcases a task in which the proposed ensemble

model helps to infer the intended task mode from the sensory feedback read-

ings. With a prior upon the dynamical mode transition combined, a mixed

behavior emerges: the robot can automatically decide when and where to col-

laborate with/reject human interventions based upon constraints extracted from

the demonstrations.

4.8 Discussion

The ensemble technique discussed in this chapter overcomes the limitation

in Chapter 3, which assumes the skill is composed as a single trajectory. Even

though representing more sophisticated behaviors, the proposed model tackles

the learning in an efficient way. Summarizing an answer to the questions raised

in the beginning of the chapter:

– Robotics: A generative model for trajectories and latent motion modes

can be learned. The model can be exploited in a mutual inference between

the modes and trajectories, e.g., estimating the task mode for a real-time

trajectory adaptation.

– Machine learning: Ensemble methods can be utilized to infer a prob-

abilistic encoding of the trajectory modes. Efficient IOC models can be

separately learned from demonstrations labeled as similar modes.

The efficiency of the inference are assured by the local LQR control and the

discrete constraint on the mode variable (conjugate exponential family of prob-

abilistic models). These formulations, though demand latent variables of a

specific form, have showcased to be useful for the reported tasks which require

real-time motion synthesis and adaptation.

The adopted ensemble principle is based on tree and bagging techniques. A

bagging based ensemble alleviates overfitting by smoothing over multiple pre-

dictions. Hence, the approach is robust to noisy demonstrations. Moreoever,

tree-based techniques generally scale well to a large dataset. Thus the model

capacity is potential to learn a large skill repertoire. While on the other hand,

one of the limitations is that it might face difficulties in selecting model pa-

rameters to learn from a limited number of demonstrations. In that case, the

boosting scheme might be a better choice, since it focuses on predictive power
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while the goal of bagging is variance reduction. Unlike the tree-based bagging,

however, it is a bit vague that in what form the weak models can relate to a sim-

ple and meaningful IOC problem. Also, the standard boosting often aggregates

the decisions through majority vote, which might be problematic for obtaining

a continuous cost.

The framework demonstrates its capability of generalizing to untrained task

configurations. This is enabled by the adopted task-parameterized feature. Gen-

erally, the generalization capability depends on the feature design. The frame-

work leaves some room for incorporating the prior about the feature structure.

For instance, the random subspace embedding is open to various types of the

decision boundary and feature selection, capturing data structures beyond the

axis-aligned grid used in this paper. The discussion about more general options

can be found in the seminal tutorial about random forest, referring (43) for

details.

As per locally grouped data, the adopted quadratic cost form demands a

feature space in which an Euclidean distance serves as an effective norm. This

actually does not impose much constrains on the original demonstration data,

as long as one knows how to convert it to the task-relevant feature x. For

instance, forward kinematics can be used to project the raw joint positions to

a task-relevant feature space, e.g., the robot end-effector or manipulated object

pose. For the model synthesis, it is flexible to introduce features based on

robot dynamics for adding more complexities, such as inverse dynamics control.

Indeed, choosing a proper task-relevant feature entails a manual design. This

is definitely one of the most phenomenal problems, not only in IOC, but also

in general AI and machine learning. To put it in perspective, this framework is

not straightforwardly applicable to extremely high-dimensional demonstrations

(e.g., visual pixels) since the statistics are nontrivial and hard to be handcrafted.

This problem will be discussed and addressed in the next chapter.

Another direction to explore is how the learned models can be used as priors

to steer the posterior trajectory optimization. Since the model has the potential

to encode a large amount of demonstration data, it would be interesting to

explore how can it be applied to probabilistic trajectory planning with non-trial

dynamical constraints or in a model-free settings like (28, 105). In light of that,
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the consolidated skill knowledge can benefit the downstream control synthesis in

terms of its exploration, refinement, generalization and ultimately, integration

with learning from human demonstrations. The next chapter will also touch

this topic in the domain of handwriting motion synthesis.
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5
Linking Perception and

Control

5.1 Introduction

Associating perception and control entails correlating variables of various

sensory modalities, which are subject to different feature representations. In

inverse optimal control, features determine the hypothesis space of a cost func-

tion. The previous chapters generally tackle a quadratic cost function with a

well defined feature, such as the pose of an end-effector or kinematic model pa-

rameters. This chapter aims at automatically extracting the cost feature and

learning perception and control represented by unstructured demonstrations.

From the robotics point of view, this topic is important because handcraft-

ing features for some measurements, such as high-dimensional camera pixels, is

impractical or requires substantial domain knowledge. A learning from demon-

stration (LfD) paradigm that automates the feature extraction is potential to

reduce the feature engineering effort as well as free the restriction of sensor se-

lection, thus substantially improving its empirical value. Also, jointly reasoning

about multiple sensor modalities is interesting and feasible for nowadays robot
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systems. After all, there is nothing preventing the task demonstrations being

recorded through the lens of different types of sensors. An inspiring fact is that

human beings are quite proficient in fusing the task knowledge or experience

gathered from multiple sensing systems. For instance, humans can estimate the

shape of an object through both vision and tactile sensations. This results in

a redundant description since each channel provides a facet of the information

of interest. Establishing an association between the redundant modalities is

beneficial when only partial observation is presented in the task reproduction:

in darkness, humans can still effortlessly perceive the object shape through a

hand exploration. Therefore, by learning from multi-modal demonstrations, the

robots are endowed with a more complete task description, a natural mechanism

to estimate what is unknown from what is known, and as such, a capacity of

robustly executing the task in face of uncertainty.

Motivating from the machine learning perspective, learning features together

with the task further relaxes the common prerequisites about feature design in

conventional IOC methods. Extracting non-trivial features from data is one

of the main strengths of representation learning, which is gaining momentums

amongst roboticists after its remarkable successes in general pattern recognition

tasks. Hence it would be interesting to explore how the representation learn-

ing can be incorporated into the IOC framework. Also, a feature extraction

demands constructing a mapping to project the raw data into a latent space.

The manifold of the latent variable is often structured and well-behaved for a

more simple and efficient model inference. From this perspective, this chapter

also learns a latent variable in the same spirit of Chapter 4. However, the latent

variable in Chapter 4 is discrete in order to secure a tractable posterior dis-

tribution. This assumption could be over restrictive for encoding unstructured

demonstrations. Here the extension considers learning with a continuous latent

variable. This will definitely enrich the model capacity with a more general as-

sumption, while on the other hand, additional challenges arise as the posterior

is no longer tractable.

Summarizing above discussion, the research questions from the robotics and

machine learning perspectives can be identified as:

– Robotics: how can a robot learn from and reason about high-dimensional

116



 
Latent & 

Associative 
Task 

Constraints  
 
 

Reconstruction 

Motion from incomplete 
and novel task input 

Figure 5.1: Learning representations for multiple sensory perceptions (vision and
joint position) and associating them in the latent space for linking perception
and control. The desired sensory/motor state, e.g., joint motion command, can
be efficiently derived from incomplete or novel input e.g., symbol images.

data to associate perception and control modalities?

– Machine Learning: how can an IOC approach learn the data feature

together with the cost function while assuming a general latent space?

To address the identified problems, this chapter draws the connection be-

tween a general form of IOC and the variational auto-encoders, a popular rep-

resentation learning framework for generative models. The relation is discussed

in Section 5.3 for the insights about incorporating representation learning in

IOC approaches. An adapted variational auto-encoders is then developed in 5.4

as the main technical advancement for associating unstructured perception and

control modalities. Also presented is an application of the cross-entropy opti-

mization introduced in Chapter 3, which exploits the learned model to derive

trajectories in more challenging settings (Section 5.5). To this end, the results in

Section 5.6 can demonstrate succinct task manifolds and representations, which

are then leveraged for an efficient motion derivation from the raw sensory input

(Figure 5.1). The main contributions of this chapter are:

– An approach which enables an agent to learn from high dimensional raw

demonstration data, with an adaptation from unsupervised representation

learning.
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– A KL-divergence-based metric that compactly associates the statistics of

latent encodings of different demonstration modalities, resulting in effi-

cient stochastic gradient descent training.

– An end-to-end system that enables the robot to generate arm joint writing

motion from observed symbol images, with a robustness against image

occlusion.

The main algorithm and results have been presented in (241). The chapter

contains an extension about bootstrapping trajectory optimization with the

learned model in Section 5.5. Additional results about the latent space and the

extension are also included in Section 5.6.3 and 5.6.6.

5.2 Problem Statement

The central problem of this chapter is modeling multi-modal demonstra-

tions with an IOC-based probabilistic model. Without a loss of generality, two

modalities of raw sensor readings, such as vision pixels and joint positions, are

considered here. The raw features are represented by variables with subscripts

indicating the data modality, e.g., xv for vision and xm for joint motion. Under

the MaxEnt assumption, the demonstration distribution can be parameterized

by the cost function:

p(xv,xm) =
e−J (xv,xm,θ)∫

e−J (x′v,x
′
m,θ)dx′vdx

′
m

(5.1)

in which the original feature or trajectory is now a concatenation of the in-

volved modalities. Hence the IOC model eventually describes the multi-modal

demonstrations as a joint data distribution.

Structures can be exploited for further induction of the general IOC formu-

lation. Like the Chapter 4, a latent variable is assumed to factorize the joint

distribution as:

p(xv,xm) =

∫
p(xv|z)p(xm|z)p(z)dz (5.2)

which means the raw readings are independent conditioned on the latent variable

z. The latent structure can be leveraged to obtain the factorization because

using multiple modalities to describe a task could be redundant and the raw

features are simply different views of perspective to the underlying task goal.
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However, unlike the Chapter 4, the latent variable here is not restricted to be

discrete because it relates to a quite general task-relevant feature, which does

not have a clear interpretation like the demonstration style in the discrete case.

Moreover, z in fact integrates the latent variables for both modalities with

z = {zv, zm}. The prior probability of z can thus be further factorized if the

coupling p(zv, zm) can assume more structures.

The main learning problem is to estimate the parameters of the above dis-

tribution. This is challenging because the latent variable is not of a simple

discrete type so the marginal cannot be efficiently evaluated. Also, for an infer-

ence problem, one may also be interested in the posterior distributions p(z|xv)

and p(z|xm). These in effect provide feature mappings to project the raw data

into a more compact feature space for describing the task. In the low dimension

space, one can seek a simpler cost-to-go function to describe the task manifold.

Hence unstructured demonstrations can be captured by a cost-to-go function

with a simple form and yet informative features. Lastly, the model should also

allow for efficient and robust inference of p(xv|xm) or p(xv|xm). This is impor-

tant to establish a link between perception and control modalities, for instance,

inferring joint motion from a given visual cue.

5.3 Generative Representation Learning: PCA
and Variational Auto-encoders from IOC per-
spective

This section discusses feature learning of IOC problems and motivates to

address it by resorting to general generative representation learning techniques,

such as PCA and Variational Auto-encoders (VAE). Revisiting the MaxEnt IOC

form used in previous chapters:

p(ς) =
e−J (ς)∫
e−J (ς′)dς ′

J (ς) =

T∑
t=0

1

2
[(xt − µt)TQt(xt − µt) + uTt Rut] (5.3)

where trajectory states in ς can be subject to a (locally) linear dynamics and

one can also tie the cost parameters by omitting the index t. The learning is

comparatively easy because the data is already represented with an informative

representation, such as the pose in the operational space. In fact, if the raw

feature, e.g., the joint positions y, are used, the cost-to-go function is defined
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as

J (ςy) =

T∑
t=0

1

2
[(φ(yt)− µt)TQt(φ(yt)− µt) + uTt Rut] (5.4)

with a kinematic mapping xt = φ(yt). The trajectory cost is no longer of

an simple form in yt because φ(·) is a nonlinear feature. Another more general

example is the popular parameterization with linearly combined basis functions:

J (ςy) =

T∑
t=0

1

2
[θTφ(yt) + uTt Rut] (5.5)

where φ(yt) defines a nonlinear feature xt = [φ1(yt), φ2(yt), ..., φK(yt)]
T , with

φk(·) commonly chosen as radial basis functions, e.g.,:

xk = φk(y) = e−γ‖y−µk‖ or xk = φk(y) =
e−γ‖y−µk‖

K∑
k′=1

e−γ‖y−µk′‖
(5.6)

Again, if the feature parameters {γ,µk} are defined, the learning cost is effec-

tively hypothesized as a simple linear form in the feature space. When φ(·) is

unknown or hard to craft, e.g., as the case of abstracting image pixels, the IOC

approaches need to learn this feature mapping alongside the cost parameter θ.

The complexity of such IOC problems depends on the choice of φ(·) since it also

parameterizes the distribution for generating the data. In below, the notations

are a bit abused to be consistent with general generative model, with x denoting

the raw representation of the entire trajectory and z representing its projection

in the latent space.

Let the feature mapping be assumed as a linear projection z = Lx, where the

dimension of z is assumed to be much smaller than the original x (dz � dx).

If a quadratic parameterization is used for the task feature z, similar to the

previous chapters, the MaxEnt model in the raw feature space p(x) is also a

Gaussian:

p(x) = |L|pz(Lx) = |L| e−
1
2 (Lx−µ)TΣ−1(Lx−µ)∫

e−
1
2 (z′−µ)TΣ−1(z′−µ)dz′

=
1√

(2π)dx |L†TΣL†|
e−

1
2 (x−L†µ)T (L†TΣL†)−1(x−L†µ) = N (L†µ,L†TΣL†)

(5.7)

where L† denotes the pseudo-inverse of the feature mapping L. Note the flex-

ibility of L makes the estimation of cost parameters ill-posed. One can fix the
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variance in the latent space as identity and reparameterize L†µ as µ̄ = L†µ.

In that sense, the new mean can be independently estimated and L†TL† is

a low-rank approximation to the data covariance because L is constrained by

dz � dx. A best approximation, e.g., subject to a Frobenius norm, can be ob-

tained through the singular value decomposition (SVD) (53). To this end, one

can identify that solving this IOC effectively conducts a principle component

analysis hence the PCA can be understood as learning a linear feature for a

quadratic cost-to-go function defined in a low dimension space.

A linear feature, though efficient for learning, cannot parameterize an ex-

pressive model with a simple latent space. In order to express richer structures,

the feature φ(·) entails nonlinearity. Variational Auto-encoders (VAE) is such

a kind of generative model. Recall the derivation in the background chapter

about using a parameterized distribution to approximate the true posterior:

KL[qφ(z|x)‖p(z|x)] =Eqφ [log qφ(z|x)− log p(z|x)]

=Eqφ [log qφ(z|x)− log p(x|z)− log p0(z) + log p(x)]

(5.8)

and the relation between the training objective and full data likelihood:

L(θ,φ,x) =KL[qφ(z|x)‖p(z|x)]− log p(x)

=KL[qφ(z|x)‖p0(z)]− Eqφ [log p(x|z)]
(5.9)

Note that VAE assumes Gaussian probabilistic latent variable, prior and re-

constructions: qφ(z|x) = N (µe(x),σ2
1(x)I), p0(z) = N (0, I) and p(x|z) =

N (µd(z), I). Apply the logarithm to recover the cost-to-go function from the

likelihood:

J (x) = − log p(x) + C = KL[qφ(z|x)‖p0(z)]− Eqφ [log p(x|z)]−KL[qφ(z|x)‖p(z|x)]

=
1

2
‖µe(x)‖σ2

1(x) +
1

2
Eqφ [‖x− µd(z)‖2]−KL[qφ(z|x)‖p(z|x)] + C ′

≈ 1

2
‖µe(x)‖σ2

1(x) + C ′

(5.10)

where the approximation is accurate when 1) the reconstruction loss Eqφ [‖x−

µd(z)‖2] is small; 2) the latent mapping is approximated well so the divergence

KL[qφ(z|x)‖p(z|x)] is small. Both of the two can be realized with nonlinear

encoder and decoder functions, which are deep neural networks in VAE. Re-

moving these terms, an estimation of the cost J up to a constant term emerges.
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(a) Linear feature (b) Nonlinear feature

Figure 5.2: Characterizing the data distribution with the cost defined in the
latent feature space (a) a linear mapping for projecting Gaussian distributed
trajectories, yielding a quadratic cost for a low dimension manifold; (b) a non-
linear feature mapping for projecting non-trivially distributed trajectories, ap-
proximately fitting a quadratic cost from the latent structure prior.

In contrast to the analysis of PCA, the function is a simple quadratic one in a

nonlinear feature space.

It is worth noting that the quadratic form from the VAE derivation is so

simple that there is no need to learn the original cost parameter θ. This is

because a general nonlinear feature qφ(z|x) is powerful enough to transform and

match arbitrary raw features to a fixed low dimension manifold. Informative

features can shape the hypothesis space for an efficient model learning. Here

the feature itself is sufficiently informative so no more model seeking is desired

(Figure 5.2). One can of course further parameterize the prior p0 to allow for

more flexible cost-to-go functions in the feature space, such as parameterizing

a dynamical system to cascade the priors in the latent space. Incorporating

structured priors other than an isotropic Gaussian is an on-going research topic

in general VAE and other types of generative models (86, 34).

5.4 Associative Variational Auto-encoders

From the above discussion, variational auto-encoder can be interpreted in

the IOC framework as a way of learning compact cost-to-go features. This

section presents the main contribution, an associative variational auto-encoder,

which adapts the original framework to link interested modalities through the

extracted latent space. It will show that the approach is also flexible for the ap-

plication of synthesizing motion from a perceptual input, hence accommodating
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the needs of the efficient inference upon the model.

5.4.1 Associating Latent Representations

An associative variational auto-encoder consists of a collection of VAEs, each

of which models one modality of the demonstration. The factored probabilistic

model is correlated as stated in the Equation (5.2) if the raw feature x of each

modality is considered a different perspective on the underlying task. So far

p(zv, zm) is a general joint distribution that captures this correlation. Specifi-

cally, a deterministic assumption is adopted here, implying the latent encodings

are constrained by a metric, in the general form h(zv, zm) = 0. The constraint

h(·) should not be very complicated because the features are already structured

and the inference across modalities necessities a simple correlation. While there

exist numerous assumptions about the form of this relation, it is reasonable to

adopt an identity constraint. The intuition about the validity of this design is

twofold:

– The latent variables actually correspond to features that are arbitrarily

abstract for describing the task. A most direct description is to label the

task behind the demonstration instance with the latent variable itself. In

that sense, the latent variables obtained from multiple modalities should

be identical because they are describing a same underlying task.

– The expressiveness of the nonlinear encoding and decoding features could

be sufficient to support an abstraction of this level, while without com-

promising the model flexibility much.

Note that in VAE, the identity should be expressed as a match between the

distributions of probabilistic latent encodings, namely qφv(z|xiv) = qφm(z|xim),

∀z. The discrepancy between two probabilistic distributions can be captured

in many ways, e.g., KL-divergence. A standard KL-divergence (Figure 5.3a),

however, could be problematic here because it is not a metric which allows

the exchangeability. The learning might be misled to yield a encoding with an

infinitely large variance for the first modality, making the difference between

µe(x) irrelevant 1. In light of this, a symmetrical KL-based metric is composed

1. The isotropic regularization in each modality might occasionally alleviate it but this is
not guaranteed.
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(a) Standard KL-divergence (b) Symmetrical KL-divergence

Figure 5.3: Standard and symmetrical KL-divergences between N (0, σ2
1) and

N (0, σ2
2). The standard KL-divergence fails to capture the discrepancy for cer-

tain cases, e.g., σ1 = e−2 and σ2 = 1, while the symmetrical one is invariant
w.r.t. the commutation.

to quantify this relation:

Lassoc =KL(qφv (zv|xiv)‖qφm(zm|xim)) + KL(qφm(zm|xim)‖qφv (zv|xiv))

=
1

2
[log
|Σm(xim)|
|Σv(xiv)|

+ log
|Σv(xiv)|
|Σm(xim)|

+(µm(xim)− µv(xiv))Σ−1
m (xim)(µm(xim)− µv(xiv))

+(µv(x
i
v)− µm(xim))Σ−1

v (xiv)(µv(x
i
v)− µm(xim))

+tr(Σ−1
m (xim)Σv(x

i
v)) + tr(Σ−1

v (xiv)Σm(xim))]

(5.11)

which is still of a closed-form and differentiable with respect to the feature

parameters φv and φm, because of the Gaussianity of latent encodings. It can

be shown that, as illustrated in 5.3b, this constraint implies an exchangeable

modality sequence, as such, avoiding a directional dependency in p(zv, zm).

The final joint objective for the training can be obtained by putting together

the proposed constraint and the applications of Equation (5.9) over the involved

modalities xv and xm, yielding:

L(θv,θm,φv,φm,x
i
v,x

i
m) = Lv + Lm + λLassoc

= KL[qφv (zv|xiv)‖p0(zv)]− Eqφv [log p(xiv|zv)]

+ KL[qφm(zm|xim)‖p0(zm)]− Eqφm [log p(xim|zm)]

+ λKL[qφv (zv|xiv)‖qφm(zm|xim)] + λKL[qφm(zm|xim)‖qφv (zv|xiv)]
(5.12)

with λ denoting the weight of the imposed constraint. It is worth noting that

the introduced loss term of association adds no extra complexity, comparing
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Figure 5.4: Learning overlapped task manifolds (surfaces with solid color and
textures) for different demonstration modalities (vision and motion). Associa-
tive letter image and handwriting motion are retrieved by having an identical
latent encoding go through corresponding decoders.

with a regular variational auto-encoder training. Also the standard stochastic

gradient descent still applies for optimizing this adapted objective.

5.4.2 Efficient Inference on Perpetual Input

Learning and featuring associative demonstrations can be understood as

extracting low dimensional task manifolds that are, in an ideal condition, fully

overlapped (Figure 5.4) . The projections of different observation modalities

are co-located on the manifolds. Exploiting this intuition, one can perform an

inference for predicting one modality given the other one, for instance, deriving

arm joint motion from a target letter image:

p(xm|xv) =

∫
p(xm|z)qφv (z|xv)dz (5.13)

Such an inference is viable because the latent variable identity is implicitly

used as an intermediate step to link the conditioned modality to the target

one. Also, the integral can be efficiently evaluated by sampling from the shared

low-dimensional manifold z.

Moreover, a full probabilistic model provides additional inference options

besides linking modalities in a basic manner. The low dimensional latent en-

codings can be leveraged to evaluate the marginal probability thus alleviating

the intractability of inference within each modality space. This can be applied

to a more practical and challenging scenario: while the input features are in-
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complete or corrupted, the robot can still exploit what it learned to evaluate the

imperfect perception, recover a more accurate estimation, and as such, derive

the desired motion in a robust manner.

Concretely, the incomplete input feature, e.g., a letter image x̃v with some

parts occluded, is projected into the feature space to obtain a rough estimation

of the latent encoding. With this as an initial guess, the manifold is explored

to find a most likely latent variable whose reconstructed feature matches the

observable part of x̃v well. Quantitatively, it is proposed to solve:

z∗v = argmin
zv

− log p0(zv) + η‖x(obs)
v (zv)− x̃(obs)

v ‖ (5.14)

where η weights the difference between the observable parts of the reconstructed

and the target images. This objective literally seeks the latent encoding of an

image which, on one hand matches the observable part of the target one, and

on the other hand, is more probable w.r.t the learned cost function.

Note that the norm penalizing the difference of observable parts depends on

the task modality 2. Problems arise when the adopted norm is not differentiable.

Thus, as a unified solution, z∗v is proposed to be optimized through the cross

entropy method used in previous chapters. The cross entropy method optimizes

the target objective by alternating between taking samples from a proposal

distribution and re-estimating it with the samples weighted under the target

objective, hence removing the requirement of a differentiable norm. Again,

since the samples are taken from the low dimension manifold, this method can

secure an efficient inference.

5.5 Posterior Trajectory Optimization

It is a long-standing challenge for an agent to reuse the learned experience to

bootstrap the solution in novel tasks. As for the running example, it desires the

agent to develop the motion from the images of symbols that are different from

the ones included in the training set. One of the viable solutions to this out-

of-sample test, which realizes a transfer learning to some extent, is to fine-tune

2. In case of a perfect feature learning, the similarity could be surrogated in the extracted
latent space by a simple norm, e.g., an Euclidean distance, and the optimization would be
trivial. In practice, the distribution of corrupted data might be different from the training
set, while the projections might be close if sufficient information is already provided by the
observable part.
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the result obtained from the source task model (208). In light of this, another

application of the proposed approach is to seed the posterior policy search with

the prior guess from a task relevant input. The intuition is that, the projection

of the novel image encodes a similar learned letters, thus the associated initial

motion approximation is expected to be close to the optimal one and in turn

boosts the performance or efficiency for the posterior trajectory optimization.

5.6 Implementation and Results

This section presents the implementation and application of the proposed

method in an illustrative task: associating handwriting arm motion and the

letter image. Details about the experiment setup are given and the presented

approach is also compared with other alternatives.

5.6.1 Data Augmentation

The dataset used for the implementation is UJI Char Pen 2 dataset, from

which, for simplicity, only one-stroke-formed alphabetical letters and digits are

considered. The data instances feature 2D trajectories, which are spatially and

temporally aligned trough scaling and interpolation. The corresponding letter

images are generated from the trajectories, yielding 28×28 grayscale thumbnails

and a xv of a length of 784. To emulate a less explicit motion representation,

iterative LQR (220) is used to derive the optimal joint motion of a 7-DOFs Bax-

ter robot arm. The arm joint motion is recovered to fit the 2D letter trajectories

in the operation space with the joint torque efforts minimized. The joint tra-

jectories are further parametrized by the function approximator xt = wTΦ(t),

which is used in Chapter 3. Thus the effective output for the motion modality is

the coefficient of the function approximator. The motivation of introducing this

representation is to incorporate a smoothness prior and reduce the complexity

of the output dimension. For each DOF, 20 nonlinear basis functions plus a

linear term are used, yielding a 147-dimension vector for the modality of xm.

Unfortunately, the UJI Char Pen 2 dataset is sparse and unbalanced for dif-

ferent letters and digits. The most number of samples for each type of character

is 120. The difficulty is that representation learning methods are usually data-

hungry and a primary test on the original dataset shows the model tends to
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either overfit or fail in learning rare samples. This is proposed to be addressed

by a data augmentation. Specifically, the dataset is augmented by exploiting

the handwriting synthesis result in Chapter 4. The motion trajectories for each

character are first learned with the ensemble probabilistic model, with the log-

normal kinematics feature enforced. Then the characters for each category are

re-sampled through the efficient multi-mode motion synthesis and obtain the

corresponding images. Readers can revisit Section 4.7.2.1 for details of this

procedure. Note that this is different from augmenting the size of dataset by

simply adding white noise to the original coordinates and pixels. The random-

ness is constrained in the space of kinematics feature, which is borrowed from the

research characterizing natural human movement. Also the quality of the syn-

thetic samples is partly assured by the result of Turing-like test (Section 4.7.2.2.

Eventually, more than 70000 pairs of images and arm motion are synthesized,

with about 1000 samples per each character.

5.6.2 Model Implementation

Similar to the standard variational auto-encoder, neural network (NN) mod-

els are used as the data encoder q(z|x) and decoder p(x|z). Each of the NNs is

comprised of two layers of rectified linear units (ReLU) as the nonlinear hidden

features. Sigmoid functions are adopted as the output features of the vision

modality, in order to obtain valid gray-scale values. The model architecture can

be over-viewed as Figure 5.5. The training is carried out through the stochastic

gradient descent with an adaptive moment estimation (ADAM) (101), a learn-

ing rate of 10−4 and a batch size of 64. The other hyper parameters, such as

the length of the latent variable and the weight of association term, are selected

according to the cross-validation of the reconstruction performance.

To illustrate the strength of the incorporated feature learning, Gaussian Mix-

ture Models (GMM) on raw features are also trained as competing baselines.

Training these models with full covariance matrices suffers from severe over-

fitting issues and is quite slow for a moderate number of components due to

the high data dimensionality. To alleviate it, some variants are also explored.

These encompass a GMM model with diagonal covariance matrices, a GMM

model with a PCA dimension reduction and the combination of these two. For
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Figure 5.5: Model architecture of learning latent representations and association
on different modalities of demonstrations. Latent layers of representation is
annotated with feature type (Rectified Linear Unit) and size. The association
is captured by a symmetrical KL-divergence.

the PCA preprocessing, the number of eigenvectors is selected to explain 99%

data variance, yielding a reduced dimension of 240 for the image modality and

37 for the motion modality. The number of mixture components is determined

based on the BIC criterion. We fit GMM models with a K-Means initialization

and 15 random restart to find the best estimation. In our experiment, GMMs

with 350 components and diagonal covariance matrices give the best BIC score

(Figure 5.6a). Since a diagonal matrix cannot capture the correlation across

feature dimensions, the best full covariance models with 10 components are also

included in subsequent comparisons.

5.6.3 Wandering in the Latent Space

Figure 5.7 demonstrates the learned association by comparing the images

and the arm motion decoded from identical latent variables. Here the two

modalities are compressed in a 4-dimensional latent space. The latent encod-

ings are selected by walking along the first two dimensions between the interval
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Figure 5.6: BIC scores for model selection of GMMs: (a) with the complete
feature (b) with the feature subject to a PCA dimension reduction. Selected
number of components: full - 10; diagonal - 350.

of [−5, 5]. The reconstructed images show plausible transition of morphologies

with varying size or curvature of the loops or strokes. The corresponding mo-

tion, which is transformed as the end-effector trajectory in the operation space,

resembles consistent profile throughout the wandering over the manifold. Also it

is notable that the Cartesian trajectories always stay within the writing surface,

with a deviation as small as 10−4m, even though the model is agnostic about

the arm forward kinematics . Therefore these observations conclude that the

model indeed learns expressive representations and a global association on the

manifold of the target task.

5.6.4 Deriving Joint Motion from Image Perception

A natural application of the learned encodings and association is to infer

one data modality from the other one. In our handwriting context, this implies

the model can be used to immediately derive the handwriting motion when a

symbol image is presented, as such linking a feedforward control to a perceptual

input.

Figure 5.8 depicts concrete samples of the predicted writing motion from

symbol images. It is worth noting that the images here are not from the dataset

itself but generated by a person with a different handwriting style. Specifically,

the symbols are drawn by hand on a canvas or a user interface. The images

are then retrieved and fed to the model to obtain the writing motion. For
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Figure 5.7: Decoded letter image (dark background) and arm motion in Carte-
sian space (light background) by walking along the first two main axes of the
latent space (z(1), z(2) ∈ [−5, 5]).

Figure 5.8: Deriving handwriting motion with different models and symbol
images outside the test dataset: the resulted trajectories are transformed to the
Cartesian space and shown in 3D plots. The input samples are generated by
brushing with the mouse and are not cherry-picked.

the convenience of visualization, all of the joint motion is transformed into the

Cartesian space and rendered as 3D plots.

As is clear from the figure, the proposed approach generates the most plau-

sible arm joint motion for the drawn image samples. Because of the rich mode

patterns of data, the model learned in the original feature space requires a large

amount of local models to fully cover the data modes. Henceforth, among the

alternative methods, GMM with diagonal covariance matrices, which admits a

larger number of components, appears to have a comparatively better perfor-

mance. However, due to the high dimensionality, such a shallow model still

fails at times. Additionally, the PCA, aiming to reduce the data dimension, is

not helpful in this task. In fact, the methods with PCA preprocessing perform
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worse than the GMMs learned in the original feature space. This can be par-

tially explained by the fact that the PCA inherently learns linear correlations

as the features, which are not expressive in general cases. In our experiment,

we observe that sometimes the generated movement forms an incomplete loop,

like the cases of "g" and "8" in Figure 5.8. A possible cause is that, in the

data augmentation, the samples are perturbed without an explicit constraint

of maintaining the closeness of a loop thus the samples with a loop cut dom-

inate the training data. Hence synthesized motion samples with an open loop

dominates the augmented dataset, though similar samples might also emerge in

cursive handwriting. One can expect an improvement by further constraining

this in the synthesis of data augmentation.

Figure 5.9: Error comparison of different models on predicting the arm joint
motion from a symbol image of the test dataset. The error is measured as
the Euclidean distance in the space of the coefficient of the trajectory function
approximators.

The qualitative visual results are also in accordance with the numerical re-

sult. In this experiment, motion trajectories are predicted for the test dataset

and the Euclidean distance between the prediction and ground-truth is mea-

sured in the function approximator basis space. As is clear from Figure 5.9, the

presented associative VAE outperforms the competing methods by a significant

margin. These results demonstrate the advantage of the proposed nonlinear

feature learning in such a challenging task that involves high dimensional raw
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sensory input.

5.6.5 Handling Imperfect Perception - Occluded Images

In this experiment, the letters are again written by a person whose handwrit-

ing is not included in the dataset. However, the model only receives a corrupted

symbol image, with a random quartile covered. In order to guarantee the real-

time performance, the number of iterations and samples of the cross-entropy

optimization are both limited to 20. Figure 5.10 presents some instances of the

experiment and clearly illustrates how the proposed inference proceeds. Ini-

tially, the algorithm attempts to make up the missed pixels with a plausible

component. Then the recovered part is progressively refined and sharpened as

the iteration continues. At last, the resultant latent encoding appears to be

a good representation of the full underlying image, leading to correct writing

motion (the last column). In practice, 20 iterations are often more than enough

Figure 5.10: Inferring arm joint motion given occluded letter images: the latent
encodings are explored to search complete images to match the observed parts
before deriving the associated handwriting motion. The first column: input
images; the second to the fifth columns: evolution of the recovered full images
in iteration steps of 3, 8, 13, 18; the last column: Cartesian letter trajectories
resulted from the inferred arm joint motion.

to reconstruct the image, thanks to the efficiency from the learned latent repre-

sentation. With a projection from the observed pixels, the obtained initial guess

is expected to be close to the ideal reconstruction on the manifold. In addition,

the learned low dimension parameter space only desires a limited number of
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samples to secure a stable exploration.

The GMM-based models are not compared here as it could be notoriously

expensive to apply the cross-entropy method to sample pixels of hundreds of

dimensions in the original space. Also, this experiment showcases a unique

benefit of learning a generative model of demonstrations. Indeed, it provides a

principled way to handle sensor uncertainties in the task execution. The robot

systems can benefit from this in terms of skill generalization and robustness.

Approaches in which sensory states are mapped directly to actions are unable

to achieve this.

5.6.6 Bootstrapping Posterior Control for Novel Samples

In this experiment, the learned model is tested to examine if it could pro-

vide an informative prior for the posterior trajectory optimization. Ideally, the

encapsulated knowledge should suggest a trajectory which is close enough to

the optimal one, thus the trajectory optimization could potentially benefit from

a more efficient exploration and avoiding trapping in local optima. From a

broader point of view, this paradigm demonstrates how LfD can be utilized to

adapt and transfer learned skills to completely novel tasks.

For the novel test tasks, images are retrieved from a free drawing, including

“d” with a script font, symbol “square”, “∆”, “moon”, composed “7” and “6” and

“Σ”. This collection of symbols are selected with a qualitative and intuitive

control about the task novelty. For instance, one can imagine that the motion

for drawing a square can be relatively easy to search by adapting a prior for

writing “O” and composing “Σ” is less straightforward due to its dissimilarity to

learned letters.

The above competing methods are used to generate initial trajectories for a

comparison. Besides GMM-based models, a naive initialization, the motion of

drawing a straight line, is also included. The posterior trajectory optimization

is consistently performed with the cross entropy method. Another motivation of

using the cross entropy method is because an explicit gradient for the process of

generating images from motion is not available. The priors from the associative

VAE are used in two ways. The first way is to apply the cross entropy optimiza-

tion in the original (parameterized) trajectory space xt = wTΦ(t) ("AssocVAE
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full"). The second is defining the proposal distribution over the latent space,

hence solving the task in a low dimension and constrained space ("AssocVAE

latent"). For all the optimization initial guesses, the task performance is mea-

sured by the sum of pixel-wise quadratic errors realized in a fixed number of

iteration steps. Unless explicitly stated, the cross entropy method parameters

are set to be identical to assure a fair comparison.

As is shown as Figure 5.11a, the results of searching the trajectories with

initial approximations from the proposed associative variational-autoencoder are

presented. Indeed, given the novel symbol images, the learned model proposes

plausible initial writing motion, such as generating the motion of writing a

“G” for the "square" and “V" for the "moon". The script-style “d” is first

approximated with the motion close of “a”, which is not a perfect guess but close

enough for the posterior trajectory optimization. At the end, visually believable

results are obtained within 20 iteration steps. An interesting observation is the

result of writing the symbol “Σ”, which is shown in the last row of Figure 5.11a

and expected to be a challenging one. The novel symbol is recognized to be

close to the digit “8”. Such an approximation, whose motion might not be that

close to the target one, is nonetheless reasonable for the agent to perceive the

input image with respect to what it has learned. Departing from such a motion

prior, the trajectory optimization yields an “innovative” way of writing a “Σ”,

whose overall profile is visually well formed.

The performance of the proposed approach is compared with the naive and

GMM-based initializations, whose numerical and visual results are respectively

depicted in Figure 5.12 and 5.11b. For some of the symbols, these competing

predictions are fine to yield reasonable writing results (e.g., “square” for GMM-

PCA-Diag and “∆” for "GMM-Full"). However, in general, the performance

of searching in the original trajectory space with the proposed initial guess

("AssocVAE full") is more favorable. This is particularly phenomenal when an

approximately correct prior is crucial for the trajectory optimization to escape

from a poor local optima, such as the script-style “d” and symbol “moon”.

In terms of the quantitative performance, the approaches based on asso-

ciative variational-autoencoder is either comparable or superior across all the

tasks. Specifically, searching in the latent space ("AssocVAE latent") is much
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(a)

Target Image Naive GMM-Diag GMM-Full GMM-PCA-Diag GMM-PCA-Full

(b)

Figure 5.11: Model-free trajectory optimization and refinement with the inferred
arm motion as the initial guess. The searching is conducted in the original mo-
tion trajectory space. 5.11a The first column: the input image; the second to
the fifth columns: symbol images resulted from the evolving motion trajectories
in iteration steps of 3, 8, 13, 18; the last column: Cartesian trajectories. All
testing cases except the first one are novel to the model. 5.11b The Cartesian
motion result of trajectory optimization with initial guesses from competing
approaches. All of the methods are using the same cross entropy method pa-
rameters and the figures are from the results after 20 iteration steps.

more rapid and stable for both the mean and covariance of trajectory costs,

even when fewer sampling rollouts are used. This is similar to what has been

observed in Section 5.6.5, where the searching space is constrained by a infor-

mative latent representation. While in this experiment, since the symbols are

novel and not necessarily aligned with the learned manifold, such a constraint

tends to result an approximation that is close to the projection of the target

symbol on the manifold. Therefore, when there is an informative approximation

to shape the searching direction, exploring in the full trajectory space ("Assoc-

VAE full") offers more flexibility to yield a better performance in terms of visual

consistency (Figure 5.11a).

5.7 Discussion

This chapter approaches a challenge arising in the practical LfD: learning

and reasoning about high dimension data of multiple modalities. Perceptual

and control modules can be linked by correlating multiple data modalities. The

proposed algorithm learns feature mappings that are, on one hand effective
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Figure 5.12: The evolution of cost values through cross entropy trajectory op-
timization with different initial approximations. Except the prior guesses, all
methods and testing cases start with same parameter settings. The AssocVAE
with latent representation explores in a low dimensional feature space and uses
fewer samples (20) in iteration steps. Other methods use 50 trajectory samples.
The curve and shaded area represent the mean and standard deviation of the
cost of samples.

for compressing and reconstructing the raw data, and on the other hand, sim-

ple enough to afford an intuitive and efficient representation of the associativ-

ity. The underlying IOC problem thus assumes a nonlinear featured cost-to-go

function, which much increases the model capacity to capture high dimension

unstructured patterns. As a result, the answers of the raised problems in the

beginning of the chapter can be summarized as:

– Robotics: the IOC framework can be extended to compress the high-

dimensional data by extracting a succinct representation. Concurrently,

the correspondence between perception and control modalities can be cor-

related as the joint distribution over the extracted representations.

– Machine Learning: representation learning can be adapted to param-

eterize a lower-bound of the demonstration likelihood with a continuous

latent variable prior. The differentiability of the re-parameterized sam-

pling allows to efficiently optimize this surrogate together with exploring

a nonlinear transformation to the latent space.

The proposed approach is largely following one of the main venues in gen-

eral machine learning: bridging expressive neural models and probabilistic in-

ference. Placing the IOC framework in this perspective, many variants beyond
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the vanilla VAE can be explored. It is worth noting that the distribution of the

synthesized motion conditioned on the input image is still unimodal, even the

VAE represents a sophisticated distribution over each sensory modality. This

might cause problem because the correspondence of the data modalities is not

necessarily a bijection. For instance, as the case in Chapter 4, a letter image

could be generated from different handwriting motion. As a result, the motion

prediction based on a unimodal latent distribution might miss the other viable

modes. Intuitively, one can model xm by adopting an advanced p(x|z), e.g., a

GMM parametrized on z. However, it might be risky to have an over-powered

p(x|z). The VAE training might not learn a meaningful mapping q(z|x) by

simply setting it to be the prior p0z, because the generator itself is sufficiently

rich to represent the data-likelihood with p(x|z) = p(x) (See discussions about

the optimization challenge in (17, 35)). A promising solution is to assume a

multi-modal posterior q(z|x). In a vanilla VAE, the posterior is parameterized

as a diagonal Gaussian, which, from the variational point of view, resorts to a

mean-field approximate inference. Latest works have proposed discrete latent

variable (84) and stick-breaking-based probabilistic encoding whose length itself

is stochastic (147). Also, noticing the posteriors entail efficient sampling and

back-propagation of the parameter gradient, complex posteriors in (171, 102)

are constructed from flows. Concretely, a flow-based posterior distribution is

formalized by recursively applying an invertible transformation to an encoding

z(x), which is initially with a simple distribution. From the IOC perspective, the

autoregressive process in (102) could be used to factorize the posterior distribu-

tion conditioned on the entire trajectory x = {xt}, e.g., q(z|x) =
∏
t
q(zt|x1:t).

This effectively assumes and learns a dynamical system in the latent space. A

prior about the agent dynamics, e.g., based on general physics laws (195), might

be incorporated to model the sequence of high-dimension observations.

One of the most phenomenal challenges of applying representation learning in

robotics, admittedly, is the importance of possessing massive high quality data.

Unfortunately, the applicability of the introduced solution in this chapter is task

dependent. Specifically, the data augmentation relies on the domain knowledge

about the kinematics feature characterizing natural human movements. Apart

from that, here the synthesis of the corresponding image modality is affordable
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because it is cheap to simulate and convert trajectory coordinates to canvas

pixels. For other types of data, e.g., the tactile of finger phalanges and the

manipulated object pose, one might face challenges in rapidly generating the

target pattern with the noise at a satisfying level. The robot might be exposed

to substantial risks if it takes a large set of rollouts to collect the data. Physical

simulation with a high-fidelity might alleviate this by safely synthesizing a large

amount of control and perception pairs. Also, it is worth investigating how

to reuse the knowledge from the experience of executing other related tasks,

e.g., convolution filters from general image classification, to incorporate features

that abstract many tasks and make the learning less demanding on the data

volume. This might also help to learn new task skills with a few shots when

an accurate model is not available to simulate real-world physics. This chapter

takes some preliminary steps which seed the solution for a novel task with the

prediction from the model learning a relevant task. It would be interesting

to explore how a robot can incrementally aggregate the data collection from

bootstrapped executions, and even orchestrate a sequence of subtasks (e.g.,

from writing simple strokes to composing complex calligraphies) to facilitate

the mastery of motor skill.
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6
Summary and Conclusions

In this final chapter, the thesis concludes with a summary of the main con-

tributions. Also discussed are the important limitations. Detailed technical

limitations have been covered at the end of each chapter. Here, the chapter

focuses on high-level issues with a look ahead on future research directions.

6.1 A Recap of Contributions

One main contribution of this thesis is to offer an approach at using human

demonstrations for identifying parameter of impedance control. The thesis does

so by taking an IOC approach, which is not as explicit as programming the de-

sired path of the tool-tip. Deriving an impedance controller from a learned cost

function is not the only novel aspect of the work offered in Chapter 3. Impor-

tantly, the approach in Chapter 3 introduces task-relevant priors that shapes the

general dynamics of the controller, while estimating the structured cost param-

eters according to the demonstration data. From the computing perspective,

unlike the works following a standard IOC formulation, the algorithm in Chap-

ter 3 treats both cost learning and control synthesis as probabilistic inference

problems, so an importance-sampling-based technique can be uniformly used.
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The model-free setting makes the algorithm less restrictive about the task dy-

namics and feature construction, implying the possibility of incorporating other

type of priors.

In general, imitation learning approaches expect the demonstration data to

cover all of the interested task dimensions. Chapter 4 and 5 take a different view

towards this and argue that sometimes it could be advantageous to assume the

data is incomplete. Explicitly considering incomplete demonstrations is rarely

explored in general IOC research, with a notable exception of (154). At a first

glance, introducing unobserved dimensions complicates the learning problem.

However, as shown in these chapters, this added complexity has many advan-

tages if the implicit variable is subject to an appropriate design. The general

insight is that, comparing with the original demonstration features, the intro-

duced latent variable could be cast as a more succinct description about the task.

This could be greatly helpful for understanding the raw sensory data, and in turn

benefit both learning and reasoning about the task. Specifically, Chapter 4 has

shown that, once the estimation about a discrete latent variable is established,

a general IOC learning can be decomposed to a set of less challenging problems.

Each of sub problem resembles a form that has been somehow addressed in

Chapter 3 and the extra computational cost for this transformation is modest.

Chapter 5 introduces the latent variable with a more practice-oriented consid-

eration. In this chapter, the latent variable is taken as a dimension-reduced

equivalence to the original feature, which can be high-dimensional and unstruc-

tured. This is useful because one can alleviate the curse-of-dimensionality by

reasoning about the sensory data in this low dimension space. Taking a further

step from Chapter 4, the latent variable is continuous. Therefore, it represents

a spectrum of variations and allows for an interpolation to capture a smooth

transition among demonstrations.

Chapter 4 and 5 also close the loop, in which the above latent variables

are employed to develop the control. Most LfD approaches cope with the link

between perception and control by learning a coupled system. Though less

straightforward, these two chapters adopt an architecture that decouples per-

ception and control modules. The advantages of this choice is twofold. On one

hand, a modular approach is flexible for incorporating priors in the intermediate
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step to shape the task execution. In Section 4, it has been demonstrated that,

for human robot collaboration, the adaptability and robustness of the robot can

be modulated by enforcing different priors about the latent variable evolution.

On the other hand, disentangled representations support a natural filtering and

recovery of the perception from noisy measurements, thereby realizing a robust

control that is less demanding about the data volume. As an example, Section

5.6.5 has shown synthesizing handwriting motion with an incomplete image in-

put. Plausible feed-forward trajectories are obtained without needing to train

on a dataset that includes corrupted character images.

To sum up, learning from demonstration is utilized and extended to obtain an

internal model, which exploits human expertise for an improved representation,

inference and synthesis of robot motion. The thesis considers a wide range of

human expertise, which fuses task demonstration and established priors about

perception and control.

6.2 An Outlook of Future Works

This section discusses potential directions along different dimensions. As

shown in Equation (4.3), the representation of task skills comprises two parts:

a goal-relevant cost function and task-independent passive dynamics. The first

two subsections discuss the possibility of adopting dynamics and tasks of more

general forms. The remained sections view in a larger picture, envisioning ex-

tensions from temporal and high-level perspectives.

6.2.1 Task Dynamics Beyond Discrete Motion

The cost-to-go function and linear-solvable system discussed in the thesis

encode a stroke of discrete motion. Parameterizing a periodic state reference in

the cost-to-go can be potential to learn rhythmic movements. More importantly,

it would be interesting to learn with hybrid dynamics. The hybrid dynamics

comprise continuous differential equations and discrete state transition to de-

scribe jumping events such as physical contacts. This is a more general form

that describes multi-staged motions. In many contact-rich tasks, such as object

in hand manipulation, the dynamics keeps switching among the modes of free

and contact-constrained stages. Synthesizing such kind of dexterous motion
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might entail an accurate hybrid dynamics model or efficient learning method.

Furthermore, hybrid dynamics explicitly consider the contact force in the model.

This could be useful when the contact contributes to the task performance. For

instance, humans can restore the balance by pushing against the wall to exploit

the environment reaction. As another example, impedance control might be

insufficient if the task goal is not just accommodating the contact but exerting

the force of a desired magnitude. In these cases, it would be more appropriate

to regard the contact force as a task state instead of a disturbance. However,

synthesizing motion under hybrid dynamics is hard due to the difficulty from

contacts. Possible venues include model-based approaches which deal with lim-

ited types of contacts (214, 116, 55) and learning-based methods which avoid

an explicit model (117). Learning from demonstrations could be useful to pro-

vide informative initialization or at least high-level plans such as ordered hybrid

modes and dynamics switching surfaces.

6.2.2 Task-agnostic Learning

Learning from demonstrations generally targets solving a specific task. One

of the substantial challenges is how a robot can generalize in the real-world and

master a range of task skills. However, it would be rather tedious to require

humans to exhaustively demonstrate all the task variations. It can be helpful to

use the data, which targets addressing specific tasks, for learning other (related)

tasks. The problem of lacking labeled data in target domains is also faced in

general machine learning, where massive datasets of related but unlabeled are

usually exploited (semi-supervised learning). In the robot learning practice, the

question is that how the “unlabeled” demonstrations or experiences, which are

not generated for the target task, can be leveraged for a domain adaptation. One

of the viable ways could be collecting task-agnostic data through an exploration

driven by general criteria like motion smoothness or curiosity. As a simple ex-

ample, an off-line motor babbling could be used to estimate robot dynamics for

learning different tasks. This relaxes the assumption about knowing robot pas-

sive dynamics in the thesis. Another extension could be capturing the variations

of tasks rather than of demonstrations. Namely, the robot learns a spectrum of

tasks by extracting some common features and builds a task-agnostic manifold.
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It could be sample efficient to learn a relevant task by exploring on this mani-

fold. As a result, the robot can rapidly adapt to learning a new task, realizing

the generalization at the task level. The work in Chapter 5 touches this with

learning to write a set of characters. It is worth exploring a similar idea in more

general robotic tasks.

6.2.3 Interactive and Incremental Learning

The thesis focuses on learn from demonstration in a batch mode. However,

in a few cases, learning in an interactive and incremental manner is desirable.

For instance, it might be more efficient and user friendly for the robot to actively

request human demonstrations when it is uncertain about how to act under the

given task configurations. Also, as is shown in (114), the robot can replicate

what it has learned and allow humans to adjust the robot skill through online

correction. However, an eventual incremental learning of task variations or

new skills requires consolidating the new data, instead of replacing what has

been learned. Research efforts are still necessary to achieve this, because many

models “forget” what they have learned after a training on the new task. This

is identified as catastrophic forgetting problem (137). In machine learning,

exploiting an external memory module is proposed as a potential to address this

issue (65). In robotics, it would be appealing to realize an incremental learning

of multiple tasks so the robot can progressively build up its skill repertoire,

envisioning a life-time learning.

6.2.4 High-level Knowledge and Cues

Another observation about the data efficiency is that humans generally need

much fewer demonstrations or trials to learn a new task skill. The priors es-

tablished in learning other tasks, as discussed in Section 6.2.2, indeed play an

important role. However, it is also worth noting that humans are proficient

in reasoning about high-level salient cues. To bring up a concrete example,

imagine a robot learning from a single demonstration of reaching an object on

the table. Without showing the variation, e.g., reaching the object placed at

different locations, it would be unclear if the robot should imitate the motion

path or the reaching goal. In fact, the presence of an object itself is a strong
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implication about the expected behavior. The similar importance of such con-

textual cues in resolving the imitation ambiguity has been observed in (13, 142),

where children imitate the motor gesture or the goal of touching depending on

the existence of target dots. In robot imitation tasks, such high-level knowledge

can be used to identify important scene objects and understanding their prop-

erties, relations and potential functions, as such, biasing the model design for

sparse demonstrations. The thesis employs the task-parametrized representa-

tion in Section 4 to extract the potential goals from a set of predefined objects.

Moreover, the inference is based on variance so the expressed relation is limited

and the demonstration variation is still required. Learning a general task in

limited shots calls for a model prior beyond that. The capability of inferring

the graspable parts from the object geometry, for instance, could let the robot

bias its interpretation about the demonstration so as to imitate correctly in

face of a novel object. To this end, it would be promising to have a framework

that incorporates high-level common knowledge in certain forms, and thereby

to yield an improved generalization performance.
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A
Appendix

A.1 Proof for Proposition 1 in Chapter 4

Substituting the Gaussian passive dynamics and the quadratic cost-to-go

function, we have:

P (xt+1|xt) =
e
− 1

2‖xt+1−f(xt))‖Σ−1
0
− 1

2‖xt+1−µ‖Λ∫
x′t+1

e
− 1

2‖x
′
t+1−f(xt)‖Σ−1

0
− 1

2‖x
′
t+1−µ‖Λdx′t+1

(A.1)
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The corresponding log-likelihood can be written as

L(µ,Λ) =− 1

2
(xt+1 − f(xt))

TΣ−1
0 (xt+1 − f(xt))

− 1

2
(xt+1 − µ)TΛ(xt+1 − µ)

− log[

∫
e−

1
2 (x′t+1−f(xt))

TΣ−1
0 (x′t+1−f(xt))︸ ︷︷ ︸

≤1 and positive

e−
1
2 (x′t+1−µ)TΛ(x′t+1−µ)dx′t+1] +

d

2
log(2π) +

1

2
log |Σ0|

≥−1

2
(xt+1 − f(xt))

TΣ−1
0 (xt+1 − f(xt))︸ ︷︷ ︸

Independent of µ and Λ

− 1

2
(xt+1 − µ)TΛ(xt+1 − µ) +

d

2
log(2π) +

1

2
log |Σ0|

−d
2

log(2π)− 1

2
log |Λ−1|︸ ︷︷ ︸

− log[
∫
e
− 1

2
(x′
t+1
−µ)TΛ(x′

t+1
−µ)

dx′t+1]

= −1

2
(xt+1 − µ)TΛ(xt+1 − µ)− 1

2
log |Λ−1|+ const

= L̂(µ,Λ)

(A.2)

where d denotes the state dimension. The exponential from the passive dynamics

(the third line of the equation) can be considered as a positive coefficient that

is always less than one. Replacing the coefficient with one results in a simple

integral of Gaussian function (the exponential of negative cost-to-go function,

line 7), which is always larger than or equal to the integral considering the

passive dynamics.

L̂(µ,Λ) is thus a lower bound of the original likelihood by instead subtracting

this simplified integral. Taking the derivatives ∂L̂
∂µ = 0 and ∂L̂

∂Λ = 0, one can

obtain:

µ =
1

N

N∑
i=1

xit+1

Λ−1 =
1

N

N∑
i=1

(xit+1 − µ)(xit+1 − µ)T

(A.3)

which happens to be the same as the MaxEnt estimation which assumes uniform

passive dynamics:

PMaxEnt(xt+1|xt) =
e−

1
2‖xt+1−µ‖Λ∫

x′t+1
e−

1
2‖x

′
t+1−µ‖Λdx′t+1

(A.4)
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Therefore the MaxEnt estimation is an approximate solution to the lower-bound

of L̂. And the gap shrinks as noise magnitude ‖Σ0‖ → ∞, with the original

problem degenerating to the MaxEnt formulation.
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